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ABSTRACT

Motivation: Identification of functional modules in protein interaction

networks is a first step in understanding the organization and dynamics

of cell functions. To ensure that the identified modules are biologically

meaningful, network-partitioning algorithms should take into account

not only topological features but also functional relationships, and iden-

tified modules should be rigorously validated.

Results: In this study we first integrate proteomics and microarray

datasets and represent the yeast protein–protein interaction network

as a weighted graph. We then extend a betweenness-based partition

algorithm, and use it to identify 266 functional modules in the yeast

proteome network. For validation we show that the functional modules

are indeed densely connected subgraphs. In addition, genes in the

same functional module confer a similar phenotype. Furthermore,

known protein complexes are largely contained in the functional mod-

ules in their entirety.Wealsoanalyzeanexampleof a functionalmodule

and show that functional modules can be useful for gene annotation.

Contact: yuan.33@osu.edu

Supplementary Information: Supplementary data are available at

Bioinformatics online

1 INTRODUCTION

As a critical level of biology hierarchy, functional modules are

cellular entities that perform certain biological functions, which

are relatively independent from each other (Barabasi and Oltvai,

2004; Hartwell et al., 1999). Revealing modular structures in bio-

logical networks will help us in understanding how cells function

(Hartwell et al., 1999; Bork et al., 2004). Many questions remain to

be answered, but the detection of the functional modules is a pre-

liminary step.

Recently a number of network partition algorithms have been

designed to find community and modular structures in complex

networks. On the basis of shortest-path algorithm in graph theory,

Girvan and Newman generalized the concept of vertex betweenness

to edges to distinguish between inter-community edges and intra-

community edges. They designed an algorithm that iteratively

removes the edges of the highest betweenness until a given network

breaks into desired number of clusters (Girvan and Newman,

2002). Building on this work, Parisi and colleagues strengthened

the definition of community and proposed a local topology-based

concept of ‘edge clustering coefficient’ to replace the global edge

betweenness measurement (Radicchi et al., 2004). In another study,
using shortest-distance as a metric, Rives and Galitski applied a

hierarchical clustering algorithm to reveal the modular organization

of yeast signaling networks (Rives and Galitski, 2003). Spirin and

Mirny combined clique detection, superparamagnetic clustering

(SPC) and Monte Carlo optimization (MC) to search for functional

modules in the yeast protein network (Spirin andMirny, 2003). Berg

and Lassig used a probabilistic model to expand the motif concept

and proposed a local graph alignment algorithm to detect such

probabilistic motifs in the transcription network of Escherichia
coli (Berg and Lassig, 2004). More recently, Xiong and colleagues

applied an association pattern discovery method to find the ‘hyper-

cliques’ (functional modules) in the yeast proteome network (Xiong

et al., 2005). One common theme shared by these work is that

networks were represented as unweighted graphs. Even though

they do capture essential features of many complex networks,

unweighted graph representations will impose a big limitation on

the study of biological networks. Protein–protein interaction net-

works, in particular, have a very high degree of inter-module cross-

talk (Rives and Galitski, 2003), which makes it very difficult to

partition them using algorithms based solely on topology. Some

recent works do take this into consideration and use weighted graph

representations. Shamir and his colleagues applied a biclustering

algorithm to the integrated genomic data to partition the molecular

network of yeast (Tanay et al., 2004). However, their weighting
scheme is applied on the bipartite graph to represent the level of

association between genes and properties, not between pairs of

interacting genes. Another interesting work is from Ouzounis’s

group (Pereira-Leal et al., 2004). They first transformed the

yeast protein interaction network into a line graph, and then applied

a graph flow-based clustering algorithm to find functional modules.

In their work, the weight of an edge represents the level of confi-

dence attributed to that interaction, which may not indicate the

functional correlation between the two proteins. In recent years

high-throughput studies have generated a huge amount of functional

genomic data. In particular, microarray technology has been applied

to study yeast gene expressions under all kinds of conditions, and

the results of these studies are centralized for public access (Ball

et al., 2005). It is therefore highly desirable to develop new methods

that would take advantages of functional genomics information and

partition protein–protein interaction networks in a biologically more

meaningful way.

