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Abstract

We consider the problem of learning the structure of Ising models (pairwise binary Markov
random fields) from i.i.d. samples. While several methods have been proposed to accomplish this
task, their relative merits and limitations remain somewhat obscure. By analyzing a number of
concrete examples, we show that low-complexity algorithms often fail when the Markov random
field develops long-range correlations. More precisely, this phenomenon appears to be related to
the Ising model phase transition (although it does not coincide with it).

1 Introduction and main results

Given a graph G = (V = [p], E), and a positive parameter θ > 0 the ferromagnetic Ising model on
G is the pairwise Markov random field

µG,θ(x) =
1

ZG,θ

∏

(i,j)∈E
eθxixj (1)

over binary variables x = (x1, x2, . . . , xp), xi ∈ {+1,−1}. Apart from being one of the best studied
models in statistical mechanics [1, 2], the Ising model is a prototypical undirected graphical model.
Since the seminal work of Hopfield [3] and Hinton and Sejnowski [4], it has found application in
numerous areas of machine learning, computer vision, clustering and spatial statistics.

The obvious generalization of the distribution (1) to edge-dependent parameters θij , (i, j) ∈ E is
of central interest in such applications, and will be introduced in Section 2.2.2. Let us stress that we
follow the statistical mechanics convention of calling (1) an Ising model even if the graph G is not a
grid.

In this paper we study the following structural learning problem:

Given n i.i.d. samples x(1), x(2),. . . , x(n) ∈ {+1,−1}p with distribution µG,θ( · ), recon-
struct the graph G.

For the sake of simplicity, we assume in most of the paper that the parameter θ is known, and that
G has no double edges (it is a ‘simple’ graph). We focus therefore on the key challenge of learning
the graph structure associated to the measure µG,θ( · ). This structure is particularly important
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for extracting the qualitative features of the model, since it encodes its conditional independence
properties.

It follows from the general theory of exponential families that, for any θ ∈ (0,∞), the model (1)
is identifiable [5]. In particular, the structural learning problem is solvable with unbounded sample
complexity and computational resources. The question we address is: for which classes of graphs
and values of the parameter θ is the problem solvable under realistic complexity constraints? More
precisely, given an algorithm Alg, a graph G, a value θ of the model parameter, and a small δ > 0,
the sample complexity is defined as

nAlg(G, θ) ≡ inf
{
n ∈ N : Pn,G,θ{Alg(x(1), . . . , x(n)) = G} ≥ 1− δ

}
, (2)

where Pn,G,θ denotes probability with respect to n i.i.d. samples with distribution µG,θ. Further, we
let χAlg(G, θ) denote the number of operations of the algorithm Alg, when run on nAlg(G, θ) samples.
The general problem is therefore to characterize the functions nAlg(G, θ) and χAlg(G, θ), and to design
algorithms that minimize the complexity.

Let us emphasize that these are not the only possible definitions of sample and computa-
tional complexity. Alternative definitions are obtained by requiring that the reconstructed structure
Alg(x(1), . . . , x(n)) is only partially correct. However, for the algorithms considered in this paper,
such definitions should not result in qualitatively different behavior1

General upper and lower bounds on the sample complexity nAlg(G, θ) were proved by Santhanam
and Wainwright [6, 7], without however taking into account computational complexity. On the other
end of the spectrum, several low complexity algorithms have been developed in the last few years (see
Section 1.3 for a brief overview). However the resulting sample complexity bounds only hold under
specific assumptions on the underlying model (i.e. on the pair (G, θ)). A general understanding of
the trade-offs between sample complexity and computational complexity is largely lacking.

This paper is devoted to the study of the tradeoff between sample complexity and computational
complexity for some specific structural learning algorithms, when applied to the Ising model. An
important challenge consists in the fact that the model (1) induces subtle correlations between the
binary variables (x1, . . . , xp). The objective of a structural learning algorithm is to disentangle pairs
xi, xj that are conditionally independent given the other variables (and hence are not connected by
an edge) from those that are instead conditionally dependent (and hence connected by an edge in
G). This becomes particularly difficult when θ becomes large and hence pairs xi, xj that are not
connected by an edge in G become strongly dependent. The next section sets the stage for our work
by discussing a simple and concrete illustration of this phenomenon.

1.1 A toy example

As a toy illustration2 of the challenges of structural learning, we will study the two families of graphs
in Figure 1. The two families will be denoted by {Gp}p≥3 and {G′

p}p≥3 and are indexed by the
number of vertices p.

Graph Gp has p vertices and 2(p−2) edges. Two of the vertices (vertex 1 and vertex 2) have degree
(p− 2), and (p− 2) have degree 2. Graph G′

p has also p vertices, but only one edge between vertices
1 and 2. In other words, graph G′

p corresponds to variables x1 and x2 interacting ‘directly’ (and
hence not conditionally independent), while graph Gp describes a situation in which the two variables

1Indeed the algorithms considered in this paper reconstruct G by separately estimating the neighborhood of each
node i. This implies that any significant probability of error results in a substantially different graph.

2A similar example was considered in [8].
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Figure 1: Two families of graphs Gp and G′
p whose distributions µGp,θ and µG′

p,θ
′ merge as p gets

large.

interact ‘indirectly’ through numerous weak intermediaries (but still are conditionally independent
since they are not connected). Fix p, and assume that one of Gp or G′

p is chosen randomly and i.i.d.

samples x(1),. . . ,x(n) from the corresponding Ising distribution are given to us.
Can we efficiently distinguish the two graphs, i.e. infer whther the samples were generated using

Gp or G′
p? As mentioned above, since the model is identifiable, this task can be achieved with

unbounded sample and computational complexity. Further, since model (1) is an exponential family,
the p × p matrix of empirical covariances (1/n)

∑n
ℓ=1 x

(ℓ)(x(ℓ))T provides a sufficient statistic for
inferring the graph structure.

In this specific example, we assume that different edge strengths are used in the two graphs: θ for
graph Gp and θ′ for graph G′

p (i.e. we have to distinguish between µGp,θ and µG′
p,θ

′). We claim that,
by properly choosing the parameters θ and θ′, we can ensure that the covariances approximately
match |EGp,θ{xixj} − EG′

p,θ
′{xixj}| = O(1/

√
p). Indeed the same remains true for all marginals

involving a bounded number of variables. Namely, for all subsets of vertices U ⊆ [p] of bounded size
|µGp,θ(xU )− µG′

p,θ
′(xU )| = O(1/

√
p). Low-complexity algorithms typically estimate each edge using

only a small subset low–dimensional marginal. Hence, they are bound to fail unless the number of
samples n diverges with the graph size p. On the other hand, a naive information-theoretic lower
bound (in the spirit of [6, 7]) only yields nAlg(G, θ) = Ω(1). This sample complexity is achievable by
using global statistics to distinguish the two graphs.

In other words, even for this simple example, a dichotomy emerges: either a number of samples
has to grow with the number of parameters, or algorithms have to exploit a large number of marginals
of µG,θ.

To confirm our claim, we need to compute the covariance of the Ising measures distributions
µGp,θ, µG′

p,θ
′ . We easily obtain, for the latter graph

EG′
p,θ

′{x1x2} = tanh θ′ , (3)

EG′
p,θ

′{xixj} = 0 . (i, j) 6= (1, 2) . (4)

The calculation is somewhat more intricate for graph Gp, so we defer complete formulae to Appendix
A and report here only the result for p ≫ 1, θ ≪ 1:

EGp,θ{x1x2} = tanh
{
pθ2 +O(pθ4, θ)

}
, (5)

EGp,θ{xixj} = O(θ, pθ3) , i ∈ {1, 2}, j ∈ {3, . . . , p} , (6)

EGp,θ{xixj} = O(θ2, pθ4) , i, j ∈ {3, . . . , p} . (7)

In other words, variables x1 and x2 are strongly correlated (although not connected), while all the
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other variables are weakly correlated. By letting θ =
√

θ′/p this covariance structure matches
Eqs. (3), (4) up to corrections of order 1/

√
p.

Notice that the ambiguity between the two modelsGp and G′
p arises because several weak, indirect

paths between x1 and x2 in graph Gp, add up to the same effect as a strong direct connection. This
toy example is hence suggestive of the general phenomenon that strong long-range correlations can
‘fake’ a direct connection. However, the example is not completely convincing for several reasons:

1. Most algorithms of interest estimate each edge on the basis of a large number of low-dimensional
marginals (for instance all pairwise correlations).

2. Reconstruction guarantees have been proved for graphs with bounded degree [9, 10, 6, 7, 11],
while here we are letting the maximum degree be as large as the system size. Notice however
that a the graph considered here are only sparse ‘on average’.

3. It may appear that the difficulty in distinguishing graph Gp from G′
p is related to the fact that

in the former we take θ = O(1/
√
p). This is however the natural scaling when the degree of

a vertex is large, in order to obtain a non-trivial distribution. If the graph Gp had θ bounded
away from 0, this would result in a distribution µGp,θ(x) concentrated on the two antipodal
configurations: all-(+1) and all-(−1). Structural learning would be equally difficult in this
case.

Despite these points, this model provides already a useful counter-example. In Appendix D.3 we will
show why, even for bounded p (and hence θ bounded away from 0) the model Gp in Figure 1 ‘fools’
regularized logistic regression algorithm of Ravikumar, Wainwright and Lafferty [11]. Regularized
logistic regression reconstructs G′

p instead of Gp.

1.2 Outline of the paper

The rest of this paper is devoted to bounding the sample complexity nAlg and computational com-
plexity χAlg for a number of graph models, as a function of θ. Results of this analysis are presented
in Section 2 for three algorithms: a simple thresholding algorithm, the conditional independence test
method of [10] and the penalized pseudo-likelihood method of [11]. In Section 3, we validate our
analysis through numerical simulations. Finally, Section 4 contains the proofs with some technical
details deferred to the appendices.

This analysis unveils a general pattern: when the model (1) develops strong correlations, several
low-complexity algorithms fail, or require a large number of samples. What does ‘strong correlations’
mean? As the toy example in the previous section demonstrates, correlations arise from a trade-off
between the degree (which we will characterize here via the maximum degree ∆), and the interaction
strength θ. It can be ascribed to a few strong connections (large θ) or to a large number of weak
connections (large ∆). Is there any meaningful way to compare and combine these quantities (θ and
∆)? An answer is suggested by the theory of Gibbs measures which predicts a dramatic change of
behavior when θ crosses the so-called ‘uniqueness threshold’ θuniq(∆) = atanh(1/(∆ − 1)) [12]. For
θ < θuniq(∆) Gibbs sampling mixes rapidly and far apart variables in G are roughly independent
[13]. Vice versa, for any θ > θuniq(∆) there exist graph families on which Gibbs sampling is slow,
and far apart variables are strongly dependent [14]. While polynomial sampling algorithms exists for
all θ > 0 [15], for θ < 0, in the regime |θ| > θuniq(∆) sampling is arguably #-P hard [16]. Related
to the uniqueness threshold is also the phase transition threshold, which is graph dependent, with
typically θcrit ≤ const./∆.

We will see that this is indeed a relevant way of comparing interaction strength and degree,
even for structural learning. Al the algorithms we analyzed (mentioned above) provably fail for
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θ ≫ const./∆, for a number of ‘natural’ graph families. Our work raises several fascinating questions,
the most important being the construction of structural learning algorithm with provable performance
guarantees in the strongly dependent regime θcrit ≫ const./∆. The question as to whether such an
algorithm exists is left open by the present paper (but see next section for an overview of earlier
work).

Let us finally emphasize that we do not think that any of the specific families of graphs studied
in the present paper is intrinsically ‘hard’ to learn. For instance, we show below that the regularized
logistic regression method of [11] fails on random regular graphs, while it is easy to learn such graphs
using the simple thresholding algorithm of Section 2.1. The specific families where indeed chosen
mostly because they are analytically tractable.

1.3 Further related work

Traditional algorithms for learning Ising models were developed in the context of Boltzmann machines
[4, 17, 18]. These algorithms try to solve the maximum likelihood problem by gradient ascent.
Estimating the gradient of the log-likelihood function requires to compute expectations with respect
to the Ising distribution. In these works, this was done using the Markov Chain Monte Carlo
(MCMC) method, and more specifically Gibbs sampling.

We shall not consider this approach in our study for two type of reasons. First of all, it does
not output a ‘structure’ (i.e. a sparse subset of the

(p
2

)
potential edges): because of approximation

errors, it yields non-zero values for all the edges. This problem can in principle be overcome by using
suitably regularized objective functions, but such a modified algorithm was never studied.

Second, the need to compute expectation values with respect to the Ising distribution, and the
use of MCMC to achieve this goal, poses some fundamental limitations. As mentioned above, the
Markov chain commonly used by these methods is simple Gibbs sampling. This is known to have
mixing time that grows exponentially in the number of variables for θ > θuniq(∆), and hence does not
yield good estimates of the expectation values in practice. While polynomial sampling schemes exist
for models with θ > 0 [15], they do not apply to θ < 0 or to general models with edge-dependent
parameters θij . Already in the case θ < 0, estimating expectation values of the Ising distribution is
likely to be #-P hard [16].

Abbeel, Koller and Ng [9] first developed a method with computational complexity provably poly-
nomial in the number of variables, for bounded maximum degree, and logarithmic sample complexity.
Their approach is based on ingenious use of the Hammersley-Clifford representation of Markov Ran-
dom Fields. Unfortunately, the computational complexity of this approach is of order p∆+2 which
becomes unpractical for reasonable values of the degree and network size (and superpolynomial for
∆ diverging with p). The algorithm by Bresler, Mossel and Sly [10] studied in Section 2.2.1 presents
similar limitations, that the authors overcome (in the small θ regime) by exploiting the correlation
decay phenomenon.

