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Preface

Over the past 20 years or so, Markov Chain Monte Carlo (MCMC) methods have
revolutionized statistical computing. They have impacted the practice of Bayesian statistics
profoundly by allowing intricate models to be posited and used in an astonishing array of
disciplines as diverse as fisheries science and economics. Of course, Bayesians are not the
only ones to benefit from usingMCMC, and there continues to be increasing use of MCMC
in other statistical settings. The practical importance of MCMC has also sparked expan-
sive and deep investigation into fundamental Markov chain theory. As the use of MCMC
methods mature, we see deeper theoretical questions addressed, more complex applica-
tions undertaken and their use spreading to new fields of study. It seemed to us that it was
a good time to try to collect an overview of MCMC research and its applications.
This book is intended to be a reference (not a text) for a broad audience and to be of

use both to developers and users of MCMC methodology. There is enough introductory
material in the book to help graduate students as well as researchers new to MCMC who
wish to become acquainted with the basic theory, algorithms and applications. The book
should also be of particular interest to those involved in the development or application
of new and advanced MCMCmethods. Given the diversity of disciplines that use MCMC,
it seemed prudent to have many of the chapters devoted to detailed examples and case
studies of realistic scientific problems. Those wanting to see current practice inMCMCwill
find a wealth of material to choose from here.
Roughly speaking, we can divide the book into two parts. The first part encompasses 12

chapters concerning MCMC foundations, methodology and algorithms. The second part
consists of 12 chapters which consider the use of MCMC in practical applications. Within
the first part, the authors take such a wide variety of approaches that it seems pointless to
try to classify the chapters into subgroups. For example, some chapters attempt to appeal to
a broad audience by taking a tutorial approach while other chapters, even if introductory,
are either more specialized or present more advanced material. Yet others present original
research. In the second part, the focus shifts to applications. Here again, we see a variety of
topics, but there are two basic approaches taken by the authors of these chapters. The first
is to provide an overview of an application area with the goal of identifying best MCMC
practice in the area through extended examples. The second approach is to provide detailed
case studies of a given problem while clearly identifying the statistical and MCMC-related
issues encountered in the application.
When we were planning this book, we quickly realized that no single source can give

a truly comprehensive overview of cutting-edge MCMC research and applications—there
is just too much of it and its development is moving too fast. Instead, the editorial goal
was to obtain contributions of high quality that may stand the test of time. To this end,
all of the contributions (including those written by members of the editorial panel) were
submitted to a rigorous peer review process and many underwent several revisions. Some
contributions, even after revisions, were deemed unacceptable for publication here, and
we certainly welcome constructive feedback on the chapters that did survive our editorial
process. We thank all the authors for their efforts and patience in this process, and we ask
for understanding from thosewhose contributions are not included in this book.We believe
the breadth and depth of the contributions to this book, including some diverse opinions
expressed, imply a continuously bright and dynamic future for MCMC research. We hope
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this book inspires further work—theoretical, methodological, and applied—in this exciting
and rich area.
Finally, no project of this magnitude could be completed with satisfactory outcomewith-

out many individuals’ help. We especially want to thank Robert Calver of Chapman &
Hall/CRC for his encouragements, guidelines, and particularly his patience during the
entire process of editing this book. We also offer our heartfelt thanks to the numerous
referees for their insightful and rigorous review, often multiple times. Of course, the ulti-
mate appreciation for all individuals involved in this project comes from your satisfaction
with the book or at least a part of it. So we thank you for reading it.
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1
Introduction to Markov Chain Monte Carlo

Charles J. Geyer

1.1 History
Despite a few notable uses of simulation of random processes in the pre-computer era
(Hammersley and Handscomb, 1964, Section 1.2; Stigler, 2002, Chapter 7), practical
widespread use of simulation had to await the invention of computers. Almost as soon as
computers were invented, they were used for simulation (Hammersley and Handscomb,
1964, Section 1.2). The name “Monte Carlo” started as cuteness—gambling was then
(around 1950) illegal in most places, and the casino at Monte Carlo was the most famous in
the world—but it soon became a colorless technical term for simulation of random
processes.
Markov chain Monte Carlo (MCMC) was invented soon after ordinary Monte Carlo at

Los Alamos, one of the few places where computers were available at the time. Metropolis
et al. (1953)∗ simulated a liquid in equilibrium with its gas phase. The obvious way to find
out about the thermodynamic equilibrium is to simulate the dynamics of the system, and
let it run until it reaches equilibrium. The tour de force was their realization that they did
not need to simulate the exact dynamics; they only needed to simulate someMarkov chain
having the same equilibrium distribution. Simulations following the scheme of Metropolis
et al. (1953) are said to use the Metropolis algorithm. As computers became more widely
available, the Metropolis algorithm was widely used by chemists and physicists, but it did
not become widely known among statisticians until after 1990. Hastings (1970) general-
ized the Metropolis algorithm, and simulations following his scheme are said to use the
Metropolis–Hastings algorithm. A special case of the Metropolis–Hastings algorithm was
introduced by Geman and Geman (1984), apparently without knowledge of earlier work.
Simulations following their scheme are said to use the Gibbs sampler. Much of Geman and
Geman (1984) discusses optimization to find the posterior mode rather than simulation,
and it took some time for it to be understood in the spatial statistics community that the
Gibbs sampler simulated the posterior distribution, thus enabling full Bayesian inference
of all kinds. Amethodology that was later seen to be very similar to the Gibbs sampler was
introduced by Tanner and Wong (1987), again apparently without knowledge of earlier
work. To this day, some refer to the Gibbs sampler as “data augmentation” following these
authors. Gelfand and Smith (1990)made thewider Bayesian community aware of theGibbs
sampler, which up to that time had been known only in the spatial statistics community.
Then it took off; as of this writing, a search for Gelfand and Smith (1990) on Google Scholar
yields 4003 links to other works. It was rapidly realized that most Bayesian inference could

∗ The fifth author was Edward Teller, the “father of the hydrogen bomb.”
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be done by MCMC, whereas very little could be done without MCMC. It took a while for
researchers to properly understand the theory of MCMC (Geyer, 1992; Tierney, 1994) and
that all of the aforementionedworkwas a special case of the notion ofMCMC. Green (1995)
generalized theMetropolis–Hastings algorithm, asmuch as it can be generalized.Although
this terminology is not widely used, we say that simulations following his scheme use the
Metropolis–Hastings–Green algorithm. MCMC is not used only for Bayesian inference. Like-
lihood inference in caseswhere the likelihood cannot be calculated explicitly due tomissing
data or complex dependence can also useMCMC (Geyer, 1994, 1999; Geyer and Thompson,
1992, 1995, and references cited therein).

1.2 Markov Chains
A sequence X1, X2, . . . of random elements of some set is aMarkov chain if the conditional
distribution of Xn+1 given X1, . . . ,Xn depends on Xn only. The set in which the Xi take
values is called the state space of the Markov chain.
AMarkov chain has stationary transition probabilities if the conditional distribution ofXn+1

givenXn does not depend on n. This is themain kind ofMarkov chain of interest inMCMC.
Some kinds of adaptive MCMC (Chapter 4, this volume) have nonstationary transition
probabilities. In this chapter we always assume stationary transition probabilities.
The joint distribution of a Markov chain is determined by

• The marginal distribution of X1, called the initial distribution
• The conditional distribution of Xn+1 given Xn, called the transition probability dis-
tribution (because of the assumption of stationary transition probabilities, this does
not depend on n)

People introduced to Markov chains through a typical course on stochastic processes have
usually only seen examples where the state space is finite or countable. If the state space
is finite, written {x1, . . . , xn}, then the initial distribution can be associated with a vector
λ = (λ1, . . . ,λn) defined by

Pr(X1 = xi) = λi, i = 1, . . . , n,

and the transition probabilities can be associated with a matrix P having elements pij
defined by

Pr(Xn+1 = xj | Xn = xi) = pij, i = 1, . . . , n and j = 1, . . . , n.

When the state space is countably infinite, we can think of an infinite vector and matrix.
But most Markov chains of interest in MCMC have uncountable state space, and then we
cannot think of the initial distribution as a vector or the transition probability distribution
as a matrix. We must think of them as an unconditional probability distribution and a
conditional probability distribution.
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1.3 Computer Programs and Markov Chains
Suppose you have a computer program

Initialize x
repeat {

Generate pseudorandom change to x
Output x

}

If x is the entire state of the computer program exclusive of randomnumber generator seeds
(which we ignore, pretending pseudorandom is random), this is MCMC. It is important
that x must be the entire state of the program. Otherwise the resulting stochastic process
need not be Markov.
There is not much structure here. Most simulations can be fit into this format. Thus

most simulations can be thought of as MCMC if the entire state of the computer program
is considered the state of the Markov chain. Hence, MCMC is a very general simulation
methodology.

1.4 Stationarity
Asequence X1, X2, . . . of random elements of some set is called a stochastic process (Markov
chains are a special case). A stochastic process is stationary if for every positive integer k the
distribution of the k-tuple

(Xn+1, . . . ,Xn+k)

does not dependonn.AMarkov chain is stationary if it is a stationary stochastic process. In a
Markov chain, the conditional distribution of (Xn+2, . . . ,Xn+k) givenXn+1 does not depend
on n. It follows that a Markov chain is stationary if and only if the marginal distribution of
Xn does not depend on n.
An initial distribution is said to be stationary or invariant or equilibrium for some transition

probability distribution if theMarkov chain specified by this initial distribution and transi-
tion probability distribution is stationary. We also indicate this by saying that the transition
probability distribution preserves the initial distribution.
Stationarity implies stationary transition probabilities, but not vice versa. Consider an

initial distribution concentrated at one point. The Markov chain can be stationary if and
only if all iterates are concentrated at the same point, that is, X1 = X2 = . . ., so the chain
goes nowhere and does nothing. Conversely, any transition probability distribution can be
combined with any initial distribution, including those concentrated at one point. Such a
chain is usually not stationary (even though the transition probabilities are stationary).
Having an equilibrium distribution is an important property of a Markov chain tran-

sition probability. In Section 1.8 below, we shall see that MCMC samples the equilibrium
distribution,whether the chain is stationary or not. Not allMarkov chains have equilibrium
distributions, but all Markov chains used in MCMC do. The Metropolis–Hastings–Green
(MHG) algorithm (Sections 1.12.2, 1.17.3.2, and 1.17.4.1 below) constructs transition
probability mechanisms that preserve a specified equilibrium distribution.
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1.5 Reversibility
A transition probability distribution is reversiblewith respect to an initial distribution if, for
theMarkov chainX1,X2, . . . they specify, thedistributionof pairs (Xi,Xi+1) is exchangeable.
A Markov chain is reversible if its transition probability is reversible with respect to its

initial distribution.Reversibility implies stationarity, butnotviceversa.AreversibleMarkov
chain has the same laws running forward or backward in time, that is, for any i and k the
distributions of (Xi+1, . . . ,Xi+k) and (Xi+k, . . . ,Xi+1) are the same. Hence the name.
Reversibility plays two roles in Markov chain theory. All known methods for construct-

ing transition probability mechanisms that preserve a specified equilibrium distribution
in non-toy problems are special cases of the MHG algorithm, and all of the elementary
updates constructed by the MHG algorithm are reversible (which accounts for its other
name, the “reversible jump” algorithm). Combining elementary updates by composition
(Section 1.12.7 below) may produce a combined update mechanism that is not reversible,
but this does not diminish the key role played by reversibility in constructing transition
probabilitymechanisms forMCMC. The other role of reversibility is to simplify theMarkov
chain central limit theorem (CLT) and asymptotic variance estimation. In the presence of
reversibility the Markov chain CLT (Kipnis and Varadhan, 1986; Roberts and Rosenthal,
1997) is much sharper and the conditions are much simpler than without reversibility.
Some methods of asymptotic variance estimation (Section 1.10.2 below) only work for
reversible Markov chains but are much simpler andmore reliable than analogous methods
for nonreversible chains.

1.6 Functionals
If X1,X2, . . . is a stochastic process and g is a real-valued function on its state space, then
the stochastic process g(X1), g(X2), . . . having state space R is said to be a functional of
X1,X2, . . . .
If X1,X2, . . . is a Markov chain, then a functional g(X1), g(X2), . . . is usually not a

Markov chain. The conditional distribution of Xn+1 given X1, . . . ,Xn depends only on
Xn, but this does not, in general, imply that the conditional distribution of g(Xn+1) given
g(X1), . . . , g(Xn) depends only on g(Xn). Nevertheless, functionals of Markov chains have
important properties not shared by other stochastic processes.

1.7 The Theory of Ordinary Monte Carlo
Ordinary Monte Carlo (OMC), also called “independent and identically distributed (i.i.d.)
Monte Carlo” or “good old-fashionedMonte Carlo,” is the special case of MCMC in which
X1,X2, . . . are independent and identically distributed, in which case the Markov chain is
stationary and reversible.
Suppose you wish to calculate an expectation

μ = E{g(X)}, (1.1)
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where g is a real-valued function on the state space, but you cannot do it by exact
methods (integration or summation using pencil and paper, a computer algebra system,
or exact numerical methods). Suppose you can simulate X1,X2, . . . i.i.d. having the same
distribution as X. Define

μ̂n = 1
n

n∑
i=1

g(Xi). (1.2)

If we introduce the notation Yi = g(Xi), then the Yi are i.i.d. with mean μ and variance

σ2 = var{g(X)}, (1.3)

μ̂n is the sample mean of the Yi, and the CLT says that

μ̂n ≈ N
(
μ,
σ2

n

)
. (1.4)

The variance in the CLT can be estimated by

σ̂2n =
1
n

n∑
i=1

(
g(Xi)− μ̂n

)2, (1.5)

which is the empirical variance of the Yi. Using the terminology of Section 1.6, we can also
say that μ̂n is the sample mean of the functional g(X1), g(X2), . . . of X1,X2, . . . .
The theory of OMC is just elementary statistics. For example, μ̂n ± 1.96 · σ̂n/√n is an

asymptotic 95% confidence interval forμ. Note that OMC obeys what an elementary statis-
tics text (Freedman et al., 2007) calls the square root law: statistical accuracy is inversely
proportional to the square root of the sample size. Consequently, the accuracy of Monte
Carlo methods is limited. Each additional significant figure, a tenfold increase in accuracy,
requires a hundredfold increase in the sample size.
The only tricky issue is that the randomness involved is the pseudorandomness of com-

puter simulation, rather than randomness of real-world phenomena. Thus it is a good idea
to use terminology that emphasizes the difference. We call Equation 1.2 the Monte Carlo
approximation orMonte Carlo calculation of μ, rather than the “point estimate” or “point esti-
mator” of μ, as we would if not doing Monte Carlo. We call n theMonte Carlo sample size,
rather than just the “sample size.” We call σ̂n/

√
n the Monte Carlo standard error (MCSE),

rather than just the “standard error.” We also do not refer to Equation 1.1 as an unknown
parameter, even thoughwe do not know its value. It is simply the expectationwe are trying
to calculate, known in principle, although unknown in practice, since we do not know how
to calculate it other than by Monte Carlo approximation.
It is especially important to use this terminologywhen applyingMonte Carlo to statistics.

When the expectation (Equation 1.1) arises in a statistical application, there may already be
a sample size in this application, which is unrelated to the Monte Carlo sample size, and
there may already be standard errors unrelated to MCSEs. It can be hopelessly confusing
if these are not carefully distinguished.
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1.8 The Theory of MCMC
The theory of MCMC is just like the theory of OMC, except that stochastic dependence
in the Markov chain changes the standard error. We start as in OMC with an expectation
(Equation 1.1) that we cannot do other than by Monte Carlo. To begin the discussion, sup-
pose that X1,X2, . . . is a stationary Markov chain having initial distribution the same as the
distribution of X. We assume that the Markov chain CLT (Equation 1.4) holds, where now

σ2 = var{g(Xi)} + 2
∞∑
k=1

cov{g(Xi), g(Xi+k)} (1.6)

(this formula is correct only for stationary Markov chains; see below for nonstationary
chains). Since the asymptotic variance (Equation 1.6) is more complicated than the i.i.d.
case (Equation 1.3), it cannot be estimated by Equation 1.5. It can, however, be estimated in
several ways discussed below (Section 1.10). Conditions for the Markov chain CLT to hold
(Chan and Geyer, 1994; Jones, 2004; Roberts and Rosenthal, 1997, 2004; Tierney, 1994) are
beyond the scope of this chapter.
Nowwe come to a somewhat confusing issue. We never use stationaryMarkov chains in

MCMC, because if we could simulate X1 so that it has the invariant distribution, then we
could also simulateX2,X3, . . . in the sameway and do OMC. It is a theorem, however, that,
under a condition (Harris recurrence) that is easier to verify than the CLT (Chan andGeyer,
1994; Tierney, 1994), if the CLT holds for one initial distribution and transition probability,
then it holds for all initial distributions and that same transition probability (Meyn and
Tweedie, 1993, Proposition 17.1.6), and the asymptotic variance is the same for all initial
distributions.Although the theoretical asymptotic variance formula (Equation 1.6) contains
variances and covariances for the stationary Markov chain, it also gives the asymptotic
variance for nonstationary Markov chains having the same transition probability distribu-
tion (but different initial distributions). In practice, this does not matter, because we can
never calculate (Equation 1.6) exactly except in toy problems andmust estimate it from our
simulations.

1.8.1 Multivariate Theory

Suppose that we wish to approximate by Monte Carlo (Equation 1.1) where we change
notation so that μ is a vector with components μr and g(x) is a vector with components
gr(x). Our Monte Carlo estimator is still given by Equation 1.2, which is now also a vector
equation because each g(Xi) is a vector. Then the multivariate Markov chain CLT says that

μ̂n ≈ N(μ, n−1Σ),

where

Σ = var{g(Xi)} + 2
∞∑
k=1

cov{g(Xi), g(Xi+k)}, (1.7)

and where, although the right-hand sides of Equations 1.6 and 1.7 are the same,
they mean different things: in Equation 1.7 var{g(Xi)} denotes the matrix with com-
ponents cov{gr(Xi), gs(Xi)} and cov{g(Xi), g(Xi+k)} denotes the matrix with components
cov{gr(Xi), gs(Xi+k)}.
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Conditions for the multivariate CLT to hold are essentially the same as for the univariate
CLT. By the Cramér–Wold theorem, the multivariate convergence in distribution Zn

D−→ Z
holds if and only if the univariate convergence in distribution t′Zn

D−→ t′Z holds for every
nonrandom vector t. Thus the multivariate CLT essentially follows from the univariate
CLT, and is often not discussed. It is important, however, for users to understand that the
multivariate CLT does hold and can be used when needed.

1.8.2 The Autocovariance Function

We introduce terminology for the covariances that appear in Equation 1.6:

γk = cov{g(Xi), g(Xi+k)} (1.8)

is called the lag-k autocovariance of the functional g(X1), g(X2), . . . . Recall that in Equation 1.8
as in Equation 1.6 the covariances refer to the stationary chain with the same transition
probability distribution as the chain being used. The variance that appears in Equation 1.6
is then γ0. Hence, (Equation 1.6) can be rewritten

σ2 = γ0 + 2
∞∑
k=1
γk. (1.9)

The function k �→ γk is called the autocovariance function of the functional g(X1), g(X2), . . . ,
and the function k �→ γk/γ0 is called the autocorrelation function of this functional.
The natural estimator of the autocovariance function is

γ̂k = 1
n

n−k∑
i=1
[g(Xi)− μ̂n][g(Xi+k)− μ̂n] (1.10)

It might be thought that one should divide by n− k instead of n, but the large k terms are
already very noisy so dividing by n− k only makes a bad situation worse. The function
k �→ γ̂k is called the empirical autocovariance function of the functional g(X1), g(X2), . . . , and
the function k �→ γ̂k/γ̂0 is called the empirical autocorrelation function of this functional.

1.9 AR(1) Example
We now look at a toy problem for which exact calculation is possible.AnAR(1) process (AR
stands for autoregressive) is defined recursively by

Xn+1 = ρXn + Yn, (1.11)

where Yn are i.i.d. N(0, τ2) and X1 may have any distribution with finite variance. From
Equation 1.11 we get

cov(Xn+k,Xn) = ρ cov(Xn+k−1,Xn) = . . . = ρk−1 cov(Xn−1,Xn) = ρk var(Xn). (1.12)
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If the process is stationary, then

var(Xn) = var(Xn+1) = ρ2 var(Xn)+ var(Yn)

so

var(Xn) = τ2

1− ρ2 (1.13)

and since variances are nonnegative, we must have ρ2 < 1. Since a linear combination of
independent normal random variables is normal, we see that the normal distribution with
mean zero and variance (Equation 1.13) is invariant. Define υ2 to be another notation for
the right-hand side of Equation 1.13 so the invariant distribution is N(0, υ2).
It can be shown that this is the unique invariant distribution and thisMarkov chain obeys

the CLT. The variance in the CLT is

σ2 = var(Xi)+ 2
∞∑
k=1

cov(Xi,Xi+k)

= τ2

1− ρ2
(
1+ 2

∞∑
k=1
ρk
)

= τ2

1− ρ2
(
1+ 2ρ

1− ρ
)

= τ2

1− ρ2 ·
1+ ρ
1− ρ

= υ2 · 1+ ρ
1− ρ .

(1.14)

1.9.1 A Digression on Toy Problems

It is hard to know what lessons to learn from a toy problem. Unless great care is taken to
point out which features of the toy problem are like real applications and which unlike,
readers may draw conclusions that do not apply to real-world problems.
Here we are supposed to pretend that we do not know the invariant distribution, and

hence we do not know that the expectation we are trying to estimate, μ = E(X), where
X has the invariant distribution, is zero.
We cannot be interested in any functional of theMarkov chain other than the one induced

by the identity function, because we cannot do the analog of Equation 1.14 for any function
g other than the identity function, and thus would not have a closed-form expression for
the variance in the Markov chain CLT, which is the whole point of this toy problem.
Observe that Equation 1.14 goes to infinity as ρ→ 1. Thus in order to obtain a specified

accuracy for μ̂n as an approximation to μ, say σ/
√
n = ε, we may need a very large Monte

Carlo sample size n. How large n must be depends on how close ρ is to one. When we
pretend that we do not know the asymptotic variance (Equation 1.14), which we should do
because the asymptotic variance is never known in real applications, all we can conclude
is that we may need the Monte Carlo sample size to be very large and have no idea how
large.
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We reach the same conclusion if we are only interested in approximation error relative to
the standard deviation υ of the invariant distribution, because

σ2

υ2
= 1+ ρ
1− ρ (1.15)

also goes to infinity as ρ→ 1.

1.9.2 Supporting Technical Report

In order to avoid including laborious details of examples while still making all examples
fully reproducible, those details are relegated to a technical report (Geyer, 2010a) or the
vignettes for the R package mcmc (Geyer, 2010b). All calculations in this technical report or
those package vignettes are done using the R function Sweave, so all results in them are
actually produced by the code shown therein and hence are fully reproducible by anyone
who has R. Moreover, anyone can download the Sweave source for the technical report
from theURLgiven in the references at the end of this chapter or find the Sweave source for
the package vignettes in the doc directory of any installation of the mcmc package, separate
the R from the LATEX using the Stangle function, and play with it to see how the examples
work.

1.9.3 The Example

For our example, we choose ρ = 0.99 andMonte Carlo sample size n = 104. This makes the
MCSE about 14% of the standard deviation of the invariant distribution, which is a pretty
sloppy approximation. To get the relativeMCSE down to 10%, wewould need n = 2× 104.
To get the relative MCSE down to 1%, we would need n = 2× 106.
Figure 1.1 shows a time series plot of one MCMC run for this AR(1) process. From this

plot we can see that the series seems stationary—there is no obvious trend or change in
spread. We can also get a rough idea of how much dependence there is in the chain by
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FIGURE 1.1
Time series plot for AR(1) example.
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FIGURE 1.2
Running averages plot for AR(1) example.

counting large wiggles. The ratio of the variance in the CLT to the variance of the invariant
distribution (Equation 1.15) is 199 for this example. Hence, this MCMC sample is about as
useful as an i.i.d. sample with the same marginal distribution of sample size 104/199 ≈ 50.
Figure 1.2 shows a running averages plot for the same run shown in Figure 1.1. For

some reason, these running averages plots seem popular among MCMC users although
they provide no useful information. We know that MCMC, like OMC, obeys the square
root law. A plot like Figure 1.2 does illustrate that 1/

√
n is a decreasing function of n, but

not much else. Elementary statistics texts (Freedman et al., 2007, p. 276) often include one
(and only one) figure like our Figure 1.2 to illustrate to naive students how the law of
averages works. We have included Figure 1.2 only as an example of what not to do. In
particular, such running averages plots should never be used to illustrate talks, since they
tell the audience nothing they do not already know. Show a time series plot, like Figure 1.1,
instead.
Figure 1.3 shows an autocorrelation plot for the same run shown in Figure 1.1. The black

bars show the empirical autocorrelation function (ACF) defined in Section 1.8.2. We could
let the domain of the ACF be zero to n− 1, but the R function acf cuts the plot at the
argument lag.max. The acf function automatically adds the horizontal dashed lines,
which the documentation for plot.acf says are 95% confidence intervals assumingwhite
noise input. The dotted curve is the simulation truth autocorrelation function ρk derived
from Equation 1.12. In the spirit of this toy problem, we are supposed to pretend we do not
know the dotted curve, since we would not have its analog in any real application. We can
see, however, how well (not very) the empirical ACF matches the theoretical ACF.
It should come as no surprise that the empirical ACF estimates the theoretical ACF less

well than μ̂n estimatesμ. Even in i.i.d. sampling, themean is alwaysmuch better estimated
than the variance.
TheACF iswell enoughestimated,however, togive some ideahowfar significant autocor-

relation extends in our Markov chain. Of course, the theoretical autocorrelation is nonzero
for all lags, no matter how large, but we know (although we pretend we do not) that they
decrease exponentially fast. They are not practically significantly different from zero past
lag 500.
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FIGURE 1.3
Autocorrelation plot for AR(1) Example. Dashed lines: 95% confidence intervals assuming white noise input.
Dotted curve: simulation truth autocorrelation function.

1.10 Variance Estimation
Manymethods of variance estimation have been proposed. Most come from the time series
literature and are applicable to arbitrary stationary stochastic processes, not just to Markov
chains. We will cover only a few very simple, but very effective, methods.

