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Abstract. Zipf’s law, and power laws in general, have attracted and continue to
attract considerable attention in a wide variety of disciplines—from astronomy
to demographics to software structure to economics to linguistics to zoology,
and even warfare. A recent model of random group formation (RGF) attempts
a general explanation of such phenomena based on Jaynes’ notion of maximum
entropy applied to a particular choice of cost function. In the present paper I argue
that the specific cost function used in the RGF model is in fact unnecessarily
complicated, and that power laws can be obtained in a much simpler way by
applying maximum entropy ideas directly to the Shannon entropy subject only
to a single constraint: that the average of the logarithm of the observable quantity
is specified.
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1. Introduction

Zipf’s law [1–3], and power laws in general [4–6], have and continue to attract considerable
attention in a wide variety of disciplines—from astronomy to demographics to software
structure to economics to zoology, and even to warfare [7]. Typically one is dealing with
integer-valued observables (numbers of objects, people, cities, words, animals, corpses), with
n ∈ {1, 2, 3, . . .}. Sometimes the range of values is allowed to be infinite (at least in principle),
sometimes a hard upper bound N is fixed (e.g., total population if one is interested in
subdividing a fixed population into sub-classes). Particularly interesting probability distributions
are probability laws of the form

• Zipf’s law: pn ∝ 1/n;

• power laws: pn ∝ 1/nz;

• hybrid geometric/power laws: pn ∝ wn/nz.

Specifically, a recent model of random group formation (RGF), see [8], attempts a general
explanation of such phenomena based on Jaynes’ notion of maximum entropy [9–13] applied to
a particular choice of cost function [8]. (For recent related work largely in a demographic context
see [14–18]. For related work in a fractal context implemented using an iterative framework
see [19].)

In the present paper I shall argue that the specific cost function used in the RGF model is in
fact unnecessarily complicated (in fact RGF most typically leads to a hybrid geometric/power
law, not a pure power law), and that power laws can be obtained in a much simpler way by
applying maximum entropy ideas directly to the Shannon entropy itself [20, 21] subject only
to a single constraint: that the average of the logarithm of the observable quantity is specified.
Similarly, I would argue that (at least as long as the main issue one is interested in is ‘merely’
the minimum requirements for obtaining a power law) the appeal to a fractal framework and
the iterative model adopted by Pastor-Satorras and Wagensberg [19] is also unnecessarily
complicated.
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To place this observation in perspective, I will explore several variations on this theme,
modifying both the relevant state space and the number of constraints, and will briefly discuss
the relevant special functions of mathematical physics that one encounters (zeta functions,
harmonic series, poly-logarithms). I shall also discuss an extremely general Gibbs-like model,
and the use of non-Shannon entropies (the Rényi [22] and Tsallis [23] entropies and their
generalizations). There is a very definite trade-off between simplicity and generality, and I shall
very much focus on keeping the discussion as technically simple as possible, and on identifying
the simplest model with minimalist assumptions.

2. Power laws in infinite state space

Let us define the set of observable quantities to be positive integers n ∈ {1, 2, 3, . . .}, without any
a priori upper bound. The maximum entropy approach [9–13] seeks to estimate the probabilities
pn by maximizing the Shannon entropy [20, 21]

S = −

∑
n

pn ln pn (1)

subject to a (small) number of constraints/cost functions—representing our limited state of
knowledge regarding the underlying process. For example, the RGF model of Baek et al [8]
uses one constraint and one (relatively complicated) cost function [8], in addition to the ‘trivial’
normalization constraint

∑
n pn = 1. Instead, let us consider the single constraint

〈ln n〉 ≡

∞∑
n=1

pn ln n = χ. (2)

Let us now maximize the Shannon entropy subject to this constraint. This is best done by
introducing a Lagrange multiplier z corresponding to the constraint 〈ln n〉, plus a second
Lagrange multiplier λ corresponding to the ‘trivial’ normalization constraint, and considering
the quantity

Ŝ = −z

(
∞∑

n=1

pn ln n − χ

)
− λ

(
∞∑

n=1

pn − 1

)
−

∞∑
n=1

pn ln pn. (3)

Of course there is no loss of generality in redefining the Lagrange multiplier λ → Z as follows:

Ŝ = −z

(
∞∑

n=1

pn ln n − χ

)
− (ln Z − 1)