Here we report our study on detecting the functional modules

in the protein–protein interaction network of Saccharomyces�To whom correspondence should be addressed
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cerevisiae. Our first goal was to develop an algorithm that partitions

weighted graph into communities. Our next goal was to apply this

new algorithm to find functional modules in the yeast protein–

protein interaction network and to rigorously validate these modules

at both topological and functional level. We also wanted to assess

the functional modules in the context of protein complexes and gene

annotation. Our results indicate that (1) our algorithm is a useful tool

in studying the modularity and organization of biological networks;

(2) genes in the same functional module confer similar deletion

phenotype; (3) known protein complexes are largely contained in

the functional modules in their entirety and (4) module identifica-

tion could be very useful for gene annotation.

2 METHODS

2.1 The protein–protein interaction network of yeast

Recently, several studies addressed the issue of confidence in the protein–

protein interaction dataset of Saccharomyces cerevisiae that were obtained

by high-throughput techniques (Uetz et al., 2000; Ito et al., 2001; Ho et al.,

2002), assigning each interaction a confidence score (von Mering et al.,

2002; Bader et al., 2004; Patil and Nakamura, 2005). We downloaded

these datasets from the publishers’ websites. We then selected from each

of the datasets only high confidence interactions, which were then unioned

together. After removing redundancy, the final dataset contains 10 899 inter-

actions between 3409 proteins.

2.2 Weighted graph representation of the protein-

protein interaction network

The protein–protein interaction network of yeast is represented as a weighted

graph G ¼ (V, E). The vertices of the graph are the set of unique proteins,

and therefore jVj ¼ 3409. The edges of the graph are the interactions, and

therefore jEj ¼ 10 899.

To add weights to the edges, we exploited the abundant information of

microarray expression profiles. A total of 265 microarray datasets were

downloaded from Saccharomyces Genome Database (SGD). The raw

data are expression change ratios. We transformed the raw score into a

Z-score so that data from different experiments were comparable. If the

expression of a given gene g in a microarray experiment m is changed

by the ratio r, the normalized Z-score is

Zm
g ¼ ðr � mÞ

s
‚ ð1Þ

where m is the mean in that experiment and s is the standard deviation.

The edge weight is defined as the average of the Z-score differences over

all the experiments. For a given interaction between protein i and protein j,

the weight is

Wi‚ j ¼
1

n

Xn

m¼1

ðZm
i � Zm

j Þ
�����

�����‚ ð2Þ

where n is the total number of microarray experiments in the dataset. This

way the weight represents the ‘dissimilarity’ between the expression profiles

of two genes, which is the equivalent of ‘distance’ in graph theory.

2.3 Betweenness-based partitioning algorithm for

weighted graph

Girvan and Newman first proposed the concept of edge betweenness in the

context of network communities (Girvan and Newman, 2002). The idea is

that inter-community edges are more likely to be on some shortest paths than

intra-community edges. By computing the all-against-all shortest paths of a

graph and calculating the number of times each edge is traveled, one could

identify the linkers between communities. By removing these linkers step-

by-step, one would eventually obtain the community structure of a graph as a

hierarchical tree (Girvan and Newman, 2002). This algorithm (GN for short)

is intuitively very appealing. However, not all interactions are equally impor-

tant within a network. Some interactions may be used more frequently than

others. With the yeast protein–protein interaction network being represented

as a weighted graph, we extended the GN algorithm so that the shortest path

was based on edge weights.

Besides this extension, we also modified the measurement of edge

betweenness. In the GN algorithm, the betweenness of an edge is essentially

the number of all-against-all shortest paths that run through it. In the example

graph shown in Figure 1A, there are two subgraphs. In the left subgraph the

edge CD has a betweenness of 24. This is because it is the only bridge that

connects vertices A, B, C and vertices D, E, F, G, H, I, J, K, and therefore

there are total 3 · 8 ¼ 24 distinct all-against-all shortest paths. Similarly,

in the right subgraph, the edge ST has a betweenness of 20. It can be shown

that, in the whole graph, edge CD has the highest betweenness. Therefore

edge CD is removed at this step. However, by simple visual inspection

we tend to say that edge ST is a better candidate that connects two com-

munities {P, Q, R, S} and {T, U, V, W, X}, and that the left subgraph is

a separate community. From the topological point of view, the original

definition of betweenness may lead to unbalanced partitioning under certain

circumstances.