1.10.1 Nonoverlapping Batch Means

A batch is simply a subsequence of consecutive iterates of the Markov chainXk+1, . . . ,Xk+b.
The number b is called the batch length. If we assume the Markov chain is stationary, then
all batches of the same length have the same joint distribution, and the CLT applies to each
batch. The batch mean

1
b

b∑
j=1

g(Xk+j)

is aMonte Carlo approximation of the expectation (Equation 1.1) we are trying to calculate,
and its distribution is approximately N(μ, σ2/b), where, as before, σ2 is given by Equa-
tion 1.6. A batch of length b is just like the entire run of length n, except for length. The
sample mean of a batch of length b is just like the sample mean of the entire run of length
n, except that the asymptotic variance is σ2/b instead of σ2/n.
Suppose b divides n evenly. Divide the whole run into m nonoverlapping batches of

length b. Average these batches:

μ̂b,k = 1
b

bk∑
i=b(k−1)+1

g(Xi). (1.16)
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Then
1
m

m∑
k=1

(μ̂b,k − μ̂n)2 (1.17)

estimates σ2/b.
It is important to understand that the stochastic process μ̂b,1, μ̂b,2, . . . is also a functional

of a Markov chain, not the original Markov chain but a different one. If S is the state space
of the original Markov chain X1, X2, . . . , then the batches

(Xb(k−1)+1, . . . ,Xkb), k = 1, 2, . . .

also form a Markov chain with state space Sb, because the conditional distribution of one
batch (Xb(k−1)+1, . . . ,Xkb) given the past history actually depends only on Xb(k−1), which is
a component of the immediately preceding batch. The batch means are a functional of this
Markov chain of batches.
Figure 1.4 shows a batchmean plot for the same run shown in Figure 1.1. The batch length

is 500, the run length is 104, so the number of batches is 20. Like the running averages plot
(Figure 1.2), we do not recommend this kind of plot for general use, because it does not
show anything a sophisticated MCMC user should not already know. It is useful to show
such a plot (once) in a class introducing MCMC, to illustrate the point that the stochastic
process shown is a functional of a Markov chain. It is not useful for talks about MCMC.
Figure 1.5 shows the autocorrelation plot of the batch mean stochastic process for the

same run shown in Figure 1.1, which shows the batches are not significantly correlated,
because all of the bars except the one for lag 0 are inside the dashed lines. In this case, a
confidence interval for the unknown expectation (Equation 1.1) is easily done using the R
function t.test:

> t.test(batch)
One Sample t-test

data: batch
t = -1.177, df = 19, p-value = 0.2537
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-2.5184770 0.7054673
sample estimates:
mean of x
-0.9065049

Here, batch is the vector of batch means which is plotted in Figure 1.4.
If this plot had shown the batches to be significantly correlated, then the method of batch

means should not have been used because it would have a significant downward bias.
However, the time series of batches can still be used, as explained in Section 1.10.2 below.
How does one choose the batch length? The method of batch means will work well

only if the batch length b is large enough so that the infinite sum in Equation 1.9 is well
approximated by the partial sum of the first b terms. Hence, when the method of batch
means is used blindly with no knowledge of the ACF, b should be as large as possible. The
only restriction on the length of batches is that the number of batches should be enough to
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FIGURE 1.4
Batch mean plot for AR(1) example. Batch length 500.

get a reasonable estimate of variance. If one uses a t test, as shown above, then the t critical
value corrects for the number of batches being small (Geyer, 1992; Schmeiser, 1982), but
there is no point in the number of batches being so small that that the variance estimate
is extremely unstable: 20–30 batches is a reasonable recommendation. One sometimes sees
assumptions that the number of batches “goes to infinity” in theorems, but this is not
necessary for simple MCSE calculation (Geyer, 1992, Section 3.2). If one is using estimated
variance in a sequential stopping rule (Glynn and Whitt, 1991, 1992), then one does need
the number of batches to go to infinity.
Meketon and Schmeiser (1984) pointed out that the batch means estimator of variance

(Equation 1.17) is still valid if the batches are allowed to overlap, and a slight gain in
efficiency is thereby achieved. For reasons explained in the following section, we do not
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FIGURE 1.5
Autocorrelation plot of batch means for AR(1) example. Batch length 500.
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recommend overlapping batch means, not because there is anything wrong with it, but
because it does not fit together well with other methods we recommend.

1.10.2 Initial Sequence Methods

Another approach to variance estimation is to work directly with the representation
(Equation 1.9) of the asymptotic variance. One cannot simply plug the empirical esti-
mates (Equation 1.10) into Equation 1.9 because the variance of the high-lag terms does
not decrease with lag, so as n goes to infinity an infinite amount of noise swamps the finite
signal. Many solutions for this problem have been proposed in the time series literature
(Geyer, 1992, Section 3.1 and references cited therein). But reversible Markov chains permit
much simpler methods. Define

Γk = γ2k + γ2k+1. (1.18)

Geyer (1992, Theorem 3.1) showed that the function k �→ Γk is strictly positive, strictly
decreasing, and strictly convex, and proposed three estimators of the asymptotic variance
(Equation 1.9) that use these three properties, called the initial positive sequence, initial mono-
tone sequence, and initial convex sequence estimators. Each is a consistent overestimate of
the asymptotic variance (meaning the probability of underestimation by any fixed amount
goes to zero as theMonte Carlo sample size goes to infinity) under no regularity conditions
whatsoever (Geyer, 1992, Theorem 3.2). The initial convex sequence estimator is the best,
because the smallest and still an asymptotic overestimate, but is a bit difficult to calculate.
Fortunately, the R contributed package mcmc now has a function initseq that calculates
all three estimators. We will only discuss the last. It forms

Γ̂k = γ̂2k + γ̂2k+1,

where γ̂k is given by Equation 1.10, then finds the largest index m such that

Γ̂k > 0, k = 0, . . . ,m,

then defines Γ̂m+1 = 0, and then defines k �→ Γ̃k to be the greatest convex minorant of
k �→ Γ̂k over the range 0, . . . ,m+ 1. Finally, it estimates

σ̂2conv = −γ̂0 + 2
m∑
k=0
Γ̃k. (1.19)

Figure 1.6 shows a plot of the function k �→ Γ̃k for the same run shown in Figure 1.1 com-
pared to its theoretical value. When comparing this plot to Figure 1.3, remember that each
index value in Figure 1.6 corresponds to two index values in Figure 1.3 because of the way
Equation 1.18 is defined. Thus Figure 1.6 indicates significant autocorrelation out to about
lag 300 (not 150).
The estimator of asymptotic variance (Equation 1.19) is calculated very simply in R:

> initseq(out)$var.con
[1] 7467.781

assuming the mcmc contributed package has already been loaded and out is the functional
of the Markov chain for which the variance estimate is desired.
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FIGURE 1.6
Plot of Γ̃ for AR(1) example. Solid line: initial convex sequence estimator of Equation 1.18. Dotted line: theoretical
value.

1.10.3 Initial Sequence Methods and Batch Means

When the original Markov chain is reversible, so is the chain of batches. Hence, initial
sequence methods can be applied to a sequence of nonoverlapping batch means derived
from a reversible Markov chain.
This means that the method of nonoverlapping batch means can be used without testing

whether thebatches are large enough. Simplyprocess themwithan initial sequencemethod,
and the result is valid regardless of the batch length.
Here is how that works. Suppose we use a batch length of 50, which is too short.

> blen * var(batch)
[1] 2028.515
> blen * initseq(batch)$var.con
[1] 7575.506

The naive batch means estimator is terrible, less than a third of the size of the initial convex
sequence estimator applied to the batch means (7575.506), but this is about the same as
the initial convex sequence estimator applied to the original output (7467.781). So nothing
is lost when only nonoverlapping batch means are output, regardless of the batch length
used.
Partly for this reason, and partly because nonoverlapping batch means are useful for

reducing the size of the output, whereas overlapping batch means are not, we do not
recommend overlapping batch means and will henceforth always use the term batch means
to mean nonoverlapping batch means.

1.11 The Practice of MCMC
The practice of MCMC is simple. Set up a Markov chain having the required invariant
distribution, and run it on a computer. The folklore of simulation makes this seem more
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complicated than it really is.Noneof this folklore is justifiedby theory andnoneof it actually
helps users do good simulations, but, like other kinds of folklore, it persists despite its lack
of validity.

1.11.1 Black Box MCMC

There is a great deal of theory about convergence of Markov chains. Unfortunately, none
of it can be applied to get useful convergence information for most MCMC applications.
Thus most users find themselves in the following situation we call black box MCMC:

1. You have a Markov chain having the required invariant distribution.
2. You know nothing other than that. The Markov chain is a “black box” that you
cannot see inside. When run, it produces output. That is all you know. You know
nothing about the transition probabilities of the Markov chain, nor anything else
about its dynamics.

3. You knownothing about the invariant distribution exceptwhat youmay learn from
running the Markov chain.

Point 2 may seem extreme. You may know a lot about the particular Markov chain being
used—for example, you may know that it is a Gibbs sampler—but if whatever you know
is of no help in determining any convergence information about the Markov chain, then
whatever knowledge you have is useless. Point 3 may seem extreme. Many examples in
the MCMC literature use small problems that can be done by OMC or even by pencil and
paper and for which a lot of information about the invariant distribution is available, but
in complicated applications point 3 is often simply true.

1.11.2 Pseudo-Convergence

AMarkov chain can appear to have converged to its equilibrium distribution when it has
not. This happens when parts of the state space are poorly connected by the Markov chain
dynamics: it takes many iterations to get from one part to another.When the time it takes to
transition between these parts is much longer than the length of simulated Markov chain,
then theMarkov chain can appear to have converged but the distribution it appears to have
converged to is the equilibrium distribution conditioned on the part inwhich the chainwas
started. We call this phenomenon pseudo-convergence.
This phenomenonhas also been called “multimodality” since itmay occurwhen the equi-

librium distribution is multimodal. But multimodality does not cause pseudo-convergence
when the troughs between modes are not severe. Nor does pseudo-convergence only hap-
pen when there is multimodality. Some of the most alarming cases of pseudo-convergence
occurwhen the state space of theMarkov chain is discrete and “modes” are notwell defined
(Geyer and Thompson, 1995). Hence pseudo-convergence is a better term.

1.11.3 One Long Run versus Many Short Runs

When you are in the black box situation, you have no idea how long runs need to be to
get good mixing (convergence rather than pseudo-convergence). If you have a run that is
already long enough, then an autocovariance plot like Figure 1.6 gives good information
about mixing, and you know that you need to run a large multiple of the time it takes the
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autocovariances to decay to nearly zero. But if all the runs you have done so far are nowhere
near long enough, then they provide no information about how long is long enough.
The phenomenon of pseudo-convergence has led many people to the idea of comparing

multiple runs of the sampler started at different points. If the multiple runs appear to
converge to the same distribution, then—according to the multistart heuristic—all is well.
But this assumes that you can arrange to have at least one starting point in each part of the
state space to which the sampler can pseudo-converge. If you cannot do that—and in the
black box situation you never can—then the multistart heuristic is worse than useless: it
can give you confidence that all is well when in fact your results are completely erroneous.
Worse, addiction tomany short runs can keep one from running the sampler long enough

to detect pseudo-convergence or other problems, such as bugs in the code. Peoplewho have
used MCMC in complicated problems can tell stories about samplers that appeared to be
converging until, after weeks of running, they discovered a new part of the state space
and the distribution changed radically. If those people had thought it necessary to make
hundreds of runs, none of them could have been several weeks long.
Your humble author has a dictum that the least one can do is to make an overnight run.

What better way for your computer to spend its time? In many problems that are not too
complicated, this is millions or billions of iterations. If you do not make runs like that, you
are simply not serious aboutMCMC.Your humble author has another dictum (only slightly
facetious) that one should start a runwhen thepaper is submittedandkeep runninguntil the
referees’ reports arrive. This cannot delay the paper, and may detect pseudo-convergence.

1.11.4 Burn-In

Burn-in is a colloquial term that describes the practice of throwing away some iterations at
the beginning of an MCMC run. This notion says that you start somewhere, say at x, then
you run theMarkov chain for n steps (the burn-in period) duringwhich you throw away all
the data (no output). After the burn-in you run normally, using each iterate in your MCMC
calculations.
The name “burn-in” comes from electronics. Many electronics components fail quickly.

Those that do not are a more reliable subset. So a burn-in is done at the factory to eliminate
the worst ones.
Markov chains do not work the same way. Markov chain “failure” (nonconvergence or

pseudo-convergence) is different from electronic component failure. Running longer may
cure the first, but a dead transistor is dead forever. Thus “burn-in” is a bad term inMCMC,
but there is more wrong than just the word, there is something fishy about the whole
concept.
Figure 1.7 illustrates the issue that burn-in addresses. It showsanAR(1) time serieswith all

parameters except starting position the same as Figure 1.1 so the equilibrium distribution,
normal with mean zero and variance (Equation 1.13), is the same for both. In Figure 1.7 the
starting position is far out in the tail of the equilibrium distribution, 10 standard deviations
from themean. In Figure 1.1 the startingposition is themean (zero). It takes several hundred
iterations before the sample path in Figure 1.7 gets into the region containing the whole
sample path in Figure 1.1.
The naive idea behind burn-in is that if we throw away several hundred iterations from

Figure 1.7 it will be just as good as Figure 1.1. Overgeneralizing examples like Figure 1.7
leads to the idea that everyMCMC run should have burn-in. Examples like Figure 1.1 show
that this is not so. A Markov chain started anywhere near the center of the equilibrium
distribution needs no burn-in.
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FIGURE 1.7
Time series plot for AR(1) example. Differs from Figure 1.1 only in the starting position.

Burn-in is onlyonemethod, andnot aparticularlygoodmethod, offindingagoodstarting
point.

There are several methods other than burn-in for finding a good starting point. One rule
that is unarguable is

Any point you don’t mind having in a sample is a good starting point.

In a typical application, one has no theoretical analysis of the Markov chain dynamics
that tells where the good starting points are (nor how much burn-in is required to get
to a good starting point). All decisions about starting points are based on the output of
some preliminary runs that appear to have “converged.” Any point of the parts of these
preliminary runs one believes to be representative of the equilibriumdistribution is as good
a starting point as any other.
So a good rule to follow is to start the next run where the last run ended. This is the rule

most authorities recommend for random number generator seeds and the one used by R.
It is also used by functions in the R package mcmc as discussed in Section 1.13 below.
Anothermethod is to start at amodeof the equilibriumdistribution (which can sometimes

be found by optimization before doingMCMC) if it is known to be in a region of appreciable
probability.
None of the examples in this chapter use burn-in.All use an alternativemethod of finding

starting points. Burn-in is mostly harmless, which is perhaps why the practice persists. But
everyone should understand that it is unnecessary, and those who do not use it are not
thereby making an error.
Burn-in has a pernicious interaction with the multistart heuristic. If one believes in mul-

tistart, then one feels the need to start at many widely dispersed, and hence bad, starting
points. Thus all of these short runs need be shortened some more by burn-in. Thus an
erroneous belief in the virtues of multistart leads to an erroneous belief in the necessity of
burn-in.
Another erroneous argument for burn-in is unbiasedness. If one could start with a

realization from the equilibrium distribution, then the Markov chain would be stationary
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and theMonteCarlo approximation (Equation 1.2)would be an unbiased estimator ofwhat
it estimates (Equation 1.1). Burn-in does not produce a realization from the equilibriumdis-
tribution, hence does not produce unbiasedness. At best it produces a small bias, but the
alternative methods also do that. Moreover, the bias is of order n−1, where n is the Monte
Carlo sample size, whereas the MCSE is of order n−1/2, so bias is negligible in sufficiently
long runs.

1.11.5 Diagnostics

Many MCMC diagnostics have been proposed in the literature. Some work with one run
of a Markov chain, but tell little that cannot be seen at a glance at a time series plot like
Figure 1.1 or an autocorrelation plot like Figure 1.3. Others with multiple runs of a Markov
chain startedatdifferentpoints,whatwecalled themultistart heuristic above.Manyof these
comewith theorems, but the theoremsneverprove thepropertyyou reallywant adiagnostic
tohave. These theorems say that if the chain converges, then thediagnosticwill probably say
that the chain converged, but they do not say that if the chain pseudo-converges, then the
diagnosticwill probably say that the chain did not converge. Theorems that claim to reliably
diagnose pseudo-convergence have unverifiable conditions that make them useless. For
example, as we said above, it is clear that a diagnostic based on the multistart heuristic will
reliably diagnose pseudo-convergence if there is at least one starting point in each part of
the state space to which the sampler can pseudo-converge, but in practical applications one
has no way of arranging that.
There is only one perfect MCMC diagnostic: perfect sampling (Propp and Wilson, 1996;

Kendall and Møller, 2000; see also Chapter 8, this volume). This is best understood as not
a method of MCMC but rather a method of Markov-chain-assisted i.i.d. sampling. Since it
is guaranteed to produce an i.i.d. sample from the equilibrium distribution of the Markov
chain, a sufficiently large sample is guaranteed to not miss any parts of the state space
having appreciable probability. Perfect sampling is not effective as a sampling scheme. If
it works, then simply running the underlying Markov chain in MCMCmode will produce
more accurate results in the same amount of computer time. Thus, paradoxically, perfect
sampling is most useful when it fails to produce an i.i.d. sample of the requested size in
the time one is willing to wait. This shows that the underlying Markov chain is useless for
sampling, MCMC or perfect.
Perfect sampling does not work on black box MCMC (Section 1.11.1 above), because

it requires complicated theoretical conditions on the Markov chain dynamics. No other
diagnostic ever proposed works on black box MCMC, because if you know nothing about
theMarkov chain dynamics or equilibrium distribution except what you learn from output
of the sampler, you can always be fooled by pseudo-convergence.

There are known knowns. These are things we know that we know. There are known
unknowns. That is to say, there are things that we now know we don’t know. But there
are also unknown unknowns. These are things we do not know we don’t know.

Donald Rumsfeld
US Secretary of Defense

Diagnostics canfind theknownunknowns. They cannotfind theunknownunknowns. They
cannot find out what a black boxMCMC sampler will do eventually. Only sufficiently long
runs can do that.
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1.12 Elementary Theory of MCMC
Wesay that abit of computer code thatmakesapseudorandomchange to its state is anupdate
mechanism. We are interested in update mechanisms that preserve a specified distribution,
that is, if the state has the specified distribution before the update, then it has the same
distribution after the update. From them we can construct Markov chains to sample that
distribution.
We say that an update mechanism is elementary if it is not made up of parts that are

themselves update mechanisms preserving the specified distribution.

1.12.1 The Metropolis–Hastings Update

Suppose that the specified distribution (the desired stationary distribution of the MCMC
sampler we are constructing) has unnormalized density h. This means that h is a positive
constant times a probability density. Thus h is a nonnegative-valued function that integrates
(for continuous state) or sums (for discrete state) to a value that is finite and nonzero. The
Metropolis–Hastings update does the following:

• When the current state is x, propose a move to y, having conditional probability
density given x denoted q(x, · ).

• Calculate the Hastings ratio

r(x, y) = h(y)q(y, x)
h(x)q(x, y)

. (1.20)

• Accept the proposed move y with probability

a(x, y) = min(1, r(x, y)), (1.21)

that is, the state after the update is ywith probability a(x, y), and the state after the
update is x with probability 1− a(x, y).

The last step is often called Metropolis rejection. The name is supposed to remind one of
“rejection sampling” in OMC, but this is a misleading analogy because in OMC rejection
sampling is done repeatedly until some proposal is accepted (so it always produces a new
value of the state). In contrast, one Metropolis–Hastings update makes one proposal y,
which is the new state with probability a(x, y), but otherwise the new state the same as
the old state x. Any attempt to make Metropolis rejection like OMC rejection, destroys the
property that this update preserves the distribution with density h.
The Hastings ratio (Equation 1.20) is undefined if h(x) = 0, thus we must always arrange

that h(x) > 0 in the initial state. There is no problem if h(y) = 0. All that happens is that
r(x, y) = 0 and the proposal y is accepted with probability zero. Thus the Metropolis–
Hastings update can never move to a new state x having h(x) = 0. Note that the proposal
y must satisfy q(x, y) > 0 with probability one because q(x, · ) is the conditional density of
y given x. Hence, still assuming h(x) > 0, the denominator of the Hastings ratio is nonzero
with probability one, and the Hastings ratio is well defined. Note that either term of the
numerator of the Hastings ratio can be zero, so the proposal is almost surely rejected if
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either h(y) = 0 or q(y, x) = 0, that is, if y is an impossible value of the desired equilibrium
distribution or if x is an impossible proposal when y is the current state.
We stress that nothing bad happens if the proposal y is an impossible value of the desired

equilibrium distribution. The Metropolis–Hastings update automatically does the right
thing, almost surely rejecting such proposals. Hence, it is not necessary to arrange that
proposals are always possible values of the desired equilibrium distribution; it is only
necessary to assure that one’s implementationof theunnormalizeddensity function hworks
when given any possible proposal as an argument and gives h(y) = 0 when y is impossible.
If unifrand is a function with no arguments that produces one U(0, 1) random variate

and the Hastings ratio has already been calculated and stored in a variable r, then the
following computer code does the Metropolis rejection step:

if (unifrand() < r) {
x = y

}

The variable x, which is considered the state of the Markov chain, is set to y (the proposal)
when a uniform random variate is less than the Hastings ratio r and left alone otherwise.
The following computer code works with the log Hastings ratio logr to avoid overflow:

if (logr >= 0 || unifrand() < exp(logr)) {
x = y

}

It uses the “short circuit” property of the || operator in the R or C language. Its second
operandunifrand() < exp(logr) is onlyevaluatedwhen itsfirst operandlogr >= 0
evaluates to FALSE. Thus exp(logr) can never overflow.

1.12.2 The Metropolis–Hastings Theorem

Wenowprove that theMetropolis–Hastings update is reversible with respect to h, meaning
that the transition probability that describes the update is reversible with respect to the
distribution having unnormalized density h.
IfXn is the current state andYn is the proposal,wehaveXn = Xn+1 whenever theproposal

is rejected. Clearly, the distribution of (Xn,Xn+1) given rejection is exchangeable.
Hence, it only remains to be shown that (Xn,Yn) is exchangeable given acceptance. We

need to show that

E{ f (Xn,Yn)a(Xn,Yn)} = E{ f (Yn,Xn)a(Xn,Yn)}

for any function f that has expectation (assuming Xn has desired stationary distribution).
That is, we must show we can interchange arguments of f in

∫∫
f (x, y)h(x)a(x, y)q(x, y) dx dy (1.22)

(with integrals replaced by sums if the state is discrete), and that follows if we can
interchange x and y in

h(x)a(x, y)q(x, y) (1.23)
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because we can exchange x and y in Equation 1.22, x and y being dummy variables. Clearly
only the set of x and y such that h(x) > 0, q(x, y) > 0, and a(x, y) > 0 contributes to the
integral or (in the discrete case) sum (Equation 1.22), and these inequalities further imply
that h(y) > 0 and q(y, x) > 0. Thuswemay assume these inequalities, inwhich casewe have

r(y, x) = 1
r(x, y)

for all such x and y.
Suppose that r(x, y) ≤ 1, so r(x, y) = a(x, y) and a(y, x) = 1. Then

h(x)a(x, y)q(x, y) = h(x)r(x, y)q(x, y)

= h(y)q(y, x)

= h(y)q(y, x)a(y, x).

Conversely, suppose that r(x, y) > 1, so a(x, y) = 1 and a(y, x) = r(y, x). Then

h(x)a(x, y)q(x, y) = h(x)q(x, y)

= h(y)r(y, x)q(y, x)

= h(y)a(y, x)q(y, x).

In either case we can exchange x and y in Equation 1.23, and the proof is done.

1.12.3 The Metropolis Update

The special case of the Metropolis–Hastings update when q(x, y) = q(y, x) for all x and y is
called theMetropolis update. Then the Hastings ratio (Equation 1.20) simplifies to

r(x, y) = h(y)
h(x)

(1.24)

and is called theMetropolis ratio or theodds ratio. ThusMetropolis updates save a little time
in calculating r(x, y) but otherwise have no advantages over Metropolis–Hastings updates.
One obvious way to arrange the symmetry property is to make proposals of the form

y = x + e, where e is stochastically independent of x and symmetrically distributed about
zero. Then q(x, y) = f (y − x), where f is the density of e. Widely used proposals of this
type have e normally distributed with mean zero or e uniformly distributed on a ball or a
hypercube centered at zero (see Section 1.12.10 below for more on such updates).

1.12.4 The Gibbs Update

In a Gibbs update the proposal is from a conditional distribution of the desired equilibrium
distribution. It is always accepted.
The proof of the theorem that this update is reversible with respect to the desired equilib-

riumdistribution is trivial. Suppose thatXn has the desired stationarydistribution. Suppose
that the conditional distribution ofXn+1 given f (Xn) is same as the conditional distribution
ofXn given f (Xn). Then the pair (Xn,Xn+1) is conditionally exchangeable given f (Xn), hence
unconditionally exchangeable.
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In common parlance, a Gibbs update uses the conditional distribution of one component
of the state vector given the rest of the components, that is, the special case of the update
described above where f (Xn) isXn with one component omitted. Conditional distributions
of this form are called “full conditionals.” There is no reason other than tradition why such
conditional distributions should be preferred.
In fact other conditionals have been considered in the literature. If f (Xn) isXnwith several

components omitted, this is called “block Gibbs.” Again, there is no reason other than
tradition why such conditional distributions should be preferred.
If one insists that Gibbs update only apply to full conditionals, then one could call the

updates described here “generalized Gibbs.” But the “generalized” here is not much of a
generalization. Simply do a change of variable so that f (Xn) is a group of components of
the new state vector and “generalized Gibbs” is “block Gibbs.” Also the argument for all
these updates is exactly the same.
Gibbs updates have one curious property not shared by other Metropolis–Hastings

updates: they are idempotent, meaning the effect of multiple updates is the same as the
effect of just one. This is because the update never changes f (Xn), hence the result of many
repetitions of the same Gibbs update results in Xn+1 having the conditional distribution
given f (Xn) just like the result of a single update. In order for Gibbs elementary updates to
be useful, they must be combined somehow with other updates.

1.12.5 Variable-at-a-Time Metropolis–Hastings

Gibbs updates alter only part of the state vector; when using “full conditionals” the part is
a single component. Metropolis–Hastings updates can be modified to do the same.
Divide the state vector into two parts, x = (u, v). Let the proposal alter u but not v. Hence,

the proposal density has the form q(x, u) instead of the q(x, y)wehad in Section 1.12.1.Again
let h(x) = h(u, v) be the unnormalized density of the desired equilibrium distribution. The
variable-at-a-time Metropolis–Hastings update does the following:

• When the current state is x = (u, v), propose a move to y = (u∗, v), where u∗ has
conditional probability density given x denoted q(x, · ) = q(u, v, · ).

• Calculate the Hastings ratio

r(x, y) = h(u∗, v)q(u∗, v, u)
h(u, v)q(u, v, u∗)

.

• Accept the proposed move y with probability (Equation 1.21), that is, the state
after the update is ywith probability a(x, y), and the state after the update is xwith
probability 1− a(x, y).

We shall not give a proof of the validity of variable-at-a-time Metropolis–Hastings, which
would look very similar to the proof in Section 1.12.2.
The term “variable-at-a-time Metropolis–Hastings” is something of a misnomer. The

sampler run in Metropolis et al. (1953) was a “variable-at-a-time” sampler. For histori-
cal accuracy, the name “Metropolis algorithm” should include the updates described in
Section 1.12.1 and in this section. Current usage, however, seems otherwise, naming the
samplers as we have done here.
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1.12.6 Gibbs Is a Special Case of Metropolis–Hastings

To see that Gibbs is a special case of Metropolis–Hastings, do a change of variable so
that the new state vector can be split x = (u, v) as we did in the preceding section, and
v is the part of the state on which the Gibbs update conditions. Thus we are doing block
Gibbs updating u from its conditional distribution given v. Factor the unnormalizeddensity
h(u, v) = g(v)q(v, u), where g(v) is an unnormalizedmarginal of v and q(v, u) is the (properly
normalized) conditional of u given v. Now do a Metropolis–Hastings update with q as the
proposal distribution. The proposal is y = (u∗, v), where u∗ has the distribution q(v, · ). The
Hastings ratio is

r(x, y) = h(u∗, v)q(u, v)
h(u, v)q(v, u∗)

= g(v)q(v, u∗)q(u, v)
g(v)q(v, u)q(v, u∗)

= 1.

Hence the proposal is always accepted.

1.12.7 Combining Updates

1.12.7.1 Composition

Let P1, . . . ,Pk be update mechanisms (computer code) and let P1P2 · · ·Pk denote the com-
posite update that consists of these updates done in that order with P1 first and Pk last. If
each Pi preserves a distribution, then obviously so does P1P2 . . .Pk.
If P1, . . . ,Pk are the Gibbs updates for the “full conditionals” of the desired equilibrium

distribution, then the composition update is often called a fixed scan Gibbs sampler.
As a simple example, suppose that the desired equilibrium distribution is exchangeable

and multivariate normal. Then the conditional distribution of one component of the state
vector given the rest is univariate normal with mean that is a symmetric linear function of
the rest of the components and constant variance. In the special case where there are just
two components, the fixed scan Gibbs sampler is just consecutive pairs of anAR(1) process
(Section 1.9 above).

