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In this paper we introduce the network histogram, a statistical
summary of network interactions to be used as a tool for exploratory
data analysis. A network histogram is obtained by fitting a stochastic
blockmodel to a single observation of a network dataset. Blocks of
edges play the role of histogram bins and community sizes that
of histogram bandwidths or bin sizes. Just as standard histograms
allow for varying bandwidths, different blockmodel estimates can
all be considered valid representations of an underlying probability
model, subject to bandwidth constraints. Here we provide methods
for automatic bandwidth selection, by which the network histo-
gram approximates the generating mechanism that gives rise to
exchangeable random graphs. This makes the blockmodel a uni-
versal network representation for unlabeled graphs. With this insight,
we discuss the interpretation of network communities in light of
the fact that many different community assignments can all give
an equally valid representation of such a network. To demonstrate
the fidelity-versus-interpretability tradeoff inherent in considering
different numbers and sizes of communities, we analyze two publicly
available networks—political weblogs and student friendships—and
discuss how to interpret the network histogram when additional
information related to node and edge labeling is present.

community detection | graphons | nonparametric statistics | graph limits |
sparse networks

The purpose of this paper is to introduce the network histo-
gram—a nonparametric statistical summary obtained by fit-

ting a stochastic blockmodel to a single observation of a network
dataset. A key point of our construction is that it is not necessary
to assume the data to have been generated by a blockmodel. This
is crucial, because networks provide a general means of de-
scribing relationships between objects. Given n objects under
study, a total of

� n
2

�
pairwise relationships are possible. When

only a small fraction of these relationships are present—as is
often the case in modern high-dimensional data analysis across
scientific fields—a network representation simplifies our un-
derstanding of this dependency structure.
One fundamental characterization of a network comes through

the identification of community structure (1), corresponding to
groups of nodes that exhibit similar connectivity patterns. The
canonical statistical model in this setting is the stochastic block-
model (2): It posits that the probability of an edge between any
two network nodes depends only on the community groupings
to which those nodes belong. Grouping nodes together in this
way serves as a natural form of dimensionality reduction: As n
grows large, we cannot retain an arbitrarily complex view of all
possible pairwise relationships. Describing how the full set of n
objects interrelate is then reduced to understanding the inter-
actions of k � n communities. Studying the properties of fitted
blockmodels is thus important (3, 4).
Despite the popularity of the blockmodel, and its clear utility,

scientists have observed that it often fails to describe all of the
structure present in a network (5–8). Indeed, as a network becomes
larger, it is no longer reasonable to assume that a majority of its
structure can be explained by a blockmodel with a fixed number
of blocks. Extensions to the blockmodel have focused on capturing
additional variability, for example through mixed community

membership (5) and degree correction (6, 9). However, the
simplest and most natural method of extending the descriptiveness
of the blockmodel is to add blocks, so that k grows with n. As more
and more blocks are fitted, we expect an increasing degree of
structure in the data to be explained. The natural questions to ask
then are many: What happens as we fit more blocks to an arbitrary
network dataset, if the true data-generating mechanism is not a
blockmodel? At what rate should we increase the number of
blocks used, depending on the variability of the network? We
discuss these and other questions in this paper.
We will stipulate how the dimension k of the fitted blockmodel

should be allowed to increase with the size n of the network. This
increase will be dictated by a tradeoff between the sparsity of the
network and its heterogeneity or smoothness. If one assumes that
a k-community blockmodel is the actual data-generating mecha-
nism, then theory has already been developed that allows k to
grow with n (10–12), and methods have been suggested for choosing
the number of blocks based on the data (13, 14). General theory
for the case when the blockmodel is merely approximating the
observed network structure is nascent; ref. 15 treated the case of
dense bipartite graphs with a fixed number of blocks, and ref. 16
established the first such results for the setting of relevance here.