To resolve this issue we introduced the idea of ‘non-redundancy’ into the

computation of edge betweenness. When counting the number of shortest

paths for an edge, the end points must be distinct. For example, when

counting the shortest paths that go through edge ST, if path P–T is counted,

no other path that starts or ends with P (P–U, P–V, P–W, P–X) or T (T–Q,

T–R, T–S) should be counted (Fig. 1B). Based on this idea, the betweenness

of an edge is the maximum number of non-redundant all-against-all shortest

paths passing through it. We expected this change to keep the intuitiveness of

the original algorithm, while making it more robust against unbalanced

partition.

For implementation of this modification we used the Maximum Bipartite

Matching (MBM) algorithm. Following the Floyd–Warshall algorithm, all

the shortest paths passing through the given edge are identified. Then the end

vertices of all the paths are divided into two groups, depending on which side

each vertex sits with respect to the given edge. A bipartite graph is con-

structed on the two vertex groups. Each shortest path is converted to an edge

in the bipartite graph. Finally, the MBM algorithm is applied to find the

maximum matching number, which is the betweenness of the given edge. In

the example shown in Figure 1, edge CD has betweenness of 3, and edge ST

has betweenness of 4 (Fig. 1B). Therefore edge ST is removed to give a more

meaningful result.

2.4 Quantitative definition of community

Communities, or modules, have been loosely referred to as ‘densely con-

nected subgraphs’. However, many quantitative definitions for this concept

exist in the literature (Radicchi et al., 2004). For simplicity we use the term

‘in-degree’ (kin) of a vertex to represent the number of its within-subgraph

connections, and we use the term ‘out-degree’ (kout) to represent the number

of its outside-subgraph connections. Please note that these are not the nota-

tions used in a directed graph to denote incoming and outgoing edges.

A necessary condition for a subgraph to be called a module is that the

sum of in-degrees of all the vertices in the subgraph is greater than the

sum of out-degrees. This is a weak definition. A much stronger definition

requires that for every vertex in the subgraph the in-degree is larger than the

out-degree. We think that this later definition is too stringent for a real-life

network, which may have many complicated crosstalks between modules.

Furthermore, even if the modularity of a network is so clear-cut that every

module satisfies such a strong definition, the algorithm has to be perfect to

actually find the modules.
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Here we propose a quantitative definition of community that we believe

is both strong and practical. Let kin and kout be the in-degree and out-degree

of a vertex, respectively. A subgraph of n vertices is a module if

Xn

i¼1

kiin >
Xn

i¼1

kiout ð3Þ

fk1in‚k2in‚ . . .‚±kning � fk1out‚k2out‚ . . .‚knoutg: ð4Þ

The first criterion is the weak definition as stated above. The second criterion

states that, collectively, the in-degrees of the vertices in the subgraph are

significantly greater than the out-degrees. This is less stringent than the

strong definition, but the definition still captures the essence of the concept

‘densely connected subgraph’. In implementing this second criterion, we

used the Wilcox two-sample test to compare the in-degrees and out-degrees,

and we used p-value of 0.01 as the cutoff value for significance.

2.5 Computer-generated graphs

Theartificialgraphswithknowncommunitystructuresweregeneratedexactly

as the examples in the original GN-algorithm paper. Briefly, each graph con-

tains 128 vertices that are divided into 4 communities, each of which contains

32 vertices. Between each pair of vertices an edge is addedwith certain proba-

bility. The probability is pin if the twovertices arewithin the samecommunity,

andpout if the twoverticesbelong todifferentcommunities.Thepout isvaried to

produce graphs with different levels of crosstalks. The higher the pout is, the

more crosstalks exist between communities. The probability pin is chosen

accordingly so that the average number of connections per vertex is 16.

2.6 Functionalmodule datasets from previous studies

For the purpose of comparison, we obtained two sets of functional modules

that were identified in two previous studies. One dataset was kindly provided

by Victor Spirin and was retrieved from http://insilico.mit.edu/modules/

allOurClusters.html (Spirin and Mirny, 2003). The other dataset was

retrieved from http://www.cs.tau.ac.il/%7Ershamir/samba/ (Tanay et al.,

2004).

3 RESULTS

3.1 Algorithm test on computer-generated graphs

We first tested our algorithm on artificial graphs produced exactly as

the examples in the original GN-algorithm paper. For each graph,

we applied our algorithm until four communities were obtained.

