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Resilience of most critical infrastructures against failure of elements that appear insignificant is usually
taken for granted. The World Airline Network (WAN) is an infrastructure that reduces the geographical gap
between societies, both small and large, and brings forth economic gains. With the extensive use of a publicly
maintained data set that contains information about airports and alternative connections between these
airports, we empirically reveal that the WAN is a redundant and resilient network for long distance air
travel, but otherwise breaks down completely due to removal of short and apparently insignificant
connections. These short range connections with moderate number of passengers and alternate flights are
the connections that keep remote parts of the world accessible. It is surprising, insofar as there exists a
highly resilient and strongly connected core consisting of a small fraction of airports (around 2.3%) together
with an extremely fragile star-like periphery. Yet, in spite of their relevance, more than 90% of the world
airports are still interconnected upon removal of this core. With standard and unconventional removal
measures we compare both empirical and topological perceptions for the fragmentation of the world. We
identify how the WAN is organized into different classes of clusters based on the physical proximity of
airports and analyze the consequence of this fragmentation.

W
e seldom hear of a large airspace shutting down. One of the last known examples was triggered by the
eruption of the Icelandic volcano, Eyjafjallajökull, in 2010, that led to the cancellation of at least 60% of
daily European flights and lasted for five days1. Airspace disruptions of this type affect both, global

economic activity and daily life of many people. According to the International Civil Aviation Organization
(ICAO), in 2011, 2.9 billion people used the world airline network to realize business and tourism2.
Understanding the dynamics and resilience of such a network to failures is a question of paramount relevance.
However, this is not a trivial task. The World Airline Network (WAN) was not planned to be resilient at a global
scale in the first place. Instead, it is a network designed to cope up with several economic, political and geo-
graphical interests. The resilience of such a network is therefore delicate to quantify and may give us a false sense
of global connectivity.

Algorithms for analysis and design of complex networks have enabled us to quantify complexity and under-
stand the rationale behind their structure and self-organization3–8. Exemplarily, studies on the resilience of
various infrastructures, from water transport to the Internet, have provided insights into the evolution and
resilience of such networks9–13. In particular, important work has been done in the domain of air transport
networks carefully studying the structure14,15 including extraction of its multilevel modular structure16.
Guimerà et al.17 analyzed the heterogeneous connection patterns among nodes with different fraction of con-
nections within and outside of their communities that give rise to the dynamics within the air transportation
network and other infrastructure networks. In a more recent approach, Cardillo et al. have studied the emerging
features of the WAN as a result of the dynamics of cooperation between nodes in the network18,19. However, a
worldwide view of the WAN is not comprehensive without exploring the aftermath of failures in light of such an
organization.

Here, we extract the non-communal hierarchical structure of the WAN, analyze this network through a
disruption approach and develop weighted measures to understand its fragility. We compare these measures
to see how the topology of the network complements the empirical evidence and we reveal a completely new
picture of the world airline network. We find that besides the strongly connected core, many important hubs are
in fact at the centers of star-like structures which are at the ‘‘periphery’’, or areas of low economic growth. Upon
removing these hubs, the entire star loses its connection to the rest of the network. We show that this mechanism
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is responsible for the vulnerability of the network and indicate this by
identifying different regimes of clustering within the network.

Results
Our analysis involves a dataset of the WAN, freely accessible at
Openflights20, and passengers serviced at each airport during the year
2011. The WAN comprises N 5 3237 nodes as airports and L 5

18125 links as direct connections between any pair of airports. An
important characterization of a network is its degree distribution
which gives us the probability, P(k), of an airport having k connec-
tions. The WAN data reveals a scale-free behavior with an exponen-
tial cutoff,

P kð Þ*k{cexp {k=kxð Þ, ð1Þ

with an exponent c 5 1.5 6 0.1 (see Supporting Information). The
exponential function truncates the distribution around kx < 180,
which we confirm by analyzing the tail of the distribution in the
cumulative complementary degree distribution. In reality, nodes of
a physical infrastructure network always depict a truncated distri-
bution as each node can only sustain up to a certain number of
connections.

Each connection might offer multiple alternative flights account-
ing for its weight. The International Air Transport Association
(IATA) assigns a distinct code to these alternatives. The average
weighted degree, i.e. the average number of different flights offered

from any airport, of the network is vkw
w~

XN

i~1
kw

i

�
N~19:21.