(
∞∑

n=1

pn − 1

)
−

∞∑
n=1

pn ln pn. (4)

Varying with respect to the pn yields the extremality condition

−z ln n − ln Z − ln pn = 0 (5)

with explicit solution

pn =
n−z

ζ(z)
, Z = ζ(z), z > 1. (6)

Here ζ(z) is the Riemann zeta function [24–27], a relatively common and well-known special
function, and the condition z > 1 is required to make the sum

∑
∞

n=1 n−z
= ζ(z) converge. This

is enough to tell you that one will never exactly reproduce Zipf’s law (z = 1) in this particular
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manner, though one can get arbitrarily close. The value of the Lagrange multiplier z (which
becomes the exponent in the power law) is determined self-consistently in terms of χ by
demanding

χ(z) = 〈ln n〉 =

∑
∞

n=1 n−z ln n

ζ(z)
= −

dζ(z)/dz

ζ(z)
= −

d ln ζ(z)

dz
. (7)

Then z ∈ (1, ∞) while χ ∈ (0, ∞). For practical calculations it is often best to view the
exponent z as the single free parameter and χ(z) as the derived quantity, but this viewpoint
can easily be inverted if desired. Near z = 1 we have the analytic estimate

χ(z) = 〈ln n〉 =
1

z − 1
− γ +O(z − 1), (8)

where γ denotes Euler’s constant. At maximum entropy, imposing the extremality condition
and summing, we have

Ŝ(z) = S(z) = −

∞∑
n=1

pn ln pn = ln ζ(z) + zχ(z). (9)

Near z = 1 we have the analytic estimate

Ŝ(z) = S(z) =
1

z − 1
+ ln

(
1

z − 1

)
+ 1 − γ +O(z − 1). (10)

For future reference, it is useful to observe that [27, see p 118]

ζ(z) =
1

z − 1
+

∞∑
m=1

γm
(1 − z)m

m!
, (11)

where the Stieltjes constants γm satisfy
N∑

n=1

(ln n)m

n
=

(ln N )m+1

m + 1
+ γm + o(1), γ0 = γ. (12)

A better estimate, using Euler–Mclaurin summation, is

N∑
n=1

(ln n)m

n
=

{ln(N + 1
2)}

m+1

m + 1
+ γm +O

({
ln
(
N + 1

2

)}m(
N + 1

2

)2

)
. (13)

The quick lesson to take is this: by applying maximum entropy considerations to the single
constraint 〈ln n〉 = χ you can get a pure power law with any exponent z > 1. Furthermore, note
that the quantity

exp〈ln n〉 =

∞∏
n=1

n pn (14)

is the geometric mean of the integers {1, 2, 3, . . .} with the exponents weighted by the
probabilities pn. So one can just as easily obtain the pure power laws considered above by
maximizing the entropy subject to the constraint that this geometric mean takes on a specified
value.
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3. Power laws in finite state space

If one desires an exact Zipf law (exponent z = 1, so that pn ∝ 1/n), then because the harmonic
series diverges,

∑
∞

n=1 1/n = ∞, it is clear that something in the above formulation needs to
change. Perhaps the easiest thing to do is to introduce an explicit maximum value of n, call it
N , so that we take the set of observables to be positive integers n ∈ {1, 2, 3, . . . , N }. (Physicists
would call this an infra-red cutoff, or large-distance cutoff.) The maximum entropy approach
now amounts to considering

Ŝ = −z

(
N∑

n=1

pn ln n − χ

)
− (ln Z − 1)

(
N∑

n=1

pn − 1

)
−

N∑
n=1

pn ln pn. (15)

Varying with respect to the pn and maximizing again yields the same extremality condition

−z ln n − ln Z − ln pn = 0 (16)

but now implying

pn =
n−z

HN (z)
, Z = HN (z). (17)

Here HN (z) is the (reasonably well known) generalized harmonic function [27]

HN (z) =

N∑
n=1

1

nz
. (18)

Compared with the previous case the only real difference lies in the normalization function.
However, because the sum is now always finite, there is no longer any constraint on the value
of the exponent z, in fact we can have z ∈ (−∞, ∞). The case z = 1 is Zipf’s law, while z = 0
is a uniform distribution, and z < 0 corresponds to an ‘inverted hierarchy’ where large values
are more common than small values. The price paid for this extra flexibility is that the model
now has two free parameters, which can be chosen to be z and N . One has the self-consistency
constraint

