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Determination of causal relations among observables is of fundamental interest in many fields dealing
with complex systems. Since nonlinear systems generically behave as wholes, classical notions of causality
assuming separability of subsystems often turn out inadequate. Still lacking is a mathematically transparent
measure of the magnitude of effective causal influences in cyclic systems. For deterministic systems we
found that the expansions of mappings among time-delay state space reconstructions from different
observables not only reflect the directed coupling strengths, but also the dependency of effective influences
on the system’s temporally varying state. Estimation of the expansions from pairs of time series is
straightforward and used to define novel causality indices. Mathematical and numerical analysis
demonstrate that they reveal the asymmetry of causal influences including their time dependence, as
well as provide measures for the effective strengths of causal links in complex systems.
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Introduction.—The concept of causality has a long
history ranging back to the beginnings of natural philoso-
phy [1]. In recent formalizations it refers to situations where
states x1 of one system part influence states x2 of another
part [2]. It is often assumed that some aspects of x1 vary
independently of x2, and that the flow of information in the
overall system is essentially unidirectional. This premise is
at odds with nonlinear dynamical systems studied in, e.g.,
physics, ecology, economy, and neuroscience: generally,
two system parts, e.g., two brain areas, will have bidirec-
tional interaction and cyclic information flow. The classical
notion of causality becomes problematic here since cause
and effect are entangled.
This entanglement is reflected in Takens’ theorem [3,4],

which proves that in generic smooth deterministic dynami-
cal systems the overall state is reconstructable from any
measured observable. In other words, if x1 and x2 interact
bidirectionally, each x1ðtÞ and x2ðtÞ alone contain the full
information about the whole system constituted by x1 and
x2. That is, the system cannot be separated into subsystems
and rather behaves as a whole. In consequence, the question
for causal relations cannot be answered by classifying
component systems as cause or effect, but rather asks for
the asymmetry and strength of influence among these
components.
Here we present a mathematical definition of directed

influence tailored to entangled dynamical systems. As a
key insight we discovered that local distortions in the
mappings between state-space reconstructions based on
different observables reflect the time dependent efficacy of
causal links among the underlying system components.
Causality measures derived from this relation are analyti-
cally accessible for simple systems and for more compli-
cated ones can be estimated in a model free, data driven
manner.

Topological causality.—Our approach relies on exten-
sions of Takens’ theorem, which is reviewed shortly: Let
the (multidimensional) states x1 and x2 of two system
components be governed by

_x1 ¼ f1ðx1; w12μ2ðx2ÞÞ;
_x2 ¼ f2ðx2; w21μ1ðx1ÞÞ;

where μiðxiÞ denote fixed scalar functions and wij coupling
constants.
The trajectories (x1ðtÞ; x2ðtÞ) form an invariant

manifold in the phase space of the joint dynamical
system. A manifold in a delay coordinate space visited
by rxiϕi

ðtÞ ¼ ðϕi(xiðtÞ); ϕi(xiðt þ τÞ); ϕi(xiðt þ 2τÞ);…;
ϕi(xiðt þ ðm − 1ÞτÞ)Þ is topologically equivalent (a
homeomorphic mapping between both manifolds exists)
if wij ≠ 0 and the embedding dimension m is sufficient.
Here, ϕi is a measurement function depending on a scalar
component of x1, which is omitted to simplify the notation
(rxi ≔ rxiϕi

). By transitivity, a unique mapping from rxi to
rxj , denoted by Mt

i→j, exists iff wij ≠ 0 [5].
Assuming that these mappings are differentiable, Mt

i→j
denotes the local linearization (Jacobian matrix) ofMi→j at
the reference point t: Given that ftxi1 ;…; txik g are the time
indices of the nearest neighbors on rxi to the reference point
rxiðtÞ, Mt

i→j is the linear approximation of the mapping
that projects frxiðtxi1 Þ;…; rxiðtxik Þg to frxjðtxi1 Þ;…; rxjðtxik Þg.
In practice, we analyze the expansion eti→j of M