Frankfurt airport that falls within the core has the maximum number
of flights, 498, and the maximum number of connections, 255.
Whereas, St. Petersburg airport, Tampa Bay, Florida, a star-like peri-
pheral hub, has only 24 connections with 24 flights. The average path
length, measured as the average number of minimum connections
required from any airport to any other airport, is , l .5 4.05. The
largest number of connections a passenger needs to travel between
any pair of airports is 12. On average, 33% of the routes can be
covered with at most three connections.

The structure of this network is naturally divided into continents.
North America has the largest number of airports followed by Asia
and Europe. The classical approach to shed light on the structure of
networks is through community detection. We have measured the
size of closely formed communities based on the number of flights
that exist for a connection between any two airports. To do this, we
have used the definition of modularity as introduced by Newman
et al.21,22 using the algorithm developed by Blondel et al.23. Modu-
larity of a partition is a value that measures the density of links within
a community compared to the links that are holding the communit-
ies together. This analysis has revealed a total of 20 well connected
communities, identifying economically agglomerated regions of the
world, such as the Middle-East, South-East Asia, Alaska and
Oceania. Our results are in agreement with the work of Guimerà
et al.15 (see Supporting Information). This confirms the strong polit-
ical, geographical and social influence in the development of the air
transport network. Nevertheless, the traditional analysis of the net-
work structure fails to uncover the hierarchical structure of the
WAN. Sales-Pardo et al.16 have extracted hierarchies within com-
munities for various complex networks, including the WAN,
wherein the modules of these communities correspond to different
levels in the hierarchy. Their approach stems from community detec-
tion algorithms that form the basis for identifying cluster of nodes
that have more internal links than external. We are interested in a
network-wide extraction of hierarchies as a step towards objectively
analyzing the vulnerability of the entire system.

We have identified airports and also commercial, cargo and pri-
vate airstrips that may have been used for a flight recorded by IATA.
This adds more weight to our analysis as the world is continuously
evolving socially and politically and any tie that may have been

formed due to a commercial interest may give us insight into the
economic connectivity of specific places around the globe. For
instance, Alaska has many airports mainly used to serve industries
scattered around towns. Our analysis reveals that these airports are
completely cut off from the contiguous United States except through
major flights to and from Anchorage. This reveals a star-like struc-
ture completely different from the country-wide network inside, for
example, the United States of America, Canada or Mexico.

The eclectic mix of star-like structures and a strongly connected
core emerges as an interesting global hierarchical structure. In Fig. 1
we illustrate three distinct layers of the network - Core, Bridge and
Periphery - based on the ‘‘t – core decomposition’’ of the network. If a
connection fails, passengers are typically rerouted through another
airport to their destination. This formation is called a triangle. To
extract the aforementioned structure, we propose a decomposition
method based on these triangles. Similar to the k – core method24,
first we remove all nodes that are not part of any triangle. These
nodes form the network periphery (briefly following the classification
of Guimerà et al.17), as upon removing them a lot of nodes get com-
pletely disconnected from the main network. They also form the 0 –
layer and what remains falls within the 1 – core with nodes being part
of at least one triangle. In the next iteration, all nodes with at most
one triangle are removed from the network together with their edges
and they form the 1 – layer. As we continue to remove nodes that are
part of 1, 2, 3, …t triangles, we uncover the bridge of the network with
nodes laying at different t – layers. Note that removal of a node with t
or fewer triangles is done recursively. If removal exposes a new node
with now less than or equal to t triangles, it is removed in the current
iteration as well. The algorithm stops when each node has been
assigned a t – layer. The layer that remains at the end is the core of
the network (see Supporting Video). Each airport in the core is part of
at least 387 triangles. For a list of these airports refer to Supporting
Information. This indicates that if we remove a connection within the

Figure 1 | The world airline network divided into three parts. The bottom

layer is the Periphery with airports having a zero clustering coefficient.