An alternative point of view consists in using standard regression methods. In the context of
Ising models, Ravikumar, Wainwright and Lafferty [11] showed that the neighborhood of a vertex
i can be efficiently reconstructed by solving an appropriate regularized regression problem. More
precisely, the values of variable xi are regressed against the value of all the other variables. The
logistic regression log-likelihood is regularized by adding an ℓ1-penalty that promotes the selection of
sparse graph structures. We will analyze this method in Section 2.2.2. The approach of [11] extends
to non-Gaussian models earlier work by Meinshausen and Bühlmann [19]. Let us notice in passing
that the case of Gaussian graphical models is substantially easier since the log-likelihood of a given
model can be evaluated easily in this case [20].

A short version of this paper was presented at the 2009 Neural Information Processing Systems
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symposium. Since then, at least two groups explored the challenges put forward in our work. Anand-
kumar, Tan and Willsky [21] prove that, for sequences of random graphs which are sparse on average
(i.e. with bounded average degree), structural learning is possible throughout the correlation decay
regime θ < θcrit. This result generalizes our analysis of random regular graphs (see next section),
to the more challenging case of graphs with random degrees. Cocco and Monasson [22] proposed
and ‘adaptive cluster’ heuristics and demonstrated empirically good performances for specific graph
families, also for θ > θcrit. A mathematical analysis of their approach is lacking.

2 Results

2.1 The simple thresholding algorithm

In order to illustrate the interplay between graph structure, sample complexity and interaction
strength θ, it is instructive to consider a simple example. The thresholding algorithm reconstructs
G by thresholding the empirical correlations

Ĉij ≡
1

n

n∑

ℓ=1

x
(ℓ)
i x

(ℓ)
j , (8)

for i, j ∈ V .

Thresholding( samples {x(ℓ)}, threshold τ )

1: Compute the empirical correlations {Ĉij}(i,j)∈V×V ;

2: For each (i, j) ∈ V × V

3: If Ĉij ≥ τ , set (i, j) ∈ E;

We will denote this algorithm by Thr(τ). Notice that its complexity is dominated by the com-
putation of the empirical correlations, i.e. χThr(τ) = O(p2n). The sample complexity nThr(τ) can be
bounded for specific classes of graphs as follows (for proofs see Section 4.2).

Theorem 2.1. If G is a tree, and τ(θ) = (tanh θ + tanh2 θ)/2, then

nThr(τ)(G, θ) ≤ 32

(tanh θ − tanh2 θ)2
log

2p

δ
. (9)

Theorem 2.2. If G has maximum degree ∆ > 1 and if θ < atanh(1/(2∆)) then there exists τ = τ(θ)
such that

nThr(τ)(G, θ) ≤ 32

(tanh θ − 1
2∆)2

log
2p

δ
. (10)

Further, the choice τ(θ) = (tanh θ + (1/2∆))/2 achieves this bound.

Theorem 2.3. There exists a numerical constant K such that the following is true. If ∆ > 3 and
θ > K/∆, there are graphs of bounded degree ∆ such that for any τ , nThr(τ) = ∞, i.e. the thresholding
algorithm always fails with high probability.

These results confirm the idea that the failure of low-complexity algorithms is related to long-
range correlations in the underlying graphical model. If the graph G is a tree, then correlations
between far apart variables xi, xj decay exponentially with the distance between vertices i, j. Hence
trees can be learnt from O(log p) samples irrespectively of their topology and maximum degree
(assuming θ 6= ∞). The same happens on bounded-degree graphs if θ ≤ const./∆. However, for
θ > const./∆, there exists families of bounded degree graphs with long-range correlations.
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2.2 More sophisticated algorithms

In this section we characterize χAlg(G, θ) and nAlg(G, θ) for more advanced algorithms. We again
obtain very distinct behaviors of these algorithms depending on the strength of correlations. We
focus on two type of algorithms and only include the proof of our most challenging result, Theorem
2.8 (for the proof see Section 4.3).

In the following we denote by ∂i the neighborhood of a node i ∈ G (i /∈ ∂i), and assume the
degree to be bounded: |∂i| ≤ ∆.

2.2.1 Local Independence Test

A recurring approach to structural learning consists in exploiting the conditional independence struc-
ture encoded by the graph [9, 10, 23, 24].

Let us consider, to be definite, the approach of [10], specializing it to the model (1). Fix a vertex
r, whose neighborhood we want to reconstruct, and consider the conditional distribution of xr given
its neighbors3: µG,θ(xr|x∂r). Any change of xi, i ∈ ∂r, produces a change in this distribution which
is bounded away from 0. Let U be a candidate neighborhood, and assume U ⊆ ∂r. Then changing
the value of xj, j ∈ U will produce a noticeable change in the marginal of Xr, even if we condition
on the remaining values in U and in any W , |W | ≤ ∆. On the other hand, if U * ∂r, then it is
possible to find W (with |W | ≤ ∆) and a node i ∈ U such that, changing its value after fixing all
other values in U ∪W will produce no noticeable change in the conditional marginal. (Just choose
i ∈ U\∂r and W = ∂r\U). This procedure allows us to distinguish subsets of ∂r from other sets of
vertices, thus motivating the following algorithm.

Local Independence Test( samples {x(ℓ)}, thresholds (ǫ, γ) )
1: Select a node r ∈ V ;
2: Set as its neighborhood the largest candidate neighbor U of

size at most ∆ for which the score function Score(U) > ǫ/2;
3: Repeat for all nodes r ∈ V ;

The score function Score( · ) depends on ({x(ℓ)},∆, γ) and is defined as follows,

min
W,j

max
xi,xW ,xU ,xj

|P̂n,G,θ{Xi = xi|XW = xW ,XU = xU}−

P̂n,G,θ{Xi = xi|XW = xW ,XU\j = xU\j ,Xj = xj}| . (11)

In the minimum, |W | ≤ ∆ and j ∈ U . In the maximum, the values must be such that

P̂n,G,θ{XW = xW ,XU = xU} > γ/2

P̂n,G,θ{XW = xW ,XU\j = xU\j ,Xj = xj} > γ/2 (12)

P̂n,G,θ is the empirical distribution calculated from the samples {x(ℓ)}nℓ=1. We denote this algorithm
by Ind(ǫ, γ). The search over candidate neighbors U , the search for minima and maxima in the
computation of the Score(U) and the computation of P̂n,G,θ all contribute for χInd(G, θ).

Both theorems that follow are consequences of the analysis of [10], hence omitted.

3If a is a vector and R is a set of indices then we denote by aR the vector formed by the components of a with index
in R.
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Theorem 2.4. Let G be a graph of bounded degree ∆ ≥ 1. For every θ there exists (ǫ, γ), and a
numerical constant K, such that

nInd(ǫ,γ)(G, θ) ≤ 100∆

ǫ2γ4
log

2p

δ
, (13)

χInd(ǫ,γ)(G, θ) ≤ K (2p)2∆+1 log p . (14)

More specifically, one can take ǫ = 1
4 sinh(2θ), γ = e−4∆θ 2−2∆.

This first result implies in particular that G can be reconstructed with polynomial complexity
for any bounded ∆. However, the degree of such polynomial is pretty high and non-uniform in ∆.
This makes the above approach impractical.

A way out was proposed in [10]. The idea is to identify a set of ‘potential neighbors’ of vertex r
via thresholding:

B(r) = {i ∈ V : Ĉri > κ/2} . (15)

For each node r ∈ V , we evaluate Score(U) by restricting the minimum in Eq. (11) over W ⊆ B(r),
and search only over U ⊆ B(r). We call this algorithm IndD(ǫ, γ, κ). The basic intuition here is that
Cri decreases rapidly with the graph distance between vertices r and i. As mentioned above, this is
true at low temperature.

Theorem 2.5. Let G be a graph of bounded degree ∆ ≥ 1. Assume that θ < K/∆ for some small
enough constant K. Then there exists ǫ, γ, κ such that

nIndD(ǫ,γ,κ)(G, θ) ≤ 8(κ2 + 8∆) log
4p

δ
, (16)

χIndD(ǫ,γ,κ)
(G, θ) ≤ K ′p∆∆ log(4/κ)

α +K ′∆p2 log p . (17)

More specifically, we can take κ = tanh θ, ǫ = 1
4 sinh(2θ) and γ = e−4∆θ 2−2∆.

2.2.2 Regularized Pseudo-Likelihoods

A different approach to the learning problem consists in maximizing an appropriate empirical likeli-
hood function [11, 25, 26, 27, 19, 28]. In order to control statistical fluctuations, and select sparse
graphs, a regularization term is often added to the cost function.

As a specific low complexity implementation of this idea, we consider the ℓ1-regularized pseudo-
likelihood method of [11]. For each node r, the following likelihood function is considered

L(θ; {x(ℓ)}) = − 1

n

n∑

ℓ=1

logPn,G,θ(x
(ℓ)
r |x(ℓ)\r ) (18)

where x\r = xV \r = {xi : i ∈ V \ r} is the vector of all variables except xr and PG,θ is defined from
the following extension of (1),

µG,θ(x) =
1

ZG,θ

∏

i,j∈V
eθijxixj (19)

where θ = {θij}i,j∈V is a vector of real parameters. Model (1) corresponds to θij = 0, ∀(i, j) /∈ E
and θij = θ, ∀(i, j) ∈ E.

The function L(θ; {x(ℓ)}) depends only on θr,· = {θrj , j ∈ ∂r} and is used to estimate the
neighborhood of each node by the following algorithm, Rlr(λ),

8



Regularized Logistic Regression( samples {x(ℓ)}, regularization (λ))

1: Select a node r ∈ V ;

2: Calculate θ̂r,· = arg min
θr,·∈Rp−1

{L(θr,·; {x(ℓ)}) + λ‖θr,·‖1};

3: If θ̂rj > 0, set (r, j) ∈ E;

Our first result shows that Rlr(λ) indeed reconstructs G if θ is sufficiently small.

Theorem 2.6. There exists numerical constants K1, K2, K3, such that the following is true. Let G
be a graph with degree bounded by ∆ ≥ 3. If θ ≤ K1/∆, then there exist λ such that

nRlr(λ)(G, θ) ≤ K2 θ
−2∆ log

8p2

δ
. (20)

Further, the above holds with λ = K3 θ∆
−1/2.

This theorem is proved by noting that for θ ≤ K1/∆ correlations decay exponentially, which
makes all conditions in Theorem 1 of [11] (denoted there by A1 and A2) hold, and then computing
the probability of success as a function of n with slightly more care. The details of the proof are
written in Appendix B.

In order to prove a converse to the above result, we need to make some assumptions on λ.

Definition 2.7. Given θ > 0, we say that λ is reasonable for that value of θ if the following
conditions hold: (i) Rlr(λ) is successful with probability larger than 1/2 on any star graphs (a graph
composed by a vertex r connected to ∆ neighbors, plus isolated vertices) if n is chosen sufficiently
high; (ii) λ ≤ δ(n) for some sequence δ(n) ↓ 0.

In other words, assumption (i) requires the algorithm to be successful on a particularly simple
class of graphs, and hence does not entail any loss of generality. Assumption (ii) encodes instead
the standard way of scaling regularization terms, by letting them vanish as the number of samples
increases. This is necessary in order to get asymptotic consistency of the parameter values θij. With
these assumptions we can state the following converse theorem, whose proof is deferred to Section
4.3.

Theorem 2.8. There exists a numerical constant K such that the following happens. If θ >
K/∆,∆ > 3, then there exists graphs G of degree bounded by ∆ such that for all reasonable λ,
nRlr(λ)(G) = ∞, i.e. regularized logistic regression fails with high probability.

The graphs for which regularized logistic regression fails are not contrived examples. Indeed, as
part of the proof of Theorem 2.8, and as proved in Appendix D, we have the following facts about
Rlr(λ):

• If G is a tree, then Rlr(λ) recover G with high probability for any θ (for a suitable λ);

• For every graph Gp in the family described in Section 1.1, Rlr(λ) fails with high probability for
θ large enough and for all λ;

• If G is sampled uniformly from the ensemble of regular graphs Rlr(λ) fails with high probability
for θ large enough and λ ‘reasonable’;

• if G is a large two dimensional grid It fails with high probability for θ large enough and λ
‘reasonable’.
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We note here that Theorem 2.8 relies on proving that a so-called ‘Incoherence condition’ is
necessary for Rlr to successfully reconstruct G. Although a similar result was proven in [29] for
model selection using the Lasso, this paper is the first to prove that a similar Incoherence condition
is also necessary when the underlying model is the Ising model.

The intuition behind this is quite simple. Begin by noticing that when n → ∞, and under the
restriction that λ → 0, solutions given by Rlr converge to θ∗ as n → ∞ [11]. Hence, for large n,
we can expand L in a quadratic function centered around θ∗ plus a small stochastic error term.
Consequently, when adding the regularization term to L, we obtain cost function analogous to the
Lasso plus an error term that needs to be controlled. The study of the dominating contribution leads
to the incoherence condition.

In general there are no practical ways to evaluate the incoherence condition for a given graphical
model. This requires in fact to compute expectations with respect to the Ising distribution. As
discussed above, this is hard for |θ| > θuniq(∆). Hence this condition was not checked for families of
graphs. A large part of our technical contribution consists indeed in filling this gap. To this end, we
use tools from mathematical statistical mechanics, namely low temperature series for Ising models
on grids [30, 31], and local weak convergence results for Ising models on random graphs [32, 33].

3 Numerical experiments

In order to explore the practical relevance of the above results, we carried out extensive numerical
simulations using the regularized logistic regression algorithm Rlr(λ). Among other learning algo-
rithms, Rlr(λ) strikes a good balance of complexity and performance. Samples from the Ising model
(1) where generated using Gibbs sampling (a.k.a. Glauber dynamics). Mixing time can be very large
for θ ≥ θuniq, and was estimated using the time required for the overall bias to change sign (this is a
quite conservative estimate at low temperature). Generating the samples {x(ℓ)} was indeed the bulk
of our computational effort and took about 50 days CPU time on Pentium Dual Core processors.
Notice that Rlr(λ) had been tested in [11] only on tree graphs G, or in the weakly coupled regime
θ < θuniq. In these cases sampling from the Ising model is easy, but structural learning is also
intrinsically easier.