1.12.7.2 Palindromic Composition

Note that P1P2 . . .Pk is not reversible with respect to the distribution it preserves unless the
transition probabilities associated with P1P2 . . .Pk and PkPk−1 . . .P1 are the same.
The most obvious way to arrange reversibility is to make Pi = Pk−i, for i = 1, . . . , k.

Then we call this composite update palindromic. Palindromic compositions are reversible,
nonpalindromic ones need not be.

1.12.8 State-Independent Mixing

LetPy be updatemechanisms (computer code) and let E(PY)denote the update that consists
of doing a random one of these updates: generate Y from some distribution and do PY .
If Y is independent of the current state and each Py preserves the same distribution, then

sodoesE(PY). IfXn has thedesired equilibriumdistribution, then it alsohas this distribution
conditional onY, andXn+1 also has this distribution conditional onY. Since the conditional
distribution of Xn+1 does not depend on Y, these variables are independent, and Xn+1 has
the desired equilibrium distribution unconditionally.
Furthermore, the Markov chain with update E(PY) is reversible if each Py is reversible.
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“Mixture” is used here in the sense of mixture models. The update E(PY) is the mixture
of updates Py.
Themost widely usedmixtures use a finite set of y values. For example, one popular way

to combine the “full conditional”Gibbs updates, one for each component of the state vector,
is by state-independentmixing using the uniformdistribution on the set of full conditionals
as the mixing distribution. This is often called a random scan Gibbs sampler. The choice of the
uniform distribution is arbitrary. It has no optimality properties. It does, however, make a
simple default choice.
Mixing and composition can be combined. Suppose we have elementary update mecha-

nisms P1, . . . ,Pk , and let Y be a set of functions from {1, . . . ,m} to {1, . . . , k}. For y ∈ Y , let
Qy denote the composition Py(1)Py(2) . . .Py(m). Now consider the update E(QY), where Y is
a random element of Y independent of the state of the Markov chain.
Ifm = k and the Pi are the “full conditional” Gibbs updates and Y has the uniform distri-

bution onY , which consists of all permutations of 1, . . . , k, then thismixture of compositions
sampler is often called a random sequence scan Gibbs sampler.
We are not fond of this “scan” terminology, because it is too limiting. It focuses attention

on a very few special cases of combination by composition and mixing, special cases that
have no optimality properties and no reason other than tradition for their prominence.
State-independent mixing with the mixing distribution having an infinite sample space

has also been used. Bélisle et al. (1993) and Chen and Schmeiser (1993) investigate the “hit
and run algorithm”which uses elementary updates Py where the state space of theMarkov
chain is Euclidean and y is a direction in the state space. Do a change of coordinates so that
y is a coordinate direction, and do a Gibbs or other variable-at-a-timeMetropolis–Hastings
update of the coordinate in the y direction. The mixture update E(PY) is called a “hit and
run sampler” when Y has the uniform distribution on directions.
Again there is no particular reason to use a “hit and run” sampler. It is merely one of an

infinite variety of samplers using composition and state-independent mixing.
State-dependent mixing is possible, but the argument is very different (Section 1.17.1

below).

1.12.9 Subsampling

Another topic that is not usually discussed in terms of composition and mixing, although
it is another special case of them, is subsampling of Markov chains.
If P is an update mechanism, we write Pk to denote the k-fold composition of P with

itself. If X1,X2, . . . is a Markov chain with update mechanism P, then X1,Xk+1,X2k+1, . . . is
a Markov chain with update mechanism Pk.
The process that takes every kth element of a Markov chain X1,X2, . . . forming a new

Markov chain X1,Xk+1,X2k+1, . . . is called subsampling the original Markov chain at spacing
k. As we just said, the result is another Markov chain. Hence, a subsampled Markov chain
is just like any other Markov chain.
According to Elizabeth Thompson, “You don’t get a better answer by throwing away

data.” This was proved as a theorem about Markov chains by Geyer (1992) for reversible
Markov chains and by MacEachern and Berliner (1994) for nonreversible Markov chains.
Subsampling cannot improve the accuracy of MCMC approximation; it must make things
worse.
The original motivation for subsampling appears to have been to reduce autocorrelation

in the subsampled chain to a negligible level. Before 1994 the Markov chain CLT was not
well understood by statisticians, so appeal was made to a non-theorem: the central limit
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almost-but-not-quite theorem for almost-but-not-quite i.i.d. data. Now that the Markov
chain CLT is well understood, this cannot be a justification for subsampling.
Subsamplingmay appear to be necessary just to reduce the amount of output of aMarkov

chain sampler to manageable levels. Billions of iterations may be needed for convergence,
but billions of iterations of output may be too much to handle, especially when using R,
which chokes on very large objects. But nonoverlapping batch means (Section 1.10.1) can
reduce the size of the output with no loss of accuracy of estimation. Moreover, one does not
need to know the batch length necessary tomake the empirical variance of the batchmeans
a good estimate of the asymptotic variance in theMarkov chain CLT in order to use batches
to reduce the size of output. The method of Section 1.10.3 allows one to use batches that
are too short and still obtain accurate estimates of the asymptotic variance in the Markov
chain CLT. Hence, if the objective is to reduce the size of output, batching is better than
subsampling.
Hence, the only reason to use subsampling is to reduce the size of output when one

cannot use batching. Good MCMC code, for example the functions metrop and temper
in the R contributed package mcmc (Geyer, 2010b), allow an arbitrary function g supplied
by the user as an R function to be used in calculation of the batch means in Equation 1.16.
Other MCMC code that does not allow this may not output batch means for required
functionals of the Markov chain. In this case the only way to reduce the size of output and
still calculate the required functionals is subsampling. Another case where one cannot use
the batchmeans iswhen the required functionals are not knownwhen the sampling is done.
This occurs, for example, in Monte Carlo likelihood approximation (Geyer and Thompson,
1992).
Geyer (1992) gave another justification of subsampling based on the cost of calculating

the function g in a functional (Section 1.6 above). If the cost in computing time of calculating
g(Xi) is much more than the cost of sampling (producingXi given Xi−1), then subsampling
may be justified. This is rarely the case, but it does happen.

1.12.10 Gibbs and Metropolis Revisited

Our terminology of “elementary updates” combined by “composition” or “mixing” or both
is not widespread. The usual terminology for a much more limited class of samplers is the
following:

• A Gibbs sampler is an MCMC sampler in which all of the elementary updates are
Gibbs, combined either by composition (fixed scan), by mixing (random scan),
or both (random sequence scan), the “scan” terminology being explained in
Section 1.12.8 above.

• AMetropolis algorithm is anMCMC sampler in which all of the elementary updates
are Metropolis, combined either by composition, mixing, or both (and the same
“scan” terminology is used).

• AMetropolis–Hastings algorithm is anMCMCsampler inwhich all of the elementary
updates areMetropolis–Hastings, combinedeither by composition,mixing, or both
(and the same “scan” terminology is used).

• A Metropolis-within-Gibbs sampler is the same as the preceding item. This name
makes no sense at all since Gibbs is a special case of Metropolis–Hastings
(Section 1.12.6 above), but it is widely used.
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• An independenceMetropolis–Hastings algorithm (named by Tierney, 1994) is a special
case of theMetropolis–Hastings algorithm inwhich the proposal distribution does
not depend on the current state: q(x, · ) does not depend on x.

• A random-walk Metropolis–Hastings algorithm (named by Tierney, 1994) is a special
case of the Metropolis–Hastings algorithm in which the proposal has the form
x + e, where e is stochastically independent of the current state x, so q(x, y) has the
form f (y − x).

The Gibbs sampler became very popular after the paper of Gelfand and Smith (1990)
appeared. The term MCMC had not been coined (Geyer, 1992). It was not long, however,
before the limitations of the Gibbs sampler were recognized. Peter Clifford (1993), dis-
cussing Smith and Roberts (1993), Besag and Green (1993), and Gilks et al. (1993),
said:

Currently, there are many statisticians trying to reverse out of this historical cul-de-sac. To
use the Gibbs sampler, we have to be good at manipulating conditional distributions . . .

this rather brings back the mystique of the statisticians.

TheAmerican translation of “reverse out of this cul-de-sac” is “back out of this blind alley.”
Despite this, many naive users still have a preference for Gibbs updates that is entirely
unwarranted. If I had a nickel for every time someone had asked for help with slowly
converging MCMC and the answer had been to stop using Gibbs, I would be rich. Use
Gibbs updates only if the resulting sampler works well. If not, use something else.
One reason sometimes given for the use of Gibbs updates is that they are “automatic.”

If one chooses to use a Gibbs sampler, no other choices need be made, whereas if one uses
the Metropolis–Hastings algorithm, one must choose the proposal distribution, and even
if one’s choice of Metropolis–Hastings algorithm is more restricted, say to normal random-
walk Metropolis–Hastings, there is still the choice of the variance matrix of the normal
proposal distribution. This “automaticity” of the Gibbs sampler is illusory, because even
if one only knows about “scans” one still must choose between fixed and random scan.
Moreover, one should consider “block Gibbs” or even the more general Gibbs updates
described in Section 1.12.4 above.
Nevertheless, Gibbs does seemmore automatic thanMetropolis–Hastings tomany users.

The question is whether this lack of options is a good thing or a bad thing. It is good if it
works well and bad otherwise.

1.13 A Metropolis Example
We now turn to a realistic example of MCMC, taken from the package vignette of the mcmc
contributed R package (Geyer, 2010b). The function metrop in this package runs a normal
random-walkMetropolis sampler in the terminology of Section 1.12.10 having equilibrium
distribution for a continuous random vector specified by a user-written R function that
calculates its log unnormalized density. Amajor design goal of this package is that there be
very little opportunity for user mistakes to make the simulation incorrect. For the metrop
function, if the user codes the logunnormalizeddensity function correctly, then the function
will run a Markov chain having the correct stationary distribution (specified by this user-
written function). There is nothing other than incorrectly writing the log unnormalized
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density function that the user can do to make the Markov chain have the wrong stationary
distribution.
It may seem that this is a very weak correctness property. There is no guarantee that

the Markov chain mixes rapidly and so produces useful results in a reasonable amount of
time. But nothing currently known can guarantee that for arbitrary problems. Methods of
proving rapid mixing, although they are applicable in principle to arbitrary problems, are
so difficult that they have actually been applied only to a few simple examples. Moreover,
they are entirely pencil-and-paper proofs. There is nothing the computer can do to assure
rapid mixing of Markov chains for arbitrary user-specified equilibrium distributions. Thus
this weak correctness property (having the correct equilibriumdistribution) is themost one
can expect a computer program to assure.
Thus this “weak” correctness property is the strongest property one can reasonably assert

for an MCMC program. All MCMC programs should guarantee it, but how many do?
The functions in the mcmc package have been exhaustively tested using the methodology
explained in Section 1.16 below and further described in the package vignette debug.pdf
that comes with every installation of the package.All of the tests are in the tests directory
of the source code of the package, which is available from CRAN (http://www.cran.r-
project.org/).
In addition to anR function that specifies the log unnormalizeddensity of the equilibrium

distribution, the user may also provide an R function that specifies an arbitrary functional
of theMarkov chain to be output. If theMarkov chain isX1,X2, . . . and this user-supplied R
function codes the mathematical function g, then g(X1), g(X2), . . . is output. Alternatively,
batch means of g(X1), g(X2), . . . are output.
Finally, the user must specify the variance matrix of the multivariate normal distribution

used in the “random-walk” proposal. There is nothing else the user can do to affect the
Markov chain simulated by the metrop function.
Let us see how it works. We use the example from the package vignette demo.pdf that

comes with every installation of the package. This is a Bayesian logistic regression problem
that uses the data set logit in the package. There are five variables in this data frame, the
response y and four quantitative predictor variables x1, x2, x3, and x4.
A frequentist analysis of these data is done by the following R statements:

library(mcmc)
data(logit)
out <- glm(y ˜ x1 + x2 + x3 + x4, data = logit,

family = binomial(), x = TRUE)
summary(out)

We wish to do a Bayesian analysis where the prior distribution for the five regression
coefficients (one for each predictor and an intercept) makes them i.i.d. normal with mean 0
and standard deviation 2.
The log unnormalized posterior (log likelihood plus log prior) density for this model is

calculated by the R function lupost defined as follows:

x <- out$x
y <- out$y

lupost <- function(beta, x, y, ...) {
eta <- as.numeric(x %*% beta)
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logp <- ifelse(eta < 0, eta - log1p(exp(eta)),- log1p
(exp(- eta)))
logq <- ifelse(eta < 0, - log1p(exp(eta)), - eta - log1p
(exp(- eta)))
logl <- sum(logp[y == 1]) + sum(logq[y == 0])
return(logl - sum(betaˆ2) / 8)

}

This assumes that out is the result of the call to glm shown above, so y is the response
vector and x is the model matrix for this logistic regression.
The tricky calculation of the log likelihood avoids overflow and catastrophic cancelation

in calculation of log(p) and log(q), where

p = exp(η)

1+ exp(η)
= 1
1+ exp(−η) ,

q = 1
1+ exp(η)

= exp(−η)
1+ exp(−η) ,

so taking logs gives

log(p) = η− log(1+ exp(η)) = − log(1+ exp(−η)),
log(q) = − log(1+ exp(η)) = −η− log(1+ exp(−η)).

To avoid overflow, we always chose the case where the argument of exp is negative. We
have also avoided catastrophic cancelation when |η| is large. If η is large and positive, then

p ≈ 1,

q ≈ 0,

log(p) ≈ − exp(−η),
log(q) ≈ −η− exp(−η),

and our use of the R function log1p, which calculates the function x �→ log(1+ x) correctly
for small x, avoids problems with calculating log(1+ exp(−η)) here. The case where η
is large and negative is similar. The above definitions having been made, the following
statements do an MCMC run:

beta.init <- as.numeric(coefficients(out))
out <- metrop(lupost, beta.init, 1e3, x = x, y = y)

where beta.init is the initial state of the Markov chain (it would be more natural to
a Bayesian to use the posterior mode rather than the maximum likelihood estimate, but
the starting position makes no difference so long as it is not too far out in the tails of
the equilibrium distribution) and where 1e3 is the MCMC sample size. The default batch
length is one, so there is no batching here. The component out$accept of the result gives
the acceptance rate (the fraction of Metropolis updates in which the proposal is accepted)
and the component out$batch gives the output of the Markov chain as an n× p matrix,
where n is the number of iterations here where there is no batching (although in general
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n is the number of batches) and where p is the dimension of the state space here where
no functional of the Markov chain is specified and the default is the identity functional
(although in general p is the dimension of the result of the user-supplied output function).
The functions in the mcmc package are designed so that if given the output of a preceding

run as their first argument, they continue the run of the Markov chain where the other run
left off. For example, if we were to say

out2 <- metrop(out, x = x, y = y)

here, then rbind(out$batch, out2$batch)would be a run of the Markov chain. The
second invocation of themetrop function startswith the seed of R’s randomnumber gener-
ator (RNG) and the state of theMarkov chain set towhat theywerewhen the first invocation
finished. Thus there is nodifference betweenrbind(out$batch, out2$batch) and the
result of one invocation starting at the same RNG seed and initial state and running for
twice as many iterations as the two shown here did.
This “restart” property obviates any need for burn-in. If the first run “converged” in the

sense that any part of the run was in a high-probability part of the state space, then the sec-
ond run starts in a good place and needs no burn-in. Since the first run started at the
maximum likelihood estimate, which is in a high-probability part of the state space, the first
run needed no burn-in either.
Using this function is not quite this simple. We need to adjust the normal proposal to

achieve a reasonable acceptance rate. It is generally accepted (Gelman et al., 1996) that an
acceptance rate of about 20% is right, although this recommendation is based on the asymp-
totic analysis of a toy problem (simulating a multivariate normal distribution) for which
one would never use MCMC and is very unrepresentative of difficult MCMC applications.
Geyer and Thompson (1995) came to a similar conclusion, that a 20% acceptance rate is
about right, in a very different situation. But they also warned that a 20% acceptance rate
could be very wrong, and produced an example where a 20% acceptance rate was impossi-
ble and attempting to reduce the acceptance rate below 70% would keep the sampler from
ever visiting part of the state space. So the 20% magic number must be considered like
other rules of thumb we teach in introductory courses (such as n > 30 means the normal
approximation is valid). We know these rules of thumb can fail. There are examples in the
literature where they do fail. We keep repeating them because we want something simple
to tell beginners, and they are all right for some problems.
The scale argument to the metrop function specifies the variance matrix for the pro-

posal. The default is the identity matrix. This results in too low an acceptance rate in this
problem (0.008). A little bit of trial and error (shown in the vignette) shows that

out <- metrop(out, scale = 0.4, x = x, y = y)

gives about 20% acceptance rate, so this scaling, which specifies proposal variance matrix
0.4 times the identitymatrix, iswhatwe use.More complicated specification of the proposal
variance is possible; see the help for the metrop function for details.
Now we do a longer run

out <- metrop(out, nbatch = 1e4, x = x, y = y)

and look at time series plots and autocorrelation plots (shown in the vignette), which show
that the Markov chain seems to mix well and that autocorrelations are negligible after
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lag 25.Weuse batch length 100 to be safe.We are interestedhere in calculating bothposterior
means and posterior variances. Variances are not functionals of the Markov chain, but
squares are, and we can use the identity var(Z) = E(Z2)− E(Z)2 to calculate variances
from means and means of squares. Thus we run the following:

out <- metrop(out, nbatch = 1e2, blen = 100,
outfun = function(z, ...) c(z, zˆ2), x = x, y = y)

Here the user-specified output function (argument outfun of the metrop function) maps
the state z, a vector of length 5, to c(z, zˆ2), a vector of length 10. So now out$batch
is a 100× 10 matrix, 100 being the number of batches (argument nbatch) and 10 being the
length of the result of outfun).
Now

foo <- apply(out$batch, 2, mean)
foo.mcse <- apply(out$batch, 2, sd) / sqrt(out$nbatch)

are estimates of the posterior means of the components of the vector returned by outfun
(the regression coefficients and their squares) and theMCSEof these estimates, respectively.
The first five components are useful directly:

mu <- foo[1:5]
mu.mcse <- foo.mcse[1:5]

These are estimates of the posterior means of the regression coefficients and their MCSE
(see the vignette for actual numbers).
MonteCarlo estimates of the posterior variances are foundusing var(Z) = E(Z2)− E(Z)2,

sigmasq <- foo[6:10] - foo[1:5]ˆ2

but to calculate the MCSE we need the delta method. Let ui denote the sequence of batch
means foroneparameter and ū thegrandmeanof this sequence (the estimateof theposterior
mean of that parameter), let vi denote the sequence of batch means for the squares of the
sameparameter and v̄ the grandmean of that sequence (the estimate of the posterior second
absolute moment of that parameter), and let μ = E(ū) and ν = E(v̄). Then the delta method
linearizes the nonlinear function

g(μ, ν) = ν− μ2

as

Δg(μ, ν) = Δν− 2μΔμ,

saying that

g(ū, v̄)− g(μ, ν)

has the same asymptotic normal distribution as

(v̄− ν)− 2μ(ū− μ)
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which, of course, has variance 1 / out$nbatch times that of

(vi − ν)− 2μ(ui − μ),

and this variance is estimated by

1
nbatch

nbatch∑
i=1

[
(vi − v̄)− 2ū(ui − ū)

]2.
So

u <- out$batch[ , 1:5]
v <- out$batch[ , 6:10]
ubar <- apply(u, 2, mean)
vbar <- apply(v, 2, mean)
deltau <- sweep(u, 2, ubar)
deltav <- sweep(v, 2, vbar)
foo <- sweep(deltau, 2, ubar, "*")
sigmasq.mcse <- sqrt(apply((deltav - 2 * foo)ˆ2,
2, mean) / out$nbatch)

does the MCSE for the posterior variance (see the vignette for actual numbers).
Another application of the delta method gives MCSE for posterior standard deviations

(see the vignette for details).

1.14 Checkpointing
The“restart”propertyof themetropandtemper functions is alsouseful for checkpointing.
If one wants to do very long runs, they need not be done with one function invocation.
Suppose that out is the result of an invocation of metrop and that the log unnormalized
density function and output function (if present) do not take additional arguments, getting
any additional data from the R global environment, and suppose that any such additional
data has been set up. Let ncheck be the number of repetitions of out we want to make.
Then

for (icheck in 1:ncheck) {
out <- metrop(out)
save(out, file = sprintf("check%03d.rda", icheck))

}

does them and saves them on disk, unless the computer crashes for some reason. After a
crash, only the work not done and saved is left to do. Set up any required global variables
and ncheck as before, and restart with

files <- system("ls check*.rda", intern = TRUE)
kcheck <- length(files)
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load(file = files[kcheck])
if (kcheck < ncheck) {

for (icheck in (kcheck + 1):ncheck) {
out <- metrop(out)
save(out, file = sprintf("check%03d.rda", icheck))

}
}

(this is for UNIX, e.g., Linux or MAC OS X, and would have to be modified for Microsoft
Windows). When finished collect the results with

files <- system("ls check*.rda", intern = TRUE)
ncheck <- length(files)
batch <- NULL
for (icheck in 1:ncheck) {

load(file = files[icheck])
batch <- rbind(batch, out$batch, deparse.level = 0)

}

and batch is the same as out$batch from one long run. This idiom allows very long runs
even with unreliable computers.

1.15 Designing MCMC Code
Nothing is easier than designing MCMC algorithms. Hundreds have been introduced into
the literature under various names.All that are useful in non-toy problems are special cases
of the Metropolis–Hastings–Green algorithm.
When one invents a new sampler, how does one argue that it is correct? One proves a

theorem: the new sampler is a special case of the MHG algorithm. The proof is usually not
difficult but does require tight reasoning, like all proofs. One common error is sloppiness
aboutwhat is the state of theMarkov chain.Many havemade themistake of having propos-
als depend on some variables in the computer program that are not considered part of the
state in calculating the Hastings ratio, that is, the state space is considered one thing in one
part of the argument and another thing in another part—a clear error if one thinks about it.
One does not have to call this theorem a theorem, but one does need the care in proving

it that any theorem requires. A few hours of careful thought about what is andwhat is not a
special case of theMHG algorithm can save weeks or months of wasted work on amistake.
This notion that you have to prove a theorem every time you invent an MCMC algorithm
came to your humble author from the experience of humbling mistakes committed by
himself and others. If you think you have to prove a theorem, you will (hopefully) exercise
appropriately careful argument. If you think you can use your intuition, many sad stories
could be told about failure of intuition. The MHG algorithm is not difficult but is also not
very intuitive.
Before one can prove a theorem, onemust state the theorem, and here too care is required.

The theorem must state precisely how one’s MCMC algorithm works, with no vagueness.
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This is very important. One cannot correctly implement an MCMC algorithm in com-
puter code when one has to guess what the algorithm actually is. Most erroneous MCMC
algorithms (just like most erroneous attempts at theorems) result from vagueness.
These general remarks having been made, we now turn to some desirable features of

MCMC code that few computer packages have but the mcmc package has shown to be very
useful.
The first is the “restart” property discussed in Sections 1.13 and 1.14 above and possessed

by both the metrop and temper functions. This is the property that the R object output
by a function doing MCMC (or the equivalent object for computer languages other than
R) should contain the RNG seeds and the final state of the Markov chain, so the next
run can simply continue this run. A sampler with the “restart” property needs no burn-in
(Section 1.11.4 above) and is easily checkpointed (Section 1.14).
The second is thepropertyofoutputtingbatchmeans forbatchesof apossibly subsampled

chain, alsopossessedbyboth themetropandtemper functions, specifiedby thearguments
blen and nspac. This property allows very long runs without overly voluminous output.
If nspac = 1 (the default, meaning no subsampling) is used, then no information is lost
by the batching. The batches can be used for valid inference—regardless of whether the
batch length is long enough for the ordinarymethod of batchmeans to work—as described
in Section 1.10.3 above.
The third is the property of outputting batchmeans (for batches of a possibly subsampled

chain) for an arbitrary functional of the Markov chain. The mcmc and temper functions do
this via a user-specified function supplied as their outfun argument. This allows users to
make the inferences theywantwithout rewriting the R package. Thismakes statistical com-
puter languages in which functions are not first-class objects (like they are in R) unsuitable
for MCMC.

1.16 Validating and Debugging MCMC Code
Along with “black box” MCMC (Section 1.11.1) above we introduce the notion of “black
box” testing of MCMC code. Black box testing is widely used terminology in software
testing. It refers to tests that do not look inside the code, using only its ordinary input
and output. Not looking at the code means it cannot use knowledge of the structure of the
programor the values any of its internal variables. ForMCMCcode black box testingmeans
you run the sampler and test that the output has the expected probability distribution.
Sincegoodness-of-fit testing for complicatedmultivariateprobabilitydistributions is very

difficult, black box testing ofMCMC code is highly problematic. It is evenmore sowhen the
sampler is itself black box, so nothing is known about the expected equilibriumdistribution
exceptwhatwemay learn from the sampler itself. Thusyourhumble authorhas beendriven
to the conclusion that black box testing of MCMC code is pointless.
Instead testing of the functions metrop and temper in the mcmc package uses a “white

box” approach that exposes all important internal variables of the program when the
optional argument debug = TRUE is specified. In particular, all uniform or normal ran-
dom variates obtained from R’s RNG system are output. This means that, assuming
we can trust R’s normal and uniform RNG, we can test whether metrop and temper
behave properly as deterministic functions of those pseudorandom numbers obtained
from R.
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Testing whether a program correctly implements a deterministic function is much easier
than testing whether it correctly simulates a specified probability distribution. In addition,
when debug = TRUE these programs also output proposals, logHastings ratios, and deci-
sions in theMetropolis rejection step, making it easy to check whether these are correct and
hence whether the Metropolis–Hastings algorithm is implemented correctly.
Itmust be admitted that, although this “white box” testingmethodology itmuch superior

to anything your humble author has previously used, it is not guaranteed to find conceptual
problems. That is why a clearly written specification (what we called the “theorem” in the
preceding section) is so important. During thewriting of this chapter just such a conceptual
bugwas discovered in the temper function in versions of the mcmc package before 0.8. The
terms q(i, j) and q(j, i) in the Hastings ratio for serial tempering (Equation 11.11 in Chapter
11, this volume) were omitted from the code, and the tests of whether the Hastings ratio
was calculated correctly were implemented by looking at the code rather than the design
document (the file temper.pdf in the doc directory of every installation of the mcmc
package), which was correct.
Ideally, the tests should be implemented by someone other than the programmer of the

code, a well-recognized principle in software testing. We know of no statistics code that
conforms to this practice, perhaps because there is no tradition of refereeing computer code
as opposed to papers. The most we can claim is that the “white box” testing methodology
used for the mcmcwould at least make such referring possible.

1.17 The Metropolis–Hastings–Green Algorithm
There are so many ideas in Green (1995) it is hard to know where to start. They include the
following:

• State-dependent mixing of updates
• Measure-theoretic Metropolis–Hastings using Radon–Nikodym derivatives
• Per-update augmentation of the state space
• Metropolis–Hastings with Jacobians

any one of which would have been a major contribution by itself.
We have deferred discussion of theMHG algorithm till now because wewanted to avoid

measure theory as longaswe could. TheMHGalgorithmcannot easily bediscussedwithout
using measure-theoretic terminology and notation.
A kernel K(x,A) is a generalization of regular conditional probability. For a fixed point

x in the state space, K(x, · ) is a countably-additive real signed measure on the state space.
For a fixedmeasurable setA in the state space, K( · ,A) is a measurable real-valued function
on the state space. If

K(x,A) ≥ 0, for all x and A,

then we say that K is nonnegative. If K is nonnegative and

K(x,A) ≤ 1, for all x and A,
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then we say that K is sub-Markov. If K is sub-Markov and

K(x, S) = 1, for all x,

where S is the state space, then we say that K is Markov. A Markov kernel is a regular
conditional probability and can be used to describe an elementary update mechanism for
a Markov chain or a combined update. In widely used sloppy notation, we write

K(x,A) = Pr(Xt+1 ∈ A | Xt = x)

to describe the combined update (the sloppiness is the conditioning on an event of measure
zero).
A kernel K is reversible with respect to a signed measure m if

∫∫
g(x)h(y)m(dx)K(x, dy) =

∫∫
h(x)g(y)m(dx)K(x, dy)

for all measurable functions g and h such that the expectations exist. A Markov kernel P
preserves a probability measure π if

∫∫
g(y)π(dx)P(x, dy) =

∫
g(x)π(dx)

for every bounded function g. Reversibility with respect to π implies preservation of π.