These airports reveal the peripheral world. The top layer is the Core with

airports that form the nucleus of the t-core, t 5 387. Nodes in the t-core are

part of at least t triangles. This layer shows how well connected some of the

major economic hubs of the world are. The intermediate layer is the Bridge
with all the remaining airports that act as bridges to connect remote

locations to global hubs. All maps are produced using Gephi28.
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core, there will be numerous other ways to get to the destination. A
random scale-free network is vulnerable to intentional attack on
hubs and breaks down rapidly3,25,29–32. In the WAN, this is not the
case. Removal of the core, that undeniably consists of many hubs,
leads to a minor degradation in the connectivity (the average path
length may increase but the world remains connected). In what
follows, we focus our attention to the properties of the rest of the
network.

Connectivity. Upon removal of the core, most part of the network
remains connected and only 8.5% of the airports fall out of the
connected cluster. For designing a resilient airline network,
analyzing its reaction to catastrophes is significant. We develop a
model to understand how the global connectivity is affected due to
cancellation of flights or shutdown of airports around the globe. To
quantify the loss in connectivity, we measure the fraction of airports
that are still part of the largest connected component, S(q), and
observe it as a function of a) the fraction of airports being shut and
b) the fraction of connections getting canceled. Note, that in our case
S(0) 5 1, as we start with merely one connected cluster.

We analyze the connectivity of the network by sequentially shut-
ting down airports using two different strategies. In the first one, at
each step, we remove airports with the highest degree. Figure 2 shows
that upon removal of the highest degree airports, the network rapidly
disintegrates into many small clusters and the size of the largest
connected component drops significantly. When the most connected
airports are not functional anymore, the long haul flights that give the
network a small-world characteristic15 also break down, explaining
the sudden drop in connectivity. These airports naturally fall in the
core of the network. By contrast, upon removal of the lowest degree
airports, the size of the largest cluster decays linearly. As shown in
Fig. 1, this network is hierarchically structured with a well connected
core and a tree-like structure at the periphery. No removal of low
degree airports can affect the rest of the network because they are in
the periphery. Thus, the core holds the network together while the
leaves of the tree are pruned. The aforementioned analysis strength-
ens our argument of airports with no clustering being peripheral in
the sense that they are at the extremes of the network.

Airports shut down only in extreme cases. Subsequently, we focus
on the most common scenario where connections are canceled. As
we will show, the picture is significantly different when connections
fail instead of airports.

Passenger flux. In an effort to remove connections from the net-
work, we need to define the relevance of the connections. Passenger
flux seems ideal to describe the relevance of a connection. Data is
available for the number of passengers being serviced at each airport
in 2011 and we define the relevance of a connection as follows,

pij~pi

kw
jP

k[neigh ið Þ kw
k

, ð2Þ

where pij is the passenger flux on the connection from i to j. neigh(i) is
the set of all nodes directly reachable from i. kw

i gives the total number
of flights available from airport i and pi is the number of passengers at
airport i.

This division may overestimate the flux of passengers on a con-
nection but keeps its relevance intact as the number of passengers
taking a connection depends on further available connections from
the destination airport. In addition, it is also a simple measure to
identify destinations that are popular tourism and business spots.
This method does not explicitly take into account the frequency of
flights per day between two airports, but that has implicitly been
accounted for by considering the number of passengers using that
connection. We use the above measure following a basic ideology of
the airline network, i.e. a flight is only as important as the number of
passengers using it. This provides us with an empirical measure on
the network. We constitute another measure based on connectivity
to complement the empirical evidence from the data.

Degree of connectivity. The degree of connectivity, cij, characterizes
each connection using the topological information about the net-
work. The topological clustering coefficient26 of each node in the
network which measures the degree to which neighbors of a node
cluster together is defined as follows,

Cc ið Þ~ 2E
ki ki{1ð Þ , ð3Þ

where ki is the number of direct connections of airport i and E, the
number of connections that exist between the first neighbors of i.
Each connection has an integer weight wij given by the number of
flights. We define degree of connectivity as follows,

cij~Cc ið Þwij, ð4Þ

which is asymmetric in nature, i.e. cij is not necessarily equal to cji.
Not all passengers fly back to the source airport or take the same
connections on their return journey. If the clustering coefficient is
very low, then a connection from this airport with very few flights will
be extremely important due to very few alternate paths that
passengers can take to their destination. No passenger wants to
take five connections to a destination that is at a relatively short
distance. Thence, we focus more on a removal strategy based on
low degree of connectivity and show how seemingly irrelevant
details of a complex network might add to its vulnerability. For an
elaborate justification of this concept, we have included an example
in Supporting Information.