We then compared the obtained communities with the actual struc-

ture and calculated the fraction of vertices classified correctly. As

shown in Figure 2, our algorithm could correctly find the commun-

ity structures in simple networks, but it started to make more mis-

takes when the community structures became more complicated.

Interestingly, we found that for simple networks, our algorithm

tended to make slightly more mistakes than the GN algorithm.

But for networks with more complicated structures, our algorithm

outperformed the GN algorithm. These results suggest that the

extension and modifications we made on the GN algorithm make

it more robust against noise and the blurring of community bound-

aries. Since community structures in real-life networks are usually

very complex, our extended algorithm may produce more mean-

ingful results in real applications.

3.2 The partition of the protein–protein interaction

network of yeast

Next we applied the algorithm to the protein–protein interaction

network of yeast. We took note of the perspectives of Hartwell et al.
(1999) and Spirin and Mirny (2003), and let the algorithm terminate

when no subgraph had more than five vertices. We then applied the

definition of module to these candidate subgraphs and obtained 266

functional modules. Out of the 3409 proteins in the network, 3150

(92.4%) are included in these modules. This indicates a good cov-

erage among the functionalities of the yeast, and a good sensitivity

that is probably the result of the combination of the modified algo-

rithm and the proposed filtering criteria. The module sizes range

from 5 to 98, 56.2% of which fall within 5–25, a size range proposed

by Spirin and Mirny (2003). A list of these modules is available

as Supplementary data (Table S1), along with a preliminary anno-

tation based on Gene Ontology (GO) and some results relevant to

validations (see below).

3.3 Validation through connectivity density

We first assessed the validity of the obtained functional modules

from the topology perspective. For this purpose, we propose a

simple measurement, the connectivity density. The connectivity

density of a subgraph is the ratio of total in-degrees to the total

number of connections. Obviously the density of a subgraph is

always between 0 and 1 and, according to the weak definition,

the density of a module should be between 0.5 and 1. The lower

the density, the less likely a module. Next, we asked which control

to use for comparison. For a given module, a simple control would

be a set of the same number of proteins randomly picked up in the

network. However, a random set of proteins are unlikely to be

connected to each other, and therefore such a comparison is not

very convincing. Instead, we used a more rigorous control. For each

functional module, we randomly replaced a small portion of the

Fig. 1. Edge betweenness based on non-redundant shortest path. (A) An

example graph containing two subgraphs. (B ) A bipartite graph representing

all the shortest paths passing through edge ST. Vertices P, Q, R, S are the end

vertices on one side of the edge and vertices T, U, V, W, X are on the other

side. An edge is drawn between two vertices if there is a shortest path between

them that passes through ST. One set of non-redundant paths is shown by the

four dark edges P–T, Q–U, R–V and S–X.

Functional modules in yeast proteome network
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proteins in the module with the same number of proteins outside this

module. The replacement proteins are connected with the proteins

in the module but do not belong to it. In this way, the control is

guaranteed to be connected. Comparison to such controls is equiva-

lent to asking the question, if we shift the module a little, do we get a

less connected or more connected subgraph?

Figure 3 is a scatter plot of the connectivity densities of the

functional modules and their controls. For most of the modules,

15% component replacement causes the connectivity density to

decrease significantly. For many of them, the density drops

below 0.5, suggesting that they do not even qualify for functional

modules anymore. If more proteins are replaced (30%), the con-

nectivity densities decrease even more. The replacing experiment

was repeated 20 times, each time a different set of the proteins was

randomly replaced. These observations suggest that the identified

modules are indeed densely connected local subgraphs, and thus

are good candidates for functional modules in the yeast protein

network.

3.4 Genes in the same functional module confer

similar phenotype

Since a functional module performs a relatively independent cel-

lular function, a similar phenotype is expected to appear if the genes

in the same module are knocked out. To verify this, we represented

each gene’s phenotype as a vector of 31 dimensions, which cor-

respond to the 31 experimental conditions (Giaever et al., 2002).
We used the Euclidean distance of two vectors to represent the

phenotype difference between two genes, and we used the average

difference of all gene pairs to represent the phenotype divergence of

a module. Figure 4A shows the distribution of the phenotype diver-

gence of all the functional modules. For 185 out of 254 (72.8%)

functional modules, the phenotype divergence is lower than the

average phenotype difference over all the yeast open reading frames

(ORFs). In other words, genes in the same functional modules

display more similar phenotypes than those in different functional

modules. To exclude the possibility of artifact owing to module size

difference, we also checked the relationship between module size

and phenotype divergence, and found no significant correlation

(Fig. 4B). This is also confirmed by Pearson correlation analysis

(r ¼ 0.01).