χ(z, N ) = 〈ln n〉 =

∑N
n=1 n−z ln n

HN (z)
= −

dHN (z)/dz

HN (z)
= −

d ln HN (z)

dz
. (19)

It is easy to check that χ is now bounded by χ ∈ (0, ln N ). At maximum entropy we now have

Ŝ(z, N ) = S(z, N ) = −

N∑
n=1

pn ln pn = ln HN (z) + zχ(z, N ). (20)

Because this is now a two-parameter model, it will always (naively) be a ‘better’ fit to
observational data than a single-parameter model. Sometimes (for z 6 1) retreating to this two-
parameter model is necessary, but for z > 1 the one-parameter model of the previous section
(N → ∞) should be preferred.
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4. Zipf’s law in finite state space

If for observational or theoretical reasons one is certain that z = 1 (Zipf’s law), then the
model reduces as follows: the state space is n ∈ {1, 2, 3, . . . , N } where N is now the only free
parameter. Then explicitly forcing z → 1 one considers

Ŝ = −

(
N∑

n=1

pn ln n − χ

)
− (ln Z − 1)

(
N∑

n=1

pn − 1

)
−

N∑
n=1

pn ln pn. (21)

This is completely equivalent to considering

Ŝ = χ − (ln Z − 1)

(
N∑

n=1

pn − 1

)
−

N∑
n=1

pn ln(n pn) (22)

but writing the quantity to be maximized in this way hides the role of the Shannon entropy.
Varying with respect to the pn and maximizing now yields a (very) slightly different extremality
condition

− ln n − ln Z − ln pn = 0 (23)

and so

pn =
1

HN

1

n
, Z = HN . (24)

Here HN is the (ordinary) harmonic number [27]

HN =

N∑
n=1

1

n
. (25)

Then

χ(N ) = 〈ln n〉 =
1

HN

N∑
n=1

ln n

n
. (26)

Furthermore, at maximum entropy

Ŝ(N ) = S(N ) = −

N∑
n=1

pn ln pn = ln HN + χ(N ). (27)

Now we have already seen

HN = ln
(
N + 1

2

)
+ γ +O

(
1

(N + 1
2)

2

)
(28)

and
N∑

n=1

ln n

n
=

1

2

{
ln
(
N + 1

2

)}2
+ γ1 +O

(
ln
(
N + 1

2

)(
N + 1

2

)2

)
. (29)

Therefore

χ(N ) = 〈ln n〉 =
1
2 ln

(
N + 1

2

)
+ o(1) (30)
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and at maximum entropy

Ŝ(N ) = S(N ) =
1
2 ln

(
N + 1

2

)
+ ln ln

(
N + 1

2

)
+ o(1). (31)

Note that you can use this to estimate the size N of the state space one needs to adopt in order
to be compatible with the (observed) logarithmic average 〈ln n〉. Indeed

N ≈ exp{2〈ln n〉} = {exp〈ln n〉}
2. (32)

This relates the size of the required state space N to the square of the geometric mean exp〈ln n〉.

5. Hybrid geometric/power models in infinite state space

To generate a hybrid geometric/power law model, similar in output to the RGF model [8],
but with considerably simpler input assumptions, simply take both the logarithmic average
〈ln n〉 = χ , and the arithmetic average 〈n〉 = µ, to be specified—and then maximize the
Shannon entropy subject to these two constraints, (plus the trivial normalization constraint).
That is, introduce two Lagrange multipliers z and w, and maximize

Ŝ = −z

(
∞∑

n=1

pn ln n−χ

)
+ ln w

(
∞∑

n=1

pnn−µ

)
− (ln Z−1)

(
∞∑

n=1

pn−1

)
−

∞∑
n=1

pn ln pn. (33)

Varying with respect to the pn yields

−z ln n + n ln w − ln Z − ln pn = 0 (34)

with solution

pn =
wn n−z

Liz(w)
, Z = Liz(w), w < 1. (35)

Here the normalizing constant is the well-known poly-logarithm function [24–27]

Liz(w) =

∞∑
n=1

wn

nz
, Li1(w) = − ln(1 − w). (36)