Connections that serve the least number of passengers or have the
lowest degree of connectivity are most often overlooked and likely to
be in the periphery. An important long-range connection cannot
affect the connectivity of the network because of a high degree of
redundancy, for example, cancellation of the longest flight, which is
between Newark Liberty International airport in New Jersey, USA
and Changi Airport, Singapore, will not restrict the mobility of pas-
sengers as more than fifteen one-stop alternatives exist for this route.
But many short-range connections within the periphery, such as
from Anchorage, Alaska, to Honolulu, Hawaii (an important tourist
hub), have only one option and such cancellations can result in
stranded passengers since very few passengers would accept to take

Figure 2 | Drop in the size of the largest connected cluster of the WAN
against removal of nodes. High degree refers to a conventional targeted

removal strategy wherein each subsequent step corresponds to removing

upto a fraction, q, of nodes with the highest degree. In low degree strategy,

each subsequent step corresponds to removing upto a fraction, q, of nodes

with the lowest degree. The random removal strategy is an average over 500

statistically independent simulations.

www.nature.com/scientificreports
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even two connections that take a much longer detour (about twice
the flying time of the direct connection).

Following the above arguments and defining relevance of a con-
nection based on empirical evidence and topological information, we
remove a certain fraction of connections. Here, relevance of a con-
nection directly translates into traffic or connectivity. A high traffic
removal would affect the busiest connections. Whereas, a low traffic
removal would focus on idle connections. Figure 3 shows that the
world fragments into different parts upon removing a small fraction
(20%) of idle connections while it is almost fully connected upon
removing busy connections, using passenger flux as relevance.
During an economic crisis or loss suffered by an airline company,
the typical flights to be canceled are the ones that carry the smallest
number of passengers. Cancellation of such flights, however, causes
more damage to the global connectivity than flights that connect
hubs. The analysis using degree of connectivity shows similar results.
Moreover, the effect of an idle removal is magnified using passenger
flux over degree of connectivity. Both these observations give enough
topological and empirical evidence for the importance of the peri-
pheral connections in the WAN. The periphery is huge and consists
of many airports and connections between these airports. To under-
stand what kind of connections lay in the periphery, we analyze the
resilience using the most basic information of the connections - the
number of flights associated with it.

Flight model. Airports might offer more than one flight for a direct
connection between them. We define for each connection an integer
weight, wij, given by the number of alternate flights that are available
on that connection. The data set does not give us precise information
about the frequency of flights. Each alternate flight has a different
IATA code, i.e. they are operated by either different companies or at
different times. Passengers have the option to choose among the
flights from source to destination based on their preferences (price,
time of flight, reliability and quality-of-service, etc).

We study the connectivity of the network upon removing connec-
tions following the rank of their weight. We found that the WAN is
quite resilient to breakdowns in frequent connections with multiple
flights as it has a high degree of redundancy with many paths between
any pair of airports with high degree (see Supporting Information).
However, the global connectivity of the network, upon removing rare

connections with the least number of flights, is lower than any other
removal strategy. Our common sense would mislead us to believe
that disruption of peripheral connections would not lead to loss in
global connectivity and therefore predestined to face economic cuts
in case of a crisis. However, our result shows that the periphery is
weakly connected in terms of possibles routes as well as the number
of different flights between the same pair of airports and could render
a large part of the world inaccessible. Refer to Supporting Information
for a visual representation of how global connectivity evolves with
the sequence of failures. In order to explain this phenomenon, we
study the clustering properties of the WAN in depth.

Clustering. Among other reasons airports form connections based
on physical proximity. Airports can be clustered differently. We have
identified three regimes of clustering using the physical length of
connections.