To further confirm these observations, we did 20 randomization

experiments where 30% of the proteins were replaced in each

functional module to generate controls, and phenotype divergence

was compared between each module and its control. We found that

for 60.9% of the functional modules, randomization increases

phenotype divergence. Overall, the controls have higher phenotype

divergence than the original modules (p-value < 0.001). Altogether,

these results suggest that most of the functional modules we found

are not only topologically meaningful, but they are also biologically

significant.

We noted that phenotype similarity is also shown to be correlated

with functional similarities between genes in another study

(Gunsalus et al., 2005), which also supports its use for validating

biological significance. To further evaluate our method, we com-

pared the phenotype divergence of our results with that of two

previous studies, which used a biclustering method on integrated

functional genomics data (Tanay et al., 2004) or a mixture of three

different methods (Spirin and Mirny, 2003). We found that the

phenotype divergences of the modules in this study are comparable

with that of the mixed methods (p-value ¼ 0.46), both of which are

significantly lower than that of the biclustering method (p-values <
0.002) (Supplementary data, Figure S1). It is worth noting that in

Fig. 3. Identified functional modules are densely connected subgraphs. In

this scatter plot, each data point represents the connectivity density of a

functional module (x-axis) and its replacement control (y-axis). The dashed

line is y ¼ x, which means that the connectivity density is the same for the

module and its control. Any data point above the line corresponds to the case

where controls have higher connectivity density, while data points below the

line represent the case where control has lower connectivity density than the

actual functionalmodule. The further below the line, the less dense the control

is compared with the original module. Each datapoint is the average of 20

randomization experiments.

Fig. 2. Algorithm performance on artificial networks. The x-axis represents

the complexity of crosstalks between the communities in a network. The

y-axis is the percentage of vertices that are correctly classified. GN is the

abbreviation of the original algorithm and GN Ext. is the algorithm used

in this study.
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this study 266 functional modules were detected, which is more than

that found by the biclustering method (205) and is three times as

many as that found by the mixed techniques (90). This again sug-

gests that our algorithm is capable of finding biologically relevant

functional modules.

3.5 Known protein complexes are largely

contained in the functional modules

A protein complex is an aggregate of multiple proteins that interact

with each other and perform certain biological activities (Gingras

et al., 2005). Since this is conceptually very similar to the definition

of a functional module, we asked whether our algorithm could

detect protein complexes in their entirety, or whether they would

be randomly divided into fragments during partitioning. First, we

matched each protein complex against the identified functional

modules and calculated the maximum overlap between each com-

plex and the functional modules. As shown in Figure 5A, majority

of the 194 protein complexes annotated by the Comprehensive

Yeast Genome Database (CYGD) at MIPS are largely contained

in the functional modules we found (overlap > 0.75). A total of 98

protein complexes (51%) were identified in their entirety by our

algorithm. Knowing that small protein complexes are likely to be

contained in large functional modules by chance, we applied this

analysis to large protein complexes. Of the 78 complexes that con-

tain 5 or more proteins, 45 are largely contained in the functional

modules, and 23 were identified completely. Similar results were

obtained by analyzing the protein complex dataset annotated by the

SGD (Supplementary data, Figure S2).

To further confirm these results, we applied the overlapping anal-

ysis against the control modules obtained by replacing 15% of the

module components. Then, for each of the protein complexes in the

CYGD database, we compared the overlap ratios before and after

Fig. 5. Protein complexes are contained in functional modules. Protein com-

plexes annotated by CYGD were matched against the identified functional

modules. The overlap between each complex and a functional module is

identified and the ratio of overlap to complex size was calculated. (A) Histo-

gram of themaximumoverlap ratios of all the complexes. The inset shows the

histogram for the subset of the protein complexes of five ormore components.

(B) Scatter plot of the complex overlaps of the modules and their controls.

Each data point represents the complex overlap ratio with the actual modules

(x-axis) and with the control modules (y-axis). The dashed line is y ¼ x,
representing the cases where the overlap ratios remain unchanged. The data

points above the line represent the cases where complexes match better with

the controls; data points below the line represent the cases where complexes

match better with the actual functional modules.