1.17.1 State-Dependent Mixing

Suppose we have a family of updates represented by Markov kernels Pi, i ∈ I. Choose one
at random with probability ci(x) that depends on the current state x, and use it to update
the state. The kernel that describes this combined update is

P(x,A) =
∑
i∈I

ci(x)Pi(x,A).

It is not a theorem that if each Pi preserves π, then P preserves π. The argument in
Section 1.12.8 above does not work.
Define

Ki(x,A) = ci(x)Pi(x,A).

If each Ki is reversible with respect to π, then the mixture kernel

P(x,A) =
∑
i∈I

ci(x)Pi(x,A) =
∑
i∈I

Ki(x,A)

is reversible with respect to π and hence preserves π. This is how state-dependent mixing
works.
It is often convenient to allow the identity kernel defined by

I(x,A) =
{
1, x ∈ A,
0, x /∈ A,
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to be among the Pi. The identity kernel is a Markov kernel that describes a do-nothing
update (the state is the same before and after).
Sometimes state-dependent mixing involving the identity kernel is described differently.

We insist that
ci(x) ≥ 0, for all i and x,

and ∑
i∈I

ci(x) ≤ 1, for all x.

Thenwhen x is the current state themixture update chooses the ith update with probability
ci(x) and performs the update described by Pi. With the remaining probability

1−
∑
i∈I

ci(x)

the mixture update does nothing (which is the same as doing the update described by the
identity kernel).

1.17.2 Radon–Nikodym Derivatives

Suppose thatm is a finite signed measure and n a sigma-finite positive measure defined on
the same space. We say thatm is dominated by n or thatm is absolutely continuous with respect
to n if

n(A) = 0 implies m(A) = 0, for all events A.

We say that m is concentrated on a set C if

m(A) = m(A ∩ C), for all events A.

We say that measures m1 and m2 are mutually singular if they are concentrated on disjoint
sets.
The Lebesgue–Radon–Nikodym theorem (Rudin, 1987, Theorem 6.10) says the following

about m and n as defined above. Firstly, there exist unique finite signed measures ma and
ms such that ms and n are mutually singular, ma is dominated by n, and m = ma +ms (this
is called the Lebesgue decomposition). Secondly, there exists a real-valued function f , which
is unique up to redefinition on a set of nmeasure zero, such that

ma(A) =
∫
A
f (x)n(dx), for all events A. (1.25)

We say that f is the density or Radon–Nikodym derivative of mwith respect to n and write

f = dm
dn

.

If n is Lebesguemeasure andm is dominated by n, then f is an ordinary probability density
function. If n is countingmeasure andm is dominated by n, then f is an ordinary probability
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mass function. Hence, the Radon–Nikodym derivative generalizes these concepts. When
m is not dominated by n, we have

dm
dn

= dma
dn

so the Radon–Nikodym derivative only determines the part of m that is absolutely contin-
uous with respect to n and says nothing about the part of m that is singular with respect to
n, but that is enough for many applications.
That the Radon–Nikodym derivative f is unique only up to redefinition on a set of n

measure zero would cause a problem if we made a different choice of f every time we used
it, but it causes no problem if we fix one choice of f and use it always. (The same issue arises
with ordinary probability density functions.)
Radon–Nikodym derivatives are often calculated using ratios. Suppose that m and n are

as above and that λ is a measure that dominates both, for example, λ = m+ n. Then we
have

dm
dn

= dm/dλ
dn/dλ

, (1.26)

where the right-hand side is interpreted as ordinary division when the denominator is
nonzero and an arbitrary choice when the denominator is zero.
To see this, let fm = dm/dλ and fn = dn/dλ, let C = { x : fn(x) = 0 }, let h be an arbitrary

measurable real-valued function, and define

f (x) =
{
fm(x)/fn(x), x ∈ C,
h(x), x /∈ C.

By the Lebesgue–Radon–Nikodym theorem, n is concentrated on C. Define a measure ms
by

ms(A) = m(A \ C), for all events A,

and let ma = m−ms. It remains to be shown that ma is dominated by n and f = dma/dn.
Both are shown by verifying (Equation 1.25) as follows. For any event A,

ma(A) = m(A ∩ C) =
∫
C
fm dλ =

∫
C
f · fn dλ =

∫
C
f dn =

∫
f dn

(the last equality being that n is concentrated on C).

1.17.3 Measure-Theoretic Metropolis–Hastings

1.17.3.1 Metropolis–Hastings–Green Elementary Update

We now describe the MHG elementary update with state-dependent mixing. For i ∈ I
we have proposal mechanisms described by kernels Qi. When the current state is x, we
choose the ith proposal mechanism with probability ci(x), generating a proposal y having
distribution Qi(x, · ).
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The unnormalized measure to preserve is η (the analog of the unnormalized density h in
the ordinary Metropolis–Hastings algorithm). Define measures m and mrev by

m(B) =
∫∫
1B(x, y)η(dx)ci(x)Qi(x, dy), (1.27a)

mrev(B) =
∫∫
1B(y, x)η(dx)ci(x)Qi(x, dy), (1.27b)

where 1B(x, y) is equal to one if (x, y) ∈ B and zero otherwise, so m and mrev are measures
on the Cartesian product of the sample space with itself and each B is a measurable subset
of that Cartesian product. Define

r = dmrev
dm

. (1.27c)

Then accept the proposal with probability min(1, r(x, y)).
Note the similarity of thisMHGupdate to theMetropolis–Hastings update (Section 1.12.1

above). It differs in the incorporation of state-dependent mixing so that ci(x) appears. It
also differs in that the Green ratio (Equation 1.27c) is actually a Radon–Nikodym derivative
rather than a simple ratio like theHastings ratio (Equation 1.20). The “Metropolis rejection”
step—accept the proposal with probability min(1, r)—is the same as in the Metropolis and
Metropolis–Hastings algorithms.
Aswe saw in Equation 1.26, a Radon–Nikodymderivative is often calculated as a ratio, so

the terminology “Green ratio” for Equation 1.27c is not so strange. But our main reason for
introducing this terminology is the analogy between the Metropolis ratio (Equation 1.24),
the Hastings ratio (Equation 1.20), and the Green ratio (Equation 1.27c). People often write
things like

r(x, y) = ci(y)η(dy)Qi(y, dx)
ci(x)η(dx)Qi(x, dy)

(1.28)

as a sloppy shorthand for actual definition via Equations 1.27a through 1.27c, but
Equation 1.28 has no mathematical content other than as a mnemonic for the actual
definition.
Green (1995) described a specific recipe for calculating the Green ratio (Equation 1.27c)

using the ratio method (Equation 1.26) in the particular case where λ is symmetric in the
sense that ∫∫

1B(x, y)λ(dx, dy) =
∫∫
1B(y, x)λ(dx, dy) (1.29)

for any measurable set B in the Cartesian product of the state space with itself. Such λ
always exist. For example, λ = m+mrev works. Then if f = dm/dλ and

C = { (x, y) : f (x, y) = 0 } (1.30)

we have

r(x, y) =
{
f (y, x)/f (x, y), x ∈ C,
0, x /∈ C. (1.31)

It does not matter whether or not we use Green’s recipe for calculating (Equation 1.27c).
Radon–Nikodym derivatives are unique up to redefinition on sets of measure zero, hence
are the same no matter how we calculate them.
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Note that the proposal distributions can be anything, described by arbitrary kernels Qi.
Thus the MHG algorithm generalizes the Metropolis–Hastings algorithm about as far as
it can go. The only way your humble author can think to generalize this would be to
allow state-dependent mixing over a continuum rather than a countable set ofQi (the way
state-independent mixing works; Section 1.12.8 above).
Ordinary Metropolis–Hastings samplers avoid forever the set of x such that h(x) = 0,

where h is the unnormalized density of the equilibrium distribution (Section 1.12.1 above).
Now thinking measure-theoretically, we are reminded that we may redefine h arbitrarily
on sets of measure zero under the equilibrium distribution, so the set avoided depends on
our choice of h. The MHG algorithm has a similar property. Suppose there is a set N that
must be avoided, and η(N) = 0. Then mrev(A×N) = 0 for any set A, and we may choose
a version of the Green ratio such that r(x, y) = 0 for y ∈ N. Then no proposal in N can be
accepted, and the chain forever avoids N.
All MCMC ideas discussed above are special cases of the MHG algorithm. Variable-at-

a-time Metropolis–Hastings updates are special cases where proposals only change one
coordinate. Gibbs updates are special cases where the MHG ratio is always one and the
proposal is always accepted.

1.17.3.2 The MHG Theorem

Define

a(x, y) = min
(
1, r(x, y)

)
,

b(x) = 1−
∫
a(x, y)Qi(x, dy).

The kernel describing the MHG elementary update is

Pi(x,A) = b(x)I(x,A)+
∫
A
a(x, y)Qi(x, dy),

and the kernel that we must verify is reversible with respect to η is

Ki(x,A) = ci(x)Pi(x,A),

that is, we must verify that
∫∫
g(x)h(y)η(dx)ci(x)Pi(x, dy)

is unchanged when g and h are swapped. Since
∫∫
g(x)h(y)ci(x)η(dx)Pi(x, dy) =

∫
g(x)h(x)b(x)ci(x)η(dx)

+
∫∫
g(x)h(y)a(x, y)ci(x)η(dx)Qi(x, dy),

it clearly is enough to show last term is unchanged when g and h are swapped.
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Suppose we have calculated the Green ratio (Equation 1.27c) using Green’s recipe
(Equation 1.31) with f = dm/dλ and λ satisfying Equation 1.29. Then

∫∫
g(x)h(y)a(x, y)ci(x)η(dx)Qi(x, dy) =

∫∫
g(y)h(x)a(y, x)ci(y)η(dy)Qi(y, dx)

=
∫∫
g(y)h(x)a(y, x)mrev(dx, dy)

=
∫∫
C
g(y)h(x)a(y, x)mrev(dx, dy)

=
∫∫
C
g(y)h(x)a(y, x)r(x, y)m(dx, dy)

=
∫∫
g(y)h(x)a(y, x)r(x, y)m(dx, dy)

=
∫∫
g(y)h(x)a(y, x)r(x, y)ci(x)η(dx)Qi(x, dy),

where C is defined by Equation 1.30, the first equality being the interchange of the dummy
variables x and y, the second and sixth equalities being the definitions of m and mrev, the
third and fifth equalities being a(y, x) = 0 when (x, y) ∈ C, and the fourth equality being
r = dmrev/dm and the fact that the part of mrev that is dominated by m is concentrated on
C, as we saw in our discussion of Equation 1.26.
Comparing the expressions at the ends of this chain of equalities, we see that it is enough

to show that

a(y, x)r(x, y) = a(x, y), whenever (x, y) ∈ C, (1.32)

because the integrals are the same whether or not they are restricted to C. If (x, y) ∈ C and
r(x, y) ≤ 1, then a(x, y) = r(x, y) and a(y, x) = 1, in which case (1.32) holds. If (x, y) ∈ C and
1 < r(x, y), then a(x, y) = 1 and

a(y, x) = r(y, x) = 1
r(x, y)

by Equation 1.31, in which case (Equation 1.32) holds again.

Example: Spatial Point Processes

All of this is very abstract. That is the point! But Radon–Nikodym derivatives are nothing to be
frightened of. We look at some simple examples to show how the MHG algorithm works in
practice.
One only needs theMHG algorithmwhen proposals are singular with respect to the equilibrium

distribution of the Markov chain (otherwise Metropolis–Hastings would do). This often happens
when the state space is the union of sets of different dimension. One example of this is spatial
point processes. Geyer and Møller (1994) proposed the sampler described here independently of
Green (1995), but in hindsight it is a special case of the MHG algorithm.
A spatial point process is a random pattern of points in a region A having finite measure (length,

area, volume, . . .), both the number of points and the positions of the points being random. A
homogeneous Poisson process has a Poisson distributed number of points and the locations of the
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points are independent and identically and uniformly distributed conditional on the number. We
consider processes having unnormalized densities hθ with respect to the Poisson processes.
The state space of the Poisson process is

A =
∞⋃

n=0
An,

where A0 denotes a set consisting of one point, representing the spatial pattern with no points.
The probability measure of the Poisson process is defined by

P(B) =
∞∑

n=0

μne−μ
n! · λ

n(B ∩ An)

λ(A)n
, for measurable B ⊂ A,

where λ is Lebesgue measure on A and μ is an adjustable parameter (the mean number of points).
To say that hθ is an unnormalized density with respect to P means that the probability measure of
the non-Poisson process is defined by

Qθ(B) = 1
c(θ)

∫
B

hθ(x)P(dx)

= 1
c(θ)

∞∑
n=0

μne−μ
n! · 1

λ(A)n

∫
B∩An

hθ(x)λn(dx)

for measurable B ⊂ A, where

c(θ) =
∞∑

n=0

μne−μ
n! · 1

λ(A)n

∫
hθ(x)λn(dx).

Note that the dimension of x , which is n, is different in different terms of these sums.
Let n(x) denote the number of points in x .We use state-dependent mixing over a set of updates,

one for each nonnegative integer i. The ith update is only valid when n(x) = i, in which case we
propose to add one point uniformly distributed in A to the pattern, or when n(x) = i + 1, in which
case we propose to delete a point from the pattern. (For definiteness, suppose we add or delete
the last point.) The state-dependent mixing probabilities are

ci(x) =

⎧⎪⎨
⎪⎩
1/2, n(x) = i,
1/2, n(x) = i + 1,
0, otherwise.

For fixed x have
∑

i ci (x) = 1 except when n(x) = 0. In that case, we do nothing (perform the
identity update) with probability 1−∑i ci(x) = 1/2 following the convention explained at the
end of Section 1.17.1.
In order to apply Green’s recipe for calculating Radon–Nikodym derivatives for the ith update,

we need a symmetric measure on

(Ai × Ai+1) ∪ (Ai+1 × Ai) (1.33)

that dominates the joint distribution m of the current state x and the proposal y or its reverse mrev.
This symmetric measure cannot be Lebesgue measure on Equation 1.33, because m and mrev are
degenerate, their first i coordinates being equal. Thus we choose the symmetric measure Λ that is
the image of λi+1 onto the subset of Equation 1.33 where the first i coordinates of the two parts
are equal.
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On the part of Equation 1.33 where x ∈ Ai and y ∈ Ai+1, we have

f (x , y) = dm
dΛ

(x , y) = μ
i e−μhθ(x)

i!λ(A)i
· 1
λ(A)

,

the first part on the right-hand side being the unnormalized density of the equilibrium distribution,
unnormalized because we left out c(θ), which we do not know how to calculate, and the second
part being the proposal density. On the part of Equation 1.33 where x ∈ Ai+1 and y ∈ Ai , we
have

f (x , y) = dm
dΛ

(x , y) = μi+1e−μhθ(x)

(i + 1)!λ(A)i+1 · 1,

the first part on the right-hand side being the unnormalized density of the equilibrium distribution,
and the second part being the proposal density (which is one because deleting the last point
involves no randomness). Thus the Green ratio is

r(x , y) =

⎧⎪⎪⎨
⎪⎪⎩

μ

i + 1
· hθ(y)

hθ(x)
, x ∈ Ai and y ∈ Ai+1,

i + 1
μ

· hθ(y)

hθ(x)
, x ∈ Ai+1 and y ∈ Ai .

We hope readers feel they could have worked this out themselves.
Since point patterns are usually considered as unordered, it is traditional to use hθ(x) that is

symmetric under exchange of points in pattern. In this case, the update that reorders the points
randomly also preserves the stationary distribution. The composition of this random reordering
with the update specified above (which deletes the last point) is equivalent to picking a random
point to delete.

Example: Bayesian Model Selection

We consider an example done by other means in Chapter 11 of this volume. If we use MHG,
there is no need for “padding” parameter vectors. We can just use the parameterization from
the problem statement. If, like the ST/US sampler in Section 11.3, we only make jumps between
models whose dimensions differ by one, then a very simple MHG proposal simply deletes a
component of the parameter vector when moving down in dimension and adds a component
distributed normally with mean zero and variance τ2 independently of the current state when
moving up in dimension. If h(θ) denotes the unnormalized posterior, then a move up in dimension
from current state θ to proposed stateψ, which adds a component z to the current state, has Green
ratio

r(θ,ψ) = ci(ψ)h(ψ)

ci (θ)h(θ)φ(z/τ)/τ
, (1.34)

where φ is the probability density function of the standard normal distribution, and a move down
in dimension from current state ψ to proposed state θ, which deletes a component z from the
current state, has Green ratio that is the reciprocal of the right-hand side of Equation 1.34.

1.17.4 MHG with Jacobians and Augmented State Space

Green (1995) also proposed what is in some respects a special case of MHG and in other
respects an extension. We call it Metropolis–Hastings–Green with Jacobians (MHGJ). This
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version is sowidely used thatmany users think thatMHGJ is the general version. This form
of elementary update moves between parts of the state space that are Euclidean spaces of
different dimension, hence it is often called “dimension jumping”—although that name
applies to other examples, such as the preceding one, that do not involve Jacobians.
Suppose that the state space is a disjoint union

S =
⋃
m∈M

Sm,

where Sm is a Euclidean space of dimension dm. We assume that the equilibrium distri-
bution of the Markov chain is specified by an unnormalized density h(x) with respect to
Lebesgue measure on S. MHGJ elementary updates move from one Sm to another. Say the
ith elementary update moves between Sm(i) and Sn(i). Thus it only makes sense to have
ci(x) > 0 when x ∈ Sm(i) ∪ Sn(i).
Let Um(i) and Un(i) be Euclidean spaces such that Sm(i) ×Um(i) is the same dimension as

Sn(i) ×Un(i). We specify a proposal density qi(x, · ), which describes the conditional distri-
bution of the proposal u given the current state x such that u ∈ Um(i) when x ∈ Sm(i) and
u ∈ Un(i) when x ∈ Sn(i). We also specify a function gi that maps points in Sm(i) ×Um(i) to
points in Sn(i) ×Un(i) and vice versa and which is its own inverse.
The MHGJ proposal is a combination of two steps. First generate a random u from the

distribution qi(x, · ). Then propose gi(x, u) = (y, v). The MHG ratio is

r(x, u, y, v) = ci(y)h(y)qi(y, v)
ci(x)h(x)qi(x, u)

· det(∇gi(x, u)),
the last factor being the Jacobian of themapping gi. This is followed by the usualMetropolis
rejection: accept the proposal with probability min(1, r).
For examples of the MHGJ algorithm, see Chapter 3 (this volume).

1.17.4.1 The MHGJ Theorem

The MHGJ algorithm, because of its per-update augmentation of Um(i) and Un(i), does not
exactly fit in the pattern of the MHG algorithm described above. Thus we give a separate
proof.
The proof starts just like the one in Section 1.17.3.2. We see that we can deal with one

arbitrary elementaryupdate, and consequently onlyonepair of state augmentations.When-
ever one augments the state, there are two issues: what is the equilibrium distribution on
the augmented state space, and how does it relate to the distribution of interest on the
original state? Here the augmented state is (x, u), the equilibrium distribution on the aug-
mented state space hasunnormalizeddensitywith respect toLebesguemeasure h(x)qi(x, u).
The original state is x and the distribution of interest with unnormalized density h(x) is a
marginal of it. The proposal (y, v) = g(x, u) is deterministic.
We now determine the Radon–Nikodym derivative of the distribution of (y, v) with

respect to (x, u).Weuse the ratiomethod, determiningfirst theRadon–Nikodymderivatives
of each with respect to Lebesgue measure λ on the space where (x, u) lives. We have

dm
dλ

= ci(x) · h(x)qi(x, u),
dmrev
dλ

= ci(y) · h(y)qi(y, v) · det
(∇gi(x, u)),
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where in the latter the Jacobian arises from the multivariate change-of-variable theorem,
because we are differentiating with respect to (x, u) rather than (y, v).
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2
A Short History of MCMC: Subjective Recollections
from Incomplete Data

Christian Robert and George Casella

2.1 Introduction
Markov chainMonteCarlo (MCMC)methodshavebeenaround for almost as longasMonte
Carlo techniques, even though their impact on statistics was not truly felt until the very
early 1990s, except in the specialized fields of spatial statistics and image analysis, where
those methods appeared earlier. The emergence of Markov based techniques in physics is
a story that remains untold within this survey (see Landau and Binder, 2005). Also, we will
not enter into a description of MCMC techniques, unless they have some historical link, as
the remainder of this volume covers the technical aspects.Acomprehensive treatment with
further references can also be found in Robert and Casella (2004).
We will distinguish between the introduction of Metropolis–Hastings based algorithms

and those related to Gibbs sampling, since they each stem from radically different origins,
even though their mathematical justification via Markov chain theory is the same. Tracing
the development of Monte Carlo methods, we will also briefly mention what we might
call the “second-generation MCMC revolution.” Starting in the mid to late 1990s, this
includes the development of particle filters, reversible jump and perfect sampling, and con-
cludes with more current work on population or sequential Monte Carlo and regeneration
and the computing of “honest” standard errors.
As mentioned above, the realization that Markov chains could be used in a wide variety

of situations only came (tomainstream statisticians)withGelfand and Smith (1990), despite
earlier publications in the statistical literature such as Hastings (1970), Geman and Geman
(1984), and Tanner and Wong (1987). Several reasons can be advanced: lack of computing
machinery (think of the computers of 1970!), or background onMarkov chains, or hesitation
to trust in the practicality of themethod. It thus required visionary researchers like Gelfand
and Smith to convince the community, supported by papers that demonstrated, through
a series of applications, that the method was easy to understand, easy to implement and
practical (Gelfand et al., 1990, 1992; Smith and Gelfand, 1992; Wakefield et al., 1994). The
rapid emergence of the dedicated BUGS (Bayesian inference using Gibbs sampling) soft-
ware as early as 1991, when a paper on BUGS was presented at the Valencia meeting, was
another compelling argument for adopting, at large, MCMC algorithms.∗

∗ Historically speaking, the development of BUGS can be traced back to Geman and Geman (1984) and Pearl
(1987), alongside developments in the artificial intelligence community, and it pre-dates Gelfand and Smith
(1990).
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2.2 Before the Revolution
Monte Carlo methods were born in Los Alamos, New Mexico, during World War II, even-
tually resulting in theMetropolis algorithm in the early 1950s. WhileMonte Carlo methods
were in use by that time, MCMC was brought closer to statistical practicality by the work
of Hastings in the 1970s.
What can be reasonably seen as the first MCMC algorithm is what we now call the

Metropolis algorithm, published by Metropolis et al. (1953). It emanates from the same
group of scientists who produced the Monte Carlo method, namely the research scientists
of Los Alamos, mostly physicists working on mathematical physics and the atomic bomb.
MCMC algorithms therefore date back to the same time as the development of regular

(MC only) Monte Carlo methods, which are usually traced to Ulam and von Neumann in
the late 1940s. StanislawUlam associates the original ideawith an intractable combinatorial
computation he attempted in 1946 (calculating the probability of winning at the solitaire
card game). This ideawas enthusiastically adopted by John vonNeumann for implementa-
tionwith direct applications to neutron diffusion, the name “Monte Carlo” being suggested
by Nicholas Metropolis. Eckhardt (1987) describes these early Monte Carlo developments,
and Hitchcock (2003) gives a brief history of the Metropolis algorithm.
These occurrences very closely coincide with the appearance of the very first general-

purpose digital computer, the ENIAC,which came to life in February 1946, after three years
of construction. The Monte Carlo method was set up by von Neumann, who was using
it on thermonuclear and fission problems as early as 1947. That same year, Ulam and
vonNeumann invented inversion andaccept–reject techniques (also recounted inEckhardt,
1987) to simulate from nonuniform distributions. Without computers, a rudimentary ver-
sion invented by Fermi in the 1930s went unrecognized (Metropolis, 1987). Note also that,
as early as 1949, a symposiumonMonteCarlowas supported byRand, theNational Bureau
of Standards, and theOakRidge laboratory and thatMetropolis andUlam (1949) published
the very first paper about the Monte Carlo method.