Then

χ(w, z) ≡ 〈ln n〉 =
1

Liz(w)

∞∑
n=1

wn ln n

nz
= −

d ln Liz(w)

dz
, (37)

while

µ(w, z) ≡ 〈n〉 =
1

Liz(w)

∞∑
n=1

wnn

nz
=

Liz−1(w)

Liz(w)
=

d ln Liz(w)

d ln z
. (38)

Furthermore, at maximum entropy

Ŝ(w, z) = S(w, z) = −

∞∑
n=1

pn ln pn = ln Liz(w) + z χ(w, z) − µ(w, z) ln w. (39)

Note that the probability function arising in this model is fully as general as that arising in the
RGF model [8], but with what is perhaps a somewhat clearer interpretation.
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This is because the RGF model uses what may be viewed as an unnecessarily complicated
‘cost function’, with an unnecessary degeneracy in the parameters. Indeed, from [8] one sees
(in their notation, slightly different from current notation)

Icost =

∑
k

P(k) ln[k N (k)], P(k) = N (k)/N . (40)

That is

Icost =

∑
k

P(k) ln[k N P(k)] (41)

=

∑
k

P(k) ln k +
∑

k

P(k) ln N +
∑

k

P(k) ln P(k) (42)

= 〈ln k〉 + ln N − S. (43)

So the RGF cost function [8] is simply a linear combination of Shannon entropy, the logarithmic
mean 〈ln k〉, and a redundant constant offset ln N . (Unfortunately the N of Baek et al [8]
is not the same as the N used in this paper, the RGF parameter N corresponds to the
number of independent realizations of the underlying statistical process one considers—it
is the number of simulations, or number of universes in the statistical ensemble.) The
additional complexity implicit in the RGF model can to some extent be viewed as a side-
effect of forcing data into discrete ordinal boxes when one does not necessarily have good
physical/mathematical/demographic reasons for knowing which particular boxes are ‘best’,
how the boxes are to be assigned ordinal numbers, and where the box boundaries should most
profitably be placed. Apart from the issues raised above, one could in addition explicitly restrict
the state space to be finite, adding yet another free parameter (M in the language of Baek
et al [8], N in the language of this note), but there is little purpose in doing so—the key insight
is this: once the data are assigned to ordinal boxes, hybrid geometric/power laws drop out
automatically and straightforwardly by maximizing the Shannon entropy subject to the two
very simple constraints 〈ln n〉 = χ and 〈n〉 = µ.

6. Zipf’s law: geometric version in infinite state space

If for observational or theoretical reasons one is certain that z = 1 (Zipf’s law), but for whatever
reason feels a finite state space cutoff N is inappropriate, then a geometric version of Zipf’s law
can be extracted from the hybrid model. Setting z = 1 the model reduces as follows: the state
space is now n ∈ {1, 2, 3, . . .} while

Ŝ = −

(
∞∑

n=1

pn ln n−χ

)
+ ln w

(
∞∑

n=1

pnn−µ

)
−(ln Z−1)

(
∞∑

n=1

pn−1

)
−

∞∑
n=1

pn ln pn. (44)

This is completely equivalent to maximizing

Ŝ = χ + ln w

(
∞∑

n=1

pnn − µ

)
− (ln Z − 1)

(
∞∑

n=1

pn − 1

)
−

∞∑
n=1

pn ln(n pn) (45)

but writing the quantity to be maximized in this way hides the role of the Shannon entropy.
Varying with respect to the pn yields

− ln n + n ln w − ln Z − ln pn = 0 (46)
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with solution

pn =
1

| ln(1 − w)|

wn

n
, Z = | ln(1 − w)|, w ∈ (0, 1). (47)

Note the normalizing function is now extremely simple—the natural logarithm. Then

χ(w) ≡ 〈ln n〉 =
1

| ln(1 − w)|

∞∑
n=1

wn ln n

n
, w ∈ (0, 1), (48)

while

µ(w) ≡ 〈n〉 =
1

| ln(1 − w)|

∞∑
n=1

wn
=

w

(1 − w)| ln(1 − w)|
. (49)

Furthermore, at maximum entropy

Ŝ(w) = S(w) = −

∞∑
n=1

pn ln pn = ln | ln(1 − w)| + χ(w) − µ(w) ln w. (50)

This is a one-parameter model with a geometrical cutoff, which for w . 1 (or more precisely
w → 1−), approximates the naive un-normalizable Zipf law with arbitrary accuracy.