Figure reports the success probability of Rlr(λ) when applied to random subgraphs of a 7 × 7
two-dimensional grid. Each such graphs was obtained by removing each edge independently with
probability ρ = 0.3. Success probability was estimated by applying Rlr(λ) to each vertex of 8 graphs
(thus averaging over 392 runs of Rlr(λ)), using n = 4500 samples. We scaled the regularization
parameter as λ = 2λ0θ(log p/n)

1/2 (this choice is motivated by the algorithm analysis [11] and is
empirically the most satisfactory), and searched over λ0.

The data clearly illustrate the phenomenon discussed in the previous pages. Despite the large
number of samples n ≫ log p, when θ crosses a threshold, the algorithm starts performing poorly
irrespective of λ. Intriguingly, this threshold is not far from the critical point of the Ising model on
a randomly diluted grid θcrit(ρ = 0.3) ≈ 0.7 [34, 35].

Figure 3 presents similar data when G is a uniformly random graph of degree ∆ = 4, over p = 50
vertices. The evolution of the success probability with n clearly shows a dichotomy. When θ is below
a threshold, a small number of samples is sufficient to reconstruct G with high probability. Above
the threshold even n = 104 samples are to few. In this case we can predict the threshold analytically,
cf. Lemma 4.3 below, and get θthr(∆ = 4) ≈ 0.4203, which compares favorably with the data.
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Figure 2: Learning random subgraphs of a 7 × 7 (p = 49) two-dimensional grid from n = 4500
Ising models samples, using regularized logistic regression. Left: success probability as a function
of the model parameter θ and of the regularization parameter λ0 (darker corresponds to highest
probability). Right: the same data plotted for several choices of λ versus θ. The vertical line
corresponds to the model critical temperature. The thick line is an envelope of the curves obtained
for different λ, and should correspond to optimal regularization.
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Figure 3: Learning uniformly random graphs of degree ∆ = 4 from Ising models samples, using
regularized logistic regression. Left: success probability as a function of the number of samples n
for several values of θ. Dotted: θ = 0.10, 0.15, 0.20, 0.35, 0.40 (in all these cases θ < θthr(∆ = 4)).
Dashed: θ = 0.45, 0.50, 0.55, 0.60, 0.65 (θ > θthr(4), some of these are indistinguishable from the
axis). Right: the same data plotted for several choices of λ versus θ as in Fig. 2, right panel.
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4 Proofs

4.1 Notation and important remarks

Before proceeding it is convenient to introduce some notation and make some important remarks. If
V is a matrix and R is an index set then VR denotes the vector formed by all entries whose index lies
in R and similarly, if M is a matrix and R,P are index sets then MR P denotes the submatrix with
row indices in R and column indices in P . As before, we let r be the vertex whose neighborhood
we are trying to reconstruct and define S = ∂r and Sc = V \ ∂r ∪ r. Since the cost function
L(θ; {x(ℓ)})+λ‖θ‖1 only depends on θ through its components θr,· = {θrj}, we will hereafter neglect
all the other parameters and write θ as a shorthand of θr,·.

Let ẑ∗ be a subgradient of ‖θ‖1 evaluated at the true parameters values, θ∗ = {θrj : θij = 0, ∀j /∈
∂r, θrj = θ, ∀j ∈ ∂r}. Let θ̂

n
be the parameter estimate returned by Rlr(λ) when the number of

samples is n. Note that, since we assumed θ∗ ≥ 0, we have θ∗S > 0 and hence ẑ∗S = 1. Define
Qn(θ; {x(ℓ)}) to be the Hessian of L(θ; {x(ℓ)}) and Q(θ) = limn→∞Qn(θ; {x(ℓ)}). By the law of large
numbers Q(θ) exists a.s. and is the Hessian of EG,θ log PG,θ(Xr|X\r) where EG,θ is the expectation
with respect to (19) and X is a random variable distributed according to (19). It is convenient to
recall here the expressions for the Hessian and gradient of L for finite n and in the limit when n → ∞.
For all i, j ∈ V \{r} we have,

Qn
ij(θ) =

1

n

n∑

ℓ=1

x
(ℓ)
i x

(ℓ)
j

cosh2
(∑

t∈V \{r} θrtx
(ℓ)
t

) , (21)

Qij(θ) = EG,θ∗

(
XiXj

cosh2(
∑

t∈V \{r} θrtXt)

)
, (22)

[∇Ln(θ)]i =
1

n

n∑

ℓ=1

x
(ℓ)
i

(
tanh

( ∑

t∈V \{r}
θrtx

(ℓ)
t

)
− x(ℓ)r

)
, (23)

[∇L(θ)]i = EG,θ∗

{
Xi tanh

( ∑

t∈V \{r}
θrtXt

)}
− EG,θ∗{XiXr}. (24)

Note that from the last expression it follows that ∇L(θ∗) = 0.
We will denote the maximum and minimum eigenvalue of a symmetric matrix M by σmax(M)

and σmin(M) respectively. Recall that ‖M‖∞ = maxi
∑

j |Mij |.
We will omit arguments whenever clear from the context. Any quantity evaluated at the true

parameter values will be represented with a ∗, e.g. Q∗ = Q(θ∗). Quantities under a ∧ depend on n.
When clear from the context and since all the examples that we work on have θij ∈ {0, θ }, we will
write EG,θ as EG,θ or even simply E. Similarly, PG,θ will be sometimes written as simply PG,θ or just
P. A subscript n under PG,θ, i.e. Pn,G,θ, will be introduced to denote the product measure formed
by n copies of model (19). Through out this section Psucc will denote the probability of success of
a given algorithm, that is, the probability that the algorithm is able to recover the underlying G
exactly.

Throughout this section G is a graph of maximum degree ∆.

4.2 Simple Thresholding

In the following we let Cij ≡ EG,θ{XiXj} where expectation is taken with respect to the Ising model
(1).
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Proof. (Theorem 2.1 ) If G is a tree then Cij = tanh θ for all (ij) ∈ E and Cij ≤ tanh2 θ for all
(ij) /∈ E. To see this notice that only paths that connect i to j contribute to Cij and given that
G is a tree there is only one such path and its length is exactly 1 if (i, j) ∈ E and at least 2 when
(i, j) /∈ E. The probability that Thr(τ) fails is

1− Psucc = Pn,G,θ{Ĉij < τ for some (i, j) ∈ E or Ĉij ≥ τ for some (i, j) /∈ E} . (25)

Let τ = (tanh θ + tanh2 θ)/2. Applying Azuma-Hoeffding inequality to Ĉij = 1
n

∑n
ℓ=1 x

(ℓ)
i x

(ℓ)
j we

have that if (i, j) ∈ E then,

Pn,G,θ(Ĉij < τ) = Pn,G,θ

(
n∑

ℓ=1

(x
(ℓ)
i x

(ℓ)
j − Cij) < n(τ − tanh θ)

)
≤ e−

1
32

n(tanh θ−tanh2 θ)2 (26)

and if (i, j) /∈ E then similarly,

Pn,G,θ(Ĉij ≥ τ) = Pn,G,θ

(
n∑

ℓ=1

(x
(ℓ)
i x

(ℓ)
j − Cij) ≥ n(τ − tanh2 θ)

)
≤ e−

1
32

n(tanh θ−tanh2 θ)2 . (27)

Applying union bound over the two possibilities, (i, j) ∈ E or (i, j) /∈ E, and over the edges (|E| <
p2/2), we can bound Psucc by

Psucc ≥ 1− p2 e−
1
32

n(tanh θ−tanh2 θ)2 . (28)

Imposing the right hand side to be larger than δ proves our result.

Proof. (Theorem 2.2) We will prove that, for θ < arctanh(1/(2∆)), Cij ≥ tanh θ for all (i, j) ∈ E
and Cij ≤ 1/(2∆) for all (ij) /∈ E. In particular Cij < Ckl for all (i, j) /∈ E and all (k, l) ∈ E . The
theorem follows from this fact via union bound and Azuma-Hoeffding inequality as in the proof of
Theorem 2.1.

The bound Cij ≥ tanh θ for (ij) ∈ E is a direct consequence of Griffiths inequality [36] : compare
the expectation of xixj in G with the same expectation in the graph that only includes edge (i, j).

The second bound is derived using the technique of [35], i.e., bound Cij by the generating function
for self-avoiding walks on the graphs from i to j. More precisely, assume l = dist(i, j) and denote by
Nij(k) the number of self avoiding walks of length k between i and j on G. Then [35] proves that

Cij ≤
∞∑

k=l

(tanh θ)kNij(k) ≤
∞∑

n=l

∆k−1(tanh θ)k ≤ ∆l−1(tanh θ)l

1−∆tanh θ
≤ ∆(tanh θ)2

1−∆tanh θ
. (29)

If θ < arctanh(1/(2∆)) the above implies Cij ≤ 1/(2∆) which is our claim.

Proof. (Theorem 2.3) The theorem is proved by constructing G as follows: sample a uniformly
random regular graph of degree ∆ over the p − 2 vertices {1, 2, . . . , p − 2} ≡ [p − 2]. Add an extra
edge between nodes p− 1 and p. The resulting graph is not connected. We claim that for θ > K/∆
and with probability converging to 1 as p → ∞, there exist i, j ∈ [p − 2] such that (i, j) /∈ E and
Cij > Cp−1,p. As a consequence, thresholding fails.

Obviously Cp−1,p = tanh θ. Choose i ∈ [p − 2] uniformly at random, and j a node at a fixed
distance t from i. We can compute Cij as p → ∞ using the same local weak convergence result as in
the proof of Lemma 4.3. Namely, Cij converges to the correlation between the root and a leaf node
in the tree Ising model (45). In particular one can show, [33], that

lim
p→∞

Cij ≥ m(θ)2 , (30)

where m(θ) = tanh(∆h∗/(∆− 1)) and h∗ is the unique positive solution of Eq. (46).
The proof is completed by showing that tanh θ < m(θ)2 for all θ > K/∆.
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4.3 Proof of Theorem 2.8: failure of regularized logistic regression

In order to prove Theorem 2.8, we need a few auxiliary results. Our first auxiliary results establishes
that, if λ is small, then ‖Q∗

ScSQ
∗
SS

−1ẑ∗S‖∞ > 1 is a sufficient condition for the failure of Rlr(λ). We
recall here that the subgradient of ‖θ‖1 evaluated at θ∗,that is ẑ∗, satisfies ẑ∗S = 1.

Lemma 4.1. Assume [Q∗
ScSQ

∗
SS

−1ẑ∗S ]i ≥ 1 + ǫ for some ǫ > 0 and some row i ∈ V , σmin(Q
∗
SS) ≥

Cmin > 0, and λ < C3
minǫ/(2

7(1 + ǫ2)∆3). Then the success probability of Rlr(λ) is upper bounded as

Psucc ≤ 4∆2e−nδ2A + 4∆ e−nλ2δ2B (31)

where δA = (C2
min/32∆)ǫ and δB = (Cmin/64

√
∆)ǫ.

The next Lemma implies that, for λ to be ‘reasonable’ (in the sense introduced in Section 2.2.2),
nλ2 must be unbounded with respect to p. In fact, by this lemma, if we choose n to be very large
and choose a sequence of star graphs of increasing number of nodes but with only one edge between
the central node and the remaining nodes, then, unless K is increasing with p, Rlr(λ) will fail to
reconstruct the graph with a probability greater than 1/2, which is a contradiction if λ is ‘reasonable’.

Lemma 4.2. There exist M = M(K, θ) > 0 decreasing with K for θ > 0 such that the following is
true: If G is the (star) graph with vertex set V = [p] and edge set E = {(r, i)} (e.g. r = 1, i = 2)
and nλ2 ≤ K, then

Psucc ≤ e−M(K,θ)p + e−n(1−tanh θ)2/32 . (32)

Finally, our key result shows that the condition ‖Q∗
ScSQ

∗
SS

−1ẑ∗S‖∞ ≤ 1 is violated with high
probability for large random graphs. The proof of this result relies on a local weak convergence
result for ferromagnetic Ising models on random graphs proved in [32].

Lemma 4.3. Let G be a uniformly random regular graph of degree ∆ > 3. Then, there exists θthr(∆)
such that, for θ > θthr(∆), ‖Q∗

ScSQ
∗
SS

−1ẑ∗S‖∞ ≥ 1+ǫ(θ,∆) with probability converging to 1 as p → ∞
(ǫ(θ,∆) > 0 and ǫ(θ,∆) → 0 as θ → ∞).

Furthermore, for large ∆, θthr(∆) = θ̃∆−1(1+ o(1)). The constant θ̃ is given by θ̃ = h2∞ and h∞
is the unique positive solution of

h∞ tanhh∞ = 1. (33)

Finally, there exist Cmin > 0 dependent only on ∆ and θ such that σmin(Q
∗
SS) ≥ Cmin with probability

converging to 1 as p → ∞.

The proofs of Lemmas 4.1, 4.2 and 4.3 are sketched in the next subsection.

Proof. (Theorem 2.8) Fix ∆ > 3, θ > K/∆ (where K is a large enough constant independent of ∆),
and ǫ, Cmin > 0 and both small enough. By Lemma 4.3, for any p large enough we can choose a
∆-regular graph Gp = (V = [p], Ep) and vertex r ∈ V such that |Q∗

ScSQ
∗
SS

−1ẑ∗S |i > 1 + ǫ for some
i ∈ V \ r (Indeed most vertices r and graphs Gp will work).