From Stochastic Networks to Histograms
A Simple Stochastic Network Model. We encode the relationships
between n objects using

� n
2

�
binary random variables. Each of

these variables indicates the presence or absence of an edge
between two nodes and can be collected into an n× n adjacency
matrix A, such that Aij = 1 if nodes i and j are connected and Aij = 0
otherwise, with Aii = 0. This yields what is known as a simple
random graph.
Models for unlabeled graphs are strongly related to the statis-

tical notion of exchangeability, a fundamental concept describing
random variables whose ordering is without information. To relate
to exchangeable variables, we appeal to the Aldous–Hoover
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theorem (3) and model our network hierarchically using three
components:

i) A fixed, symmetric function f ðx; yÞ termed a graphon (17),
which behaves like a probability density function for 0< x; y< 1;

ii) For each n, a random sample ξ of n uniform random variables
fξ1; . . . ; ξng which will serve to index the graphon f ðx; yÞ; and

iii) For each n, a deterministic scaling constant ρn > 0, specifying

the expected fraction of edges
� n

2

�−1
E
P

i<jAij in the network.

For each n, our simple stochastic network model is then

Aij
��ξi; ξj ∼Bernoulli

�
ρn f

�
ξi; ξj

��
; 1≤ i< j≤ n; [1]

where for statistical identifiability of ρn we assumeZZ
ð0;1Þ2

f ðx; yÞdx  dy= 1: [2]

In this way we model the network structure itself—rather than
the particular ordering in which the network’s nodes are arranged
in A. As an example, Fig. 1 shows three different orderings of the
adjacency matrix of a network of US political weblogs recorded in
2005 (18), each emphasizing a different aspect of the network.
We see from this generative mechanism that any (symmetric)

rearrangement of the x and y axes of fwill lead to the sameprobability
distribution on unlabeled graphs, and in fact a graphon describes an
entire equivalence class of functions. We assume that at least one
member of this equivalence class is Hölder-continuous, which we
refer to as f without loss of generality; that f is bounded away from
0 and ρnf is bounded away from 1; and that the sequence ρn is
monotone nonincreasing and decays more slowly than n−1 log3 n, so
that the average network degree grows faster than log3 n.
To summarize the network we therefore wish to estimate the

graphon f ðx; yÞ, up to rearrangement of its axes. By inspection,

P
�
Aij = 1

�
=EAij = ρn

ZZ
ð0;1Þ2

f ðx; yÞdx  dy= ρn;

and so we may estimate ρn via the sample proportion estimator

ρ̂n =
�
n
2

�−1X
i<j

Aij: [3]

The Network Histogram. Given a single adjacency matrix A of size
n×n, we will estimate f ðx; yÞ (up to rearrangement of its axes) using
a stochastic blockmodel with a single, prespecified community size h,
to yield a network histogram. Choosing the bandwidth h is equivalent
to choosing a specific number of communities k—corresponding to
the number of bins in an ordinary histogram setting.
To define the network histogram, we first write the total number

of network nodes n in terms of the integers h, k, and r as n= hk+ r,
where k= bn=hc is the total number of communities; h is the

corresponding bandwidth, ranging from 2 to n; and r= nmod h
is a remainder term between 0 and h− 1. To collect together the
nodes of our network that should lie in the same group, we in-
troduce a community membership vector z of length n. All com-
ponents of z will take values in f1; . . . ; kg and will share the same
values whenever nodes are assigned to the same community.
The main challenge in forming a network histogram lies in esti-

mating the community assignment vector z from A. To this end, for
each n, let the set Zk ⊆ f1; . . . ; kgn contain all community assign-
ment vectors z that respect the given form of n= hk+ r. Thus, Zk
consists of all vectors z with h components equal to each of the
integers from 1 to k− 1 (up to relabeling) and h+ r components
equal to k (again, up to relabeling). In this way, Zk indexes all
possible histogram arrangements of network nodes into k− 1 com-
munities of equal size h, plus an additional community of size h+ r.
Many ways of estimating z from a single observed adjacency

matrix A have been explored in the literature. In essence, nodes
that exhibit similar connectivity patterns are likely to be grouped
together (an idea that can be exploited directly if multiple
observations of the same network are available; see ref. 19). We
can formalize this notion through the method of maximum
likelihood, by estimating