Fig. 4. Genes within a functional module confer similar deletion phenotype.

(A) Histogram of the phenotype divergence of the functional modules. The

dashed line indicates the phenotype difference averaged over all pairs of the

yeast genes. (B) The scatter plot of phenotype divergence and module size.

The Pearson correlation coefficient is 0.01.

Functional modules in yeast proteome network
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the replacement. As shown in Figure 5B, for the majority of the

protein complexes (107 out of 194), the overlap ratios with the

control modules are lower than the overlap with the actual

functional modules. The overlap ratios remain unchanged for

about one-third of the complexes (67 out of 194). Only a very

small portion of the complexes (20 out of 194) are better overlapped

with the controls. In addition, the number of completely contained

complexes decreases to 73. It should be noted that in the controls

only a small portion (15%) of the module components are replaced,

while the overlapping with the complexes changed significantly.

These analyses show that known protein complexes are largely

contained in the functional modules we found, and many of them

are identified completely, without a single component missing.

This further indicates that our algorithm is capable of detecting

functional modules that are biologically meaningful.

3.6 The chromosome segregation functional

module: an example

Figure 6 shows an example of one of the functional modules

we identified in the protein–protein interaction network of yeast.

This functional module has 18 proteins. In the CYGD annotation,

the genes Nuf2, Spc25, Dam1, Duo1, Tid3, Spc34, Dad1, Dad2,
Ask1, Spc24 and Spc19 are annotated as playing a role in chromo-

some segregation, or spindle pole body, or both. Ulp1 and Smc5 are
annotated as playing a role in mitotic cell division. Cnn1 is

annotated with meiosis. Similar annotations are given in the

Gene Ontology (GO) database. This functional module is obviously

the core machinery responsible for the separation of chromosomes.

Out of the 18 genes, 14 have a lethal deletion phenotype. This is

consistent with the fact that chromosome segregation is a house-

keeping process for budding yeast, just like for any other organism.

As discussed above, this functional module contains two protein

complexes. NUF2, TID3, SPC24 and SPC25 form the highly

conserved Ndc80 protein complex. This complex is the core of

kinetochore (Asakawa et al., 2005), and is responsible for proper

alignment and attachment of chromosomes (Wei et al., 2005).

DAM1, DAD1, DAD2, DUO1, ASK1, SPC19 and SPC34 form the

DAM1–DUO1 protein complex. This complex is a ring-shaped

interface between microtubule and kinetochore, and it is capable

of translating the force generated by microtubule depolarization into

movement to facilitate chromosome segregation (Westermann

et al., 2006, 2005). It is interesting to note that each of the two

protein complexes contains a complete subgraph (clique) of size 4.

Since functional modules are densely connected subgraphs, cliques

are indeed expected to appear more frequently.

YLR419w is the only component in this module that has no

definite functional annotation in either CYGD or SGD. The most

updated SGD and GO annotation regard it as a hypothetical protein

with ATP-dependent helicase activity, based on the homology of a

small portion of the amino acid sequence. Likewise, in CYGD it is

called a putative helicase. Based on the fact that YLR419W is an

integral component of this functional module, we predicted its

biological function to be chromosome segregation. A number of

lines of evidence are in line with this prediction. First of all, evolu-

tionary studies showed that this gene belongs to a family of helicase

with very diverse functions, many of which has multiple functions

(Sanjuan and Marin, 2001). Second, overexpression of a dominant

negative form of RHA, a RNA helicase, causes aberrant mitosis

with extra centrosome and tetraploidy in human breast epithelial

cells, suggesting its role in centrosome formation and chromosome

segregation (Schlegel et al., 2003). In addition, RUVBL1/TIP49a,

a human ATP-dependent helicase, was shown to associate with

tubulins and colocalize with centrosome and mitotic spindle

(Gartner et al., 2003).

4 DISCUSSION

In this study, we first integrated diverse datasets and represented the

interaction network of Saccharomyces cerevisiae as an undirected

weighted graph. Then, on the basis of a betweenness-based algo-

rithm, we developed a partition algorithm for weighted graphs, and

identified 266 functional modules in the yeast protein–protein inter-

action network.We validated these functional modules by exploring

the relationship between module topology and gene phenotype

and the relationship between protein complexes and functional

modules.