2.2.1 The Metropolis et al. (1953) Paper

The first MCMC algorithm is associated with a second computer, called MANIAC,∗ built
in Los Alamos under the direction of Metropolis in early 1952. Both a physicist and a
mathematician, Nicholas Metropolis, came to Los Alamos in April 1943, and was to die
there in 1999. The other members of the team also came to Los Alamos during those years,
including the controversial Edward Teller. As early as 1942, this physicist became obsessed
with the hydrogen bomb, which he eventually managed to design with Stanislaw Ulam,
using the improved computer facilities of the early 1950s.
Published in June 1953 in the Journal of Chemical Physics, the primary focus of Metropolis

et al. (1953) is the computation of integrals of the form

I =
∫
F(θ) exp

{−E(θ)

kT

}
dθ
/∫

exp
{−E(θ)

kT

}
dθ,

∗ MANIAC stands for Mathematical Analyzer, Numerical Integrator and Computer.
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on R
2N , θ denoting a set of N particles on R

2, with the energy E being defined as

E(θ) = 1
2

N∑
i=1

N∑
j=1
j =i

V(dij),

where V a potential function and dij the Euclidean distance between particles i and j in θ.
The Boltzmann distribution exp{−E(θ)/kT} is parameterized by the temperature T, k being the
Boltzmann constant, with a normalization factor,

Z(T) =
∫
exp

{−E(θ)

kT

}
dθ,

that is not available in closed form, except in trivial cases. Since θ is a 2N-dimensional
vector, numerical integration is impossible. Given the large dimension of the problem,
even standardMonte Carlo techniques fail to correctly approximate I, since exp{−E(θ)/kT}
is very small for most realizations of the random configurations of the particle system
(uniformly in the 2N square). In order to improve the efficiency of theMonte Carlomethod,
Metropolis et al. (1953) propose a random-walk modification of theN particles. That is, for
each particle i (1 ≤ i ≤ N), values

x′i = xi + σξ1i and y′i = yi + σξ2i
are proposed, where both ξ1i and ξ2i are uniform U(−1, 1). The energy difference ΔE
between the new configuration and the previous one is then computed and the new
configuration is accepted with probability

min
{
1, exp

(−ΔE
kT

)}
, (2.1)

and otherwise the previous configuration is replicated, in the sense that its counter is
increased by one in the final average of the F(θt)s over the τ moves of the random walk
(1 ≤ t ≤ τ). Note that Metropolis et al. (1953) move one particle at a time, rather than mov-
ing all of them together, whichmakes the initial algorithm appear a primitive kind of Gibbs
sampler!
The authors of Metropolis et al. (1953) demonstrate the validity of the algorithm by first

establishing irreducibility, which they call ergodicity, and second proving ergodicity, that is,
convergence to the stationarydistribution. The secondpart is obtainedvia adiscretizationof
the space: theyfirst note that theproposalmove is reversible, then establish that exp{−E/kT}
is invariant. The result is therefore proven in its full generality, minus the discretization.
The number of iterations of theMetropolis algorithm used in the paper seems to be limited:
16 steps for burn-in and 48–64 subsequent iterations, which required 4–5 hours on the Los
Alamos computer.
An interesting variation is the simulated annealing algorithm, developed by Kirkpatrick

et al. (1983), who connected optimization with annealing, the cooling of a metal. Their
variation is to allow the temperature T in Equation 2.1 to decrease as the algorithm runs,
according to a “cooling schedule.” The simulated annealing algorithm can be shown to find
the global maximum with probability 1, although the analysis is quite complex due to the
fact that, with varying T, the algorithm is no longer a time-homogeneous Markov chain.
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2.2.2 The Hastings (1970) Paper

TheMetropolis algorithmwas later generalized by Hastings (1970) and his student Peskun
(1973, 1981) as a statistical simulation tool that could overcome the curse of dimensionality
met by regular Monte Carlo methods, a point already emphasized in Metropolis et al.
(1953).∗
In his Biometrika paper,† Hastings (1970) also defines his methodology for finite and

reversible Markov chains, treating the continuous case by using a discretization analogy.
The generic probability of acceptance for a move from state i to state j is

αij =
sij

1+ πi
πj

qij
qji

,

where sij = sji is a positive quantity ensuring that αij ≤ 1, πi denotes the target and qij the
proposal. This generic form of probability encompasses the forms of both Metropolis et al.
(1953) and Barker (1965).At this stage, Hastings says that “Little is known about the relative
merits of these two choices [even though]Metropolis’s methodmay be preferable.” He also
warns against “high rejection rates as indicative of a poor choice of . . . transition matrix,”
but does not mention the opposite pitfall of low rejection rates, associated with a slow
exploration of the target.
The examples in the paper include a Poisson target with a ±1 random-walk proposal

and a normal target with a uniform random-walk proposal mixed with its reflection, that
is, a uniform proposal centered at −θt rather than at the current value θt of the Markov
chain. On a multivariate target, Hastings introduces a Gibbs sampling strategy, updating
one component at a time and defining the composed transition as satisfying the stationary
condition because each component does leave the target invariant. Hastings (1970) actu-
ally refers to Erhman et al. (1960) as a preliminary, if specific, instance of this sampler.
More precisely, this is Metropolis-within-Gibbs except for the name. This first introduc-
tion of the Gibbs sampler has thus been completely overlooked, even though the proof
of convergence is completely general, based on a composition argument as in Tierney
(1994), discussed in Section 2.4.1. The remainder of the paper deals with (a) an impor-
tance sampling version of MCMC, (b) general remarks about assessment of the error,
and (c) an application to random orthogonal matrices, with another example of Gibbs
sampling.
Three years later, Peskun (1973) published a comparison of Metropolis’ and Barker’s

forms of acceptance probabilities and showed in a discrete setup that the optimal choice is
that ofMetropolis, where optimality is to be understood in terms of the asymptotic variance
of any empirical average. The proof is a direct consequence of a result by Kemeny and Snell
(1960) on the asymptotic variance. Peskun also establishes that this asymptotic variance can
improve upon the independently and identically distributed (i.i.d.) case if and only if the
eigenvalues of P −A are all negative, whenA is the transitionmatrix corresponding to i.i.d.
simulation and P the transition matrix corresponding to the Metropolis algorithm, but he
concludes that the trace ofP −A is alwayspositive, therefore that theuniform improvement
is impossible.

∗ In fact, Hastings starts by mentioning a decomposition of the target distribution into a product of one-
dimensional conditional distributions, but this falls short of an early Gibbs sampler.

† Hastings (1970) is one of the ten Biometrika papers reproduced in Titterington and Cox (2001).
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2.3 Seeds of the Revolution
Anumber of early pioneers had brought forward the seeds of Gibbs sampling; in particular,
Hammersley and Clifford had produced a constructive argument in 1970 to recover a joint
distribution from its conditionals, a result later called the Hammersley–Clifford theorem by
Besag (1974, 1986). Besides Hastings (1970) and Geman and Geman (1984), already men-
tioned, other papers that contained the seeds of Gibbs sampling are Besag and Clifford
(1989), Broniatowski et al. (1984),Qian andTitterington (1990), andTanner andWong (1987).

2.3.1 Besag and the Fundamental (Missing) Theorem

In the early 1970s, Hammersley, Clifford, and Besag were working on the specification of
joint distributions from conditional distributions and on necessary and sufficient condi-
tions for the conditional distributions to be compatible with a joint distribution. What is
now known as the Hammersley–Clifford theorem states that a joint distribution for a vector
associated with a dependence graph (edge meaning dependence and absence of edge con-
ditional independence) must be represented as a product of functions over the cliques of
the graphs, that is, of functions depending only on the components indexed by the labels
in the clique.∗
From a historical point of view, Hammersley (1974) explains why the Hammersley–

Clifford theorem was never published as such, but only through Besag (1974). The reason
is that Clifford and Hammersley were dissatisfied with the positivity constraint: the joint
density could be recovered from the full conditionals only when the support of the joint
was made up of the product of the supports of the full conditionals. While they strived to
make the theorem independent of any positivity condition, their graduate student published a
counterexample that put a full stop to their endeavors (Moussouris, 1974).
While Besag (1974) can certainly be credited to some extent with the (re)discovery of

the Gibbs sampler, Besag (1975) expressed doubt about the practicality of his method,
noting that “the technique is unlikely to be particularly helpful in many other than binary
situations and theMarkov chain itself has no practical interpretation,” clearly understating
the importance of his work.
A more optimistic sentiment was expressed earlier by Hammersley and Handscomb

(1964), in their textbook on Monte Carlo methods. There they cover such topics as “crude
Monte Carlo,” importance sampling, control variates, and “conditional Monte Carlo,”
which looks surprisingly like a simulation approach to missing-data models (see Section
2.3.2). Of course, they do not cover the Hammersley–Clifford theorem but they do state in
the Preface: “We are convinced nevertheless that Monte Carlo methods will one day reach
an impressive maturity.” Well said!

2.3.2 EM and Its Simulated Versions as Precursors

Due to its connectionwithmissing-data problems, the EMalgorithm (Dempster et al., 1977)
has early connections with Gibbs sampling.† For instance, Broniatowski et al. (1984) and
Celeux and Diebolt (1985) had tried to overcome the dependence of EM methods on the

∗ Aclique is amaximal subset of the nodes of a graphs such that every pair of nodeswithin the clique is connected
by an edge (Cressie, 1993).

† This is especially relevant when considering the early introduction of a Gibbs sampler by data augmentation in
Tanner and Wong (1987).
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starting value by replacing the E step with a simulation step, the missing data zm being
generated conditionally on the observation x and on the current value of the parameter
θm. The maximization in the M step is then carried out on the simulated complete-data
likelihood, L(θ | x, zm), producing a new value θm+1, and this appears as a predecessor to
the Gibbs step of Gelman and King (1990) and Diebolt and Robert (1994) for mixture esti-
mation.∗ Unfortunately, the theoretical convergence results for these methods are limited.
Celeux and Diebolt (1990) have, however, solved the convergence problem of stochastic
EM (SEM) by devising a hybrid version called SAEM (for simulated annealing EM), where
the amount of randomness in the simulations decreases with the iterations, ending upwith
an EM algorithm.†

2.3.3 Gibbs and Beyond

Although somewhat removed from statistical inference in the classical sense and based on
earlier techniques used in statistical physics, the landmark paper by Geman and Geman
(1984) brought Gibbs sampling into the arena of statistical application. This paper is also
responsible for the name Gibbs sampling, because it implemented this method for the
Bayesian study of Gibbs random fields which, in turn, derive their name from the physi-
cist Josiah Willard Gibbs (1839–1903). This original implementation of the Gibbs sampler
was applied to a discrete image processing problem and did not involve completion as in
Section 2.3.2. But thiswas onemore spark that led to the explosion, as it had a clear influence
on Green, Smith, Spiegelhalter, and others.
The extent to which Gibbs sampling and Metropolis algorithms were in use within the

image analysis andpoint process communities is actually quite large, as illustrated inRipley
(1987) where Section 4.7 is entitled “Metropolis’ method and random fields” and describes
the implementation and validation of the Metropolis algorithm in a finite setting with
an application to Markov random fields and the corresponding issue of bypassing the
normalizing constant. Besag et al. (1991) is another striking example of the activity in the
spatial statistics community at the end of the 1980s.

2.4 The Revolution
Thegapofmore than30years betweenMetropolis et al. (1953) andGelfandandSmith (1990)
can still be partially attributed to the lack of appropriate computing power, as most of the
examples now processed by MCMC algorithms could not have been treated previously,
even though the hundreds of dimensions processed in Metropolis et al. (1953) were quite
formidable. However, by the mid 1980s, the pieces were all in place.
After Peskun, MCMC in the statistical world was dormant for about 10 years, and then

several papers appeared that highlighted its usefulness in specific settings such as pattern
recognition, image analysis or spatial statistics. In particular, Geman and Geman (1984)
influencedGelfand andSmith (1990) towrite a paper that is the genuine startingpoint for an
intensive use of MCMCmethods by the mainstream statistical community. It sparked new

∗ The achievement in the former paper remained unnoticed for several years due to the low-key and off-hand
use of the Gibbs sampler at a time when it was unknown to most of the community.

† Other and better-known connections between EM and MCMC algorithms can be found in the literature (Liu
and Rubin, 1994;Meng and Rubin, 1992;Wei and Tanner, 1990), but the connectionwith Gibbs sampling ismore
tenuous in that the simulation methods there are used to approximate quantities in a Monte Carlo fashion.



A Short History of MCMC 55

interest in Bayesian methods, statistical computing, algorithms, and stochastic processes
through the use of computing algorithms such as the Gibbs sampler and the Metropolis–
Hastings algorithm. Casella and George (1992) wrote an elementary introduction to the
Gibbs sampler∗ in The American Statistician that disseminated the technique to a wider
community while explaining in simple terms why the algorithm is valid.
Interestingly, the earlier paper by Tanner andWong (1987) had essentially the same ingre-

dients as Gelfand and Smith (1990), namely the fact that simulating from the conditional
distributions is sufficient to asymptotically simulate from the joint. This paper was con-
sidered important enough to be a discussion paper in the Journal of the American Statistical
Association, but its impact was somehow limited, comparedwith Gelfand and Smith (1990).
There are several reasons for this: one is that the method seemed to apply only to missing-
data problems, this impression being reinforced by the name data augmentation; another
is that the authors were more focused on approximating the posterior distribution. They
suggested an MCMC approximation to the target π(θ | x) at each iteration of the sampler,
based on

1
m

m∑
k=1
π(θ | x, zt,k), zt,k ∼ π̂t−1(z | x), k = 1, . . . ,m,

that is, by replicating m times the simulations from the current approximation π̂t−1(z | x)
of the marginal posterior distribution of the missing data. This focus on estimation of
the posterior distribution connected the original data augmentation algorithm to EM, as
pointed out by Dempster in the discussion. Although the discussion by Morris gets very
close to the two-stage Gibbs sampler for hierarchical models, he is still concerned about
doingm iterations, andworries about how costly that would be. Tanner andWongmention
taking m = 1 at the end of the paper, referring to this as an “extreme case.”
In a sense, Tanner and Wong (1987) was still too close to Rubin’s (1978) multiple impu-

tation to start a new revolution. Yet another reason for this may be that the theoretical
background was based on functional analysis rather than Markov chain theory, which
needed, in particular, the Markov kernel to be uniformly bounded and equicontinuous.
This may have discouraged potential users as requiring too much mathematics.
The authors of this review were fortunate enough to attend many focused conferences

during this time, where we were able to witness the explosion of Gibbs sampling. In the
summer of 1986 in Bowling Green, Ohio, Smith gave a series of ten lectures on hierarchical
models. Although there was a lot of computing mentioned, the Gibbs sampler was not
yet fully developed. (Interestingly, Smith commented that the limiting factor, at that time,
for the full exploitation of hierarchical models in statistical problems was the inability to
compute high-dimensional integrals.) In another lecture in June 1989 at a Bayesian work-
shop in Sherbrooke, Quebec, he revealed for the first time the generic features of Gibbs
sampler, and we still remember vividly the shock induced in ourselves and in the whole
audience by the sheer breadth of themethod: this development of Gibbs sampling,MCMC,
and the resulting seminal paper of Gelfand and Smith (1990) was an epiphany† in the world
of statistics.

∗ On a humorous note, the original Technical Report of this paper was called Gibbs for Kids, which was changed
because a referee did not appreciate the humor. However, our colleague Dan Gianola, an animal breeder at
Wisconsin, liked the title. In using Gibbs sampling in his work, he gave a presentation in 1993 at the 44th
Annual Meeting of the EuropeanAssociation forAnimal Production,Aarhus, Denmark. The title:Gibbs for Pigs.

† Epiphany, n.A spiritual event in which the essence of a given object of manifestation appears to the subject, as
in a sudden flash of recognition.



56 Handbook of Markov Chain Monte Carlo

The explosion had begun, and just two years later an MCMC conference at Ohio
State University, organized by Gelfand, Goel, and Smith, consisted of three full days of
talks. Many of the talks were to become influential papers; including Albert and Chib
(1993), Gelman and Rubin (1992), Geyer (1992), Gilks (1992), Liu et al. (1994, 1995), and
Tierney (1994).
Approximately one year later, in May 1992, there was a meeting of the Royal Statistical

Society on “TheGibbs sampler and otherMarkov chainMonte Carlomethods,” where four
papers were presented followed by much discussion. The papers appear in the first issue
of the Journal of the Royal Statistical Society, Series B, in 1993, together with 49 (!) pages of
discussion. The excitement is clearly evident in the writings, even though the theory and
implementation were not always perfectly understood.
Looking at thesemeetings,we can see the paths thatGibbs samplingwould leadus down.

In the next two sections we will summarize some of the advances from the early to mid
1990s.

2.4.1 Advances in MCMCTheory

Perhaps the most influential MCMC theory paper of the 1990s is Tierney (1994), which
carefully laid out all of the assumptions needed to analyze the Markov chains and then
developed their properties, in particular, convergence of ergodic averages and central limit
theorems. In one of the discussions of that paper, Chan and Geyer (1994) were able to relax
a condition on Tierney’s central limit theorem, and this new condition plays an important
role in research today (see Section 2.5.4). A pair of very influential, and innovative, papers
is the work of Liu et al. (1994, 1995), who very carefully analyzed the covariance structure
of Gibbs sampling, andwere able to formally establish the validity of Rao-Blackwellization
in Gibbs sampling. Gelfand and Smith (1990) had used Rao-Blackwellization, but it was not
justified at that time, as the original theorem was only applicable to i.i.d. sampling, which
is not the case in MCMC. Another significant entry is Rosenthal (1995), who obtained one
of the earliest results on exact rates of convergence.
Another paper must be singled out, namely Mengersen and Tweedie (1996), for setting

the tone for the study of the speed of convergence of MCMC algorithms to the target distri-
bution. Subsequent works in this area by Richard Tweedie, Gareth Roberts, Jeff Rosenthal
and co-authors are too numerous to bementioned here, although the paper by Roberts et al.
(1997) must be cited for setting explicit targets on the acceptance rate of the random-walk
Metropolis–Hastings algorithm, as well as Roberts and Rosenthal (1999) for obtaining an
upper bound on the number of iterations (523) needed to approximate the target up to 1%
by a slice sampler. The untimely death of Richard Tweedie in 2001 also had a major impact
on the book about MCMC convergence he was contemplating with Gareth Roberts.
One pitfall arising from the widespread use of Gibbs sampling was the tendency to

specify models only through their conditional distributions, almost always without refer-
ring to the positivity conditions in Section 2.3. Unfortunately, it is possible to specify a
perfectly legitimate-looking set of conditionals that do not correspond to any joint distribu-
tion, and the resulting Gibbs chain cannot converge. Hobert and Casella (1996) were able
to document the conditions needed for a convergent Gibbs chain, and alerted the Gibbs
community to this problem, which only arises when improper priors are used, but this is a
frequent occurrence.
Much other work followed, and continues to grow today. Geyer and Thompson (1995)

describe how to put a “ladder” of chains together for both “hot” and “cold” exploration,
followed by Neal’s (1996) introduction of tempering; Athreya et al. (1996) gave more easily
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verifiable conditions for convergence; Meng and van Dyk (1999) and Liu and Wu (1999)
developed the theory of parameter expansion in the data augmentation algorithm, leading
to construction of chains with faster convergence, and to the work of Hobert and Marchev
(2008), who give precise constructions and theorems to show how parameter expansion
can uniformly improve over the original chain.

2.4.2 Advances in MCMC Applications

The real reason for the explosion ofMCMCmethodswas the fact that an enormous number
of problems thatwere deemed to be computational nightmares now cracked open like eggs.
As an example, consider this very simple random effects model from Gelfand and Smith
(1990). Observe

Yij = θi + εij, i = 1, . . . ,K, j = 1, . . . , J, (2.2)

where

θi ∼ N(μ, σ2θ)

εij ∼ N(0, σ2ε ), independent of θi.

Estimationof thevariance components canbedifficult for a frequentist (restrictedmaximum
likelihood is typically preferred) but it was a nightmare for a Bayesian, as the integrals
were intractable. However, with the usual priors on μ, σ2θ , and σ

2
ε , the full conditionals are

trivial to sample from and the problem is easily solved via Gibbs sampling. Moreover, we
can increase the number of variance components and the Gibbs solution remains easy to
implement.
During the early 1990s, researchers found thatGibbs, orMetropolis–Hastings, algorithms

would crack almost any problem that they looked at, and there was a veritable flood of
papers applying MCMC to previously intractable models and getting good solutions. For
example, building on Equation 2.2, it was quickly realized that Gibbs sampling was an
easy route to getting estimates in the linear mixed models (Wang et al., 1993, 1994), and
even generalized linear mixedmodels (Zeger and Karim, 1991). Building on the experience
gainedwith the EMalgorithm, similar argumentsmade it possible to analyze probitmodels
using a latent variable approach in a linear mixed model (Albert and Chib, 1993) and in
mixture models with Gibbs sampling (Diebolt and Robert, 1994). It progressively dawned
on the community that latent variables could be artificially introduced to run the Gibbs
sampler in just about every situation, as eventually published in Damien et al. (1999), the
main example being the slice sampler (Neal, 2003). A very incomplete list of some other
applications includes change-point analysis (Carlin et al., 1992; Stephens, 1994), genomics
(Churchill, 1995; Lawrence et al., 1993; Stephens and Smith, 1993), capture–recapture
(Dupuis, 1995; George and Robert, 1992), variable selection in regression (George and
McCulloch, 1993), spatial statistics (Raftery and Banfield, 1991), and longitudinal studies
(Lange et al., 1992).
Many of these applications were advanced though other developments such as the adap-

tive rejection sampling of Gilks (1992) and Gilks et al. (1995), and the simulated tempering
approaches of Geyer and Thompson (1995) or Neal (1996).
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2.5 After the Revolution
After the revolution comes the “second” revolution, but nowwe have a more mature field.
The revolution has slowed, and the problems are being solved in, perhaps, deeper andmore
sophisticated ways, even though Gibbs sampling also offers the amateur the possibility of
handling Bayesian analysis in complexmodels at little cost, as exhibited by the widespread
use of BUGS, which mostly focuses on this approach.∗ But, as before, the methodology
continues to expand the set of problems for which statisticians can provide meaningful
solutions, and thus continues to further the impact of statistics.

2.5.1 A Brief Glimpse at Particle Systems

The realization of the possibilities of iterating importance sampling is not new: in fact,
it is about as old as Monte Carlo methods themselves. It can be found in the molecular
simulation literature of the 1950s, for exampleHammersley andMorton (1954), Rosenbluth
and Rosenbluth (1955), and Marshall (1965). Hammersley and colleagues proposed such a
method to simulate a self-avoiding randomwalk (seeMadras andSlade, 1993) onagrid, due
to huge inefficiencies in regular importance sampling and rejection techniques. Although
this early implementation occurred in particle physics, the use of the term “particle” only
dates back to Kitagawa (1996), while Carpenter et al. (1997) coined the term “particle filter.”
In signal processing, early occurrences of a particle filter can be traced back to Handschin
and Mayne (1969).
More in connectionwithour theme, the landmarkpaper ofGordonet al. (1993) introduced

the bootstrap filter which, while formally connected with importance sampling, involves
past simulations and possible MCMC steps (Gilks and Berzuini, 2001). As described in the
volume edited by Doucet et al. (2001), particle filters are simulation methods adapted to
sequential settings where data are collected progressively in time, as in radar detection,
telecommunication correction or financial volatility estimation. Taking advantage of state–
space representations of those dynamic models, particle filter methods produce Monte
Carlo approximations to the posterior distributions by propagating simulated samples
whose weights are actualized against the incoming observations. Since the importance
weights have a tendency to degenerate, that is, all weights but one are close to zero, addi-
tionalMCMCsteps can be introduced at times to recover the variety and representativeness
of the sample. Modern connections with MCMC in the construction of the proposal kernel
are to be found, for instance, in Doucet et al. (2000) and Del Moral et al. (2006). In paral-
lel, sequential imputation was developed in Kong et al. (1994), while Liu and Chen (1995)
first formally pointed out the importance of resampling in sequential Monte Carlo, a term
coined by them.
The recent literature on the topic more closely bridges the gap between sequential Monte

Carlo and MCMC methods by making adaptive MCMC a possibility—see, for example,
Andrieu et al. (2004) or Roberts and Rosenthal (2005).

2.5.2 Perfect Sampling

Introduced in the seminal paper of Propp andWilson (1996), perfect sampling, namely the
ability to use MCMC methods to produce an exact (or perfect) simulation from the target,

∗ BUGS now uses both Gibbs sampling and Metropolis–Hastings algorithms.
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has a unique place in the history of MCMCmethods. Although this exciting discovery led
to an outburst of papers, in particular in the large body of work of Møller and coauthors,
including the book by Møller and Waagepetersen (2004), as well as many reviews and
introductory materials, such as Casella et al. (2001), Fismen (1998), and Dimakos (2001),
the excitement quickly died down. The major reason for this ephemeral lifespan is that the
construction of perfect samplers is most often close to impossible or impractical, despite
some advances in implementation (Fill, 1998a,b).
There is, however, ongoing activity in the area of point processes and stochastic

geometry, much from the work of Møller and Kendall. In particular, Kendall and
Møller (2000) developed an alternative to the coupling from the past (CFTP) algorithm of
Propp and Wilson (1996), called horizontal CFTP, which mainly applies to point processes
and is based on continuous-time birth-and-death processes. See also Fernández et al. (1999)
for another horizontal CFTP algorithm for point processes. Berthelsen and Møller (2003)
exhibitedauseof these algorithms fornonparametricBayesian inferenceonpointprocesses.

2.5.3 Reversible Jump and Variable Dimensions

Frommany viewpoints, the invention of the reversible jump algorithm in Green (1995) can
be seen as the start of the second MCMC revolution: the formalization of a Markov chain
that moves across models and parameter spaces allowed for the Bayesian processing of
a wide variety of new models and contributed to the success of Bayesian model choice
and subsequently to its adoption in other fields. There exist earlier alternative Monte Carlo
solutions such as Gelfand and Dey (1994) and Carlin and Chib (1995), the latter being very
close in spirit to reversible jump MCMC (as shown by the completion scheme of Brooks
et al., 2003), but the definition of a proper balance condition on cross-modelMarkov kernels
in Green (1995) gives a generic setup for exploring variable dimension spaces, even when
the number ofmodels under comparison is infinite. The impact of this new ideawas clearly
perceived when looking at the First European Conference on highly structured stochastic
systems that took place in Rebild, Denmark, the next year, organized by Stephen Lauritzen
and Jesper Møller: a large majority of the talks were aimed at direct implementations of
RJMCMC to various inference problems. The application of RJMCMC to mixture order
estimation in the discussion paper of Richardson and Green (1997) ensured further dis-
semination of the technique. More recently, Stephens (2000) proposed a continuous-time
version of RJMCMC, based on earlier ideas of Geyer and Møller (1994), but with similar
properties (Cappé et al., 2003), while Brooks et al. (2003) made proposals for increasing the
efficiency of themoves. In retrospect, while reversible jump is somehowunavoidable in the
processing of very large numbers of models under comparison, as for instance in variable
selection (Marin and Robert, 2007), the implementation of a complex algorithm such as
RJMCMC for the comparison of a few models is somewhat of an overkill since there exist
alternative solutions based on model-specific MCMC chains (e.g. Chen et al., 2000).

2.5.4 Regeneration and the Central Limit Theorem

While the central limit theorem (CLT) is a central tool in Monte Carlo convergence assess-
ment, its use inMCMC setups took longer to emerge, despite early signals by Geyer (1992),
and it is only recently that sufficiently clear conditions emerged. We recall that the ergodic
theorem (see, e.g. Robert and Casella, 2004, Theorem 6.63) states that, if (θt)t is a Markov
chain with stationary distribution π, and h(·) is a function with finite variance, then under
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fairly mild conditions,

lim
n→∞ h̄n =

∫
h(θ)π(θ) dθ = Eπ[h(θ)],

almost everywhere, where h̄n = (1/n)
∑n

i=1 h(θi). For the CLT to be used to monitor this
convergence,

√
n(h̄n − Eπ[h(θ)])√

var[h(θ)] → N(0, 1), (2.3)

there are two roadblocks. First, convergence to normality is strongly affected by the lack
of independence. To get CLTs for Markov chains, we can use a result of Kipnis and Varad-
han (1986), which requires the chain to be reversible, as is the case for Metropolis–Hastings
chains, orwemustdelve intomixing conditions (Billingsley, 1995, Section27),whichare typ-
ically not easy to verify.However, Chan andGeyer (1994) showedhow the condition of geo-
metric ergodicity could be used to establish CLTs forMarkov chains. But getting the conver-
gence is onlyhalf of theproblem. Inorder touseEquation2.3,wemustbeable to consistently
estimate thevariance,which turns out to be anotherdifficult endeavor. The “naive” estimate
of the usual standard error is not consistent in the dependent case and the most promising
paths for consistent variance estimates seem to be through regeneration and batch means.
The theory of regeneration uses the concept of a split chain (Athreya and Ney, 1978), and

allows us to independently restart the chain while preserving the stationary distribution.
These independent “tours” then allow the calculation of consistent variance estimates and
honest monitoring of convergence through Equation 2.3. Early work on applying regener-
ation to MCMC chains was done by Mykland et al. (1995) and Robert (1995), who showed
how to construct the chains and use them for variance calculations and diagnostics (see also
Guihenneuc-Jouyaux and Robert, 1998), as well as deriving adaptive MCMC algorithms
(Gilks et al., 1998). Rosenthal (1995) also showed how to construct and use regenerative
chains, andmuch of this work is reviewed in Jones andHobert (2001). The most interesting
and practical developments, however, are in Hobert et al. (2002) and Jones et al. (2006),
where consistent estimators are constructed for var[h(θ)], allowing valid monitoring of
convergence in chains that satisfy the CLT. Interestingly, although Hobert et al. (2002) uses
regeneration, Jones et al. (2006) get their consistent estimators thorough another technique,
that of consistent batch means.