By Theorem 1 in [10] we can assume without loss of generality n > K ′∆ log p for some small
constant K ′. Further by Lemma 4.2, nλ2 ≥ F (p) for some F (p) ↑ ∞ as p → ∞ and the condition
of Lemma 4.1 on λ is satisfied since by the assumption that λ is ‘reasonable’ we have λ → 0 as
n → ∞. Using these results in Eq. (31) of Lemma 4.1 we get the following upper bound on the
success probability

Psucc(Gp) ≤ 4∆2p−δ2AK ′∆ + 2∆ e−F (p)δ2B . (34)

In particular Psucc(Gp) → 0 as p → ∞.
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4.3.1 Proofs of auxiliary lemmas

Proof. (Lemma 4.1) This proof follows closely the proof of Proposition 1 in [11]. For a matter of
clarify of exposition we will include all the steps, even if these do not differ from the exposition done
in [11].

We will show that (under the assumptions of the Lemma on the Incoherence Condition, σmin(Q
∗
SS)

and λ) if θ̂ = (θ̂S , θ̂SC ) = (θ̂S , 0) with θ̂S > 0 then the probability that Rlr(λ) returns θ̂ is upper
bounded as in Eq. (31). More specifically, we will show that this θ̂ will not satisfy the stationarity
condition ∇L(θ̂) + λẑ = 0 with high probability for any subgradient ẑ of the function ‖θ‖1 at θ̂.

To simplify notation we will omit {x(ℓ)} in all the expressions involving and derived from L.
Assume the event ∇L(θ̂) + λẑ = 0 holds for some θ̂ as specified above. An application of the

mean value theorem yields
∇2L(θ∗)[θ̂ − θ∗] = W n − λẑ −Rn , (35)

where W n = −∇L(θ∗) and [Rn]j = [∇2L(θ̄
(j)

)−∇2L(θ∗)]Tj (θ̂− θ∗) with θ̄
(j)

a point in the line from

θ̂ to θ∗. Notice that by definition ∇2L(θ∗) = Qn∗ = Qn(θ∗). To simplify notation we will omit the ∗
in all Qn∗. All Qn in this proof are thus evaluated at θ∗.

Breaking this expression into its S and SC components and since θ̂SC = θ∗SC = 0 we can write

Qn
SCS(θ̂S − θ∗S) = W n

SC − λẑSC +Rn
SC , (36)

Qn
SS(θ̂S − θ∗S) = W n

S − λẑS +Rn
S . (37)

Eliminating θ̂S − θ∗S from the two expressions we obtain

[W n
SC −Rn

SC ]−Qn
SCS(Q

n
SS)

−1[W n
S −Rn

S ] + λQn
SCS(Q

n
SS)

−1ẑS = λẑSC . (38)

Now notice that Qn
SCS

(Qn
SS)

−1 = T1 + T2 + T3 + T4 where

T1 = Q∗
SCS [(Q

n
SS)

−1 − (Q∗
SS)

−1] , T2 = [Qn
SCS −Q∗

SCS ]Q
∗
SS

−1 ,

T3 = [Qn
SCS −Q∗

SCS][(Q
n
SS)

−1 − (Q∗
SS)

−1] , T4 = Q∗
SCSQ

∗
SS

−1 .

Recalling that ẑS = 1 and using the above decomposition we can lower bound the absolute value of
the indexed-i component of ẑSC by

|ẑi| ≥ ‖[Q∗
SCSQ

∗
SS

−1ẑS ]i‖∞ − ‖T1,i‖1 − ‖T2,i‖1 − ‖T3,i‖1 (39)

−
∣∣∣W

n
i

λ

∣∣∣−
∣∣∣R

n
i

λ

∣∣∣− ‖[Qn
SCS(Q

n
SS)

−1]i‖
(∥∥∥W

n
S

λ

∥∥∥
∞

+
∥∥∥R

n
S

λ

∥∥∥
∞

)
.

We will now assume that the samples {x(ℓ)} are such that the following event holds (notice that
i ∈ SC),

Ei ≡
{
‖Qn

S∪{i} S −Q∗
S∪{i} S‖∞ < ξA,

∥∥∥
W n

S∪{i}
λ

∥∥∥
∞

< ξB

}
, (40)

where ξA ≡ C2
minǫ/(8∆) and ξB ≡ Cminǫ/(16

√
∆).

From relations (21) to (24) in Section 4.1 we know that EG,θ(Q
n) = Q∗, EG,θ(W

n) = 0 and
that both Qn − Q∗ and W n are sums i.i.d. random variables bounded by 2. From this, a simple
application of Azuma-Hoeffding inequality yields 4.

Pn,G,θ(|Qn
ij −Q∗

ij| > δ) ≤ 2e−
δ2n
8 , (41)

Pn,G,θ(|W n
ij | > δ) ≤ 2e−

δ2n
8 , (42)

4For full details see the proof of Lemma 2 and the discussion following Lemma 6 in [11]
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for all i and j. Applying union bound we conclude that the event Ei holds with probability at least

1− 2∆(∆ + 1)e−
nξ2A
8 − 2(∆ + 1)e−

nλ2ξ2B
8 ≥ 1− 4∆2e−nδ2A − 4∆e−nλ2δB , (43)

where δA = C2
minǫ/(32∆) and δB = Cminǫ/(64

√
∆).

If the event Ei holds then σmin(Q
n
SS) > σmin(Q

∗
SS)−Cmin/2 > Cmin/2. Since ‖[Qn

SCS
(Qn

SS)
−1]i‖∞ ≤

‖Qn
SS

−1‖2‖Qn
Si‖2 and |Qn

ji| ≤ 1∀i, j we can write ‖[Qn
SCS

(Qn
SS)

−1]i‖∞ ≤ 2
√
∆/Cmin and simplify our

lower bound to

|ẑi| ≥ ‖[Q∗
SCSQ

∗
SS

−1ẑS ]i‖∞ − ‖T1,i‖1 − ‖T2,i‖1 − ‖T3,i‖1 (44)

−
∣∣∣W

n
i

λ

∣∣∣−
∣∣∣R

n
i

λ

∣∣∣− 2
√
∆

Cmin

(∥∥∥W
n
S

λ

∥∥∥
∞

+
∥∥∥R

n
S

λ

∥∥∥
∞

)
.

The proof is completed by showing that the event Ei and the assumptions of the theorem imply
that each of last 7 terms in this expression is smaller than ǫ/8. Since |[Q∗

SCS
Q∗

SS
−1]Ti ẑ

n
S | ≥ 1 + ǫ by

assumption, this implies |ẑi| ≥ 1+ ǫ/8 > 1 which cannot be true since any subgradient of the 1-norm
has components of magnitude at most 1.

Taking into account that σmin(Q
∗
SS) ≤ maxij Q

∗
ij ≤ 1 and that ∆ > 1, the last condition on Ei

immediately bounds all terms involving W n by ǫ/8. Some straightforward manipulations imply (see
Lemma 7 from [11] for a similar computation)

‖T1,i‖1 ≤
∆

C2
min

‖Qn
SS −Q∗

SS‖∞ , ‖T2,i‖1 ≤
√
∆

Cmin
‖[Qn

SCS −Q∗
SCS ]i‖∞ ,

‖T3,i‖1 ≤
2∆

C2
min

‖Qn
SS −Q∗

SS‖∞‖[Qn
SCS −Q∗

SCS ]i‖∞ ,

and thus, again making use of the fact that σmin(Q
∗
SS) ≤ 1, all will be bounded by ǫ/8 when Ei holds.

The final step of the proof consists in showing that if Ei holds and λ satisfies the condition given in
the Lemma enunciation then the terms involving Rn will also be bounded above by ǫ/8. The details
of this calculation are included in Appendix C.1.

Proof. (Lemma 4.3.) Let us state explicitly the local weak convergence result mentioned in Sec. 4.3
right before our statement of Lemma 4.3. For t ∈ N, let T(t) = (VT, ET) be the regular rooted tree
of degree ∆ of t generations and define the associated Ising measure as

µ+
T,θ(x) =

1

ZT,θ

∏

(i,j)∈ET

eθxixj
∏

i∈∂T(t)
eh

∗xi . (45)

Here ∂T(t) is the set of leaves of T(t) and h∗ is the unique positive solution of

h = (∆− 1) atanh {tanh θ tanhh} . (46)

It was proved in [33] that non-trivial local expectations with respect to µG,θ(x) converge to local
expectations with respect to µ+

T,θ(x), as p → ∞.
More precisely, let Br(t) denote a ball of radius t around node r ∈ G (the node whose neighbor-

hood we are trying to reconstruct). For any fixed t, the probability that Br(t) is not isomorphic to
T(t) goes to 0 as p → ∞.
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Let g(xBr(t)) be any function of the variables in Br(t) such that g(xBr(t)) = g(−xBr(t)). Then
almost surely over graph sequencesGp of uniformly random regular graphs with p nodes (expectations
here are taken with respect to the measures (1) and (45))

lim
p→∞

EG,θ{g(XBr(t))} = ET(t),θ,+{g(XT(t))} . (47)

Notice that this characterizes expectations completely since if g(xBr(t)) = −g(−xBr(t)) then,

EG,θ{g(XBr(t))} = 0. (48)

The proof consists in considering [Q∗
ScSQ

∗
SS

−1ẑ∗S ]i for t = dist(r, i) bounded. We then write (Q∗
SS)lk =

EG,θ{gl,k(XBr(t)
)} and (Q∗

ScS)il = EG,θ{gi,l(XBr(t)
)} for some functions g·,·(X

Br(t)
) and apply the weak

convergence result (47) to these expectations. We thus reduced the calculation of [Q∗
ScSQ

∗
SS

−1ẑ∗S ]i to
the calculation of expectations with respect to the tree measure (45). The latter can be implemented
explicitly through a recursive procedure, with simplifications arising thanks to the tree symmetry
and by taking t ≫ 1. The actual calculations consist in a (very) long exercise in calculus and is
deferred to Appendix C.3.

The lower bound on σmin(Q
∗
SS) is proved by a similar calculation.
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A Covariance calculation for the toy example

In this section we compute the covariance matrix for the Ising model on the graph Gp introduced
within the toy example of Section 1.1, see Fig. 1. In fact we only need to compute EGp,θ{x1x2},
EGp,θ{x1x3} and EGp,θ{x3x4}, since all other covariances reduce to one of these tree by symmetry.
First recall that by [35] we can write the correlation between xi and xj as follows

EG,θ{xixj} =

∑
F∈I(G)(tanh θ)

|F |
∑

G∈P(G)(tanh θ)
|F | , (49)

where:(i) I(G) is the set of all subsets of edges of graphs of G with odd number of edges adjacent
to node i and j and even number of edges adjacent to every other node; (ii) P(G) is the set of all
subsets of edges of G with even number of edges in all nodes; (iii) |F | is the number of edges in F .

Expression (49) implies three basic facts that we will use to compute the correlations of Gp. Some
of these observations can be proved in different and maybe simpler ways but for a matter of unity,
we will explain them from the point of view of (49).

First, if i, j are two nodes in a graph G and k, l two nodes in a graph G′ and we ‘glue’ j and k
together (i.e. we fix xj = xk) to form a new graph G′′ (see Figure 4 (a)) then

EG′′,θ{xixl} = EG,θ{xixj} EG′,θ{xkxl}. (50)

Second, if instead we ‘glue’ i with k and j with l (i.e. we fix xi = xk and xj = xl) (see Figure 4
(b)) then

EG′′,θ{xixj} =
EG,θ{xixj}+ EG′,θ{xkxl}
1 + EG,θ{xixj} EG′,θ{xkxl}

(51)

= tanh(arctanh(EG,θ{xixj}) + arctanh(EG′,θ{xkxl})). (52)

Note that in this second case we are computing EG′′,θ{xixj} and not EG′′,θ{xixl}.
Finally, ifG is the square graph formed by nodes {1, 2, 3, 4} and edge set {(1, 3), (1, 4), (2, 3), (2, 4)}

and G′ is some other graph to which nodes i and j belong and we ‘glue’ node 1 with i and node 2
with j (i.e. x1 = xi and x2 = xj) to form G′′ (see Figure 4 (c)) then

EG12,θ{x3x4} =
2 tanh2 θ + 2EG2,θ{xixj} tanh2 θ

1 + tanh4 θ + 2EG2,θ{xixj} tanh2 θ
. (53)

With these three relationships we can quickly compute EGp,θ{x1x2}, EGp,θ{x1x3} and EGp,θ{x3x4}.
Let p = 3 and note that from (50) we have that EG3,θ{x1x2} = tanh2 θ. Since Gp is formed by p− 2
copies of G3 glued in ‘parallel’ in between nodes 1 and 2, by (52) we have that EGp,θ{x1x2} =
tanh((p − 2) arctanh(tanh2 θ)). Now notice that Gp can also be seen as a single edge connecting 1
and 3 in ’parallel’ with the graph formed by connecting in ’series’ the edge (2, 3) to a copy of Gp−1.
This tells us that EGp,θ{x1x3} = tanh(θ + arctanh(EGp−1,θ{x1x2} tanh θ)). Finally, we can also see
Gp as a square graph formed by nodes {1, 2, 3, 4} and edges {(1, 3), (1, 4), (2, 3), (2, 4)} to which we
add Gp−2 as a ‘bridge’ in between nodes 1 and 2. Making use of (53) we get that

EGp,θ{x3x4} =
2 tanh2 θ + 2EGp−2,θ{x1x2} tanh2 θ

1 + tanh4 θ + 2EGp−2,θ{x1x2} tanh2 θ
. (54)

From these closed form expressions it is now easy to obtain the behavior of the correlations for the
regime θ ≫ 1 and p ≪ 1.
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(a) ‘Series‘ composition (b) ‘Parallel’ composi-
tion

(c) ’Bridge’ composi-
tion

G1 G2
i j, k l

i, k j, l
G1

G2

3

1, i

4

2, j

G1

G2

Figure 4: Correlation for different composite graphs

B Success of regularized logistic regression for small θ

Proof. (Theorem 2.6 ) The proof of this theorem consists in verifying the conditions of Theorem 1
in [11] (denoted there by A1 and A2) and computing the probability of success as a function of n
with slightly more care.