t
i→j, which

is determined by the singular values σtkðMt
i→jÞ of Mt

i→j

larger than 1,

eti→j ¼
Y

k

max ð1; σtkðMt
i→jÞÞ:
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To illustrate how the expansions of these mappings
between reconstructions relate to directed effective influ-
ence, consider the following thought experiment: First, a
system with unidirectional interaction is observed, i.e.,
w21 ≠ 0; w12 ¼ 0. By virtue of Takens’ theorem, a unique
mapping M2→1 from reconstruction rx2 to rx1 exists.
However,M1→2 does not exist, since x1 has no information
on x2. This is illustrated in Fig. 1(a) by a joint manifold
(rx1 , rx2) lying “folded” over rx1 but uniquely over rx2. Note
here that somewhat counterintuitively the influence from x1
to x2 is reflected in the “backward” mapping M2→1: the
existence of M2→1 implies coupling from x1 to x2.
Now increasing w12 while keeping w21 > w12 leads to

mutual but asymmetric interaction. Reconstructions rx1 and
rx2 both reveal the same global system state. However, the
weaker coupling from x2 to x1 implies that the region of rx2
states consistent with a small region of rx1 states around
rx1ðtÞ is larger than vice versa at most reference points t:
Both rx1 and rx2 are driven away from their state at time t by
a combination of internal dynamics and the external
influence from the other variable, but rx2 is more so due
to the stronger coupling w21. This entails that et1→2 > et2→1,
and a joint manifold (rx1 , rx2) lying uniquely over both

reconstruction spaces, but more “steeply” over rx1
[Fig. 1(b)].
If w12 is now decreased again to approach 0, et1→2

increases until it diverges at the point where (rx1 , rx2) folds
in on itself as seen from rx1 [Fig. 1(a)]. This happens at
w12 ¼ 0, where the map Mt

1→2 loses uniqueness and
corresponding points to neighbors in rx1 lie scattered over
the whole dynamical range of rx2 . Thus we equate infinite
expansion to the nonexistence of the corresponding
mapping.
Consequently, when the couplings among x1 and x2

vanish altogether, both component systems behave inde-
pendently and the density of the resulting joint manifold
factorizes. When observed from reference states rx1ðtÞ and
rx2ðtÞ, the mappings can be considered infinitely expanding
in both directions, since for most reference points close
neighbors correspond to distant points in the respective
other space [Fig. 1(c)].
In these expositions we assumed that the scalar observ-

ables xi ¼ ϕiðxiÞ have been transformed to their quantiles
qðxiÞ ¼ FðxiÞ prior to time-delay embedding, where
FðxiÞ ¼ P½Xi ≤ xi� is the cumulative density function for
the invariant measure of xi. This eliminates expansions not
caused by directed influences but arising from the numerical
representation of the scalar time series [[6] (A)]. In the
following we routinely perform quantile transformations by
kernel density estimations of the invariant densitiespðxiÞ [7].
Following these topological considerations, we hypoth-

esize that local expansions of the mappings between
reconstruction manifolds of two observables can be utilized
for graded measures of the directed causal influences
between component systems represented by these observ-
ables, where eti→j is inversely related to the strength of the
causal influence j → i.
The relation between expansion and causal influence can

be made fully explicit with coupled one-dimensional time-
discrete maps for which two-dimensional time-delay
embeddings are sufficient. Consider the system given by

x1ðtþ 1Þ ¼ x1ðtÞ½3.8ð1 − x1ðtÞÞ − w12x2ðtÞ�;
x2ðtþ 1Þ ¼ x2ðtÞ½3.6ð1 − x2ðtÞÞ − w21x1ðtÞ�; ð1Þ

which has served as a model of ecological systems [8].
Here, Mt

i→j based on raw data is accessible analytically for
every point in state space. For weak coupling weights eti→j

is dominated by 1=jxiðtÞwijj [[6] (B)]. This example
illustrates two important points. First, the weights are
inversely proportional to the respective expansions and
limwij→0eti→j ¼ ∞, in line with the heuristic considerations.
And second, the causal influence does not only depend on
the coupling weights, but also on the system’s state: Mt

1→2

is strongly expansive for low x1 values, and Mt
2→1 for low

values of x2, so that different regions in state space could be
characterized by different causal dominance.