2.6 Conclusion
The impact of Gibbs sampling and MCMC on Bayesian statistics was to change our entire
method of thinking about and attacking problems, representing a paradigm shift (Kuhn,
1996). Now, the collection of real problems that we could solve grew almost without
bound. Markov chain Monte Carlo changed our emphasis from “closed form” solutions
to algorithms, expanded our impact to solving “real” applied problems and to improving
numerical algorithms using statistical ideas, and led us into a world where “exact” now
means “simulated.”
This has truly been a quantum leap in the evolution of the field of statistics, and the

evidence is that there are no signs of a slowdown. Although the “explosion” is over, the
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current work is going deeper into theory and applications, and continues to expand our
horizons and influence by increasing our ability to solve even bigger and more important
problems. The size of the data sets, and of the models, for example in genomics or clima-
tology, is something that could not have been conceived 60 years ago, when Ulam and von
Neumann invented the Monte Carlo method. Now we continue to plod on, and hope that
the advances thatwemake herewill, in someway, help our colleagues 60 years in the future
solve problems that we cannot yet conceive.
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3
Reversible Jump MCMC

Yanan Fan and Scott A. Sisson

3.1 Introduction
The reversible jump Markov chain Monte Carlo (MCMC) sampler (Green, 1995) provides
a general framework for Markov chain Monte Carlo simulation in which the dimension of
the parameter space can vary between iterates of the Markov chain. The reversible jump
sampler can be viewed as an extension of the Metropolis–Hastings algorithm onto more
general state spaces.
To understand this in a Bayesian modeling context, suppose that for observed data x we

havea countable collectionof candidatemodelsM = {M1,M2, . . .} indexedbyaparameter
k ∈ K. The index k can be considered as an auxiliarymodel indicator variable, such thatMk′
denotes themodel where k = k′. EachmodelMk has an nk-dimensional vector of unknown
parameters, θk ∈ R

nk , where nk can take different values for different models k ∈ K. The
joint posterior distribution of (k, θk) given observed data, x, is obtained as the product of
the likelihood, L(x | k, θk), and the joint prior, p(k, θk) = p(θk | k)p(k), constructed from the
prior distribution of θk under model Mk, and the prior for the model indicator k (i.e. the
prior for model Mk). Hence, the joint posterior is

π(k, θk | x) = L(x | k, θk)p(θk | k)p(k)∑
k′∈K

∫
R
nk′ L(x | k′, θ′k′)p(θ′k′ | k′)p(k′)dθ′k′

. (3.1)

The reversible jump algorithm uses the joint posterior distribution in Equation 3.1 as the
target of an MCMC sampler over the state space Θ =⋃k∈K({k} × R

nk ), where the states of
the Markov chain are of the form (k, θk), the dimension of which can vary over the state
space. Accordingly, from the output of a single Markov chain sampler, the user is able to
obtain a full probabilistic description of the posterior probabilities of each model having
observed the data, x, in addition to the posterior distributions of the individual models.
This chapter aims to provide an overview of the reversible jump sampler. Wewill outline

the sampler’s theoretical underpinnings, present the latest and most popular techniques
for enhancing algorithmperformance, and discuss the analysis of sampler output. Through
the use of numerous worked examples it is hoped that the reader will gain a broad appre-
ciation of the issues involved in multi-model simulation, and the confidence to implement
reversible jump samplers in the course of their own studies.

3.1.1 From Metropolis–Hastings to Reversible Jump

The standard formulation of the Metropolis–Hastings algorithm (Hastings, 1970) relies on
the construction of a time-reversible Markov chain via the detailed balance condition. This
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condition means that moves from state θ to θ′ are made as often as moves from θ′ to θ

with respect to the target density. This is a simple way to ensure that the equilibrium
distribution of the chain is the desired target distribution. The extension of the Metropolis–
Hastings algorithm to the setting where the dimension of the parameter vector varies is
more challenging theoretically, but the resulting algorithm is surprisingly simple to follow.
For the construction of a Markov chain on a general state space Θ with invariant or

stationary distribution π, the detailed balance condition can be written as
∫
(θ,θ′)∈A×B

π(dθ)P(θ, dθ′) =
∫
(θ,θ′)∈A×B

π(dθ′)P(θ′, dθ) (3.2)

for all Borel sets A× B ⊂ Θ, where P is a general Markov transition kernel (Green, 2001).
As with the standard Metropolis–Hastings algorithm, Markov chain transitions from

a current state θ = (k, θ′k) ∈ A in model Mk are realized by first proposing a new state
θ′ = (k′, θk′) ∈ B in model Mk′ from a proposal distribution q(θ, θ′). The detailed balance
condition (Equation 3.2) is enforced through the acceptance probability, where the move to
the candidate state θ′ is accepted with probability α(θ, θ′). If rejected, the chain remains at
the current state θ in model Mk. Under this mechanism (Green, 2001, 2003), Equation 3.2
becomes

∫
(θ,θ′)∈A×B

π(θ | x)q(θ, θ′)α(θ, θ′)dθ dθ′ =
∫
(θ,θ′)∈A×B

π(θ′ | x)q(θ′, θ)α(θ′, θ)dθ dθ′, (3.3)

where the distributions π(θ | x) and π(θ′ | x) are posterior distributions with respect to
model Mk and Mk′ , respectively.
One way to enforce Equation 3.3 is by setting the acceptance probability as

α(θ, θ′) = min
{
1,
π(θ | x)q(θ, θ′)
π(θ′ | x)q(θ′, θ)

}
, (3.4)

whereα(θ′, θ) is similarlydefined.This resembles theusualMetropolis–Hastings acceptance
ratio (Green, 1995; Tierney, 1998). It is straightforward to observe that this formulation
includes the standard Metropolis–Hastings algorithm as a special case.
Accordingly, a reversible jump sampler with N iterations is commonly constructed as

follows:

Step 1. Initialize k and θk at iteration t = 1.
Step 2. For iteration t ≥ 1 perform

– Within-modelmove:with afixedmodel k, update theparameters θk according
to any MCMC updating scheme.

– Between-models move: simultaneously update model indicator k and the
parameters θk according to the general reversible proposal/acceptance
mechanism (Equation 3.4).

Step 3. Increment iteration t = t+ 1. If t < N, go to Step 2.

3.1.2 Application Areas

Statistical problems in which the number of unknownmodel parameters is itself unknown
are extensive, and as such the reversible jump sampler has been implemented in analyses
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FIGURE 3.1
Examples of (a) change-point modeling and (b) mixture models. (a) With the Stylos tombs data set (crosses), a
piecewise log-linear curve canbefittedbetweenunknownchangepoints. Illustrated are 2 (solid line) and3 (dashed
line) change points. (b) The histogram of the enzymatic activity data set suggests clear groupings of metabolizers,
although the number of such groupings is not clear. (From Sisson, S. A. and Fan, Y. 2007. Statistics and Computing,
17:357–367. With permission.)

throughout a wide range of scientific disciplines over the last 15 years.Within the statistical
literature, these predominantly concern Bayesian model determination problems (Sisson,
2005). Some of the commonly recurring models in this setting are described below.
Change-point models One of the original applications of the reversible jump sampler was

in Bayesian change-point problems, where both the number and location of change points
in a system is unknown a priori. For example, Green (1995) analyzed mining disaster count
data using a Poisson process with the rate parameter described as a step function with an
unknown number and location of steps. Fan and Brooks (2000) applied the reversible jump
sampler to model the shape of prehistoric tombs, where the curvature of the dome changes
an unknown number of times. Figure 3.1a shows the plot of depths and radii of one of the
tombs from Crete in Greece. The data appear to be piecewise log-linear, with possibly two
or three change points.
Finite mixture models Mixture models are commonly used where each data observa-

tion is generated according to some underlying categorical mechanism. This mechanism is
typically unobserved, so there is uncertainty regarding which component of the resulting
mixture distribution each data observation was generated from, in addition to uncertainty
over the number of mixture components. A mixture model with k components for the
observed data x takes the form

f (x | θk) =
k∑
j=1

wjfj(x | φj) (3.5)
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with θk = (φ1, . . . ,φk), wherewj is theweight of the jthmixture component fj, whose param-
eter vector is denoted by φj, and where

∑k
j=1 wj = 1. The number of mixture components,

k, is also unknown.
Figure 3.1b illustrates the distribution of enzymatic activity in the blood for 245 individu-

als. Richardson andGreen (1997) analyzed these data using amixture of normal densities to
identify subgroups of slowor fastmetabolizers. Themultimodal nature of the data suggests
the existence of such groups, but the number of distinct groupings is less clear. Tadesse et al.
(2005) extend this normal mixture model for the purpose of clustering high-dimensional
data.
Variable selection The problem of variable selection arises when modeling the relation-

ship between a response variable, Y, and p potential explanatory variables x1, . . . , xp. The
multi-model setting emerges when attempting to identify the most relevant subsets of pre-
dictors, making it a natural candidate for the reversible jump sampler. For example, under
a regression model with normal errors we have

Y = Xγβγ + ε with ε ∼ N(0, σ2I), (3.6)

where γ = (γ1, . . . , γp) is a binary vector indexing the subset of x1, . . . , xp to be included in
the linear model, Xγ is the design matrix whose columns correspond to the indexed subset
given by γ, and βγ is the corresponding subset of regression coefficients. For examples and
algorithms in this setting and beyond, see, for example, George and McCulloch (1993),
Smith and Kohn (1996), and Nott and Leonte (2004).
Nonparametrics Within Bayesian nonparametrics, many authors have successfully

explored the use of the reversible jump sampler as a method to automate the knot selec-
tion process when using a Pth-order spline model for curve fitting (Denison et al., 1998;
DiMatteo et al., 2001). Here, a curve f is estimated by

f (x) = α0 +
P∑
j=1
αjxj +

k∑
i=1
ηi(x − κi)P+, x ∈ [a, b],

where z+ = max(0, z) and κi, i = 1, . . . , k, represent the locations of k knot points (Hastie
and Tibshirani, 1990). Under this representation, fitting the curve consists of estimating
the unknown number of knots k, the knot locations κi and the corresponding regression
coefficients αj and ηi, for j = 0, . . . ,P and i = 1, . . . , k.
Time series models In the modeling of temporally dependent data, x1, . . . , xT , multiple

models naturally arise under uncertainty over the degree of dependence. For example,
under a kth-order autoregressive process

Xt =
k∑
τ=1

aτXt−τ + εt, with t = k + 1, . . . ,T, (3.7)

where εt ∼WN(0, σ2), the order, k, of the autoregression is commonly unknown, in addition
to the coefficients aτ. Brooks et al. (2003c), Ehlers andBrooks (2003), andVermaaket al. (2004)
each detail descriptions on the use of reversible jump samplers for this class of problems.
The reversible jump algorithm has had a compelling influence in the statistical andmain-

stream scientific research literatures. In general, the largemajority of application areas have
tended to be computationally or biologically related (Sisson, 2005). Accordingly a large
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number of developmental and application studies can be found in the signal processing
literature and the related fields of computer vision and image analysis. Epidemiological
and medical studies also feature strongly.
This chapter is structured as follows: In Section 3.2 we present a detailed description

of how to implement the reversible jump sampler and review methods to improve sam-
pler performance. Section 3.3 examines post-simulation analysis, including label switching
problems when identifiability is an issue, and convergence assessment. In Section 3.4 we
review related sampling methods in the statistical literature, and conclude with discussion
on possible future research directions for the field. Other useful reviews of reversible jump
MCMC can be found in Green (2003) and Sisson (2005).

3.2 Implementation
In practice, the construction of proposal moves between different models is achieved via
the concept of “dimension matching.” Most simply, under a general Bayesian model deter-
mination setting, suppose that we are currently in state (k, θk) in model Mk, and we wish
to propose a move to a state (k′, θ′k′) in model Mk′ , which is of a higher dimension, so that
nk′ > nk . In order to “match dimensions” between the two model states, a random vector
u of length dk→k′ = nk′ − nk is generated from a known density qdk→k′ (u). The current state
θk and the random vector u are then mapped to the new state θ′k′ = gk→k′(θk,u) through
a one-to-onemapping function gk→k′ : R

nk × R
dk → R

nk′ . The acceptance probability of this
proposal, combined with the joint posterior expression of Equation 3.1, becomes

α[(k, θk), (k′, θ′k′)] = min
{
1,

π(k′, θ′k′ | x)q(k′ → k)
π(k, θk | x)q(k→ k′)qdk→k′ (u)

∣∣∣∣∂gk→k′(θk,u)

∂(θk ,u)

∣∣∣∣
}
, (3.8)

where q(k→ k′) denotes the probability of proposing a move from model Mk to model
Mk′ , and the final term is the determinant of the Jacobian matrix, often referred to in the
reversible jump literature simply as the Jacobian. This term arises through the change of
variables via the function gk→k′ , which is required when used with respect to the integral
equation (Equation 3.3). Note that the normalization constant in Equation 3.1 is not needed
to evaluate the above ratio. The reverse move proposal, from model Mk′ to Mk, is made
deterministically in this setting, and is accepted with probability

α
[
(k′, θ′k′), (k, θk)

] = α [(k, θk), (k′, θ′k′)]−1 .
More generally, we can relax the condition on the length of the vector u by allowing
dk→k′ ≥ nk′ − nk. In this case, nondeterministic reverse moves can be made by generat-
ing a dk′→k-dimensional random vector u′ ∼ qdk′→k (u

′), such that the dimension matching
condition, nk + dk→k′ = nk′ + dk′→k, is satisfied. Then a reverse mapping is given by θk =
gk′→k(θ

′
k′ ,u

′), such that θk = gk′→k(gk→k′(θk,u),u′) and θ′k′ = gk→k′(gk′→k(θ
′
k′ ,u

′),u). The
acceptance probability corresponding to Equation 3.8 then becomes

α
[
(k, θk), (k′, θ′k′)

] = min
{
1,
π(k′, θ′k′ | x)q(k′ → k)qdk′→k (u

′)
π(k, θk | x)q(k→ k′)qdk→k′ (u)

∣∣∣∣∂gk→k′(θk,u)

∂(θk,u)

∣∣∣∣
}
. (3.9)



72 Handbook of Markov Chain Monte Carlo

Example: Dimension Matching

Consider the illustrative example given in Green (1995) and Brooks (1998). Suppose that model
M1 has states (k = 1, θ1 ∈ R

1) and model M2 has states (k = 2, θ2 ∈ R
2). Let (1, θ∗) denote

the current state in M1 and (2, (θ(1), θ(2))) denote the proposed state in M2. Under dimension
matching, we might generate a random scalar u, and let θ(1) = θ∗ + u and θ(2) = θ∗ − u, with the

reverse move given deterministically by θ∗ = 1
2

(
θ(1) + θ(2)

)
.

Example: Moment Matching in a Finite Mixture of Univariate Normals

Under the finite mixture of univariate normals model, the observed data, x, has density given
by Equation 3.5, where the jth mixture component fj(x | φj ) = φ(x | μj , σj) is the N(μj , σj )
density. For between-model moves, Richardson and Green (1997) implement a split (one
component into two) and merge (two components into one) strategy which satisfies the
dimension matching requirement. (See Dellaportas and Papageorgiou (2006) for an alternative
approach.)
When two normal components j1 and j2 are merged into one, j∗, Richardson and Green (1997)

propose a deterministic mapping which maintains the zeroth, first, and second moments:

wj∗ = wj1 +wj2 .

wj∗μj∗ = wj1μj1 +wj2μj2 . (3.10)

wj∗
(
μ2j∗ + σ2j∗

)
= wj1

(
μ2j1 + σ2j1

)
+wj2

(
μ2j2 + σ2j2

)
.

The split move is proposed as

wj1 = wj∗ ∗ u1, wj2 = wj∗ ∗ (1− u1)

μj1 = μj∗ − u2σj∗

√
wj2
wj1

μj2 = μj∗ + u2σj∗

√
wj1
wj2

(3.11)

σ2j1 = u3
(
1− u22

)
σ2j∗

wj∗

wj1

σ2j2 = (1− u3)
(
1− u22

)
σ2j∗

wj∗

wj2
,

where the random scalars u1, u2 ∼ Beta(2, 2) and u3 ∼ Beta(1, 1). In this manner, dimension
matching is satisfied, and the acceptance probability for the split move is calculated according to
Equation 3.8, with the acceptance probability of the reverse merge move given by the reciprocal
of this value.

3.2.1 Mapping Functions and Proposal Distributions

While the ideas behind dimensionmatching are conceptually simple, their implementation
is complicated by the arbitrariness of the mapping function gk→k′ and the proposal distri-
butions, qdk→k′ (u), for the random vectors u. Since mapping functions effectively express
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functional relationships between the parameters of different models, good mapping func-
tions will clearly improve sampler performance in terms of between-model acceptance
rates and chain mixing. The difficulty is that even in the simpler setting of nested models,
good relationships can be hard to define, and in more general settings, parameter vectors
between models may not be obviously comparable.
The only additional degree of freedom to improve between-model proposals is by choos-

ing the form and parameters of the proposal distribution qdk→k′ (u). However, there are
no obvious criteria to guide this choice. Contrast this to within-model, random-walk
Metropolis–Hastings moves on a continuous target density, whereby proposed moves
close to the current state can have an arbitrarily large acceptance probability, and pro-
posed moves far from the current state have low acceptance probabilities. This concept
of “local” moves may be partially translated on to model space (k ∈ K): proposals from
θk in model Mk to θ′k′ in model Mk′ will tend to have larger acceptance probabilities if
their likelihood values are similar, that is, L(x | k, θk) ≈ L(x | k′, θ′k′). For example, in the
analysis of Bayesian mixture models, Richardson and Green (1997) propose “birth/death”
and “split/merge” mappings of mixture components for the between-model move, while
keeping other components unchanged. Hence, the proposed moves necessarily will have
similar likelihood values to the current state. However, in general the notion of “local”
move proposals does not easily extend to the parameter vectors of different models, unless
considering simplified settings (e.g. nestedmodels). In the general case, goodmixing prop-
erties are achieved by the alignment of regions of high posterior probability between
models.
Notwithstanding these difficulties, reversible jumpMCMC is often associated with poor

sampler performance. However, failure to realize acceptable sampler performance should
only be considered a result of poorly constructed between-model mappings or inappropri-
ate proposal distributions. It should even be anticipated that implementing a multi-model
sampler may result in improved chain mixing, even when the inferential target distribu-
tion is a single model. In this case, sampling from a single model posterior with an “overly
sophisticated” machinery is loosely analogous to the extra performance gained with aug-
mented state space samplingmethods. For example, in the case of a finitemixture of normal
distributions, Richardson andGreen (1997) reportmarkedly superior samplermixingwhen
conditioning on there being exactly threemixture components, in comparisonwith the out-
put generated by a fixed-dimension sampler. George et al. (1999) similarly obtain improved
chain performance in a single model, by performing “birth-then-death” moves simultane-
ously so that the dimension of the model remains constant. Green (2003) presents a short
study onwhich inferential circumstances determinewhether the adoption of amulti-model
sampler may be beneficial in this manner. Conversely, Han and Carlin (2001) provide an
argument to suggest thatmulti-model samplingmayhave a detrimental effect on efficiency.

3.2.2 Marginalization and Augmentation

Depending on the aim or the complexity of a multi-model analysis, it may be that use
of reversible jump MCMC would be somewhat heavy-handed, when reduced- or fixed-
dimensional samplers may be substituted. In some Bayesian model selection settings,
between-model moves can be greatly simplified or even avoided if one is prepared to
make certain prior assumptions, such as conjugacy or objective prior specifications. In such
cases, it may be possible to analytically integrate out some or all of the parameters θk in the
posterior distribution (Equation 3.1), reducing the sampler either to fixed dimensions, for
example on model space k ∈ K only, or to a lower-dimensional set of model and parameter
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space (Berger andPericchi, 2001;DiMatteo et al., 2001;George andMcCulloch, 1993; Tadesse
et al., 2005). In lower dimensions, the reversible jump sampler is often easier to implement,
as the problems associated with mapping function specification are conceptually simpler
to resolve.

Example: Marginalization in Variable Selection

In Bayesian variable selection for normal linear models (Equation 3.6), the vector γ = (γ1, . . . , γp)

is treated as an auxiliary (model indicator) variable, where

γi =
{
1, if predictor xi is included in the regression,
0, otherwise.

Under certain prior specifications for the regression coefficients β and error variance σ2,
the β coefficients can be analytically integrated out of the posterior. A Gibbs sampler directly
on model space is then available for γ (George and McCulloch, 1993; Nott and Green, 2004;
Smith and Kohn, 1996).

Example: Marginalization in Finite Mixture of Multivariate Normal Models

Within the context of clustering, the parameters of the normal components are usually not of
interest. Tadesse et al. (2005) demonstrate that by choosing appropriate prior distributions, the
parameters of the normal components can be analytically integrated out of the posterior. The
reversible jump sampler may then run on a much reduced parameter space, which is simpler and
more efficient.
In a general setting, Brooks et al. (2003c) proposed a class of models based on augmenting

the state space of the target posterior with an auxiliary set of state-dependent variables, vk , so
that the state space of π(k , θk , vk | x) = π(k , θk | x)τk (vk ) is of constant dimension for all models
Mk ∈ M. By updating vk via a (deliberately) slowly mixing Markov chain, a temporal memory is
induced that persists in the vk from state to state. In this manner, the motivation behind the aux-
iliary variables is to improve between-model proposals, in that some memory of previous model
states is retained. Brooks et al. (2003c) demonstrate that this approach can significantly enhance
mixing compared to an unassisted reversible jump sampler. Although the fixed dimensionality of
(k , θk , vk ) is later relaxed, there is an obvious analogue with product space sampling frameworks
(Carlin and Chib, 1995; Godsill, 2001); see Section 3.4.2.
An alternative augmented state space modification of standard MCMC is given by Liu et al.

(2001). The dynamic weighting algorithm augments the original state space by a weighting factor,
which permits the Markov chain to make large transitions not allowable by the standard transition
rules, subject to the computation of the correct weighting factor. Inference is then made by using
the weights to compute importance sampling estimates rather than simple Monte Carlo estimates.
This method can be used within the reversible jump algorithm to facilitate cross-model jumps.

3.2.3 Centering and Order Methods

Brooks et al. (2003c) introduce a class of methods to achieve the automatic scaling of the
proposal density, qdk→k′ (u), based on “local” move proposal distributions, which are cen-
tered around the point of equal likelihood values under current and proposed models.
Under this scheme, it is assumed that local mapping functions gk→k′ are known. For a
proposed move from (k, θk) in Mk to model Mk′ , the random vector “centering point”
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ck→k′(θk) = gk→k′(θk,u) is defined such that, for some particular choice of proposal vec-
tor u, the current and proposed states are identical in terms of likelihood contribution,
that is, L(x | k, θk) = L(x | k′, ck→k′(θk)). For example, if Mk is an autoregressive model
of order k (Equation 3.7) and Mk′ is an autoregressive model of order k′ = k + 1, and if
ck→k′(θk) = gk→k′(θk, u) = (θk, u) (e.g. a local “birth” proposal), then we have u = 0 and
ck→k′ = (θk , 0), as L(x | k, θk) = L(x | k′, (θk , 0)).
Given the centering constraint on u, if the scaling parameter in the proposal qdk→k′ (u) is

a scalar, then the zeroth-order method (Brooks et al., 2003c) proposes to choose this scaling
parameter such that the acceptance probability α[(k, θk), (k′, ck→k′(θk))] of a move to the
centering point ck→k′(θk) in model Mk′ is exactly one. The argument is then that move
proposals close to ck→k′(θk) will also have a large acceptance probability.
For proposal distributions, qdk→k′ (u), with additional degrees of freedom, a similar

method based on a series of nth-order conditions (for n ≥ 1) requires that, for the pro-
posed move, the nth derivative (with respect to u) of the acceptance probability equals the
zero vector at the centering point ck→k′(θk):

∇nα[(k, θk), (k′, ck→k′(θk))] = 0. (3.12)

That is, them unknown parameters in the proposal distribution qdk→k′ (u) are determined by
solving the m simultaneous equations given by Equation 3.12 with n = 1, . . . ,m. The idea
behind the nth-order method is that the concept of closeness to the centering point under
the zeroth-ordermethod is relaxed. By enforcing zero derivatives of α[(k, θk), (k′, ck→k′(θk))],
the acceptance probability will become flatter around ck→k′(θk). Accordingly this allows
proposals further away from the centering point to still be accepted with a reasonably high
probability. This will ultimately induce improved chain mixing.
With these methods, proposal distribution parameters are adapted to the current state of

the chain, (k, θk), rather than relying on a constant proposal parameter vector for all state
transitions. It can be shown that for a simple two-model case, the nth-order conditions are
optimal in terms of the capacitance of the algorithm (Lawler and Sokal, 1988). See also
Ehlers and Brooks (2003) for an extension to a more general setting, and Ntzoufras et al.
(2003) for a centering method in the context of linear models.
One caveat with the centering schemes is that they require specification of the between-

model mapping function gk→k′ , although these methods compensate for poor choices of
mapping functions by selecting the best set of parameters for the given mapping. Recently,
Ehlers and Brooks (2008) suggest the posterior conditional distribution π(k′,u | θk) as the
proposal for the random vector u, side-stepping the need to construct a mapping function.
In this case, the full conditionals either must be known or need to be approximated.

Example: The Zeroth-Order Method for an Autoregressive Model

Brooks et al. (2003c) consider the AR model with unknown order k (Equation 3.7), assuming
Gaussian noise εt ∼ N(0, σ2ε ) and a uniform prior on k , where k = 1, 2, . . . , kmax. Within each
model Mk , independent N(0, σ2a) priors are adopted for the AR coefficients aτ, τ = 1, . . . , k , with
an inverse gamma prior for σ2ε . Suppose moves are made from model Mk to model Mk ′ such
that k ′ = k + 1. The move from θk to θ′k ′ is achieved by generating a random scalar u ∼ q(u) =
N(0, 1), and defining the mapping function as θ′k ′ = gk→k ′(θk , u) = (θk , σu). The centering point
ck→k ′(θk ) then occurs at the point u = 0, or θ′k ′ = (θk , 0).
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Under the mapping gk→k ′ , the Jacobian is σ, and the acceptance probability (Equation 3.8) for
the move from (k , θk ) to (k ′, ck→k ′(θk )) is given by α[(k , θk ), (k ′, (θk , 0))] = min(1,A) where

A = π(k ′, (θk , 0) | x)q(k ′ → k)σ

π(k , θk | x)q(k → k ′)q(0)
=
(
2πσ2a

)−1/2
q(k ′ → k)σ

q(k → k ′)(2π)−1/2 .

Note that since the likelihoods are equal at the centering point, and the priors common to both
models cancel in the posterior ratio, A is only a function of the prior density for the parameter
ak+1 evaluated at 0, the proposal distributions and the Jacobian. Hence, we solve A = 1 to
obtain

σ2 = σ2a
(

q(k → k ′)
q(k ′ → k)

)2
.

Thus in this case, the proposal variance is not dependent on the model parameter (θk ) or data (x).
It depends only on the prior variance, σa, and the model states, k , k ′.

Example: The Second-Order Method for Moment Matching

Consider the moment matching in a finite mixture of univariate normals example of Section 3.2.
The mapping functions gk ′→k and gk→k ′ are respectively given by Equations 3.10 and 3.11,
with the random numbers u1, u2, u3 drawn from independent beta distributions with unknown
parameter values, so that qpi ,qi (ui ): ui ∼ Beta(pi , qi), i = 1, 2, 3.
Consider the split move, Equation 3.11. To apply the second-order method of Brooks et al.