Firstly, we define the weighted clustering coefficient, Cw(i), as
defined by Barrat et al.27

Cw ið Þ~ 1
si ki{1ð Þ

X

j,h

1
�

dijz1=dih

� �

2
aijaihajh, ð5Þ

which is a measure of local cohesiveness of neighbors of an airport
that takes into account the intensity of the connections given by its
euclidean distance, dij, between airports i and j. si is the strength of an
airport i defined as

X
j [ neigh(i)

1/dij. ki is the number of connections

from an airport (out-degree). Lastly, aij is either 0 or 1 depending on
the absence or presence of a connection between airports i and j,
respectively. In this way we consider the total relative weight of the
closed triplets of any airport with respect to the strength of the
airport. The topological clustering coefficient, Cc, is obtained by
simply marking dij 5 1 for all connections.

The following regimes of nodes can be distinguished,

1. Peripheral: Nodes that have no connections between their neigh-
bors, Cc(i) 5 Cw(i) 5 0.

2. If Cc(i) $ Cw(i), the interconnected triplets are formed by con-
nections with large distances and hence are global.

3. If Cw(i) . Cc(i), the interconnected triplets are formed by con-
nections with short distances and hence are local.

Figure 3 | Drop in the size of the largest cluster of the WAN against removal of links. Connections are ranked according to the number of passengers

using it. In high traffic removal, each subsequent step corresponds to removal of all connections up to a fraction, q, with the highest number of passengers.

In low traffic removal, each subsequent step corresponds to removal of all connections up to a fraction, q, with the lowest number of passengers. The

random removal strategy is an average over 500 statistically independent simulations and each step removes a fraction, q, of connections chosen at

random. After removing 40% of the busy connections, 72% of the network is still connected, shown in the top-right map. The bottom right map shows

that after removing the same fraction of idle connections, the world disintegrates completely, revealing the vulnerable nature of the periphery of the

network (22% connected). The black nodes are not part of the largest connected cluster. The remaining colors represent different continents and show the

nodes that are part of the largest connected cluster. All maps are produced using Gephi28.
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Most airports in the first category have really few connections but
some of them are busy airports having a significant number of con-
nections to and from cut-off regions, and hence we call them peri-
pheral hubs. For instance, St. Petersburg Airport, Tampa Bay,
Florida, is a huge tourist destination consisting of 24 connections
and no clustering. In the remaining categories, nodes are distributed
equally with low degree airports having a low number of passengers
and high degree airports having a higher number of passengers.
Examples of airports in the local category include Frankfurt and
JFK, New York. Atlanta and Domodedovo, Moscow, fall in the global
category. Each continent has at least 40% airports with local cluster-
ing pointing to a continental evolution. When the continents are
connected to form a world airline network, there is no significant
change in the fraction of nodes that form local clusters, indicating
that the airline networks typically evolved at the level of continents.

In almost all cases of removal scenarios, airports with zero cluster-
ing are the ones that are mainly responsible for a drop in the resi-
lience of the network, followed by locally clustered airports and then
the global ones. For instance, Fig. 4 shows the drop in fraction of
airports within each cluster regime upon removal of connections.
Here, link relevance is defined using passenger flux. All airports that
have a zero clustering coefficient are disconnected from the largest
connected component first. Since these airports constitute the peri-
pheral hubs of the network, they take down the extremities of the
network with them (Fig. 1 shows a large fraction of airports situated
in relatively inaccessible areas of the world). This explains a sudden
drop in the connectivity of the network.

Discussion
In summary, we found that even though the network has a core
resilient structure, which guarantees intercontinental connections,
most of the world is accessible through peripheral connections.
Clustering plays a crucial role as most airports that have no alterna-
tive connections to their destinations are the ones that make the
WAN most vulnerable. This is surprising since the traditional strat-
egy of studying the community structure15 (see Supporting Informa-
tion) gives no evidence of such a hierarchical ordering in the network.
In the past, researchers have shown an abrupt hub-decomposition of
random scale-free networks3,25,29–32. We have uncovered a structure
that does not fall into the above category, insofar as there seems to be
a hybrid of two disparate network types that are known through
literature. The global connections are economically and politically
significant with the world moving towards a free society for travel

and living, but the local connections serve the population of the
region in extending tourism and business.

A possible reason for the existence of a strongly connected core
and a weakly tied periphery is the necessity of airline companies to
cope with the minimization of flying time and the maximization of
profit. A flight is only profitable if there is a minimum number of
passengers per flight. Flying time is ideally minimized with a fully
connected network with every pair of airports directly connected.
Yet, this is only economically reasonable between highly populated
areas or regions of intensive economic activity, which are served by
the strongly connected core. The scanty number of passengers tra-
veling to and from remote regions only justifies the creation of a star-
like network, with a peripheral hub in the center, as we found in the
periphery of the WAN.