(a) (b) (c)

FIG. 1. The relation of points rx1 and rx2 on multidimensional
manifolds illustrated in one dimension. The joint manifold
represented by (rx1 , rx2 ) can be interpreted as the function
mediating the mappings Mi→j between both spaces, and local
linearizations Mt

i→j of the mappings as the slope around a
reference point. (a) When only w21 ≠ 0, a one-to-one mapping
M2→1 from rx2 to rx1 exists, but not in the reverse direction: rx2ðtÞ
is not uniquely determined for all states rx1ðtÞ. Locally,Mt

1→2 can
be attributed a diverging expansion property, since close neigh-
bors of a given point rx1ðtÞ correspond to distant parts of the joint
density (rx1 , rx2 ). The dashed lines visualize nonuniqueness.
(b) Here, both couplings are nonzero, but w21 > w12. Larger
independence of x1 implies a stronger expansion by Mt

1→2 than
by Mt

2→1 at most reference points, which is indicated by the
higher slope of (rx1 , rx2 ) when seen from rx1 . (c) If no coupling
exists, expansion diverges in both directions.
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To measure such state dependent asymmetry of causal
influence, we define an index −1 ≤ αt ≤ 1 as

αt ¼ logðet1→2Þ − logðet2→1Þ
logðet1→2Þ þ logðet2→1Þ

:

This definition is motivated by the relation of the log
expansions to loss of certainty in information theoretical
terms [[6] (C)]. Note, however, that depending on the
particular system and the purpose of analysis other choices
can be more useful [[6] (G) and (H)]. Figure 2(a) shows that
the asymmetry index αt in this example fluctuates consid-
erably over time as the system explores the state space. This
change of causal dominance gives rise to various dynamical
regimes among the time courses of rx1 and rx2 , which are also
obvious to see in x1ðtÞ and x2ðtÞ proper since the dimen-
sionality of the system is low [Fig. 2(b)]. Specifically, when,
e.g., the influence from x1 to x2 is stronger than in the reverse
direction (blue region), i.e., et1→2 > et2→1, the trajectory of x2
shows stronger fluctuations than the one of x1.
To define the mean asymmetry index we average over

the states visited during the dynamics,

α ¼ hlogðet1→2Þ − logðet2→1Þit
hlogðet1→2Þ þ logðet2→1Þit

:

For the case of bidirectional coupling, enforcing
Mt

1→2 ¼ ðMt
2→1Þ−1, this simplifies to

α ¼ hlogðdetðMt
1→2ðMt

1→2ÞTÞÞit
2
P

khj logðσtkðMt
1→2ÞÞjit

;

which underlines the dissimilarity to approaches using
logðj detðMÞjÞ [[9,6 (C)]]. Figure 2(c) shows α for different
combinations of coupling weights. The fact that α ≠ 0 for
w12 ¼ w21 reflects the difference between the dynamical
equations for x1 and x2 and highlights again that the
expansion is not a mere proxy of the coupling weight,
but actually measures the effective influence exerted along
the causal link. However, the log determinant in α does not
differentiate between the qualitatively different situations of
balanced strong and balanced weak influence. For this
purpose we define the topological causality (TC)

Ct
i→j ¼

1

1þ logðetj→iÞ
;

Ci→j ¼
1

1þ hlogðetj→iÞit
:

C ∈ ½0; 1� satisfies the following fundamental intuitions
about causality: TC from component system i to j vanishes
if no causal link exists (wji ¼ 0), and for small couplings it
is a monotonic function of the coupling weight. Also here
alternative definitions with the same properties are pos-
sible. In general, C and Ct depend on the coupling weights
as well as on the current state of the system.
In cases where the dynamical system model does not

allow for an analytical linearization of the mappings
between reconstructed spaces, or the model itself is not
known, the local mappings and hence their expansion can
be estimated in a purely data-driven manner. After optimal
embedding parameters m and τ are chosen [10], one finds
the time indices ftxii ;…; txik g of the k nearest neighbors on
rxi to a reference point rxiðtÞ. From these sets of points,
expansions and chance levels can be estimated as elabo-
rated in [6] (D). In [6] (E) we demonstrate the robustness of
these estimations towards variations in analysis parameters
and time series length. Notably, the direction of asymmetry
can still be correctly identified for very short time series.
Estimated quantities are marked by a .̂
As an example of a more complex case that is not

analytically tractable we adduce a system of coupled
Rössler equations [11] described by