ẑ= argmax
z∈Zk

X
i<j

�
Aij log Azizj +

�
1−Aij

�
log

�
1−Azizj

��
; [4]

where for all 1≤ a; b≤ k we define the histogram bin heights

Aab =

P
i<j AijI

�
ẑi = a

�
I
�
ẑj = b

�
P

i<jI
�
ẑi = a

�
I
�
ẑj = b

� : [5]

Each bin height Aab is the proportion of successes (edges present)
in the histogram bin corresponding to a block of Bernoulli trials, with
the grouping of nodes into communities determined by the objective
function in Eq. 4. Because A is symmetric, we have Aab =Aba.
Combining Eqs. 3 and 5, we obtain our network histogram:

f̂ ðx; y; hÞ= ρ̂+nAminðdnx=he;kÞminðdny=he;kÞ; 0< x; y< 1; [6]

with ρ̂+n the generalized inverse of ρ̂n.

Universality of Blockmodel Approximation
Blockmodel Approximations of Unlabeled Graphs. To understand the
performance of blockmodel approximation we must compare f̂ to f
in a way that is invariant to all symmetric rearrangements of the axes
of f. We will base our comparison on the graph-theoretic notion of
cut distance, which in mathematical terminology defines a compact
metric space on graphons (17). Just as our notion of unlabeled
graphs treats any two adjacency matrices as the same if one can be
obtained by symmetrically permuting the rows and columns of the
other, we will compare two graphons via an invertible, symmetric
rearrangement of the x and y axes that relates one graphon to the
other. We call M the set of all such rearrangements—formally, it is
the set of all measure-preserving bijections of the form ½0; 1�→ ½0; 1�.
In ref. 16 we formulated convergence rates at which the re-

sulting error between f̂ and f shrinks to zero as n→∞ under the
assumptions above. Here we consider mean integrated square
error (MISE), typically used in standard histogram theory (see,
e.g., ref. 20) and take its greatest lower bound over all possible
rearrangements σ ∈M:

MISE
�
f̂
�
=E inf

σ∈M

ZZ
ð0;1Þ2

���f ðx; yÞ− f̂ ðσðxÞ; σðyÞ; hÞ
���2dx  dy: [7]

This definition factors out the unknown ordering of the data A
induced by fξ1; . . . ; ξng in the model of Eq. 1, accounting for the
fact that A may represent an unlabeled graph. The appearance
of σ may at first seem counterintuitive, but its introduction is
necessary once we use Eq. 1 to model A. In contrast to the op-
timization of Eq. 7 over all σ ∈M, which is purely conceptual,
the vector ẑ results from the algorithmic optimization of Eq. 4

Fig. 1. Three adjacency matrix representations of the political weblog data
of ref. 18, each showing all 1,224 weblogs with at least one link to another
weblog in the dataset (links denoted by blue dots). (Left) The first 586 weblogs
are categorized by ref. 18 as liberal and the remaining 638 as conservative;
note the sparsity of cross-linkages. (Center) The same data, ordered by de-
creasing number of links. (Right) How a random labeling obscures structure.
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given an observed adjacency matrix A and determines which
entries of A are averaged to estimate f ðx; yÞ.
Using a single bandwidth h to form f̂ ðx; y; hÞ in Eq. 7 repre-

sents a conceptual paradigm shift away from the standard use of
the stochastic blockmodel. Instead of representing community
structure, a blockmodel can be used as a universal mechanism to
represent an arbitrary unlabeled network. In practice, of course,
we may well have information that implies certain labelings or
orderings of the network nodes. The assumption of exchange-
ability models our ignorance of this information as a baseline,
just as we may choose to cluster a Euclidean dataset without
taking into account any accompanying labels. Thus, we require
our error metric to respect this ignorance, even if we later choose
to interpret a fitted histogram in light of node labels (as one
might with Euclidean data clusters, and as we shall do below).
The goal in the setting of exchangeable networks is therefore

no longer to discover latent community structure, but rather
simply to group together nodes whose patterns of interactions
are similar. Thus, the interpretation of the fitted groups has
altered. Instead of uncovering true underlying communities that
might have given rise to the data, our blocks now approximate
the generative process, up to a resolution chosen by the user—
namely the bandwidth, h. This can be related to previous un-
derstanding of the error behavior when the data are generated
by a blockmodel, both in the regimes of ρn corresponding to
growing degrees (11) as well as even sparser ones (21).