In what follows, Cmin is a lower bound for σmin(Q
∗
SS) and Dmax

5 is an upper bound for

σmax(EG,θ∗(XSX
T
S )). (55)

We define 1−α ≡ ‖Q∗
SCS

Q∗
SS

−1‖∞ and θmin is the minimum absolute value of the components of

θ∗. Throughout this proof we will have Ĉmin and D̂max denote σmin(Q
n∗
SS) and σmax

(
1
n

∑n
l=1 x

(l)
S x(l)

T
S

)

respectively and 1− α̂ = ‖Qn
SCS

Qn
SS

−1‖∞.
Consider the event, E , that the following conditions hold (these conditions are part of the condi-

tions required for Theorem 1 in [11] to be applicable and are labeled by the names of the theorems
that use them that help proving Theorem 1),

In Lemma 5: ‖Qn
SS −Q∗

SS‖2 < Cmin/2 , (56)

In Lemma 6: for T1 σmin(Q
n∗
SS) ≤ Cmin/2 , (57)

for T1 ‖Qn
SS −Q∗

SS‖∞ ≤ 1

12

α

1− α
Cmin/

√
∆ , (58)

for T2 ‖Qn
SCS −Q∗

SCS‖∞ ≤ α

6
Cmin/

√
∆ , (59)

for T3 ‖Qn
SCS −Q∗

SCS‖∞ ≤
√

α/6 , (60)

In Lemma 7: σmin(Q
n∗
SS) ≤ Cmin/2 and ‖Qn

SS −Q∗
SS‖2 ≤

√
α

6

C2
min

2
√
∆

, (61)

5It is easy to prove that Cmin ≤ Dmax

19



In Proposition 1:
‖W n‖∞

λ
<

α̂

4(2− α̂)
, (62)

λ∆ ≤ Ĉ2
min

10D̂max

, (63)

5

Ĉmin

λ
√
∆ ≤ θmin

2
. (64)

Note that these conditions imply that Ĉmin ≥ Cmin/2, D̂max ≤ 2Dmax and also, from the proof of
Proposition 1 in [11], they imply that without loss of generality we can assume α̂ = α/2. Since the
assumption σmin(Q

n∗
SS) ≤ Cmin/2 follows from the assumption of Lemma 5 in [11], all assumptions

are in fact assumptions on the proximity, under different norms, of empirical vectors and matrices
to their correspondent mean values.

Having the definition of E in mind we beging by noting that Theorem 1 can be rewritten in the
following form.

Theorem B.1. If λ ≤ (Cmin/2)
2/(20∆Dmax), λ ≤ (Cmin/2)θmin/(20

√
∆), 1 − α < 1 and E holds

then Rlr will not fail.

A straightforward application of Azuma’s inequality yields the following upper bound on the
probability of these assumptions not occurring together, (the first three terms are for the conditions
involving matrix Q and the fourth with the event dealing with matrix W ),

Pn,G,θ(Ec) ≤ 2e−n 1
32∆2 (d

(2)
SS)

2+2 log∆ + 2e−n 1
32∆2 (d

(∞)
SS )2+2 log∆ (65)

+ 2e
−n 1

32∆2 (d
(∞)

SCS
)2+log∆+log p−∆

+ 2e−nλ2

27
( α̂
2−α̂

)2+log p ,

where

d
(2)
SS = min

{Cmin

2
,

√
α

6

C2
min

2
√
∆

}
, (66)

d
(∞)
SS =

1

12

α

1− α

Cmin√
∆

, (67)

d
(∞)

SCS
= min

{α
6

Cmin√
∆

,

√
α

6

}
. (68)

Under the assumption that θ ≤ K1/∆ for K1 small enough we now calculate lower bounds for Cmin

and α and upper bound for Dmax which will allow us to verify the condition of Theorem B.1 and
simplify expression for the upper bound on Pn,G,θ(Ec).

First notice that by (22) we have Cmin = σmin{EG,θ∗((1 − tanh2 θM)XSX
T
S )} where M =∑

t∈∂r Xt. Since θM ≤ θ∆ ≤ K1 and because σmin(AB) ≥ σmin(A)σmin(B) we have, Cmin ≥
(1 − K2

1 )σmin(EG,θ∗{XSX
T
S }). Now write EG,θ∗{XSX

T
S } ≡ 1 + Q and notice that by (29) Q is

a symmetric matrix whose values are non-negative and smaller than tanh θ/(1 − ∆tanh θ). Since
σmin(EG,θ∗{XSX

T
S }) = 1 − vT (−Q)v for some unit norm vector v and since, by Cauchy–Schwarz

inequality, we have vT (−Q)v ≤ ‖v‖21 maxij |Qij | ≤ ∆tanh θ/(1−∆tanh θ) ≤ K1/(1−K1), it follows
that σmin(EG,θ∗{XSX

T
S }) ≥ (1− 2K1)/(1−K1). Consequently, Cmin ≥ (1+K1)(1− 2K1). With the

bound (29), and again for K1 small, we can write Dmax ≤ 1+∆tanh θ/(1−∆tanh θ) ≤ (1−K1)
−1.

A similar calculation yields 1− α ≤ K1/((1 −K2
1 )(1 − 2K1)).

For K1 small enough, and looking at the bounds just obtained for Cmin and Dmin, the restriction
on λ in Theorem B.1, namely

λ ≤ Cmin/40
√
∆min{θ,Cmin/40Dmax

√
∆}, (69)
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can be simplified to Cminθ/40
√
∆. Choosing λ = K3θ∆

−1/2 it is easy to see we can simplify the
expression for the probability upper bound and write

1− Pn,G,θ(E) ≤ 8e−nK−1
2 θ2∆−1+2 log p (70)

for some constant K2 which in turn implies the bound on nRlr(λ).

C Failure of regularized logistic regression at large θ

C.1 Bound on terms involving Rn

Proof. (Lemma 4.1) We outline here the upper bound on the term Rn. Note that we are omitting
the samples {x(i)} in the argument of function L and we are representing θr,. by θ. This proof is just

a replica and fusion of Lemmas 3 and 4 in [11]. Through out this proof we have θ̂SC = θ∗SC = 0.
First we write,

Rn
j = [∇2L(θ̄

(j)
)−∇2L(θ∗)]Tj [θ̂ − θ∗] (71)

=
1

n

n∑

i=1

[η(θ̄
(j)

)− η(θ∗)][x(i) x(i)
T
]Tj [θ̂ − θ∗] (72)

for some point θ̄
(j)

lying in the line between θ̂ and θ∗,i.e. θ̄
(j)

= tj θ̂ + (1 − tj)θ
∗. Since η(θ) =

g(x
(i)
r
∑

t∈V \r θrtx
(i)
t ) = g(x

(i)
r θTx(i)) = g(θTx(i)) where g(s) = 4e2s/(1 + e2s)2 another application of

the chain rule yields,

Rn
j =

1

n

n∑

i=1

g′(¯̄θ(j)
T
x(i))x(i)

T
[θ̄

(j) − θ∗]{x(i)j x(i)
T
[θ̂ − θ∗]} (73)

=
1

n

n∑

i=1

{g′(¯̄θ(j)Tx(i))x(i)j }{[θ̄(j) − θ∗]Tx(i) x(i)
T
[θ̂ − θ∗]} (74)

where ¯̄θ(j) is a point in the line between θ̄
(j)

and θ∗. Let

bi := [θ̄
(j) − θ∗]Tx(i) x(i)

T
[θ̂ − θ∗] = tj[θ̂ − θ∗]Tx(i) x(i)

T
[θ̂ − θ∗] ≥ 0 (75)

then, noticing that θ̂SC = θ∗SC = 0 and |g′| ≤ 1 we can apply Holder’s inequality to obtain,

|Rn
j | ≤

1

n
‖b‖1 ≤ tj[θ̂S − θ∗S ]

T

{
1

n

n∑

i=1

x
(i)
S x

(i)
S

T

}
[θ̂S − θ∗S ] ≤ ∆‖θ̂S − θ∗S‖22. (76)

Slightly readapting the proof of Lemma 3 from [11] we now show that

‖θ̂S − θ∗S‖2 ≤ Cmin

4∆3/2

(
1−

√
1− λ

16∆2

C2
min

(
1 +

∥∥∥
W n

S

λ

∥∥∥
∞

))
. (77)

Define G(u) = L(θ∗ + u)−L(θ∗)+λ(‖θ∗ + u‖1 −‖θ∗‖1). Since G(0) = 0 and G is strictly convex
we have that if G(u) > 0 for ‖u‖2 = B then ‖û‖2 < B, where û = θ̂ − θ∗ is the unique minimum
point of G(u). To prove (77) we will compute a lower bound on the set of points for which G(u) > 0.

By the mean value theorem we can write,
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G(u) = −W nTu+ uT∇2L(θ∗ + αu)u + λ(‖θ∗ + u‖1 − ‖θ∗‖1). (78)

Note that W n = −∇L(θ∗).
We now get bounds on each of the terms of the previous expression,

|W nTu| ≤ ‖W n
S ‖∞

√
∆‖u‖2, (79)

λ(‖θ∗ + u‖1 − ‖θ∗‖1) ≥ −λ
√
∆‖u‖2 (80)

uT∇2L(θ∗ + αu)u ≥ ‖u‖22

(
σmin(Q

n
SS

∗)−∆1/2‖u‖2 σmax

(
1

n

n∑

i=1

x
(i)
S x

(i)
S

T

))
,

≥ ‖u‖22
(
Cmin/2−∆3/2‖u‖2

)
. (81)

Thus can write,

G(u) ≥ ‖u‖2 ∆1/2

(
−∆‖u‖22 +∆−1/2Cmin

2
‖u‖2 − λ− ‖W n

S ‖∞
)
, (82)

from which we derive expression (77).

If Ei holds we can assume without loss of generality ‖Wn
S
λ ‖∞ < ǫ. Now notice that 1−

√
1− x ≤

x, x ∈ [0, 1] and thus we can write,

|Rn
j | ≤ ∆

(
Cmin

4∆3/2

16(1 + ǫ)∆2λ

C2
min

)2

≤ 16∆2λ2(1 + ǫ)2

C2
min

. (83)

If we now want that
∆|Rn

j |
λCmin

≤ ǫ

8
, (84)

then we can simply impose that λ < C3
minǫ/(2

7(1 + ǫ2)∆3), which finishes the proof.

C.2 nλ2 must be unbounded with p

Proof. (Lemma 4.2) In this proof S = {i} and SC = ∂r\{i}.
We prove the lemma by computing a lower bound on the probability that ‖∇SCL(θ̂; {x(ℓ)})‖∞ > λ

under the assumption that nλ2 ≤ K and θ̂SC = 0 and θ̂S > 0 6. This will prove the corresponding
upper bound on the probability of success of Rlr(λ).

First we show that there exists an C(θ) such that if ‖θ̂S‖∞ > C then with high probability Rlr(λ)
fails.

Begin by noticing that EG,θ(L(θ̂)) ≥ θ̂ir(1−tanh θ) and that |L(θ̂)−EG,θ(L(θ̂))| ≤ 2 log 2+2‖θ̂‖1.
Then use Azuma’s inequality to get the following bound,

Pn,G,θ(L(θ̂) + λ‖θ̂‖1 > L(0)) (85)

= Pn,G,θ(L(θ̂)− EG,θ(L(θ̂)) > log 2− λ‖θ̂‖1 − EG,θ(L(θ̂))) (86)

≥ 1− e
−2n(log 2−λθ̂ir−EG,θ(L(θ̂)))2

(2 log 2+2θ̂ir)
2 . (87)

6The requirement θ̂ri > 0, necessary for correct reconstruction, allows us to ignore the ‖.‖∞ and ‖.‖1 in what follows.
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If ‖θ̂S‖∞ > C(θ) for large enough C(θ) then we can lower bound the previous expression by

1− e
−2n(

θ̂ir
2 )2(1−tanh θ)2

(2 log 2+2θ̂ir)
2 ≥ 1− e

−nC2(1−tanh θ)2

8(log 2+C)2 ≥ 1− e
−n(1−tanh θ)2

32 . (88)

Since L(θ̂)+λ‖θ̂‖1 > L(0) contradicts the fact that θ̂ is the optimal solution found by Rlr this shows
that with high probability θ̂ir must be smaller than C(θ).

Under the assumption that θ̂ri ≤ C and nλ2 ≤ K we will now compute a lower bound for the
event ‖∇SCL(θ̂)‖∞ > λ.

Pn,G,θ

(
‖1
λ
∇SCL(θ̂)‖∞ > 1

∣∣∣∣θ̂ri ≤ C

)
(89)

= Pn,G,θ

(
‖1
λ

1

n

n∑

ℓ=1

X(ℓ)
r X

(ℓ)

SC (1− tanh(X(ℓ)
r X

(ℓ)
i θ̂ri))‖∞ > 1

)
(90)

≥ 1− Pn,G,θ

(
1√
n

n∑

ℓ=1

X(ℓ)
r X

(ℓ)
r′ (1− tanh(X(ℓ)

r X
(ℓ)
i θ̂ri)) ≤

√
K ,∀r′ ∈ SC

)
(91)

≥ 1− EG,θ

(
Pn,G,θ

(
1√
n

n∑

ℓ=1

X
(ℓ)
r′ Cℓ ≤

√
K ,∀r′ ∈ SC

∣∣∣∣{Cℓ}nℓ=1

))
, (92)

where Cℓ = X
(ℓ)
r (1− tanh(X

(ℓ)
r X

(ℓ)
i θ̂ri)).