The protein–protein interaction network of yeast used here was

obtained through integrating the high confidence datasets from three

rigorous studies. With 10 899 interactions between 3409 proteins,

this network is very complex. Uncovering the modular structure of

such a network is a challenging task. To make things worse, not all

the interactions are stable, and not all the interactions occur at the

same time. In other words, the network is not a real snapshot of the

interactions in yeast, but an overlap of many snapshots. How much

confidence do we have with the results obtained from such a

network? Our study addressed both issues by using expression

dissimilarity as the weights for the interactions. First of all, adding

Fig. 6. The chromosome segregation module. This module contains 18 pro-

teins, most of which are annotated with chromosome segregation or cell

division functions. The two dashed boxes indicate the two protein complexes,

each ofwhich contains a complete subgraph of four vertices (C4). The label on

each edge represents the weight, i.e. the expression dissimilarity between the

two genes. This diagram was generated using the DOT program of the graph

visualization package Graphviz.
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weights based on domain knowledge to represent the strengths of

connections can enhance the network analysis (Barrat et al., 2004;
Newman, 2001). Second, the algorithm is shortest-path based,

which makes the use of weight highly desirable. In the case of

this study, in order to obtain functional modules with biological

significance, it is highly desirable to incorporate functional

genomics information into the partitioning process. The expression

dissimilarity was computed by taking into consideration hundreds

of microarray expression profiles. If the distance between two inter-

acting proteins is very small, it means that the two corresponding

genes’ expression profiles are very similar. In other words, they are

co-regulated. Those unstable, transient interactions will probably

have a larger distance owing to less correlated expression profiles.

Therefore by using expression dissimilarity as weight we emphasize

the functional correlations between interacting partners. The com-

munity structures obtained in such a weighted graph very likely

represent real functional modules.

The betweenness-based partitioning algorithm was proved to be

intuitive and powerful in module detection in real world networks

(Girvan and Newman, 2002). In this study we developed an

extended algorithm to partition weighted graphs, which can be

used on other types of networks. For example, expression profiles

can also be used to add weights to graphs representing transcrip-

tional networks (Ihmels et al., 2002), and our algorithm can be used

on such datasets to identify regulatory modules in yeast or other

organisms. We note that a number of algorithms have recently been

developed to study the modularity in biological networks, which are

summarized in the introduction. Owing to certain limitations, we

were only able to do a limited comparison with two of those studies.

Ideally a more comprehensive analysis of these methods, such as a

competition style study, will greatly benefit the community by

guiding future investigations in this field.

By comparing the pairwise phenotype difference we showed that,

in general, genes confer a similar deletion phenotype if their protein

products belong to the same functional module. This result has

significant relevance for showing that biology is modular. Even

though various methods have been developed to detect functional

modules at the topological level, it is the modularity at the func-

tional and the phenotypical level that interests us. Our results indi-

cate that phenotype similarity could be used to evaluate the

biological significance of functional modules detected using topo-

logical features. Furthermore, with more detailed analysis, pheno-

type data can be very valuable resources for understanding

biological processes. For example, certain treatments may cause

growth defects among the deletion mutants for a given module.

This would be a strong evidence that this module is involved in

the cellular response to these treatments.

In this study, we used the topological relationship between pro-

tein complexes and functional modules to validate the biological

relevance of the modules we identified. An interesting question that

remains to be answered is, what is the functional relationship

between protein complexes and functional modules? Our prelimi-

nary analysis did not find significant correlation between a module’s

phenotype divergence and the percentage of its components

involved in protein complex formation (data not shown). Of course,

phenotype is just one of many ways to assess the functional sig-

nificance of the modules. Further studies are needed to address this

important issue to help us understand the internal organizations of

functional modules.

In this study, we showed an example of predicting gene function

based on the associated functional module. The yeast gene

YLR419w is not annotated in any detail owing to lack of significant

homology to any known gene. However, through functional module

classification we are able to predict its biological function to be

chromosome segregation. In recent years, whole genome sequenc-

ing projects have generated a huge amount of DNA sequence

information, and various sophisticated gene finding algorithms

have been applied to find large numbers of ORFs. Even though

homology-based gene annotation provides the first clue to the bio-

logical functions of new ORFs, functional genomics-based anno-

tation methods have become increasingly important (Troyanskaya,

2005; Bentley, 2000). This is particularly true for those ORFs with

poor or no homology. Our study showed that functional module

detection could be yet another complimentary method for gene

annotation.
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