_xiðtÞ ¼ −fiyiðtÞ − ziðtÞ þ
X

j

Ωij;

_yiðtÞ ¼ fixiðtÞ þ 0.1yiðtÞ;
_ziðtÞ ¼ 0.1þ ziðtÞ½xiðtÞ − 14�; i ¼ 1;…; n; ð2Þ

(a)

(b)

(c)

FIG. 2. (a) The state-space dependent αt in a system given by
Eqs. (1) is shown for w21 ¼ 0.05,w12 ¼ 0.02. (b) A segment of αt

and the corresponding time courses of x1 and x2 for the same
coupling weights. Different regimes of dominant causal direction
give rise to different dynamical motifs. If αt is close to 0 for
subsequent time points (light gray), x1 and x2 synchronize. If αt

varies strongly around 0 (dark gray), x1 and x2 desynchronize.
When the causal influence from one variable to the other is
dominant, here from 1 to 2 (blue), the trajectory of x2 shows
higher amplitude excursions than the one of x1. (c) The mean
asymmetry index α for the same system with varying coupling
strengths.
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with coupling functions Ωij. If not stated otherwise,
ff1; f2; f3g were set to f0.99; 0.85; 0.67g and qðyiÞ were
used as measurements from the individual systems.
Figures 3(a) and 3(b) show causality measures for a bidirec-
tionally coupled system (n ¼ 2) withΩij ¼ wijzjðtÞ. When
choosing the coupling function in this way, strong causal
influence i → j is only expected if the driving zi component
deviates from 0. Both α̂t and Ĉt

i→j capture this temporal
structure, which is not obvious from the time courses of the
used measurements y1, y2 [Fig. 3(c)].
In order to serve as satisfactory definitions, the proposed

indices of causalitymustmeet fundamental requirements that
can be demonstrated by examining simple network motifs.
One prerequisite is transitivity,meaning that “if 1 causes 2

and 2 causes 3, then 1 causes 3.” SinceMt
3→1 ¼ Mt

2→1M
t
3→2,

it can be shown that

Ct
1→3 ≥ Ct

1→2C
t
2→3 if w21 ≠ 0 ∧ w32 ≠ 0

Ct
1→3 ¼ 0 else;

meaning that transitivity is mathematically guaranteed.
Figure 4(a) shows Ĉ1→3 for a system of three coupled
Rössler equations. Only w21 and w32 were varied and other
coupling weights fixed to 0.
Another required property is the ability to distinguish

shared input from true interaction. This is formally guar-
anteed if the receiving systems both retain independent

degrees of freedom, i.e., do not synchronize completely.
To show that also estimated TC reflects this property we
consider a system described by Eqs. (2) (n ¼ 3) with
coupling functions Ωij ¼ wij½xjðtÞ − xiðtÞ�, where only
w13 ≠ 0 and w23 ≠ 0, generating a divergent network motif.
Here, ff1; f2; f3g were set to f0.99; 0.97; 0.98g. With
increasing coupling from x3 to x1 and x2, the latter two
synchronize more strongly, masking the actually absent
interaction. Figure 4(b) shows that Ĉ1→2 is nearly inde-
pendent of the common drive, and becomes significant only
in the presence of substantial correlations.
To demonstrate the applicability to real experimental

time series we analyzed EEG data [12], for which a
predominant information flow from frontal to dorsal
channels was identified [13]. The same pattern is revealed
by the asymmetry index α̂ [[6] (F)].
Discussion.—The concept of TC is based on the insight

that expansions of mappings between time-delay state-
space reconstructions from different observables system-
atically reflect effective, state-space dependent influences
among parts of nonseparable deterministic systems.
Being tailored to such systems, which preserve informa-

tion between coupled components, TC seems complemen-
tary to methods for determining causal influences in
stochastic systems. The most prominent examples are
Wiener-Granger causality (WGC) [14] and transfer entropy
(TE) [15], which are conceptually related [16]. Both are
based on the reduction of uncertainty in one time series by
including past information from the other. However, the
approaches of WGC/TE and TC are not independent:
In stochastic linear systems, the observed dynamics in a