Conditioned on {Cℓ}nl=1 all the
∑

ℓX
(ℓ)
r′ Cℓ are independent and identically distributed. Hence,

choosing one particular r′0 ∈ SC , and defining Vℓ = Xℓ
r′0

we can rewrite the previous expression as,

1− EG,θ


Pn,G,θ

(
1√
n

n∑

ℓ=1

VℓCℓ ≤
√
K

∣∣∣∣{Cℓ}nℓ=1

)p−1

 . (93)

We now use the central limit theorem for independent nonidentical random variables to upper bound
the conditional probability inside the expectation. It is easy to see that Lyapunov conditions hold.
In fact, let s2n =

∑n
ℓ=1 Var(VℓCℓ|{Cℓ}nℓ=1) =

∑n
ℓ=1 C

2
ℓ then for some δ > 0,

EG,θ(|VℓCℓ|2+δ|{Cℓ}nℓ=1) = |Cℓ|2+δ < ∞ ,∀ℓ (94)

(95)

and

lim
n→∞

1

s2+δ
n

n∑

ℓ=1

EG,θ(|VℓCℓ − EG,θ(VℓCℓ|{Cℓ}nℓ=1)|2+δ |{Cℓ}nℓ=1) (96)

= lim
n→∞

1

(
∑n

ℓ=1C
2
ℓ )

1+δ/2

n∑

ℓ=1

|Cℓ|2+δ ≤ lim
n→∞

n−δ/2

(
1 + tanhC(θ)

1− tanhC(θ)

)2+δ

= 0. (97)

Thus we can write,

Pn,G,θ

(
1√
n

∑n
ℓ=1 VℓCℓ ≤

√
K

∣∣∣∣{Cℓ}nℓ=1

)
= Pn,G,θ

(
∑n

ℓ=1 VℓCℓ√
∑n

ℓ=1 C
2
ℓ

≤
√
K

√
n√

∑n
ℓ=1 C

2
ℓ

∣∣∣∣{Cℓ}nℓ=1

)
(98)

≤ Pn,G,θ

(
∑n

ℓ=1 VℓCℓ√
∑n

ℓ=1 C
2
ℓ

≤
√
K

1−tanhC(θ)

∣∣∣∣{Cℓ}nℓ=1

)
= Φ

( √
K

1−tanhC(θ)

)
+ ǫn (99)
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where Φ is the cumulative distribution of the normal(0,1) distribution and ǫn → 0 with n. We can
finally write,

Pn,G,θ

(
‖1
λ
∇SCL(θ̂)‖∞ > 1

∣∣∣∣θ̂ri ≤ C

)
≥ 1− e

(p−1)(log(Φ
( √

K
1−tanhC(θ)

)

+ǫn)) ≥ 1− e−pM(K,θ) (100)

for n big enough. In the above expression M(K, θ) → 0 as K → ∞. From this bound and (88) we
get the desired upper bound on the probability of success of Rlr.

C.3 Random regular graphs and the violation of the incoherence condition

Proof. (Lemma 4.3) We explain here the calculations with respect to the tree model (45). Throughout
all calculations we assume that 0 < θ < ∞. An important property that follows from the fixed point
equation (46) is that, if g(xT(t)) is a function of the variables in T(t) then

ET(t),θ,+{g(XT(t))} = ET(t+1),θ,+{g(XT(t))} , (101)

with the obvious identification of T(t) as a subtree of T(t+ 1).
Let r be a uniformly random vertex in G and i 6= j two neighbors of r. Using the local weak

convergence property (47) with t = 1 we get

lim
p→∞

(Q∗
SS)ii ≡ a = ET(1),θ,+

( 1

cosh2 θM

)
, (102)

lim
p→∞

(Q∗
SS)ij ≡ b = ET(1),θ,+

( XiXj

cosh2 θM

)
, (103)

where M ≡∑i∈∂T(1) Xi is the sum of the variables on the leaves of a depth 1 tree, and i, j ∈ ∂T(1).

For r′ at distance t > 1 from r, consider the ∆-dimensional vector in

lim
p→∞

(Q∗
ScS)r′ = FS(t) . (104)

Elements of FS(t) are of the form ET(t),θ,+

(
Xr′Xi

cosh2 θM

)
where i ∈ ∂T(1). These elements can take only

two different values: one if r′ is a child of j and other if not. We denote the first value by Fd(t) and
the second by Fi(t). Since ẑ

∗
S = 1 is an eigenvector of Q∗

SS with eigenvalue a+(∆−1)b we can write,

lim
p→∞

‖Q∗
SCSQ

∗−1
SS ẑ

∗
S‖∞ = sup

t≥1
|A(t)| (105)

where

A(t) =
Fd(t) + (∆− 1)Fi(t)

a+ (∆− 1)b
=

E+(Xr′M/ cosh2(θM))

E+(XiM/ cosh2(θM))
. (106)

In this expression, and through the rest of the proof, E+ will denote ET(t′),θ,+ where t′ is the smallest
value such that all the variables inside the expectation are in T(t′). Now, conditioning on the value
of Xi (i ∈ ∂T(1)) we can write,

E+(Xr′M/ cosh2(θM)) = c1〈t〉+ + c2〈t〉−, (107)

E+(XiM/ cosh2(θM)) = c1 − c2. (108)
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where

c1 = E+(1Xi=1M/ cosh2(θM)), (109)

c2 = E+(1Xi=−1M/ cosh2(θM)), (110)

〈t〉+ = E+(Xr′ |Xi = 1), (111)

〈t〉− = E+(Xr′ |Xi = −1). (112)

(113)

In the expression above the binomial coefficients are to be assume zero whenever its parameters are
not integer values. In order to prove that the incoherence condition is violated we will now show
that B ≡ limt→∞A(t) > 1 if θ is large enough. Writing a first order recurrence relation for 〈t〉+ and
〈t〉− it is not hard to see that,

〈t〉+ =
β − α

α+ β − 2
+

2(α − 1)

α+ β − 2
(α+ β − 1)t, (114)

〈t〉− =
β − α

α+ β − 2
+

2(1 − β)

α+ β − 2
(α+ β − 1)t, (115)

where

α = P+(Xr′′ = 1|Xr′ = 1) = eh
∗+θ/(eh

∗+θ + e−h∗−θ), (116)

β = P+(Xr′′ = −1|Xr′ = −1) = e−h∗+θ/(eh
∗−θ + e−h∗+θ), (117)

and r′′ denotes a child of r, i.e., a node at distance t+1 from r. Recall that h∗ is the unique positive
solution of (46). In the above expression P+ denotes the probability associated with the measure
(45) where again we can restrict T to the smallest tree containing all the variables that compose the
event whose probability we are trying to compute. Since 0 < α+ β − 1 < 1 we have that

B =
β − α

α+ β − 2

c1 + c2
c1 − c2

. (118)

A little bit of algebra allows us to write,

β − α

α+ β − 2
=

(1− β)− (1− α)

(1− α) + (1− β)
(119)

=
P+(Xr′′ = 1|Xr′ = −1)− P+(Xr′′ = −1|Xr′ = 1)

P+(Xr′′ = 1|Xr′ = −1) + P+(Xr′′ = −1|Xr′ = 1)
(120)

=

P+(Xr′′=1,Xr′=−1)
P+(Xr′=−1) − P+(Xr′′=−1,Xr′=1)

P+(Xr′=1)

P+(Xr′′=1,Xr′=−1)
P+(Xr′=−1) +

P+(Xr′′=−1,Xr′=1)
P+(Xr′=1)

(121)

=
1/P+(Xr′ = −1)− 1/P+(Xr′ = 1)

1/P+(Xr′ = −1) + 1/P+(Xr′ = 1)
(122)

=
P+(Xr′ = 1)− P+(Xr′ = −1)

P+(Xr′ = 1) + P+(Xr′ = −1)
= ET(1),θ,+(Xr′) = tanh(∆h∗/(∆ − 1)). (123)

In addition, taking into account that c1 and c2 can be expressed as,

c1 =
2

Z

∆∑

m=−∆

(
∆− 1
∆+m−2

2

)
meh

∗m

cosh θm
, (124)

c2 =
2

Z

∆∑

m=−∆

(
∆− 1
∆+m

2

)
meh

∗m

cosh θm
, (125)

(126)
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we have,

c1 + c2
c1 − c2

=

∑∆
m=1

( ∆
∆+m

2

)
m sinhmh∗

cosh θm
∑∆

m=1

( ∆
∆+m

2

)
m2

∆
cosh h∗m
cosh θm

. (127)

Expanding everything in powers of e−h∗
we get,

lim
p→∞

‖Q∗
ScSQ

∗
SS

−1‖ ≥ B =
(
1− 2e−2h∗∆/(∆−1) + ...

)(
1 + (∆− 2)e−2h∗+2 + ...

)
(128)

(
1− (∆− 2)2

∆
e−2h∗+2 + ...

)
= 1 + 2

∆ − 2

∆
e−2h∗+2 + .... (129)

Since h∗ grows with θ 7 this expansion proves the first part of Lemma 4.3. In fact, this expression
shows that for large θ, as θ increases, B decays to 1 from above. Hence, there exists a θthr(∆) such
that for all θ > θthr(∆) we will have limp→∞ ‖Q∗

SCS
Q∗

SS‖∞ > 0.

Remark C.1. It is interesting to see that the condition for B ≥ 1 is equivalent to c1(α− 1)+ c2(1−
β) ≥ 0. This implies that if B ≥ 1 then A(t) ≥ B and if B ≤ 1 then A(t) ≤ B. Hence, when
B > 1 we have A(t) > 1 ∀t and when B < 1 we have A(t) < 1 ∀t. Consequently, {θ : A(t) >
1} = {θ : B > 1} which does not depend on t. It is not hard to prove that A(t) > 0 ∀t, θ and thus,
{θ : limp→∞ ‖Q∗

SCS
Q∗

SS
−1‖∞ > 1} = {θ : B > 1}.

We now study how θthr(∆) scales with ∆ for large ∆. Notice that B = 1 is equivalent to
S(θ) ≡ c1(α − 1) + c2(1 − β) = 0. It is not hard to see that this equation has a single solution 8.
We show that if we search for solutions, θ, that scale like ∆−1 then in the limit when ∆ → ∞ we
get an expression that exhibits a single nontrivial zero. This means that for large ∆ the solution of
S(θ) = 0 must be of the form θ̃∆−1(1 + o(1)), where θ̃ is the solution of the scaled equation.

First notice that when ∆ → ∞ and θ = θ̃/(∆ − 1) then h∗ converges to the solution of h∗ =
θ̃ tanhh∗. We denote this solution by h∗∞. Hence, for large finite ∆ we can say that h∗ = h∗∞+O(∆−1).

We now write new expressions for c1, c2, α and β namely,

c1 =
1

2
E+(M/ cosh2(θM)) +

1

2∆
E+(M

2/ cosh2(θM)), (130)

c2 =
1

2
E+(M/ cosh2(θM))− 1

2∆
E+(M

2/ cosh2(θM)), (131)

1− α =
1

2
(1− tanh(h∗ + θ̃/(∆− 1))), (132)

1− β =
1

2
(1 + tanh(h∗ − θ̃/(∆− 1))). (133)

(134)

Expanding the function tanh(.) in α and β in powers of ∆−1 we can write

S(θ) =
1

2
tanhh∗ E+(M/ cosh2(θM))− 1

2∆
E+(M

2/ cosh2(θM)) (135)

+
θ̃

2∆(∆ − 1)
sech2h∗ E+(M

2/ cosh2(θM)) +O(∆−2). (136)

7h∗ = (∆− 1 + o(1))θ

8By Remark C.1, this tells us that there is a single point where limp→∞ ‖Q∗
SCSQ

∗
SS

−1‖∞ crosses 1.
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Note that we have not expanded h∗ in powers of ∆−1. Defining E0
+(.) to be the expectation with

respect to the tree model (45) where all connections to node r have been removed (the field on each
node is still h∗) we can write,

E+(M/ cosh2(θM)) =
E0
+(M/ cosh(θ̃M/(∆ − 1)))

E0
+(cosh(θ̃M/(∆ − 1)))

, (137)

E+(M
2/ cosh2(θM)) =

E0
+(M

2/ cosh(θ̃M/(∆− 1)))

E0
+(cosh(θ̃M/(∆− 1)))

. (138)

In addition, making use of the symmetry of the regular tree and expanding cosh(θ̃M/(∆−1)) around
θ̃M ′/(∆− 1) and θ̃M ′′/(∆ − 1) (M ′ and M ′′ to be defined later) we can write

E0
+

(
M

cosh(θ̃M/(∆ − 1))

)
= ∆ E0

+

(
Xi

cosh(θ̃M/(∆ − 1))

)
, (139)

E0
+

(
Xi

cosh(θ̃M/(∆ − 1))

)
= tanhh∗ E0

+

(
1

cosh(θ̃M ′/(∆− 1))

)
(140)

− θ̃

∆− 1
E0
+

(
tanh(θ̃M ′/(∆− 1))

cosh(θ̃M ′/(∆ − 1))

)
+O(∆−2), (141)

E0
+

(
M2

cosh(θ̃M/(∆ − 1))

)
= ∆E0

+

(
1

cosh(θ̃M/(∆ − 1))

)
(142)

+ ∆(∆− 1) E0
+

(
XiXj

cosh(θ̃M/(∆ − 1))

)
, (143)

E0
+

(
XiXj

cosh(θ̃M/(∆ − 1))

)
= tanh2 h∗ E0

+

(
1

cosh(θ̃M ′′/(∆ − 1))

)
(144)

− 2
θ̃

∆− 1
tanhh∗ E0

+

(
tanh(θ̃M ′′/(∆ − 1))

cosh(θ̃M ′′/(∆− 1))

)
+O(∆−2), (145)

where M ′ = M −Xi and M ′′ = M −Xi −Xj . Using these relations, the law of large numbers and
the relation h∗ = h∗∞ +O(∆−1) where h∗∞ = θ̃ tanhh∗∞ it is now possible to calculate the limit

lim
∆→∞

S(θ̃/(∆ − 1)) =
−1 + h∗∞ tanhh∗∞

2 cosh4 h∗∞
. (146)

This finishes the proof of the second part of the lemma since h∞ can now be determined by
h∞ tanhh∞ = 1 and θ̃ = h2∞.