The Oracle Network Labeling. We next show how the ideal or or-
acle labeling information, were it to be available, would yield the
optimal bandwidth parameter h for any given network histogram.
This oracle information arises from the latent random variables
fξ1; . . . ; ξng present in the generative model of Eq. 1. In this set-
ting, instead of fitting blocks of varying sizes to the network, to be
interpreted as community structure, we rely on the fact that the
simplest type of blockmodel will suffice, with only a single tuning
parameter h. The existence of a smooth limiting object—namely the
graphon f ðx; yÞ—implies that a single community size or bandwidth
will provide an adequate summary of the entire network.
To choose h, we therefore use the notion of a network oracle.

As in standard statistical settings (20), the oracle provides
information that is not ordinarily available, thereby serving to
bound the performance of any data-driven estimation procedure.
The oracle estimator for each histogram bin height takes the
same form as Eq. 5 but uses a unique (almost surely) labeling ~z
calculated from the latent random vector ξ. This labeling is given
by ~zi =minflðiÞ−1=h; kmg, where ðiÞ−1 is the rank, from smallest to
largest, of the ith element of ξ. Thus, ~z orders elements of the
unobserved vector ξ, sorts the indices of the data according to
this ordering, and then groups these indices into sets of size h,
with one additional set of size h+ r.
With the oracle labeling ~z, we may define the graphon oracle

estimator from the block averages A
p

ab according to

A
p

ab =

P
i<jAijIð~zi = aÞI�~zj = b

�P
i<jIð~zi = aÞI�~zj = b

� ;

f̂
pðx; y; hÞ= ρ−1n A

p

minðdnx=he;kÞminðdny=he;kÞ: [8]

Comparing Eq. 8 with its counterpart in Eq. 6, we see that the
oracle serves to replace the estimators of Eqs. 3 and 4 with their
ideal quantities. Thus, the oracle estimator is based on a priori
knowledge of the sparsity parameter ρn and the latent vector ξ.
In this sense, it shows the best performance that can be achieved
for a fixed bandwidth h, by providing knowledge of the scaling
and ordering necessary for the estimator to become a linear
function of the data.

Determining the Histogram Bandwidth
Oracle Mean-Square Error Bound.By making use of the network oracle
we can determine what performance limits are possible and in
turn derive a rule of thumb for selecting the bandwidth h. We
assume here that f is differentiable, noting that this result extends
to Hölder-continuous functions, as shown in SI Appendix.

Theorem 1 (Network Histogram Oracle Bandwidth Selection). Assume
that h grows more slowly than n, and that the graphon f ðx; yÞ is
differentiable, with a gradient magnitude bounded by M. Then as n
grows the oracle mean integrated square error satisfies the bound

MISE
�
f̂
p�

≤M2

(
2
�
h
n

�2

+
1
n
+

1
M2

�
1

h2ρn

�)
f1+ oð1Þg:

The right-hand side of this expression is minimized at h= hp:

hp =
�
2M2ρn

�−1=4
·

ffiffiffi
n

p
; [9]

whence MISEðf̂ pÞ evaluated at hp decays at the rate 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�n

2

�
ρn

s
:

MISE


f̂
p
����

h=h p

≤M2

"
2
M

��
n
2

�
ρn

−1=2

+
1
n

#
f1+ oð1Þg: [10]

Proof: We evaluate Eq. 7 with f̂ set equal to f̂
p
as defined in Eq. 8,

and with σðxÞ set equal to x to obtain an upper bound on the error
criterion MISE



f̂
p
�
. This yields the bias–variance decomposition

MISE
�
f̂
p�

≤E

ZZ
ð0;1Þ2

���f ðx; yÞ− f̂
p ðx; y; hÞ

���2dx  dy
=

Xk
a;b=1

ZZ
ωab

n���f ðx; yÞ− ρ−1n E A
p

ab

���2 + ρ−2n VarA
p

ab

o
dx  dy;

with ωab the domain of integration corresponding to the block
Aab. Now let f ab = jωabj−1