7. Very general Gibbs-like model

Let us now consider an arbitrary number of constraints of the form

〈ln gi(n)〉 ≡

∑
n

pn ln gi(n) = χi , i ∈ (1, #g) (51)

and

〈 fa(n)〉 ≡

∑
n

pn fa(n) = µa, a ∈ (1, # f ). (52)

One could always transform a g-type constraint into an f -type constraint or vice versa, but as
we shall soon see there are advantages to keeping the logarithm explicit. Applying the maximum
entropy principle amounts to considering

Ŝ = −

∑
i

zi

(∑
n

pn ln gi(n) − χ

)
−

∑
a

βa

(∑
n

pn fa(n) − µ

)

−(ln Z − 1)

(∑
n

pn − 1

)
−

∑
n

pn ln pn, (53)

where with malice aforethought we have now relabelled the Lagrange multipliers for the f
constraints as follows: ln w → −β. Then maximizing over the pn we have the extremality
condition

−

∑
i

zi ln gi(n) −

∑
a

βa fa(n) − ln Z − ln pn = 0 (54)

with explicit solution

pn =
1

Z

{∏
i

gi(n)−zi

}
exp

{
−

∑
a

βa fa(n)

}
, (55)
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where now the normalizing constant is

Z(Ez, Eβ) =

∑
n

[{∏
i

gi(n)−zi

}
exp

{
−

∑
a

βa fa(n)

}]
. (56)

This can be viewed as a generalization/modification of the Gibbs distribution where we have
explicitly pulled out some of the constraints (the g-type constraints) to make them look power-
law-like, while the remaining constraints (the f -type constraints) are left in Boltzmann-like
form. Then

χi(Ez, Eβ) ≡ 〈ln gi(n)〉 =

∑
n

pn ln gi(n) = −
d ln Z

dzi
, (57)

while

µa(Ez, Eβ) ≡ 〈 fa(n)〉 =

∑
n

pn fa(n) = −
d ln Z

dβa
. (58)

Furthermore, at maximum entropy

Ŝ(Ez, Eβ) = S(Ez, Eβ) = −

∑
n

pn ln pn = ln Z(Ez, Eβ) +
∑

i

zi χi(Ez, Eβ) +
∑

a

βa µi(Ez, Eβ). (59)

It is only once one specifies particular choices for the functions fa and gi that the model becomes
concrete, and only at that stage might one need to focus on particular special functions of
mathematical physics. The model is extremely general—the drawback is that, because it can
fit almost anything, it can ‘explain’ almost anything, and so can predict almost nothing.

8. Non-Shannon entropies

Shannon’s entropy is by far the best motivated of the entropy functions infesting the literature.
Without making any particular commitment to the advisability of doing so, we can certainly
ask what happens if we apply maximum entropy ideas to non-Shannon entropies (such as the
Rényi [22] or Tsallis [23] entropies and their generalizations). Let us define an entropic zeta
function by

ζS(s) =

∑
n

(pn)
s, (60)

which certainly converges for s > 1 and may converge on a wider region. Then

SRenyi(1 + a) = −
ln ζS(1 + a)

a
, STsallis(1 + a) =

1 − ζS(1 + a)

a
, (61)

where in both cases the Shannon entropy is recovered in the limit a → 0. More generally let us
consider a generalized entropy of the form

S(a) = − f (ζS(1 + a)) (62)

for an arbitrary smooth function f (·). Let us further impose a constraint on the bth moment

〈nb
〉 ≡

∑
n

pnnb
= µb. (63)
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With power laws being explicitly built in as input into both the generalized entropy and the
constraint, it is perhaps not too surprising that we will manage to get power laws dropping out.
One is now interested in maximizing

Ŝ = λ

(∑
n

pn nb
− µb

)
+ w

(∑
n

pn − 1

)
− f (ζS(1 + a)) . (64)

Varying the pn leads to

λnb + w − f ′ (ζS(1 + a)) (1 + a)(pn)
a
= 0 (65)

with solution

pn =
(w + λnb)1/a

Z
, Z =

∑
n

(w + λnb)1/a. (66)