We now show how to deduce the above expression. Let us introduce the following notation,

E0 = E0
+

(
1

cosh(θ̃M/(∆ − 1))

)
, E1 = E0

+

(
1

cosh(θ̃M ′/(∆ − 1))

)
, (147)

E2 = E0
+

(
1

cosh(θ̃M ′′/(∆ − 1))

)
, F1 = E0

+

(
tanh(θ̃M ′/(∆ − 1))

cosh(θ̃M ′/(∆ − 1))

)
, (148)

F2 = E0
+

(
tanh(θ̃M ′′/(∆ − 1))

cosh(θ̃M ′′/(∆ − 1))

)
,D = E0

+

(
cosh(θ̃M/(∆ − 1))

)
. (149)
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With this in mind and recalling that θ = θ̃/(∆ − 1) we can write,

S(θ) = (150)

tanhh∗

2D

(
∆E1 tanhh

∗ − θ̃∆

∆− 1
F1

)
(151)

− 1

2∆D

(
1− θ̃

∆− 1
sech2h∗

)(
∆E0 +∆(∆− 1)

(
E2 tanh

2 h∗ − 2θ̃

∆− 1
F2 tanhh

∗
))

(152)

+O(∆−1) (153)

=
tanh2 h∗

2D
(∆E1 − (∆− 1)E2)−

E0

2D
− ∆

∆− 1

F1

2D
θ̃ tanhh∗ +

F2

D
θ̃ tanhh∗ (154)

+
E2

2D
θ̃sech2h∗ tanh2 h∗ +

1

∆− 1

E0

2D
θ̃sech2h∗ − 1

∆− 1

F2

2D
θ̃2 tanhh∗sech2h∗ +O(∆−1). (155)

Now notice that expanding the cosh(.) inside E1 in expression ∆E1−(∆−1)E2 around M ′′θ̃/(∆−1)
we can rewrite the same expression as,

E2 −
∆

∆− 1
θ̃ tanhh∗F2 +O(∆−1). (156)

Inserting this in the above expression finally gives us,

S(θ) =
E2

2D
tanh2 h∗ − ∆

∆− 1

F2

2D
θ̃ tanh3 h∗ − E0

2D
− ∆

∆− 1

F1

2D
θ̃ tanhh∗ +

F2

D
θ̃ tanhh∗ (157)

+
E2

2D
θ̃sech2h∗ tanh2 h∗ +O(∆−1). (158)

By the law of large numbers we have,

lim
∆→∞

M/(∆ − 1) = lim
∆→∞

M ′/(∆ − 1) = lim
∆→∞

M ′′/(∆− 1) (159)

= lim
∆→∞

E+(Xi)

∣∣∣∣
θ=θ̃/(∆−1)

= tanhh∗∞, (160)

and since all the variables inside the expectations are uniformly bounded, we can take the limit inside
all the expectations of our expression for S(θ). Doing so we get,

lim
θ→∞

S(θ̃/(∆ − 1)) =
tanh2 h∗∞
2 cosh2 h∗∞

− θ̃ tanh4 h∗∞
2 cosh2 h∗∞

− 1

2 cosh2 h∗∞
− θ̃ tanh2 h∗∞

2 cosh2 h∗∞
(161)

+
θ̃ tanh2 h∗∞
cosh2 h∗∞

+
θ̃ tanh2 h∗∞
2 cosh4 h∗∞

. (162)

If we now use the relation h∞ = θ̃ tanhh∞ this expression can be simplified to,

1

2 cosh4 h∗∞
(−1 + h∗∞ tanhh∗∞). (163)

Finally, we show that there exists a constant Cmin such that

lim
p→∞

σmin(Q
∗
SS) = σmin

(
lim
p→∞

Q∗
SS

)
> Cmin.

9 (164)

9The equality is guaranteed since the sequence of matrices {Q∗
SS}

∞
p=1 have fix finite dimensions.
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Figure 5: Example of small graph for which the incoherence fails.

First notice that the eigenvalues of limp→∞Q∗
SS are a− b and a+(∆−1)b = c1− c2. It is immediate

to see that a − b > 0. In addition, since ∆(c1 − c2) = E+(M
2/ cosh2(θM)) > 0 it follows that

c1 − c2 > 0. Hence we can choose Cmin = min{a− b, c1 − c2} > 0.

D Analysis of Rlr(λ) for other families of graphs

As already discussed, the success of Rlr is closely related to the incoherence condition. For small
graphs, brute force computations allow to explicitly evaluate this condition. For example, consider the
reconstruction of the neighborhood of the leftmost node in the graph of Figure 5. The corresponding
incoherence parameter takes the for,

‖Q∗
SCSQ

∗
SS

−1‖∞ =
3x(1 + x2)

1 + 3x2
, (165)

where x = tanh θ. For x > x∗ ≡ 1
3

(
1− 3

√
2 + 22/3

)
≈ 0.44249 (i.e. for θ > atanh(x∗) ≈ 0.475327) the

right hand side is larger than 1, whence the incoherence condition is violated ‖Q∗
SCS

Q∗
SS

−1‖∞ > 1.
This simple calculation strongly suggests that Rlr(λ) fails on the graph of Figure 5 for θ >

atanh(x∗), although it does not provide a complete proof of this failure. In this appendix we study
three classes of graphs of increasing size. We show that with high probability Rlr succeeds in
reconstructing trees. On the other hand, we show that it fails –for θ large enough– at reconstructing
large two-dimensional grids, and that in fails in reconstructing graphs Gp from the toy example in
Section 1.1.

D.1 Trees

Lemma D.1. If G is a tree rooted at r with depth > 1 and node r has degree ∆ > 1 then, for this
node

‖Q∗
SCSQ

∗
SS

−1‖∞ = tanh θ < 1, (166)

σmin(Q
∗
SS) ≥ (1− tanh2 θ)/ cosh2(θ∆) and σmax(EG,θ(X

T
S XS)) = 1 + (∆ − 1) tanh2 θ.

Proof. In what follows E will denote EG,θ. Consider a node r′ ∈ SC and let k ∈ S be the unique
node in S that belongs to the shortest path connecting r′ to r. Let t be the distance between r′ and
k. For every i ∈ S one can write,

Q∗
r′i = E(Xr′Xi/ cosh

2(θM)) = E(Xr′Xk)E(XkXi/ cosh
2(θM)) = (tanh θ)t E(XkXi/ cosh

2(θM)).

This equation is still valid if k = i. We can thus write that Q∗
r′S = (tanh θ)t Q∗

kS and hence
Q∗

r′S(Q
∗
SS)

−1 = (tanh θ)tek where ek is a row vector with all entries equal to zero except kth entry
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Figure 6: Labeling of the nodes in the grid.

that equals 1. Therefore we can write ‖Q∗
r′S(Q

∗
SS)

−1‖1 = (tanh θ)t. Since there must exist at least
one node r′ ∈ S for which the corresponding node k is at distance 1 from S, that is for which t = 1,
we conclude that ‖Q∗

SCS
Q∗

SS
−1‖∞ = tanh θ < 1.

To prove the spectral bounds first notice that the positive-semidefinite matrix Q∗
SS has entries

Q∗
ij = (a − b)δij + b where a = E(1/ cosh2(θM)) and b = E(X1X2/ cosh

2(θM)) and where 1 and 2
are any two distinct nodes in S. A matrix of this form has eigenvalues a− b and a+ (∆− 1)b. It is
not hard to see that b ≥ 0 and hence

σmin(Q
∗
SS) = a− b = E((1−X1X2)/ cosh

2(θM)) ≥ E(1−X1X2)/ cosh
2(θ∆). (167)

Since E(1−X1X2) = 1− tanh2 θ the lower bound follows.
The computation of the value of the maximum eigenvalue value of EG,θ(X

T
S XS) is trivial since

this matrix is also of the form (a− b)δij + b with a = 1 and b = tanh2 θ.

D.2 Two-dimensional grids

Lemma D.2. If G is a two dimensional grid with periodic boundary conditions (each node connects
to its four closest neighbors) then for p large enough θ > θc we have ‖Q∗

SCS
Q∗

SS
−1‖∞ > 1 + ǫ and

σmin(Q
∗
SS) > Cmin where θc, ǫ > 0 and Cmin are independent of p.

Proof. We shall compute a lower bound on ‖Q∗
SCS

Q∗
SS

−1‖∞ by means of a low temperature expan-

sion, i.e. a Taylor expansion in powers of e−θ. We will show that for this lower bound the lemma
holds.

Label the central node as node 0, the neighboring nodes as 1, 2, 3 and 4. Denote as node 5 be
the common neighbor of node 1 and node 4. Throughout this proof we will denote EG,θ by E and
PG,θ by P.

First notice that due to the periodic boundary condition there is symmetry along the vertical
and horizontal axis in the lattice. Knowing this, matrix Q∗

SS can be written as




a b c b
b a b c
c b a b
b c b a


 , (168)

where a = E(1/ cosh2(θM)), b = E(X1X2/ cosh
2(θM)) and c = E(X1X3/ cosh

2(θM)), where M =∑
i∈∂iXi, that is, M is the sum of the variables in the neighborhood of i (i not included). Since we
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Figure 7: Basic type of configurations for the calculation of P(|M | = 0). The number in front of
each picture represents the number of equivalent symmetric configurations that need to be taken
into account.

only want to prove a lower bound on ‖Q∗
SCS

Q∗
SS

−1‖∞ we only consider the row of Q∗
SCS

associated
with node 5. This row has the form, [

d e e d
]
, (169)

where d = E(X1X5/ cosh
2(θM)) and e = E(X2X5/ cosh

2(θM)). To compute the low temperature
expansions of each of these quantities we first write,

a = P(|M | = 0) +
1

cosh2 2θ
P(|M | = 2) +

1

cosh2 4θ
P(|M | = 4), (170)

E

(
XiXj

cosh2 θM

)
= [P(|M | = 0,XiXj = 1)− P(|M | = 0,XiXj = −1)] (171)

+
1

cosh2 2θ
[P(|M | = 2,XiXj = 1)− P(|M | = 2,XiXj = −1)] (172)

+
1

cosh2 4θ
[P(|M | = 4,XiXj = 1)− P(|M | = 4,XiXj = −1)]. (173)

The problem thus resumes to the computation of the above probabilities. We will exemplify the
calculation of the low temperature expansion of P(|M | = 0), the calculation of the expansion for the
other terms follows in a similar fashion.

Let H(x) =
∑

(ij)∈E xixj , Hmax = maxxH(x) = |E| and δH(x) = H(x)−Hmax = −2P(x) where
P(x) is the length of the boundary separating positive spins from negative spins in configuration x.
Then,

P(|M | = 0) =
2

Z

∑

{x:x0=1,M=0}
eθH(x) (174)

=
2

Z
eθHmax

∑

s≥4

∑

{x:x0=1,M=0,P=s}
e−2θs. (175)

The term 2eθHmax/Z appears in all a, b, c, d and e and thus is irrelevant for the computation of
[Q∗

SCS
Q∗

SS
−1]5. Since only configurations with zero magnetization contribute to the sum there are

two basic types of configurations we need to consider, both of which must have exactly two neighbors
of node 0 with negative spin. These are represented in figure 7. Starting from these two basic states
we need to consider the first few lowest energy configurations. To help the counting there are two
parameters that we keep track of: the number of negative spins, t, and the perimeter of the boundary,
s. The first type of state produces the counting expressed in table 1. The associated configurations
are represented in figure 8.
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Figure 8: Configurations derived from first basic type of configuration for the calculation of P(|M | =
0).
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Table 1: Low energy states from first basic configuration for low temperature expansion of P(|M | = 0)

Negative spins, t Boundary perimeter, s Number of states

2 8 4 × 1
3 8 4 × 1
3 10 4 × 4
4 10 4 × 6
5 10 4 × 2

For the second type of basic configuration the counting is in table 2 and the associated configu-
rations in figure 9.

Table 2: Low energy states from second basic configuration for low temperature expansion of P(|M | =
0)

Negative spins, t Boundary perimeter, s Number of states

2 8 4 × 1
3 10 4 × 6

We can thus write,

P(|M | = 0) =
2

Z
eθHmax(10e−16θ + 60e−20θ +O(e−24θ)). (176)

For the expansion of P(|M | = 2) we also have two basic states types from which all the other ones
are built. The first type has only one negative spin in the neighborhood of node 0 and the second
type has 3 negative spins in the neighborhood of node 0. See figure 10.

The counting of states derived from the first basic state type and second basic state type are
recorded in tables 3 and 4 respectively.

Table 3: Low energy states from first basic configuration for calculation of P(|M | = 2)

Negative spins, t Boundary perimeter, s Number of states

1 4 4 × 1
2 6 4 × 3
2 8 4 × (|E| - 8)
3 8 4 × 10
4 8 4 × 2

We can thus write,

P(|M | = 2) =
2

Z
eθHmax(4e−8θ + 12e−12θ +O(e−16θ)). (177)
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Figure 9: Configurations derived from second basic type of configuration for the calculation of
P(|M | = 0).

Figure 10: Basic type of configurations for the calculation of P(|M | = 2). The number in front of
each picture represents the number of equivalent symmetric configurations that need to be taken
into account.
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Table 4: Low energy states from second basic configuration for calculation of P(|M | = 2)

Negative spins, t Boundary perimeter, s Number of states

3 12 4 × 1

For the expansion of P(|M | = 4) we again have two basic states types from which all the other
ones are built. The first type has all spins positive in the neighborhood of node 0 and the second
type has all spins negative in the neighborhood of node 0. The counting of states in printed in table
5.