RR
ωab

f ðx; yÞdx  dy be the average value of

f over ωab, and f 2ab the average value of f 2. Using the assumed
smoothness of f in a manner quantified by Proposition 1 in SI
Appendix, we substitute for VarA

p

ab and E  A
p

ab to obtain

MISE
�
f̂
p�

≤
Xk
a;b=1

ZZ
ωab

"����f ðx; yÞ− f ab
�
+
n
f ab − ρ−1n E A

p

ab

o���2

+
f ab − ρn f 2ab

ρnh2ab
+
Mf1+ oð1Þg
ρnh2abð2nÞ1=2

+
M2

2n

#
dx  dy

≤
Xk
a;b=1

"ZZ
ωab

��f ðx; yÞ− f ab
��2dx  dy+�

M2f1+ oð1Þg
2n

+
f ab − ρnf 2ab

ρnh2ab
+
Mf1+ oð1Þg

ð2nÞ1=2
1

ρnh2ab
+
M2

2n

9=;h
2
ab;r

n2

#
;

with h2ab =
P

i<jIð~zi = aÞIð~zj = bÞ and h2ab;r = fh+ r Iða= kÞgfh+ r
Iðb= kÞg. Applying Lemma 1 in SI Appendix to each

RR
ωab

��f ðx; yÞ−
f ab

��2dx  dy,Xk
a;b=1

ZZ
ωab

��f ðx; yÞ− f ab
��2dx  dy≤M2 · 2

�
h
n

�2�
1+O

�
h
n

�
;

with theOðh=nÞ term due to the grouping of size h+ r. Using Eq. 2,
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Xk
a;b=1

f ab
ρnh2ab

h2ab;r
n2

=
Xk
a;b=1

1
ρnh2ab

ZZ
ωab

f ðx; yÞdx  dy= 1
ρnh2

f1+ oð1Þg:

Combining these simplifications yields the stated expression.
This theorem informs the selection of a network histogram

bandwidth h. It quantifies how the oracle integrated mean square
error depends on the smoothness of the graphon f, relative to the
size and sparsity of the observed adjacency matrix A. The theorem
decomposes this error into three contributions: smoothing bias,
which scales as M2ðh=nÞ2; resolution bias, which scales as M2=n;
and variance contributions, which scale as the inverse of the effec-
tive degrees of freedom h2ρn of each bin. As shown in ref. 16,
ensuring that h2ρn grows faster than log3 n will enable consistent
estimation of the graphon when z is estimated according to Eq. 4;
this accounts for the additional variance involved in estimating z
in the nonoracle setting.
Theorem 1 subsequently enables us to choose a bandwidth h that

respects the global properties of the network. If we were to know ρn
and M, then the theorem provides directly for an oracle choice of
bandwidthhp according toEq. 9. From this expressionwe see that for
the case of a dense network, with ρn ∝ 1, the oracle choice of band-
width hp scales as

ffiffiffi
n

p
.More generally, we observe that as the sparsity

of the network increases hp must also increase, whereas as the gra-
dient magnitude of the graphon increases hp must decrease. If f is
not differentiable but is still Hölder-continuous, then the
Hölder exponent will appear in the theorem expressions,
leading to a smaller bandwidth for a given n and ρn.
Finally, Theorem 1 provides for an upper bound on the oracle

mean integrated square errorwhen the network histogrambandwidth
is set equal to hp. This bound reveals the best possible estimation
performance we might achieve for given values of n, ρn, andM.