(2003c), we first locate a centering point, ck→k ′(θk ), achieved by setting u1 = 1, u2 = 0, and
u3 ≡ u1 = 1 by inspection. Hence, at the centering point, the two new (split) components j1 and
j2 will have the same location and scale as the j∗ component, with new weights wj1 = wj∗ and
wj2 = 0 and all observations allocated to component j1. Accordingly this will produce identical
likelihood contributions. Note that to obtain equal variances for the split proposal, substitute the
expressions for wj1 and wj2 into those for σ2j1 = σ2j2 .
Following Richardson and Green (1997), the acceptance probability of the split move evaluated

at the centering point is then proportional (with respect to u) to

logA[(k , θk ), (k ′, ck→k ′(θk ))]

∝ lj1 log(wj1)+ lj2 log(wj2 )−
lj1
2
log
(
σ2j1

)
− lj2

2
log
(
σ2j2

)
− 1

2σ2j1

lj1∑
l=1

(yl − μj1)
2

− 1

2σ2j2

lj2∑
l=1

(yl − μj2 )
2 + (δ− 1+ lj1) log(wj1)+ (δ− 1+ lj2) log(wj2)

−
{
1
2
κ[(μj1 − ξ)2 + (μj2 − ξ)2]

}
− (α+ 1) log

(
σ2j1σ

2
j2

)
− β

(
σ−2j1

+ σ−2j2

)

− log[qp1,q1 (u1)] − log[qp2,q2(u2)] − log[qp3,q3(u3)] + log(|μj1 − μj2 |)

+ log
(
σ2j1

)
+ log

(
σ2j2

)
− log(u2)− log

(
1− u22

)
− log(u3)− log(1− u3), (3.13)

where lj1 and lj2 respectively denote the number of observations allocated to components j1 and
j2, and where δ, α, β, ξ and κ are hyperparameters as defined by Richardson and Green (1997).
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Thus, for example, to obtain the proposal parameter values p1 and q1 for u1, we solve the first-
and second-order derivatives of the acceptance probability (Equation 3.13) with respect to u1.This
yields

∂ log α
[
(k , θk ), (k ′, ck→k ′(θk ))

]
∂u1

= δ+ 2lj1 − p1
u1

+ q1 − δ− 2lj2
(1− u1)

∂2 log α
[
(k , θk ), (k ′, ck→k ′(θk ))

]
∂u21

= − δ+ 2lj1 − p1

u21
+ q1 − δ− 2lj2

(1− u1)2
.

Equating these to zero and solving for p1 and q1 at the centering points (with lj1 = lj∗ and lj2 = 0)
gives p1 = δ+ 2lj∗ and q1 = δ. Thus the parameter p1 depends on the number of observations
allocated to the component being split. Similar calculations to the above give solutions for p2, q2,
p3, and q3.

3.2.4 Multi-Step Proposals

Green and Mira (2001) introduce a procedure for learning from rejected between-model
proposals based on an extension of the splitting rejection idea of Tierney and Mira (1999).
After rejecting a between-model proposal, the procedure makes a second proposal, usu-
ally under a modified proposal mechanism, and potentially dependent on the value of the
rejected proposal. In this manner, a limited form of adaptive behavior may be incorporated
into the proposals. The procedure is implemented via a modified Metropolis–Hastings
acceptance probability, and may be extended to more than one sequential rejection (Trias
et al., 2009). Delayed-rejection schemes can reduce the asymptotic variance of ergodic aver-
ages by reducing the probability of the chain remaining in the same state (Peskun, 1973;
Tierney, 1998), however there is an obvious tradeoff with the extra move construction and
computation required.
For clarity of exposition, in the remainder of this section we denote the current state of

theMarkov chain inmodelMk by x = (k, θk), and the first and second stage proposed states
in model Mk′ by y and z. Let y = g(1)

k→k′(x,u1) and z = g(2)
k→k′(x,u1,u2) be the mappings of

the current state and random vectors u1 ∼ q(1)dk→k′
(u1) and u2 ∼ q(2)dk→k′

(u2) into the proposed
new states. For simplicity, we again consider the frameworkwhere the dimension of model
Mk is smaller than that of modelMk′ (i.e. nk′ > nk) and where the reverse move proposals
are deterministic. The proposal from x to y is acceptedwith the usual acceptance probability

α1(x, y) = min

⎧⎨
⎩1, π(y)q(k′ → k)

π(x)q(k→ k′)q(1)dk→k′
(u1)

∣∣∣∣∣∂g
(1)
k→k′(x,u1)
∂(x,u1)

∣∣∣∣∣
⎫⎬
⎭ .

If y is rejected, detailed balance for the move from x to z is preserved with the acceptance
probability

α2(x, z) = min

⎧⎨
⎩1, π(z)q(k′ → k)[1− α1(y∗, z)−1]

π(x)q(k→ k′)q(1)
dk→k′

(u1)q(2)dk→k′
(u2)[1− α1(x, y)]

∣∣∣∣∣∂g
(2)
k→k′(x,u1,u2)
∂(x,u1,u2)

∣∣∣∣∣
⎫⎬
⎭ ,

where y∗ = g(1)
k→k′(z,u1). Note that the second stage proposal z = g(2)

k→k′(x,u1,u2) is permit-
ted to depend on the rejected first stage proposal y (a function of x and u1).
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In a similar vein, Al-Awadhi et al. (2004) also acknowledge that an initial between-model
proposal x′ = gk→k′(x,u) may be poor, and seek to adjust the state x′ to a region of higher
posterior probability before taking the decision to accept or reject the proposal. Specifically,
Al-Awadhi et al. (2004) propose to initially evaluate the proposed move to x′ in modelMk′
through a density π∗(x′) rather than the usual π(x′). The authors suggest taking π∗ to be
some tempered distribution π∗ = πγ, γ > 1, such that the modes of π∗ and π are aligned.
The algorithm then implements κ ≥ 1 fixed-dimensionMCMCupdates, generating states

x′ → x1 → · · · → xκ = x∗, with each step satisfying detailed balancewith respect toπ∗. This
provides an opportunity for x∗ to move closer to the mode of π∗ (and therefore π) than x′.
The move from x in model Mk to the final state x∗ in model Mk′ (with density π(x∗)) is
finally accepted with probability

α(x, x∗) = min
{
1,

π(x∗)π∗(x′)q(k′ → k)
π(x)π∗(x∗)q(k→ k′)qdk→k′ (u)

∣∣∣∣∂gk→k′(x,u)

∂(x,u)

∣∣∣∣
}
.

The implied reverse move frommodelMk′ to model modelMk is conducted by taking the
κmoves with respect to π∗ first, followed by the dimension-changing move.
Various extensions can easily be incorporated into this framework, such as using a

sequence of π∗ distributions, resulting in a slightly modified acceptance probability
expression. For instance, the standard simulated annealing framework, Kirkpatrick (1984),
provides an example of a sequence of distributions which encourage moves toward pos-
terior mode. Clearly the choice of the distribution π∗ can be crucial to the success of this
strategy. As with all multi-step proposals, increased computational overheads are traded
for potentially enhanced between-model mixing.

3.2.5 Generic Samplers

The problem of efficiently constructing between-model mapping templates, gk→k′ , with
associated random vector proposal densities, qdk→k′ , may be approached from an alter-
native perspective. Rather than relying on a user-specifiedmapping, one strategywould be
to move toward a more generic proposal mechanism altogether. A clear benefit of generic
between-model moves is that they may be equally be implemented for nonnested mod-
els. While the ideal of “black-box” between-model proposals is attractive, they currently
remain on the research horizon. However, a number of automatic reversible jump MCMC
samplers have been proposed.
Green (2003) proposed a reversible jumpanalogyof the random-walkMetropolis sampler

of Roberts (2003). Suppose that estimates of the first- and second-order moments of θk are
available, for eachof a small number ofmodels, k ∈ K, denotedbyμk andBkB�k respectively,
where Bk is an nk × nk matrix. In proposing a move from (k, θk) to model Mk′ , a new
parameter vector is proposed by

θ′k′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μk′ + Bk′
[
RB−1k (θk − μk)

]nk′
1
, if nk′ < nk ,

μk′ + Bk′RB−1k (θk − μk), if nk′ = nk ,

μk′ + Bk′R
(
B−1k (θk − μk)

u

)
, if nk′ > nk ,

where [·]m1 denotes the first m components of a vector, R is a orthogonal matrix of order
max{nk , nk′ }, and u ∼ qnk′−nk (u) is an (nk′ − nk)-dimensional random vector (only utilized
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if nk′ > nk , or when calculating the acceptance probability of the reverse move frommodel
Mk′ to model Mk if nk′ < nk). If nk′ ≤ nk , then the proposal θ′k′ is deterministic and the
Jacobian is trivially calculated. Hence, the acceptance probability is given by

α
[
(k, θk), (k′, θ′k′)

] = π(k′, θ′k′ | x)
π(k, θk | x)

q(k′ → k)
q(k→ k′)

|Bk′ |
|Bk| ×

⎧⎪⎪⎨
⎪⎪⎩
qnk′−nk (u), for nk′ < nk,
1, for nk′ = nk,

1
qnk′−nk

(u), for nk′ > nk.

Accordingly, if the model-specific densities π(k, θk | x) are unimodal with first- and second-
order moments given by μk and BkB�k , then high between-model acceptance probabilities
may be achieved. (Unitary acceptance probabilities are available if theπ(k, θk | x) are exactly
Gaussian.)Green (2003),Godsill (2003), andHastie (2004) discuss anumber ofmodifications
to this general framework, including improving efficiency and relaxing the requirement of
unimodal densities π(k, θk | x) to realize high between-model acceptance rates. Naturally,
the required knowledge of first- and second-order moments of each model density will
restrict the applicability of these approaches to moderate numbers of candidate models if
these require estimation (e.g. via pilot chains).
With a similar motivation to the above, Papathomas et al. (2009) put forward the multi-

variate normal as proposal distribution for θ′k′ in the context of linear regression models, so
that θ′k′ ∼ N(μk′ |θk ,Σk′ |θk ). The authors derive estimates for the mean μk′|θk and covariance
Σk′|θk such that the proposed values for θ′k′ will on average produce conditional posterior
values under model Mk′ similar to those produced by the vector θk under model Mk. In
particular, consider the normal linear model in Equation 3.6, rewriting the error covariance
as V, assuming equality under the two models such that Vk = Vk′ = V. The parameters of
the proposal distribution for θ′k′ are then given by

μk′|θk = (X�γ′V
−1Xγ′)−1X�γ′V

−1 {Y + B−1V−1/2(Xγθk − PkY)
}
,

Σk′|θk = Qk′,k′ −Qk′,k′Q−1k′,kQk,kQ−1k,k′Qk′ ,k′ + cInk′ ,

where γ and γ′ are indicators corresponding to models Mk and Mk′ , B = (V +
Xγ′Σk′|θkX�γ′ )

−1/2, Pk = Xγ(X�γ V−1Xγ)−1X�γ V−1,Qk,k′ = (X�γ V−1Xγ′)−1, In is the n× n iden-
tity matrix and c > 0. Intuitively, the mean of this proposal distribution may be interpreted
as the maximum likelihood estimate of θ′k′ for model Mk′ , plus a correction term based on
the distance of the current chain state θk to the mode of the posterior density in modelMk.
The mapping between θ′k′ and θk and the random number u is given by

θ′k′ = μk′|θk +Σ
1/2
k′|θku,

where u ∼ N(0, Ink′ ). Accordingly the Jacobian corresponding to Equation 3.9 is given by∣∣∣Σ1/2
k′|θk
∣∣∣ ∣∣∣Σ1/2

k|θk′
∣∣∣. Under this construction, the value c > 0 is treated as a tuning parameter for

the calibration of the acceptance probability. Quite clearly, the parameters of the between-
model proposal do not require a priori estimation, and they adapt to the current state of
the chain. The authors note that in some instances, this method produces similar results
in terms of efficiency to Green (2003). One caveat is that the calculations at each proposal
stage involve several inversions of matrices which can be computationally costly when
the dimension is large. In addition, the method is theoretically justified for normal linear
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models, but can be applied to nonnormalmodels when transformation of data to normality
is available, as demonstrated in Papathomas et al. (2009).
Fan et al. (2009) propose to construct between-model proposals based on estimating

conditional marginal densities. Suppose that it is reasonable to assume some structural
similarities between the parameters θk and θ′k′ of models Mk and Mk′ , respectively.
Let c indicate the subset of the vectors θk = (θck, θ

−c
k ) and θ′k′ = (θck′ , θ

−c
k′ ) which can be

kept constant between models, so that θck′ = θck . The remaining r-dimensional vector θ−ck′
is then sampled from an estimate of the factorization of the conditional posterior of
θ−ck′ = (θ1k′ , . . . , θ

r
k′) under model Mk′ :

π(θ−ck′ | θck′ , x) ≈ π̂1(θ1k′ | θ2k′ , . . . , θrk′ , θck′ , x) . . . π̂r−1(θr−1k′ | θrk′ , θck′ , x)π̂r(θrk′ | θck′ , x).
The proposal θ−ck′ is drawn by first estimating π̂r(θ

r
k′ | θck′ , x) and sampling θrk′ , and by then

estimating π̂r−1(θr−1k′ | θrk′ , θck′ , x) and sampling θr−1k′ , conditioning on the previously sam-
pled point, θrk′ , and so on. Fan et al. (2009) construct the conditional marginal densities by
using partial derivatives of the joint density, π(k′, θ′k′ | x), to provide gradient information
within a marginal density estimator. As the conditional marginal density estimators are
constructed using a combination of samples from the prior distribution and gridded val-
ues, they can be computationally expensive to construct, particularly if high-dimensional
moves are attempted, for example θ−ck′ = θ′k′ . However, this approach can be efficient, and
also adapts to the current state of the sampler.

3.3 Post Simulation
3.3.1 Label Switching

The so-called “label switching” problem occurs when the posterior distribution is invariant
under permutations in the labeling of the parameters. This results in the parameters having
identical marginal posterior distributions. For example, in the context of a finite mixture
model (Equation 3.5), the parameters of each mixture component, φj, are unidentifiable
under a symmetric prior. This causes problems in the interpretation of the MCMC output.
While this problem is general, in that it is not restricted to the multi-model case, as many
applications of the reversible jump sampler encounter this type of problem, we discuss
some methods of overcoming this issue below.
The conceptually simplest method of circumventing nonidentifiability is to impose arti-

ficial constraints on the parameters. For example, ifμj denotes themean of the jth Gaussian
mixture component, then one such constraint could be μ1 < · · · < μk (Richardson and
Green, 1997). However, the effectiveness of this approach is not always guaranteed (Jasra
et al., 2005). One of the main problems with such constraints is that they are often artificial,
being imposed for inferential convenience rather than as a result of genuine knowledge
about the model. Furthermore, suitable constraints can be difficult or almost impossible to
find (Frühwirth-Schnatter, 2001).
Alternative approaches to handling nonidentifiability involve the post-processing of

MCMC output. Stephens (2000b) gives an inferential method based on the relabeling of
components with respect to the permutation which minimizes the posterior expected loss.
Celeux et al. (2000), Hurn et al. (2003), and Sisson and Hurn (2004) adopt a fully decision-
theoretic approach, where for every posterior quantity of interest, an appropriate (possibly
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multi-model) loss function is constructed and minimized. Each of these methods can be
computationally expensive.

3.3.2 Convergence Assessment

Under the assumption that an acceptably efficientmethod of constructing a reversible jump
sampler is available, one obvious pre-requisite to inference is that the Markov chain con-
verges to its equilibrium state. Even in fixed dimension problems, theoretical convergence
bounds are in general difficult or impossible to determine. In the absence of such theo-
retical results, convergence diagnostics based on empirical statistics computed from the
sample path of multiple chains are often the only available tool. An obvious drawback
of the empirical approach is that such diagnostics invariably fail to detect a lack of con-
vergence when parts of the target distribution are missed entirely by all replicate chains.
Accordingly, these are necessary rather than sufficient indicators of chain convergence; see
Mengersen et al. (1999) and Cowles and Carlin (1996) for comparative reviews under fixed
dimension MCMC.
The reversible jump sampler generates additional problems in the design of suitable

empirical diagnostics, since most of these depend on the identification of suitable scalar
statistics of the parameters’ sample paths. However, in the multi-model case, these param-
eters may no longer retain the same interpretation. In addition, convergence is required
not only within each of a potentially large number of models, but also across models with
respect to posterior model probabilities.
One obvious approach would be the implementation of independent sub-chain assess-

ments, both within models and for the model indicator k ∈ K. With focus purely on model
selection, Brooks et al. (2003b) propose various diagnostics based on the sample path
of the model indicator, k, including nonparametric hypothesis tests such as the χ2 and
Kolmogorov–Smirnov tests. In this manner, distributional assumptions of the models (but
not the statistics) are circumvented at the price of associating marginal convergence of
k with convergence of the full posterior density.
Brooks and Giudici (2000) propose the monitoring of functionals of parameters which

retain their interpretations as the sampler moves between models. The deviance is sug-
gested as a default choice in the absence of superior alternatives. A two-way ANOVA
decomposition of the variance of such a functional is formed over multiple chain replica-
tions, from which the potential scale reduction factor (PSRF) (Gelman and Rubin, 1992)
can be constructed and monitored. Castelloe and Zimmerman (2002) extend this approach
firstly to an unbalanced (weighted) two-way ANOVA, to prevent the PRSF being domi-
nated by a few visits to rare models, with the weights being specified in proportion to the
frequency of model visits. Castelloe and Zimmerman (2002) also extend their diagnostic to
themultivariate (MANOVA) setting on the observation thatmonitoring several functionals
of marginal parameter subsets is more robust than monitoring a single statistic. This gen-
eral method is clearly reliant on the identification of useful statistics to monitor, but is also
sensitive to the extent of approximation induced by violations of theANOVAassumptions
of independence and normality.
Sisson and Fan (2007) propose diagnostics when the underlying model can be formu-

lated in the marked point process framework (Diggle, 1983; Stephens, 2000a). For example,
a mixture of an unknown number of univariate normal densities (Equation 3.5) can be
represented as a set of k events ξj = (wj,μj, σ2j ), j = 1, . . . , k, in a region A ⊂ R

3. Given a
reference point v ∈ A, in the same space as the events ξj (e.g. v = (ω,μ, σ2)), then the point-
to-nearest-event distance, y, is the distance from the point (v) to the nearest event (ξj) in A
with respect to somedistancemeasure.One can evaluate distributional aspects of the events
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{ξj}, through y, as observed from different reference points v. Adiagnostic can then be con-
structed based on comparisons between empirical distribution functions of the distances y,
constructed from Markov chain sample paths. Intuitively, as the Markov chains converge,
the distribution functions for y constructed from replicate chains should be similar.
This approach permits the direct comparison of full parameter vectors of varying dimen-

sion and, as a result, naturally incorporates a measure of across-model convergence. Due
to the manner of their construction, Sisson and Fan (2007) are able to monitor an arbitrarily
large number of such diagnostics. However, while this approach may have some appeal, it
is limited by the need to construct the model in the marked point process setting. Common
models which may be formulated in this framework include finite-mixture, change-point
and regression models.

Example: Convergence Assessment for Finite Mixture Univariate Normals

We consider the reversible jump sampler of Richardson and Green (1997) implementing a finite
mixture of normals model (Equation 3.5) using the enzymatic activity data set (Figure 3.1b). For
the purpose of assessing performance of the sampler, we implement five independent sampler
replications of length 400,000 iterations.
Figure 3.2a,b illustrates the diagnostic of Brooks et al. (2003b) which provides a test for between-

chain convergence based on posterior model probabilities. The pairwise Kolmogorov–Smirnov
and χ2 (all chains simultaneously) tests assume independent realizations. Based on the estimated
convergence rate (Brooks et al., 2003b), we retain every 400th iteration to obtain approximate
independence. The Kolmogorov–Smirnov statistic cannot reject immediate convergence, with all
pairwise chain comparisons well above the critical value of 0.05. The χ2 statistic cannot reject
convergence after the first 10,000 iterations.
Figure 3.2c illustrates the two multivariate PSRFs of Castelloe and Zimmerman (2002) using

the deviance as the default statistic to monitor. The solid line shows the ratio of between- and
within-chain variation; the broken line indicates the ratio of within-model variation, and the
within-model, within-chain variation. The mPSRFs rapidly approach 1, suggesting convergence,
beyond 166,000 iterations. This is supported by the independent analysis of Brooks and Giudici
(2000) who demonstrate evidence for convergence of this sampler after around 150,000 iterations,
although they caution that their chain lengths of only 200,000 iterationswere too short for certainty.
Figure 3.2d, adapted from Sisson and Fan (2007), illustrates the PSRF of the distances from each

of 100 randomly chosen reference points to the nearest model components, over the five replicate
chains. Up to around 100,000 iterations, between-chain variation is still reducing; beyond 300,000
iterations, differences between the chains appear to have stabilized.The intervening iterationsmark
a gradual transition between these two states. This diagnostic appears to be the most conservative
of those presented here.
This example highlights that empirical convergence assessment tools often give varying esti-

mates of when convergence may have been achieved. As a result, it may be prudent to follow the
most conservative estimates in practice.While it is undeniable that the benefits for the practitioner
in implementing reversible jump sampling schemes are immense, it is arguable that the practical
importance of ensuring chain convergence is often overlooked. However, it is also likely that cur-
rent diagnostic methods are insufficiently advanced to permit a more rigorous default assessment
of sampler convergence.

3.3.3 Estimating Bayes Factors

One of the useful by-products of the reversible jump sampler is the ease with which Bayes
factors can be estimated. Explicitly expressing marginal or predictive densities of x under
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FIGURE 3.2
Convergence assessment for the enzymatic activity data set. (a) Kolmogorov–Smirnov and (b) χ2 tests of Brooks
et al. (2003b). Horizontal line denotes an α = 0.05 significance level for test of different sampling distributions.
(c) Multivariate PSRFs of Castelloe and Zimmerman (2002) and (d) PSRFvs of Sisson and Fan (2007). Horizontal
lines denote the value of each statistic under equal sampling distributions. (From Sisson, S. A. and Fan, Y. 2007.
Statistics and Computing, 17:357–367. With permission.)

model Mk as

mk(x) =
∫
R
nk
L(x | k, θk)p(θk | k) dθk ,

the normalized posterior probability of model Mk is given by

p(k | x) = p(k)mk(x)∑
k′∈K p(k′)mk′(x)

=
⎛
⎝1+∑

k′ =k

p(k′)
p(k)

Bk′,k

⎞
⎠
−1
,

where Bk′,k = mk′(x)/mk(x) is the Bayes factor of model Mk′ to Mk , and p(k) is the prior
probability ofmodelMk. For a discussion of Bayesianmodel selection techniques, seeChip-
man et al. (2001), Berger and Pericchi (2001), Kass and Raftery (1995), Ghosh and Samanta
(2001), Berger and Pericchi (2004), and Barbieri and Berger (2004). The usual estimator of
the posterior model probability, p(k | x), is given by the proportion of chain iterations the
reversible jump sampler spent in model Mk.
However, when the number of candidate models |M| is large, the use of reversible jump

MCMC algorithms to evaluate Bayes factors raises issues of efficiency. Suppose that model
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Mk accounts for a large proportion of posterior mass. In attempting a between-model
move frommodelMk, the reversible jump algorithmwill tend to persist in this model and
visit others models rarely. Consequently, estimates of Bayes factors based on model-visit
proportions will tend to be inefficient (Bartolucci and Scaccia, 2003; Han and Carlin, 2001).
Bartolucci et al. (2006) propose enlarging the parameter space of the models under

comparison with the same auxiliary variables, u ∼ qdk→k′ (u) and u′ ∼ qdk′→k (u
′) (see Equa-

tion 3.9), defined under the between-model transitions, so that the enlarged spaces, (θk,u)

and (θk′ ,u′), have the same dimension. In this setting, an extension to the bridge estimator
for the estimation of the ratio of normalizing constants of two distributions (Meng and
Wong, 1996) can be used, by integrating out the auxiliary random process (i.e. u and u′)
involved in the between-model moves. Accordingly, the Bayes factor of model Mk′ to Mk
can be estimated using the reversible jump acceptance probabilities as

B̂k′,k =
∑Jk

j=1 α(j)[(k, θk), (k′, θ′k′)]/Jk∑Jk′
j=1 α(j)[(k′, θ′k′), (k, θk)]/Jk′

,

where α(j)[(k, θk), (k′, θ′k′)] is the acceptance probability (Equation 3.9) of the jth attempt to
move frommodelMk toMk′ , andwhere Jk and Jk′ are the number of proposedmoves from
modelMk toMk′ and vice versa during the simulation. Furthermanipulation is required to
estimateBk′,k if the sampler does not jumpbetweenmodelsMk andMk′ directly (Bartolucci
et al., 2006). This approach can provide a more efficient way of postprocessing reversible
jump MCMC with minimal computational effort.

3.4 Related Multi-Model Sampling Methods
Several alternative multi-model sampling methods are available. Some of these are closely
related to the reversible jump MCMC algorithm, or include reversible jump as a special
case.

3.4.1 Jump Diffusion

Before the development of the reversible jump sampler, Grenander and Miller (1994)
proposed a sampling strategy based on continuous-time jump-diffusion dynamics. This
process combines jumpsbetweenmodels at randomtimes, andwithin-modelupdatesbased
on a diffusion process according to a Langevin stochastic differential equation indexed by
time, t, satisfying

dθtk = dBtk +
1
2
∇ logπ (θtk) dt.

where dBtk denotes an increment of Brownianmotion and∇ the vector of partial derivatives.
This method has found some application in signal processing and other Bayesian analyses
(Miller et al., 1995; Phillips and Smith, 1996), but has in general been superseded by the
more accessible reversible jump sampler. In practice, the continuous-time diffusion must
be approximated by a discrete-time simulation. If the time discretization is corrected for via
a Metropolis–Hastings acceptance probability, the jump-diffusion sampler actually results
in an implementation of reversible jump MCMC (Besag, 1994).
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3.4.2 Product Space Formulations

As an alternative to samplers designed for implementation on unions of model spaces,
Θ =⋃k∈K({k},Rnk ), a number of “supermodel” product-space frameworks have been
developed, with a state space given by Θ∗ = ⊗k∈K({k},Rnk ). This setting encompasses all
model spaces jointly, so that a sampler needs to simultaneously track θk for all k ∈ K. The
composite parameter vector, θ∗ ∈ Θ∗, consisting of a concatenation of all parameters under
all models, is of fixed dimension, thereby circumventing the necessity of between-model
transitions. Clearly, product-space samplers are limited to situations where the dimension
of θ∗ is computationally feasible. Carlin and Chib (1995) propose a posterior distribution
for the composite model parameter and model indicator given by

π(k, θ∗ | x) ∝ L(x | k, θ∗Ik )p(θ∗Ik | k)p(θ∗I−k | θ∗Ik , k)p(k),

where Ik and I−k are index sets respectively identifying and excluding the parameters θk
from θ∗. Here Ik ∩ Ik′ = ∅ for all k = k′, so that the parameters for each model are distinct.
It is easy to see that the term p(θ∗I−k | θ∗Ik , k), called a “pseudo-prior” by Carlin and Chib
(1995), has no effect on the joint posterior π(k, θ∗Ik | x) = π(k, θk | x), and its form is usually
chosen for convenience. However, poor choices may affect the efficiency of the sampler
(Godsill, 2003; Green, 2003).
Godsill (2001) proposes a further generalization of the above by relaxing the restriction

that Ik ∩ Ik′ = ∅ for all k = k′. That is, individual model parameter vectors are permitted
to overlap arbitrarily, which is intuitive for, say, nested models. This framework can be
shown to encompass the reversible jump algorithm, in addition to the setting of Carlin
and Chib (1995). In theory this allows for direct comparison between the three sam-
plers, although this has not yet been fully examined. However, one clear point is that the
information contained within θ∗I−k would be useful in generating efficient between-model
transitions when in model Mk , under a reversible jump sampler. This idea is exploited by
Brooks et al. (2003c).

3.4.3 Point Process Formulations

Adifferent perspective on themulti-model sampler is based on spatial birth-and-death pro-
cesses (Preston, 1977; Ripley, 1977). Stephens (2000a) observed that particular multi-model
statistical problems can be represented as continuous-time, marked point processes (Geyer
and Møller, 1994). One obvious setting is finite-mixture modeling (Equation 3.5) where
the birth and death of mixture components, φj, indicate transitions between models. The
sampler of Stephens (2000a) may be interpreted as a particular continuous-time, limiting
version of a sequence of reversible jump algorithms (Cappé et al., 2003).
A number of illustrative comparisons of the reversible jump, jump diffusion, product

space and point process frameworks can be found in the literature. See, for example,
Andrieu et al. (2001), Dellaportas et al. (2002), Carlin and Chib (1995), Godsill (2001, 2003),
Cappé et al. (2003), and Stephens (2000a).