(An overall factor of (1 + a) f ′(ζS(1 + a)) simply drops out of the calculation.) If the number of
states is finite, then we cannot a priori discard the parameter w, and we have derived a distorted
power law. (The probability distribution then interpolates between a pure power law for w = 0
and a uniform distribution for w = ∞.) If on the other hand, the number of states is infinite then
normalizability enforces w → 0, and λ factors out. We then have a pure power law

pn →
nb/a

Z
, Z →

∑
n

nb/a. (67)

If the state space is the positive integers n ∈ {1, 2, 3, . . .} then Z → ζ(−b/a), the Riemann zeta
function, and the sum converges only for −b/a > 1. So one of the two parameters (a, b) must
be negative. In this situation

µb = 〈nb
〉 =

ζ(−b − b/a)

ζ(−b/a)
(68)

now requiring both −b − b/a > 1 and −b/a > 1, while at maximum entropy

Ŝ = S → f (ζS(1 + a)) = f

(
ζ(−b − b/a)

ζ(−b/a)1+a

)
. (69)

So yes, one can also extract power laws from maximum entropy applied to non-Shannon
entropies (in particular, the generalized Rényi–Tsallis entropies), but the process is (at best)
rather clumsy, and seems an exercise in overkill. Apart from the whole question of whether
or not non-Shannon entropies are particularly interesting, one should ask whether the result is
particularly useful? This derivation does not seem to be in any way an improvement over the
simpler one based directly on the Shannon entropy, so its utility is dubious.

9. Summary and discussion

The main point of this paper is that power laws (and their variants, including hybrid
geometric/power laws) have a very natural and straightforward interpretation in terms of the
maximum entropy formalism pioneered by Jaynes. The key to obtaining a pure power law in
the simplest possible manner lies in maximizing the Shannon entropy while imposing the simple
constraint 〈ln n〉 = χ . Depending on other features of the specific model under consideration,
detailed analysis leads to certain of the special functions of mathematics (the Riemann zeta
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function, generalized harmonic functions, poly-logarithms or even ordinary logarithms), but
these are relatively well-known mathematical objects, which are still tolerably simple to deal
with.

Adding additional features (finite size state space, extra constraints) can (and typically
will) modify both the functional form and the normalization constants appearing in the
probability distribution. As always there is a trade-off between simplicity and flexibility. A more
complicated model (with more free parameters) has a more flexible probability distribution, but
this comes at a real (if often unacknowledged) cost in terms of internal complexity. A rather
general Gibbs-like model is laid out and briefly discussed. We also briefly discuss applying
maximum entropy ideas to non-Shannon entropies (such as the Rényi and Tsallis entropies).
There is very definitely a trade-off in both elegance and plausibility, and I would argue strongly
that the simplest and most elegant model consists of the Shannon entropy, a constraint on
〈ln n〉 = χ , and a trivial normalization constraint on the sum of probabilities.

The fact that the logarithmic average 〈ln n〉 plays such an important role in power laws
seems to have a connection with the fact that logarithmic scales are ubiquitous in classifying
various natural and social phenomena. For instance

• stellar magnitudes are logarithmic in stellar luminosity,

• earthquake magnitudes (modified Richter scale) are logarithmic in energy release,

• sound intensity decibels are logarithmic in pressure,

• the acidity/alkalinity pH scale is logarithmic in hydrogen ion concentration,

• musical octaves are logarithmic in frequency,

• war severity can be characterized as being logarithmic in casualty count [7].

In many cases the utility of a logarithmic scale can be traced back to an approximate logarithmic
sensitivity in human perceptual systems, but it is very easy to confound cause and effect. After
all, in the presence of power-law distributed external stimuli, there is a significant disadvantage
in having the human perceptual system overwhelmed by large numbers of low-impact events,
suggesting an evolutionary pressure towards suppressing sensitivity to low-impact events. This
suggests that logarithmic sensitivity in human (and animal) perceptual systems is evolutionarily
preferred for those senses that are subject to an external bath of power-law distributed stimuli.

Fortunately, for the purposes of applying maximum entropy ideas one does not need to
know which is the cause and which is the effect—one is ‘merely’ using Bayesian principle to
estimate underlying probabilities in the presence of limited knowledge; for current purposes this
is most typically the single piece of information that 〈ln n〉 = χ .
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