Table 5: Low energy states for calculation of P(|M | = 4)

Negative spins, t Boundary perimeter, s Number of states

0 0 1
1 4 |E| - 5

4 16 1

We thus have,

P(|M | = 4) =
2

Z
eθHmax(4e−8θ + 12e−12θ +O(e−16θ)). (178)

Using the expansion 1/ cosh2(x) = 4e−2x(1− 2e−2x + 3e−4x +O(e−8x)) we can finally write,

a =
2

Z
eθHmax(4e−8θ + 16e−12θ +O(e−16θ)). (179)

For the probabilities involved in the calculation of b we get the following expansions,

P(|M | = 0,X1X2 = 1) =
2

Z
eθHmax(4e−16θ + 24e−20θ +O(e−24θ)), (180)

P(|M | = 0,X1X2 = −1) =
2

Z
eθHmax(6e−16θ + 38e−20θ +O(e−24θ)), (181)

P(|M | = 2,X1X2 = 1) =
2

Z
eθHmax(2e−8θ + 6e−12θ +O(e−16θ)), (182)

P(|M | = 2,X1X2 = −1) =
2

Z
eθHmax(2e−8θ + 6e−12θ +O(e−16θ)), (183)

P(|M | = 4,X1X2 = 1) =
2

Z
eθHmax(1 + (|E| − 5)e−8θ +O(e−12θ)), (184)

P(|M | = 4,X1X2 = −1) = 0, (185)

and putting everything together we obtain,

b =
2

Z
eθHmax(4e−8θ + (4|E| − 30)e−16θ +O(e−20θ)). (186)
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For the probabilities involved in the calculation of c we get the following expansions,

P(|M | = 0,X1X3 = 1) =
2

Z
eθHmax(2e−16θ + 12e−20θ +O(e−24θ)), (187)

P(|M | = 0,X1X3 = −1) =
2

Z
eθHmax(8e−16θ + 48e−20θ +O(e−24θ)), (188)

P(|M | = 2,X1X3 = 1) =
2

Z
eθHmax(2e−8θ + 6e−12θ +O(e−16θ)), (189)

P(|M | = 2,X1X3 = −1) =
2

Z
eθHmax(2e−8θ + 6e−12θ +O(e−16θ)), (190)

P(|M | = 4,X1X3 = 1) =
2

Z
eθHmax(1 + (|E| − 5)e−8θ +O(e−12θ)), (191)

P(|M | = 4,X1X3 = −1) = 0, (192)

and putting everything together we obtain,

c =
2

Z
eθHmax(4e−8θ + (4|E| − 34)e−16θ +O(e−20θ)). (193)

For the probabilities involved in the calculation of d we get the following expansions,

P(|M | = 0,X1X5 = 1) =
2

Z
eθHmax(6e−16θ + 38e−20θ +O(e−24θ)), (194)

P(|M | = 0,X1X5 = −1) =
2

Z
eθHmax(4e−16θ + 19e−20θ +O(e−24θ)), (195)

P(|M | = 2,X1X5 = 1) =
2

Z
eθHmax(3e−8θ + 9e−12θ +O(e−16θ)), (196)

P(|M | = 2,X1X5 = −1) =
2

Z
eθHmax(e−8θ + 3e−12θ +O(e−16θ)), (197)

P(|M | = 4,X1X5 = 1) =
2

Z
eθHmax(1 + (|E| − 6)e−8θ +O(e−12θ)), (198)

P(|M | = 4,X1X5 = −1) =
2

Z
eθHmax(e−8θ +O(e−12θ)), (199)

and putting everything together we obtain,

d =
2

Z
eθHmax(4e−8θ + 8e−12θ + (4|E| − 30)e−16θ +O(e−20θ)). (200)

For the probabilities involved in the calculation of e we get the following expansions,

P(|M | = 0,X2X5 = 1) =
2

Z
eθHmax(4e−16θ + 22e−20θ +O(e−24θ)), (201)

P(|M | = 0,X2X5 = −1) =
2

Z
eθHmax(6e−16θ + 38e−20θ +O(e−24θ)), (202)

P(|M | = 2,X2X5 = 1) =
2

Z
eθHmax(3e−8θ + 7e−12θ +O(e−16θ)), (203)

P(|M | = 2,X2X5 = −1) =
2

Z
eθHmax(e−8θ + 5e−12θ +O(e−16θ)), (204)

P(|M | = 4,X2X5 = 1) =
2

Z
eθHmax(1 + (|E| − 6)e−8θ +O(e−12θ)), (205)

P(|M | = 4,X2X5 = −1) =
2

Z
eθHmax(e−8θ +O(e−12θ)), (206)
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and putting everything together we obtain,

e =
2

Z
eθHmax(4e−8θ + 8e−12θ + (4|E| − 46)e−16θ +O(e−20θ)). (207)

Using the expansions for a, b, c, d and e and computing the series expansion of [Q∗
SCS

Q∗
SS

−1]5 in

powers of e−θ we finally obtain,

‖[Q∗
SCSQ

∗
SS

−1]‖∞ ≥ ‖[Q∗
SCSQ

∗
SS

−1]5‖1 = 1 + e−4θ +O(e−8θ). (208)

Following the ideas of [31] one can then show that the above formal expansion converges (a priori it
could be case that one of the higher order terms would depend on |E|). This finishes the first part
of the proof.

We now prove that there exists Cmin > 0 such that limp→∞ σ(Q∗
SS) > Cmin. This will prove the

second part of the theorem. First notice that the eigenvalues of Q∗
SS are {a− c, a+2b+ c, a−2b+ c}.

Now notice that,

a− c = E

(
1−X1X2

cosh2(θM)

)
, (209)

a+ 2b+ c =
1

4
E

(
M2

cosh2(θM)

)
, (210)

a− 2b+ c =
1

4
E

(
(X1 +X3 −X2 −X4)

2

cosh2(θM)

)
. (211)

where for a+ 2b+ c and a− 2b+ c we made use of the symmetry of the lattice. Since 1−X1X2, M
and X1 + X3 − X2 − X4 only depend on a fixed finite number of spins, and since θ < ∞, there is
a positive probability, independent of p, of their being non-zero. Hence, all eigenvalues of Q∗

SS are
strictly positive even as p → ∞.

D.3 Graphs Gp from the toy example

In this section we show that Rlr(λ) fails to reconstruct the graphs Gp defined in Section 1.1 (see
Figure 1) for all λ when θ is large enough. Note that this differs from previous analysis in the sense
that we do not require that λ → 0. We also show that this ‘critical’ θ behaves like ∆−1 for large
∆. Our analysis is based on numerical evaluation of functions for which explicit analytic expressions
can be given along the lines of Section A. Hence, our argument should be understood as a sketch of
a proof.

The success of Rlr(λ) is dictated by the behavior of L(θr,.; {x(ℓ)}nℓ=1) when n is large. In fact, it
is easy to use concentration inequalities to show that the solution of Rlr for finite n converges with
high probability to the minima of L∞(θ) + λ‖θ‖1 where L∞(θ) ≡ limn→∞L(θr,.; {x(ℓ)}nℓ=1).

If λ → 0 as n → ∞, we have seen that the success of Rlr is dictated by the incoherence condition,
which in turn is determined by the Hessian of L∞(θ). It is not hard to see that for this family of
graphs, ‖Q∗

SCS
Q∗

SS
−1‖∞ is increasing with p. For p = 5, Eq. (165) tells us that the incoherence

condition will be violated for θ high enough. Hence, by Lemma 4.1, Rlr will fail for all Gp (p ≥ 5)
when λ → 0 as n → ∞. The question now is: how does Rlr(λ) behave if λ → 0 does not hold?

If λ > constant > 0, the success of Rlr is dictated by the minima of L∞(θ) + λ‖θ‖1. For this
specific family of graphs, it is also not hard to see that for 0 < θ < ∞, L∞ is strictly convex and
that due to symmetry the unique minimum of L∞(θ) + λ‖θ‖1 must satisfy θ̂13 = θ̂14 = · · · = θ̂1p
for any λ. This allows us to consider L∞(θ) as a function of only two parameters. We call it
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Figure 11: For this family of graphs of increasing maximum degree ∆ Rlr(λ) will fail for any λ > 0
if θ > K/∆, where K is a large enough constant.

L′(θ13, θ12) ≡ L(θ12, θ13, θ13, ..., θ13). Now, the problem of understanding Rlr for λ > 0, large n and
any p becomes tractable and associated to understanding the following problem,

min
θ13,θ12

L′(θ13, θ12) + λ(p − 2)|θ13|+ λ|θ12|. (212)

We can analyze this optimization problem by solving it numerically. Figure 12 shows the solution
path of this problem as a function of λ for p = 5 and for different values of θ.

From the plots we see that for high values of θ, Rlr will never yield a correct reconstruction (unless
we assume λ = 0) since for these θs all curves are strictly above the horizontal axis, that is, θ̂12 > 0.
However, if θ is bellow a certain value, call it θT (θT ≈ 0.61 for graph G5), then there are solution
that yield a correct reconstruction if we choose values of λ > 0. In fact, for θ < θT all curves exhibit
a portion (above a certain λ) that have θ̂12 = 0 and θ̂13 > 0. That is, for θ < θT , Rlr makes a correct
structural reconstruction. If we make θ even smaller then the curves identify themselves with the
horizontal axis. We call by θL the value of θ below which this occurs.

We again note that all previous considerations were made in the limit when n → ∞. For high
finite n, with high probability the solution curves will not be the ones plotted but rather be random
fluctuations around these. For λ = 0, finite n and θ > θL, the solution curves will no longer start
from θ̂ = θ∗ = (θ, 0) but will have a positive non vanishing probability of having θ̂12 > 0. This
reflects the fact that for finite n the success of Rlr(λ) requires λ to be positive. However, for θ < θL
and λ > 0 such that we are in the region where the curves for n = ∞ are identically zero, the curves
for finite n will have an increasing probability of being identically zero too. Thus, for these values
of λ and θ, the probability of successful reconstruction will tend to 1 as n → ∞. From the plots we
also conclude that, unless the whole curve (for n = ∞) is identified with zero, Rlr(λ) restricted to
the assumption λ → 0 will fail with positive non vanishing probability for finite n. For θ < θL, when
the curves (for n = ∞) become identically zero, there will be a scaling of λ with n to zero that will
allow for a probability of success converging to 1 as n → ∞.

Requiring λ → 0 makes θL be the critical value above which reconstruction with Rlr fails. This is
the scenario in which we studied Rlr in section 2.2.2. In fact, θL coincides with the value above which
‖Q∗

SCS
Q∗

SS
−1‖∞ > 1. For this family of graphs we thus conclude that the true condition required

for successful reconstruction is not ‖Q∗
SCS

Q∗
SS

−1‖∞ < 1 but rather that θ < θT . Surprisingly,
for graphs in Gp this condition coincides with EG,θ(X1X3) > EG,θ(X1X2), i.e. the correlation
between neighboring nodes must be bigger than that between non-neighboring nodes. Notice that
this condition is in fact the condition required for Thr to work. Consequently, for this family of
graphs, the thresholding algorithm will always have a working range in terms of θ larger than that
of Rlr, when restricted to λ → ∞. In fact, a simple calculation using the local weak convergence
used in proving Lemma 4.3 shows that with high probability, for large random regular graphs, the
correlation between neighboring nodes is always strictly greater than between non-neighboring nodes.
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θ = 0.51

θ = 0.55

θ = 0.65

θ = 0.61

λ = 0λ = ∞ θ̂13

θ̂12

Figure 12: Solution curves of Rlr(λ) as a function of λ for different values of θ and p = 5. Along
each curve, λ increases from right to left. Plot points separated by δλ = 0.05 are included to show
the speed of the parameterization with λ. For λ → ∞ all curves tend to the point (0, 0). Remark:
Curves like the one for θ = 0.55 are identically zero above a certain value of λ.

This shows that the thresholding algorithm has as operation range θ ∈ (0,∞) for random regular
graphs, compared to θ ∈ (0, θL) for Rlr.

We will now prove that for large enough ∆ = p − 2 there is a unique θT (∆) (solution of
EG,θ,∆(X1X3) = EG,θ,∆(X1X2)) that scales like 1/∆ and above which EG,θ,∆(X1X3) < EG,θ,∆(X1X2).
Let 1 and 2 be the two nodes with degree greater than 2 and let 3 be any other node (of degree 2),
see Figure 11. Define x∆ = EG,θ,∆(X1X2) and y∆ = EG,θ,∆(X1X3). It is not hard to see that,

x∆+1 =
x∆ + tanh2 θ

1 + tanh2 θ x∆
y∆+1 =

tanh θ x∆ + tanh θ

1 + tanh2 θ x∆
. (213)

From these expression we see that the condition x∆(θ) > y∆(θ) is equivalent to x∆−1(θ) > tanh θ.
Remembering that expectations on the Ising model (1) can be computed from subgraphs of G, [35],
an easy calculation shows that,

x∆(θ) =
(1 + z(θ))∆ − (1− z(θ))∆

(1 + z(θ))∆ + (1− z(θ))∆
, (214)

where z(θ) = tanh2(θ). Since x∆ → 1 with ∆ then any θT also goes to 0 with ∆ and attending to
the slope and concavity of x∆(θ) and tanh(θ) for small θ it is easy to see that for large ∆ there will
exist a unique solution θT (∆). Furthermore, the condition x∆+1(θ) = y∆+1(θ) can now be written
like,

√
z(θ) =

(1 + z(θ))∆ − (1− z(θ))∆

(1 + z(θ))∆ + (1− z(θ))∆
. (215)
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Assuming z = K∆−γ, multiplying both sides of the previous equation by ∆γ/2 and taking the limit
when ∆ → ∞ we obtain, √

K = lim
∆→∞

∆γ/2 tanh(K∆1−γ), (216)

which will result in a non trivial relation for K only if γ = 2. In this case we get K1/2 = K and thus
for any ǫ > 0, if ∆ is sufficiently high, there will be a (unique) solution of (215) inside the interval
[(1− ǫ)/∆2, (1 + ǫ)/∆2]. Since z(θ) = tanh2(θ) then θT (∆) scales likes 1/∆ as we wanted to prove.
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