Automatic Bandwidth Selection. Theorem 1 is important for our
theoretical understanding of the bandwidth selection problem,
because it shows the tradeoffs between sparsity, smoothness,
and sample size. It suggests that h should grow at a rate pro-
portional to ρ−1=4n

ffiffiffi
n

p
, with ρn estimated via Eq. 3, and with a

constant of proportionality depending on the squared magnitude
M2 of the graphon gradient.
To estimate M2 from A, we will form a simple one-dimensional

approximation of the graphon f using the vector d of sorted
degrees. This yields a nonparametric estimator for what is re-
ferred to as the canonical version of

R 1
0 f ðx; yÞdy (3). When-

ever the smoothness of this canonical marginal is equivalent
to that of f, then this procedure yields a suitable estimator cM2

according to the steps below. In some instances, however, the
marginal may be smoother than f; for example, let BðxÞ denote
the distribution function of a Betaða; bÞ random variable, and
suppose f ðx; yÞ∝B−1ðxÞB−1ðyÞ+B−1ð1− xÞB−1ð1− yÞ. Then the
marginal is constant if a = b, but the corresponding M2 (and
indeed the Hölder regularity of f) will depend on a and b.
To proceed, assume that the rows and column of A have

been reordered such that di =
P

j≠iAij is increasing with i.
Enumerating the sampled elements f ðξi; ξjÞ of the graphon in
a n× n matrix F under this same reordering, we obtain in
analogy to Eq. 6 a rank-one estimate of the sampled graphon
as F̂ ∝ ρ̂+n dd

T . Minimizing the Frobenius norm
��F̂ − ρ̂+nA

�� then
leads to F̂ = ½fðdTdÞ+g2ρ̂+n dTAd�ddT .
We then use F̂ to estimate the bandwidth h as follows:

i) Compute the vector d of degrees of A; sort its entries.
ii) Estimate the slope of the ordered d over indices bn=2c±

bc ffiffiffi
n

p c for some choice of c; normally c= 4 is appropriate.
Treating the ordered entries of d near bn=2c as a set of ob-
servations, fit a line with slope m and intercept b using the
system of equations

dbn=2c+j = jm+ b; j= b−c ffiffiffi
n

p c; − bc ffiffiffi
n

p
+ 1c; . . . ; bc ffiffiffi

n
p c:

By the method of least squares, this yields estimates m̂ and b̂.

iii) Define the vector-valued function of first differences

Δf ðx; yÞ=
�
f ðx; yÞ− f

�
x+

1
n+ 1

; y
�

f ðx; yÞ− f
�
x; y+

1
n+ 1

��T

;

leading to the following gradient estimate:

cΔf = �n�
dTd

�+o2
ρ̂+n d

TAd
��

m̂b̂ m̂b̂
�T :

Via
���cΔf���2, we estimate the average squared magnitude of Δf :

cM2 = 2n2
n�

dTd
�+o4�

ρ̂+n
�2�

dTAd
�2
m̂2b̂

2f1+ oð1Þg: [11]

iv) Substituting cM2 into Eq. 9, we obtain the bandwidth estimate

bhp =

2cM2ρ̂n

�−1
4 ffiffiffi

n
p

=
�
2
n�

dTd
�+o2

dTAd · m̂b̂
�−1

2

ρ̂
1
4
n: [12]

Equipped with this rule of thumb for selecting the bandwidth h,
we can now calculate the network histogram f̂ ðx; y; bhpÞ.
Data Analysis Using Network Histograms
Data analysis software to calculate the network histogram is
available at github.com/p-wolfe/network-histogram-code.

Political Weblog Data. To demonstrate the utility of the network
histogram, we first analyze a well-studied dataset of political
weblogs described in ref. 18 and illustrated in Fig. 1. This dataset
was collected to quantify the degree of interaction between lib-
eral and conservative blogs around the time of the 2004 US
presidential election and consists of a snapshot of nearly 1,500
weblogs from February 8, 2005. An edge is considered to be
present between two weblogs whenever at least one of the
weblogs’ front page links to the other.
The relative sparsity of conservative–liberal weblog linkages in

this dataset is clearly apparent from Fig. 1. Thus, it is often used to
illustrate the notion of network community structure (see, e.g., ref.
7).At the same time, Fig. 1 alsomakes clear that the dataset exhibits
additional heterogeneity not fully capturedby a simpledivisionof its
weblogs into two communities, and indeed recent work also pro-
vides evidence of its additional block structure (21). Thus, the net-
work histogram provides a natural tool to explore the data.
Fig. 2 shows a fitted histogram f̂ ðx; yÞ obtained from the

n= 1;224 weblogs with at least one link to another weblog in the
dataset. From Eq. 11 we obtained an estimate cM2 in the range
1.1–1.25 for c in the range 3–5, and so the estimated oracle error
bound of Eq. 10 evaluates to ∼1.8 × 10−2. The bandwidth bhp was
then determined using Eq. 12 and was found to evaluate to 72–74
for c in the range 3–5. We rounded this to h= 72 to obtain the
k= 17 equal-sized histogram bins that comprise Figs. 2 and 3. The
marginal edge probability estimator ρ̂=