Future work could account for temporal evolution of the resilience
of the network. With an improved model with accurate passenger
count on each connection and the frequency of flights, we can extract
the community structure based on influx of passengers to obtain an
even more realistic assessment of resilience. It would also be inter-
esting to study passenger flows in different locations of the world and
reveal the travel patterns toward which the current generation is
moving. This could be beneficial for airline companies not only to
maximize their profit but also to redesign the network to make it
more resilient.

Methods
We use a straightforward framework of resilience analysis, wherein, we remove nodes
and links as two separate entities in mutually exclusive simulation environments,
respectively. This emulates a sequence of failures in the system. The subsequent step
involves studying the breakdown pattern of the giant component against such
removals. For each environment we have three different scenarios of removals. We
rank all the entities in the network based on their relevance, for example, using node
weight or link weight. The first scenario is based on a conventional approach that
starts the removal process from the most relevant entities down to the least. The
second one consists of removals that follow a counter-intuitive strategy of kicking out
the least important entities first. The third, and the last scenario, involves a rando-
mized approach for comparison purposes.

All of the above framework uses input data from the following two data sets.

WAN. The flight data (airports, airlines, routes and geo-locations) was obtained from
OpenFlights20 as of May, 2013. This data contains some circular connections, i.e. a
flight may go from A to B and not return directly to A. Instead, this flight follows a
path from A to B to C and back to A. To simplify our analysis, we have made the
adjacency matrices symmetric by replicating each unidirectional connection in the
opposite direction. This is justified by the fact that only very small airline companies
have circular connections and merely in remote parts of the world.

The network is generated using the x (longitude) and y (latitude) coordinates of
each airport and embedding them in a two dimensional space using an equirectan-

Figure 4 | Drop in fraction of airports within a cluster regime. Fc(q) is the fraction of airports belonging to a cluster regime c after removal of a fraction of

connections q. The first frame shows a drop in airports that belong to the largest connected component based on an low traffic removal. The

subsequent frames show the same for high traffic removal and an average over 500 random removals. In all cases, peripheral hubs (Cc 5 Cw 5 0) drop out

of the largest connected component first.

www.nature.com/scientificreports
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gular projection of earth. The links are placed between any pair of airports if there
exists a direct flight between the two.

Passenger traffic. The passenger data was obtained from The World Bank data set
sourced through Civil Aviation Statistics of the World and ICAO staff estimates for
the year 2011. This data has passenger count for every country that is registered with
scheduled air carriers of that country. Changes in air transport regulations in Europe
have made it more difficult to classify traffic as scheduled or unscheduled. Thus recent
increases shown for some European countries may be due to changes in the
classification of air traffic rather than actual growth. We have divided the passenger
data among airports of the countries based on their relative weighted degree using the
following equation,

pi~pc
kw

iP
j[c kw

j
, ð6Þ

where pi gives the number of passengers serviced at any airport i from country c, pc is
the passenger data of the country c and kw

i is the number of alternative
connections from any airport i, i.e. the weighted degree. This approach gives us an
indication of the relevance of connections originating from each airport (see
Supporting Information).
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16. Sales-Pardo, M., Guimerà, R., Moreira, A. A. & Amaral, L. A. N. Extracting the
hierarchical organization of complex systems. Proc. Natl. Acad. Sci. USA 104,
15224–15229 (2007).
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How to cite this article: Verma, T., Araújo, N.A.M. & Herrmann, H.J. Revealing the
structure of the world airline network. Sci. Rep. 4, 5638; DOI:10.1038/srep05638 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-sa/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 5638 | DOI: 10.1038/srep05638 6

http://goo.gl/gvy9Kg
http://goo.gl/LCgb5f
http://openflights.org
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

	Title
	Figure 1 The world airline network divided into three parts.
	Figure 2 Drop in the size of the largest connected cluster of the WAN against removal of nodes.
	Figure 3 Drop in the size of the largest cluster of the WAN against removal of links.
	Figure 4 Drop in fraction of airports within a cluster regime.
	References