(a) (b)

FIG. 4. (a) Transitivity. A unidirectionally coupled chain is
realized by a system of Eqs. (2) (n ¼ 3) with only w21 ≠ 0 and
w32 ≠ 0 and Ωij ¼ wijxjðtÞ. Ĉ was averaged from 103 randomly
selected data points from time series of 105 points with an
embedding dimension m ¼ 13. A bivariate increase of the excess
of Ĉ1→3 over chance level (CL) is observed, consistent with the
theoretical prediction. (b) Common input investigated in a system
of Eqs. (2) (n ¼ 3) with Ωij ¼ wij½xjðtÞ − xiðtÞ� and only
w13 ¼ w23 ≠ 0. Ĉi→j is estimated with an embedding dimension
m ¼ 7. Ĉ1→2 and Ĉ2→1 (not shown) depend weakly on the
common input and only become significant (marked by *) in the
presence of high redundancy between 1 and 2, signified by a high
Pearson correlation coefficient (PCC).

(a)

(b)

(c)

FIG. 3. Two bidirectionally coupled Rössler systems [Eqs. (2)]
with w21 ¼ 0.2, w12 ¼ 0.6, andΩij ¼ wijzjðtÞ. The time series of
105 data points were embedded with dimension m ¼ 13. α̂t and
Ĉt
2→1 are shifted to be aligned with the temporal mean tþ

1=2ðm − 1Þτ of the corresponding reconstructions rxiðtÞ. (a) Local
asymmetry α̂t of 104 points shown on projections of the attractor
to each system. (b) Ĉt

2→1 (black) for 200 consecutive time
steps and the corresponding time series of z2 (orange). The gray
dashed line marks chance level. (c) Time series y1 and y2 used to
estimate Ĉt

2→1.
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time-delay coordinate space can be interpreted as samples
from a probability density of consecutive sequences of length
m (if 1=τ equals the sampling rate) in the observables. And an
expansive mapping between probability densities induces
information loss. Formally, expansion can be directly related
to loss of certainty between states measured with finite
precision [[6] (C)]. In stark contrast to the usual applications
of WGC/TE, however (but see [17]), TC exploits the
expansion of the backward mapping from effect x2 to cause
x1 for determining the causal influence from x1 to x2. In
preliminary investigation we observed that TC can indeed
detect effective influences in predominantly stochastic sys-
tems, raising the intriguing possibility that it is well suited for
both deterministic and stochastic systems [[6] (H)].
To overcome the limitations of WGC when dealing with

nonseparable dynamical systems, several approaches have
been based on relations among state-space reconstructions.
For example, tests for the existence of directed unique
mappings between reconstructed manifolds can be used as
an all-or-nothing criterion to detect causal links [5,8,18–21],
to which TC represents an extension since it allows for
gradual quantification of the influence. TC is most closely
related to the empirical procedure of convergent cross
mapping (CCM) [8] that yields interesting results in a range
of applications, e.g., [8,22–24]. The CCMmeasure relies on
errors when predicting one reconstruction manifold from
another: the slower the convergence of the prediction error of
rxi from rxj with increasing time series length, theweaker the
causation xi to xj. We suspect that this effect is a conse-
quence of the expansion: the more expansive the mapping
Mj→i locally is, the more its nonlinearities hamper predic-
tionswith a given finite number of data points (see also [25]).
In other words, we believe CCM evaluates deviations from
the assumption that the mapping frxiðtxi1 Þ;…; rxiðtxik Þg to
frxjðtxi1 Þ;…; rxjðtxik Þg is linear and therefore is an indirect
estimate of the underlying effective influence [[6] (G)],
which TC measures directly. Supporting this we find that
CCM convergence speeds do not share the ability of TC to
detect influences in linear stochastic systems [[6] (H)].
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