P
i<jAij=

� n
2

�
evaluates to

16,715/748,476 = 2.2332 × 10−2, implying that each off-diagonal
histogram bin has ∼116 effective degrees of freedom.
Because exact maximization of the likelihood of Eq. 4 is

known to be computationally infeasible, we obtained the fit shown
in Fig. 2 by implementing a simple stochastic search algorithm that
swaps pairs and triples of node group memberships selected at
random until a local optimum is reached in the likelihood of Eq. 4.
The log-likelihood of the data under the fitted model, normalized
by the estimated effective degrees of freedom

� n
2

�
ρ̂, is −2.8728. To

explore as full a range as possible of local likelihood optima, we
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started from several hundred random configurations, inspected the
largest 5% of returned local maxima, and then repeatedly reopti-
mized after randomly swapping up to 100 group membership pairs
in the best returned solution.
The histogram bin index, relative to the x and y axes of Fig. 2,

allows comparison with the leftmost panel of Fig. 1. Bin indices are
arranged first by majority grouping—liberal or conservative—and
then by the strength of each fitted group’s cross-party con-
nections. Each node’s political affiliation can be viewed as an
observed binary covariate that partially explains the network
structure. Below we will consider the more general setting of
multiple categorical covariates.
As summarized in Figs. 2 and 3, the coarsest feature of this

network is its polarization into sets of dense linkages within the
two political blocs of liberal and conservative ideologies. We also
observe from Fig. 2 that nearly 40% of the histogram bins are
empty, in keeping with the sparsity pattern of the data observed
in the leftmost panel of Fig. 1. The most densely connected
groups of weblogs in both parties show considerable cross-party
linkage structure. This is apparent both from the center region of
Fig. 2, as well as the groupings of Fig. 3, in which the most in-
fluential weblogs identified by ref. 18 are seen to be placed in the
center of the histogram. Such features are examples of network
microstructure, corresponding to variation at scales smaller than
the large fractions of a network that would be captured by a
blockmodel with a fixed number of groups.

Student Friendship Data. Network datasets often have additional
covariates measured at nodes or edges. To illustrate how to use such
information to interpret network histograms, we analyze a student
friendship network from the US National Longitudinal Study of
AdolescentHealth (AddHealth) (22). As part of this study, students
were asked to identify their sex, race, and school year (grades 7–12)
and then to nominate up to five friends of each sex. We consider an
undirected version of the resulting network, with a link present
whenever either of a pair of students has nominated the other.
We chose to analyze School 44 from the Add Health study, a

relative large and racially diverse example among the over 80 schools
for which data were collected (23), and one that has been previously
analyzed in ref. 24 using exponential random graph models. It
comprises a main high school with grades 9–12 and a sister “feeder”
school with grades 7 and 8. We removed 21 zero-degree nodes as
well as five nodes corresponding to students for which any two of sex,
grade, or race covariates were missing, yielding n= 1; 122 nodes.
To fit the histogram shown in Fig. 4, we used the same band-

width selection procedure and optimization algorithm as above.
This yielded a bandwidth bhp in the range 69–70 for c in the range
3–5, which we rounded down to h= 66 to obtain k= 17 equal-
sized histogram bins. This is sparser than the political weblog
network considered above, but at the same time cM2 evaluates to
3.2–3.5, indicating relatively less smoothness. The estimated oracle

error bound of Eq. 10 is then ∼5.6 × 10−2, and our fit yielded a
normalized data log-likelihood of −4.1714. For this example, the

marginal edge probability estimator ρ̂=
P

i< jAij=

 n
2

�
evaluates to

5,048/628,881 = 8.0270 × 10−3, implying that each off-diagonal
histogram bin has ∼35 effective degrees of freedom.
To explore the fitted groups, we ordered them post hoc via the

mean covariate value per bin for race (coded 0–5), grade (coded
6–12), and number of friends nominated (coded 0–10). The
resulting histograms are shown in the top row of Fig. 4, and the
bottom row shows the number of covariate categories comprising
each bin. In the leftmost column of Fig. 4 we observe that the
connectivity structure associated with race divides most of the
white and black students into two separate groupings, with
a decreased tendency to link across these categories. In the
middle column we observe a similar effect for grade, as well as
an even stronger effect between the two separate schools:
Students in grades 7–8 have relatively few interactions with
students in grades 9–12. There is evidence for more mixing
within the latter school, with the exception of grade 12, whereas
in the former school the division between grades 7 and 8 is
strong. Finally, in the rightmost column of Fig. 4 we see
a strong effect associated with the number of friends nomi-
nated, which serves as a rough proxy for the degree of each
network node. Diagonal bins in this histogram are ordered al-
most exclusively from smallest to largest, and we see none of
the assortativity associated with race or grade that was so ap-
parent in the previous histogram orderings.
From this example we conclude that the network histogram

can provide not only an effective summary of network interactions,
but one which is also interpretable in the context of additional
covariate information. This type of aggregate summary allows
a fine-grained but concise view of adolescent student friendship
networks, and suggests that aggregate statistics on race and grade
within a particular school may not be sufficient to give a full pic-
ture of the reported social interactions among its students.

Discussion
We argue that the blockmodel is universal as a tool for repre-
senting interactions in an unlabeled network. As we use more
blocks in our representation, we improve our approximation of
the underlying data-generating mechanism, albeit at the cost of
increasing complexity. The results in this paper give us insight
into how to control the tradeoff between complexity and pre-
cision, leading to a flexible nonparametric summary of a network
akin to an ordinary histogram.
There is a clear philosophical distinction between the network

histogram and the stochastic blockmodel. The network histogram
yields a nonparametric summary of link densities across a network.
In contrast, the stochastic blockmodel was originally conceived as
a generative statistical model, meaning that it is typically analyzed in
settings where it is presumed to be correctly specified as the data-
generating mechanism. We have instead shown how it can be useful
in the case when the blockmodel serves simply to approximate the
generating mechanism of the network—a much milder assumption.

Fig. 2. Network histogram f̂ðx,yÞ12 fitted to political weblog data. The square
root stabilizes the variance of the bin heights and is solely for ease of visualization.

Fig. 3. Political affiliationofweblogswithineach fittedgroup,ordered relative to
Fig. 2.Affiliation counts are shown inwhite, outof72weblogspergroup.Nineteen
of the20most influential liberalweblogs identifiedby ref. 18areassigned togroup
8, and 17 of the top 20 conservative blogs are assigned to group 9.
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To make the network histogram into a useful practical tool, we
have derived a procedure for automatically selecting an analysis
bandwidth under the assumption of a smooth (Hölder-continuous)
graphon. If the graphon has finitely many discontinuities parallel to
its x and y axes, for example if it corresponds to an actual blockmodel,
then good estimation properties can still be achieved, in analogy to
ordinary histogram estimates (25). In such scenarios the rates at
which estimation errors decay are not yet established; indeed, ex-
ploring different graphon smoothness classes, and the networks they
give rise to, remains an important avenue of future investigation.
As a final point, networks are rarely explored in the absence of

other data.Anetwork histogram is definedonly up to permutationof
its bins, and so to aid in its interpretation wemay use other observed
variables, labels, or covariates to inform our choice of bin ordering.
As our second data analysis example has shown in the context of
student friendship networks, multiple representations can be useful

in different ways, and more than one such visual representation can
yield insight into the generating mechanism of the network. In this
way the universality of the blockmodel representation is a key piece
in the puzzle of general network understanding. Our results suggest
a fundamental rethinking of the interpretation of network commu-
nities, in light of the fact that many different community assignments
can all give an equally valid representation of the network.
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