3.4.4 Multi-Model Optimization

The reversible jumpMCMC samplermay be utilized as the underlying randommechanism
within a stochastic optimization framework, given its ability to traverse complex spaces
efficiently (Andrieu et al., 2000; Brooks et al., 2003a). In a simulated annealing setting, the
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sampler would define a stationary distribution proportional to the Boltzmann distribution

BT(k, θk) ∝ exp
{−f (k, θk)

T

}
,

where T ≥ 0 and f (k, θk) is a model-ranking function to be minimized. A stochastic
annealing framework will then decrease the value of T according to some schedule
while using the reversible jump sampler to explore function space. Assuming adequate
chain mixing, as T → 0 the sampler and the Boltzmann distribution will converge to
a point mass at (k∗, θ∗k∗) = argmax f (k, θk). Specifications for the model-ranking func-
tion may include the Akaike information criterion or Bayesian information criterion
(King and Brooks, 2004; Sisson and Fan, 2009), the posterior model probability (Clyde,
1999) or a nonstandard loss function defined on variable-dimensional space (Sisson and
Hurn, 2004) for the derivation of Bayes rules.

3.4.5 Population MCMC

The population Markov chain Monte Carlo method (Liang and Wong, 2001; Liu, 2001)
may be extended to the reversible jump setting (Jasra et al., 2007). Motivated by sim-
ulated annealing (Geyer and Thompson, 1995), N parallel reversible jump samplers are
implemented targeting a sequence of related distributions {πi}, i = 1, . . . ,N, which may be
tempered versions of the distribution of interest, π1 = π(k, θk | x). The chains are allowed
to interact, in that the states of any two neighboring (in terms of the tempering parameter)
chainsmay be exchanged, thereby improving themixing across the population of samplers
bothwithin and betweenmodels. Jasra et al. (2007) demonstrate superior convergence rates
over a single reversible jump sampler. For samplers that make use of tempering or parallel
simulation techniques, Gramacy et al. (2010) propose efficientmethods of utilizing samples
from all distributions (i.e. including those not from π1) using importance weights, for the
calculation of given estimators.

3.4.6 Multi-Model Sequential Monte Carlo

The idea of running multiple samplers over a sequence of related distributions may also
considered under a sequential Monte Carlo (SMC) framework (DelMoral et al., 2006). Jasra
et al. (2008) propose implementing N separate SMC samplers, each targeting a different
subset ofmodel space.At some stage the samplers are allowed to interact and are combined
into a single sampler. This approach permits more accurate exploration of models with
lower posterior model probabilities than would be possible under a single sampler. As
with population MCMC methods, the benefits gained in implementing N samplers must
be weighed against the extra computational overheads.

3.5 Discussion and Future Directions
Given the degree of complexity associated with the implementation of reversible jump
MCMC, a major focus for future research is in designing simple but efficient samplers,
with the ultimate goal of automation. Several authors have provided new insights into the



Reversible Jump MCMC 87

reversible jump sampler which may contribute toward achieving such goals. For example,
Keith et al. (2004) present a generalizedMarkov sampler,which includes the reversible jump
sampler as a special case. Petris and Tardella (2003) demonstrate a geometric approach for
sampling from nested models, formulated by drawing from a fixed-dimension auxiliary
continuous distribution on the largest model subspace, and then using transformations
to recover model-specific samples. Walker (2009) has recently provided a Gibbs sampler
alternative to the reversible jumpMCMC, using auxiliary variables. Additionally, as noted
by Sisson (2005), one does not need to work only with reversible Markov chains, and
nonreversible chains may offer opportunities for sampler improvement (Diaconis et al.,
2000; Mira and Geyer, 2000; Neal, 2004).
An alternative way of increasing sampler efficiency would be to explore the ideas intro-

duced in adaptiveMCMC.Aswith standardMCMC, anyadaptationsmust be implemented
with care—transition kernels dependent on the entire history of the Markov chain can
only be used under diminishing adaptation conditions (Haario et al., 2001; Roberts and
Rosenthal, 2009). Alternative schemes permit modification of the proposal distribution at
regeneration times, when the next state of the Markov chain becomes completely indepen-
dent of the past (Brockwell and Kadane, 2005; Gilks et al., 1998). Under the reversible jump
framework, regeneration can be naturally achieved by incorporating an additional model,
from which independent samples can be drawn. Under any adaptive scheme, however,
how best to make use of historical chain information remains an open question. Addition-
ally, efficiency gains through adaptations should naturally outweigh the costs of handling
chain history and modification of the proposal mechanisms.
Finally, two areas remain underdeveloped in the context of reversible jump simula-

tion. The first of these is perfect simulation, which provides an MCMC framework for
producing samples exactly from the target distribution, circumventing convergence issues
entirely (Propp andWilson, 1996). Some tentative steps have beenmade in this area (Brooks
et al., 2006; Møller and Nicholls, 1999). Secondly, while the development of “likelihood-
free” MCMC has received much recent attention (Chapter 12, this volume), implementing
the sampler in the multi-model setting remains a challenging problem, in terms of both
computational efficiency and bias of posterior model probabilities.
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4
Optimal Proposal Distributions
and Adaptive MCMC

Jeffrey S. Rosenthal

4.1 Introduction
TheMetropolis–Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) requires choice
of proposal distributions, and it is well known that some proposals work much better than
others. Determining which proposal is best for a particular target distribution is both very
important and very difficult. Often this problem is attacked in an ad hocmanner involving
much trial and error. However, it is also possible to use theory to estimate optimal proposal
scalings and/or adaptive algorithms to attempt to find good proposals automatically. This
chapter reviews both of these possibilities.

4.1.1 The Metropolis–Hastings Algorithm

Suppose that our target distribution has density πwith respect to some reference measure
(usually d-dimensional Lebesgue measure). Then, given Xn, a “proposed value” Yn+1 is
generated from some pre-specified density q(Xn, y), and is then accepted with probability

α(x, y) =
⎧⎨
⎩min

{
π(y)

π(x)
q(y, x)
q(x, y)

, 1
}
, π(x) q(x, y) > 0,

1, π(x) q(x, y) = 0.
(4.1)

If the proposed value is accepted, we set Xn+1 = Yn+1; otherwise, we set Xn+1 = Xn. The
function α(x, y) is chosen, of course, precisely to ensure that the Markov chain X0,X1, . . . is
reversible with respect to the target density π(y), so that the target density is stationary for
the chain. If the proposal is symmetric, that is q(x, y) = q(y, x), then this reduces to

α(x, y) =
⎧⎨
⎩min

{
π(y)

π(x)
, 1
}
, π(x) q(x, y) > 0,

1, π(x) q(x, y) = 0.

4.1.2 Optimal Scaling

It has long been recognized that the choice of the proposal density q(x, y) is crucial to
the success (e.g. rapid convergence) of the Metropolis–Hastings algorithm. Of course, the
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fastest-converging proposal density would be q(x, y) = π(y) (in which case α(x, y) ≡ 1, and
the convergence is immediate), but in the Markov chain Monte Carlo (MCMC) context we
assume that π cannot be sampled directly. Instead, the most common case (which we focus
onhere) involves a symmetric random-walkMetropolis algorithm (RMW) inwhich theproposal
value is given by Yn+1 = Xn + Zn+1, where the increments {Zn} are i.i.d. from some fixed
symmetric distribution (e.g. N(0, σ2Id)). In this case, the crucial issue becomes how to scale
the proposal (e.g. how to choose σ): too small and the chain will move too slowly; too
large and the proposals will usually be rejected. Instead, we must avoid both extremes (we
sometimes refer to this as the “Goldilocks principle”).
Metropolis et al. (1953) recognized this issue early on, when they considered the case

Zn ∼ U[−α, α] and noted that “the maximum displacement α must be chosen with some
care; if too large, most moves will be forbidden, and if too small, the configuration will not
change enough. In either case it will then take longer to come to equilibrium.”
In recent years, significant progress has been made in identifying optimal proposal

scalings, in terms of such tangible values as asymptotic acceptance rate. Under certain con-
ditions, these results can describe the optimal scaling precisely. These issues are discussed
in Section 4.2 below.

4.1.3 Adaptive MCMC

The search for improved proposal distributions is often done manually, through trial and
error, though this can be difficult, especially in high dimensions. An alternative approach
is adaptive MCMC, which asks the computer to automatically “learn” better parameter
values “on the fly”—that is, while an algorithm runs. Intuitively, this approach is attrac-
tive since computers are getting faster and faster, while human speed is remaining about
the same.
Suppose {Pγ}γ∈Y is a family of Markov chains, each having stationary distribution π.

(For example, perhaps Pγ corresponds to an RWM algorithm with increment distribution
N(0, γ2Id).) An adaptive MCMC algorithm would randomly update the value of γ at each
iteration, in an attempt to find the best value.AdaptiveMCMChas been applied in a variety
of contexts (e.g. Haario et al., 2001; Giordani and Kohn, 2006; Roberts and Rosenthal, 2009),
including problems in statistical genetics (Turro et al., 2007).
Counterintuitively, adaptiveMCMCalgorithmsmay not always preserve the stationarity

of π. However, if the adaptations are designed to satisfy certain conditions, then station-
arity is guaranteed, and significant speed-ups are possible. These issues are discussed in
Section 4.3 below.

4.1.4 Comparing Markov Chains

Since much of what follows will attempt to find “better” or “best” MCMC samplers, we
pause to consider what it means for one Markov chain to be better than another.
Suppose P1 and P2 are two Markov chains, each with the same stationary distribution

π. Then P1 converges faster than P2 if supA |Pn1(x,A)− π(A)| ≤ supA |Pn2(x,A)− π(A)| for all
n and x. This definition concerns distributional convergence (in total variation distance)
as studied theoretically in, for example, Rosenthal (1995, 2002) and Roberts and Tweedie
(1999).
Alternatively, P1 has smaller variance than P2 ifVar

( 1
n
∑n

i=1 g(Xi)
)
is smaller when {Xi} fol-

lows P1 thanwhen it follows P2. This definition concerns the variance of a functional g, and
may depend on which g is chosen, and also perhaps on n and/or the starting distribution.
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Usually we assume that theMarkov chain {Xn} is in stationarity, so Pr(Xi ∈ A) = π(A), and
Pr(Xi+1 ∈ A |Xi = x) = P(x,A) where P is the Markov chain kernel being followed.
If the Markov chain {Xn} is in stationarity, then, for large n, Var

( 1
n
∑n

i=1 g(Xi)
) ≈

1
nVarπ(g) τg, where τg =

∑∞
k=−∞ corr(g(X0), g(Xk)) = 1+ 2

∑∞
i=1 corr(g(X0), g(Xi)) is the

integrated autocorrelation time. So, a related definition is that P1 has smaller asymptotic
variance than P2 if τg is smaller under P1 than under P2. (Under strong conditions involving
the so-called Peskun ordering, this improvement is sometimes uniform over choice of g; see,
e.g. Mira, 2001.)
Another perspective is that a Markov chain is better if it allows for faster exploration

of the state space. Thus, P1 mixes faster than P2 if E[(Xn − Xn−1)2] is larger under P1 than
under P2, where again {Xn} is in stationarity. (Of course, E[(Xn − Xn−1)2]would usually be
estimated by 1

n
∑n

i=1(Xi − Xi−1)2, or perhaps by 1
n−B

∑n
i=B(Xi − Xi−1)2 to allow a burn-in B

to approximately converge to stationarity.) Note that the evaluation of E[(Xn − Xn−1)2] is
over all proposed moves, including rejected ones where (Xn − Xn−1)2 = 0. Thus, rejected
moves slow down the chain, but small accepted moves do not help very much either.
Best is to find reasonably large proposed moves which are reasonably likely to be
accepted.
Such competing definitions of “better” Markov chain mean that the optimal choice of

MCMC may depend on the specific question being asked. However, we will see in Sec-
tion 4.2 that in some circumstances these different definitions are all equivalent, leading to
uniformly optimal choices of algorithm parameters.

4.2 Optimal Scaling of Random-Walk Metropolis
We restrict ourselves to the RWM algorithm, where the proposals are of the form Yn+1 =
Xn + Zn+1, where {Zi} are i.i.d. with fixed symmetric density, with some scaling parameter
σ > 0, for exampleZi ∼ N(0, σ2Id). To avoid technicalities,we assume that the target density
π is a positive, continuous function. The task is to choose σ in order to optimize the resulting
MCMC algorithm.

4.2.1 Basic Principles

A first observation is that if σ is very small, then virtually all proposed moves will be
accepted, but they will represent very small movements, so overall the chain will not mix
well (Figure 4.1). Similarly, if σ is very large, then most moves will be rejected, so the chain
will usually not move at all (Figure 4.2). What is needed is a value of σ between the two
extremes, thus allowing for reasonable-sized proposal moves together with a reasonably
high acceptance probability (Figure 4.3).
A simple way to avoid the extremes is to monitor the acceptance rate of the algorithm, that

is, the fraction of proposed moves which are accepted. If this fraction is very close to 1, this
suggests that σ is too small (as in Figure 4.1). If this fraction is very close to 0, this suggests
that σ is too large (as in Figure 4.2). But if this fraction is far from 0 and far from 1, then we
have managed to avoid both extremes (Figure 4.3).
So, this provides an easy rule of thumb for scaling RMW algorithms: choose a scaling σ

so that the acceptance rate is far from 0 and far from 1. However, this still allows for a wide
variety of choices. Under some conditions, much more can be said.



96 Handbook of Markov Chain Monte Carlo

0 200 400 600 800 1000

−2

−1

0

1

2

FIGURE 4.1
Trace plot with small σ, large acceptance rate, and poor mixing.

4.2.2 Optimal Acceptance Rate as d → ∞
Major progress about optimal scalings was made by Roberts et al. (1997). They considered
RWM on Rd for very special target densities, of the form

π(x1, x2, . . . , xd) = f (x1) f (x2) . . . f (xd), (4.2)

for some one-dimensional smooth density f . That is, the target density is assumed to consist
of i.i.d. components. Of course, this assumption is entirely unrealistic for MCMC, since it
means that to sample from π it suffices to sample each component separately from the
one-dimensional density f (which is generally easy to do numerically).
Under this restrictive assumption, and assuming proposal increment distributions of the

formN(0, σ2Id), Roberts et al. (1997) proved the remarkable result that as d→∞, the optimal
acceptance rate is precisely 0.234. This is clearly a major refinement of the general principle
that the acceptance rate should be far from 0 and far from 1.
Moreprecisely, their result is the following. Suppose thatσ = �/

√
d for some � > 0.Thenas

d→∞, if time is speededupby a factor of d, and space is shrunk by a factor of
√
d, then each

component of the Markov chain converges to a diffusion having stationary distribution f ,
andspeed functiongivenbyh(�) = 2 �2Φ

(
−√I�/2

)
,whereΦ is the cumulativedistribution
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FIGURE 4.2
Trace plot with large σ, small acceptance rate, and poor mixing.
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FIGURE 4.3
Trace plot with medium σ, medium acceptance rate, and good mixing.

function of a standard normal, and I is a constant depending on f , given in fact by I =∫∞
−∞

[(
f ′(X)

f (X)

)2]
f (x) dx.

It follows that this diffusion is optimized (in terms of any of the criteria of Section 4.1.4)
when � is chosen to maximize h(�). It is computed numerically that this optimal value of �

is given by �opt
.= 2.38/

√
I.

Furthermore, the asymptotic (stationary) acceptance rate is given by A(�) =
2Φ

(
−√I�/2

)
. Hence, the optimal acceptance rate is equal to A(�opt)

.= 2Φ(−2.38/2) .=
0.234, which is where the figure 0.234 comes from.
Figure 4.4 plots h(�) versus �, and Figure 4.5 plots h(�) versus A(�). (We take I = 1 for

definiteness, but any other value of I would simply multiply all the values by a constant.)
In particular, the relative speed h(�) remains fairly close to its maximum as long as � is
within, say, a factor of 2 of its optimal value. Equivalently, the algorithm remains relatively
efficient as long as the asymptotic acceptance rate A(�) is between, say, 0.1 and 0.6.
Of course, the above results are all asymptotic as d→∞. Numerical studies (e.g. Gelman

et al., 1996; Roberts and Rosenthal, 2001) indicate that the limiting results do seem to well
approximate finite-dimensional situations for d as small as 5. On the other hand, they
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FIGURE 4.4
Algorithm relative speed h(�) as a function of the parameter �.
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FIGURE 4.5
Algorithm relative speed h(�) as a function of acceptance rate A(�).

do not apply to one-dimensional increments, for example; numerical studies on normal
distributions show that when d = 1, the optimal acceptance rate is approximately 0.44.
Finally, these results are all on continuous spaces, but there have also been studies of optimal
scaling for discrete Metropolis algorithms (Neal et al., 2007).

4.2.3 Inhomogeneous Target Distributions

The above result of Roberts et al. (1997) requires the strong assumption that π(x) =∏d
i=1 f (xi), that is, that the target distribution has i.i.d. components. In later work, this

assumption was relaxed in various ways.
Roberts and Rosenthal (2001) considered inhomogeneous target densities of the form

π(x) =
d∏
i=1

Ci f (Cixi), (4.3)

where the {Ci} are themselves i.i.d. from some fixed distribution. (Thus, Equation 4.2 cor-
responds to the special case where the Ci are constant.) They proved that in this case,
the result of Roberts et al. (1997) still holds (including the optimal acceptance rate of
0.234), except that the limiting diffusion speed is divided by an “inhomogeneity factor”
of b ≡ E(C2i )/(E(Ci))2 ≥ 1. In particular, the more inhomogeneous the target distribution
(i.e. the greater the variability of the Ci), the slower the resulting algorithm.
As a special case, if the target distribution is N(0,Σ) for some d-dimensional covariance

matrixΣ, and the increment distribution is of the formN(0,Σp), then by change of basis this
is equivalent to the case of proposal incrementN(0, Id) and target distributionN(0,ΣΣ−1p ).
In the corresponding eigenbasis, this target distribution is of the form (Equation 4.3) where
now Ci = √λi, with {λi}di=1 the eigenvalues of the matrix ΣΣ−1p . For large d, this approx-
imately corresponds to the case where the {Ci} are random with E(Ci) = 1

d
∑d

j=1
√
λj and

E(C2i ) = 1
d
∑d

j=1 λj. The inhomogeneity factor b then becomes

b ≡ E(C2i )
(E(Ci))2

≈
1
d
∑d

j=1 λj(
1
d
∑d

j=1
√
λj

)2 = d

∑d

j=1 λj(∑d

j=1
√
λj

)2 , (4.4)
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with {λj} the eigenvalues of ΣΣ−1p . This expression is maximized when the {λj} are con-
stant, that is, when ΣΣ−1p is a multiple of the identity, or in other words, when Σp is
proportional to Σ.
We conclude that with increment distribution N(0,Σp), and target distribution N(0,Σ),

it is best if Σp is approximately proportional to Σ, that is, Σp ≈ kΣ for some k > 0. If not,
this will lead to additional slowdown by the factor b.
Once we fix Σp = kΣ, then we can apply the original result of Roberts et al., to conclude

that the optimal constant k is then (2.38)2/d. That is, it is optimal to have

Σp =
[

(2.38)2

d

]
Σ. (4.5)

In a related direction, Bédard (2007, 2008a,b; see also Bédard and Rosenthal, 2008) con-
sidered the case where the target distribution π has independent coordinates with vastly
different scalings (i.e. different powers of d as d→∞). She proved that if each individual
component is dominated by the sum of all components, then the optimal acceptance rate
of 0.234 still holds. In cases where one component is comparable to the sum, the optimal
acceptance rate is in general less (not more!) than 0.234. Sherlock (2006) did explicit finite-
dimensional computations for the case of normal target distributions, and came to similar
conclusions.

4.2.4 Metropolis-Adjusted Langevin Algorithm

Finally, Roberts and Tweedie (1996) and Roberts and Rosenthal (1998) considered the more
sophisticated Metropolis-Adjusted Langevin algorithm (MALA). This algorithm is similar to
RWM, except that the proposal increment distribution Zi ∼ N(0, σ2Id) is replaced by

Zi ∼ N
(
σ2

2
∇ logπ(Xn), σ2Id

)
.

Here the extra term σ2
2 ∇ logπ(Xn), corresponding to the discrete-time approximation to the

continuous-time Langevin diffusion for π, is an attempt to move in the direction in which
the (smooth) target density π is increasing.
Roberts andRosenthal (1998) proved that in this case, under the same i.i.d. target assump-

tion (Equation 4.2), a similar optimal scaling result holds. This time the scaling is σ = �/d1/6
(as opposed to �/

√
d), and the optimal value �opt has the optimal asymptotic acceptance

rate A(�opt) = 0.574 (as opposed to 0.234).
This proves that the optimal proposal scaling σ and the acceptance rate are both signifi-

cantly larger for MALA than for RWM, indicating that MALAan improved algorithmwith
faster convergence. The catch, of course, is that the gradient of πmust be computed at each
new state reached, which could be difficult and/or time-consuming. Thus, RWM is much
more popular than MALA in practice.

4.2.5 Numerical Examples

Here we consider some simple numerical examples in dimension d = 10. In each case, the
target density π is that of a ten-dimensional normal with some covariance matrix Σ, and
we consider various forms of the RMW algorithm.
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4.2.5.1 Off-Diagonal Covariance

LetM be the d× dmatrix having diagonal elements 1, and off-diagonal elements given by
the product of the row and column number divided by d2, that is, mii = 1, and mij = ij/d2
for j = i. Then letΣ−1 =M2 (sinceM is symmetric,Σ is positive-definite), and let the target
density π be that of N(0,Σ). (Equivalently, π is such that X ∼ π if X =MZ, where Z is a
10-tuple of i.i.d. univariate standard normals.)
We compute numerically that the top-left entry of Σ is equal to 1.0305. So, if h is the

functional equal to the square of the first coordinate, then in stationarity the mean value of
h should be 1.0305.
We consider an RWM algorithm for this target π(·), with initial valueX0 = (1, 0, 0, . . . , 0),

andwith increment distribution given byN(0, σ2Id) for various choices of σ. For each choice
of σ, we run the algorithm for 100,000 iterations, and average all the values of the square
of the first coordinate to estimate its stationary mean. We repeat this 10 times for each σ, to
compute a sample standard error (over the 10 independent runs) and a root mean squared
error (RMSE) for each choice of σ. Our results are as follows:

σ Mean Acc. Rate Estimate RMSE

0.1 0.836 0.992 ± 0.066 0.074
0.7 0.230 1.032 ± 0.019 0.018
3.0 0.002 1.000 ± 0.083 0.085

We see from this table that the value σ = 0.1 is too small, leading to an overly high accep-
tance rate (83.6%), a poor estimate (0.992) of the mean functional value with large standard
error (0.066) and large RMSE (0.074). Similarly, the value σ = 3.0 is too high, leading to an
overly low acceptance rate (0.2%), a poor estimate (1.000) of themean functional valuewith
large standard error (0.083) and large RMSE (0.085). On the other hand, the value σ = 0.7
is just right, leading to a nearly optimal acceptance rate (23.0%), a good estimate (1.032) of
the mean functional value with smaller standard error (0.019) and smaller RMSE (0.085).
This confirms that, when scaling the increment covariance as σId, it is optimal to find σ

to make the acceptance rate close to 0.234.

4.2.5.2 Inhomogeneous Covariance

To consider the effect of nondiagonal proposal increments, we again consider a case where
the target density π is that of N(0,Σ), again in dimension d = 10, but now we take Σ =
diag(12, 22, 32, . . . , 102). Thus, the individual covariances are now highly variable. Since the
last coordinate now has the highest variance and is thus most “interesting,” we consider
the functional given by the square of the last coordinate. So, the functional’s true mean is
now 100. We again start the algorithms with the initial value X0 = (1, 0, 0, . . . , 0).
Wefirst consider ausualRWMalgorithm,withproposal incrementdistributionN(0, σ2Id),

with σ = 0.7 chosen to get an acceptance rate close to the optimal value of 0.234. The result
(again upon running the algorithm for 100,000 iterations, repeated 10 times to compute a
sample standard error) is as follows:

σ Mean Acc. Rate Estimate RMSE

0.7 0.230 114.8 ± 28.2 30.5
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We thus see that, even though σ was well chosen, the resulting algorithm still con-
verges poorly, leading to a poor estimate (114.8) with large standard error (28.2) and large
RMSE (30.5).
Next we consider running the modified algorithm where now the increment proposal is

equal to N(0, σ2Σ) where Σ is the target covariance matrix as above, but otherwise the run
is identical. In this case, we find the following:

σ Mean Acc. Rate Estimate RMSE

0.7 0.294 100.25 ± 1.91 1.83

Comparing the two tables, we can see that the improvement from using an increment
proposal covariance proportional to the target covariance (rather than the identity matrix)
is very dramatic. The estimate (100.25) is much closer to the true value (100), with much
smaller standard error (1.91) and much smaller RMSE (1.83). (Furthermore, the second
simulation was simply run with σ = 0.7 as in the first simulation, leading to slightly too
large an acceptance rate, so a slightly larger σ would make it even better.) This confirms,
as shown by Roberts and Rosenthal (2001), that when running a Metropolis algorithm,
it is much better to use increment proposals which mimic the covariance of the target
distribution if at all possible.
Of course, in general the target covariance matrix will not be known, and it is not at

all clear (especially in high dimensions) how one could arrange for proposal increment
covariances to mimic the target covariance. One promising solution is adaptive MCMC,
discussed in the next section. In particular, Section 4.3.2 considers the adaptive Metropolis
algorithm and shows how it can successfully mimic the target covariance without any
a priori knowledge about it, even in hundreds of dimensions.

4.2.6 Frequently Asked Questions

Isn’t a larger acceptance rate always preferable?

No. For RWM, if the acceptance rate is close to 1, this means the proposal increments are
so small that the algorithm is highly inefficient despite all the acceptances.

Is it essential that the acceptance rate be exactly 0.234?

No.Asshown inFigure4.5, thealgorithm’s efficiency remainshighwhenever theacceptance
rate is between about 0.1 and 0.6.

Are these asymptotic results relevant to finite-dimensional problems?

Yes. While the theorems are only proven as d→∞, it appears that in many cases the
asymptotics approximately apply whenever d ≥ 5, so the infinite-dimensional results are
good approximations to finite-dimensional situations.

Do these results hold for all target distributions?

No. They are only proved for very special cases involving independent target components.
However, within that class they appear to be fairly robust (albeit sometimes with an even
loweroptimal acceptance rate than 0.234), and simulations seem to suggest that they approx-
imately hold in other cases too. Furthermore, by change of basis, the results apply to all



102 Handbook of Markov Chain Monte Carlo

normal target distributions, too. And the general principle that the scaling should be nei-
ther too large nor too small applies much more generally, to virtually all “local” MCMC
algorithms.

Do these results hold for multimodal distributions?

In principle, yes, at least for distributions with independent (though perhaps multimodal)
components. However, the asymptotic acceptance rate is by definition the acceptance rate
with respect to the entire target distribution. So, if a sampler is stuck in just one mode, it
may misrepresent the asymptotic acceptance rate, leading to an incorrect estimate of the
asymptotic acceptance rate, and a misapplication of the theorem.

In high dimensions, is the proposal scaling parameter σ the only quantity of interest?

No. The entire proposal distribution is of interest. In particular, it is best if the covariance
of the proposal increment distribution mimics the covariance of the target distribution as
much as possible. However, often significant gains can be realized simply by optimizing σ
according to the theorems.

Doesn’t optimality depend on which criterion is used?

Yes, in general, but these asymptotic diffusion results are valid for any optimality measure.
That is because in the limit the processes each represent precisely the same diffusion, just
scaled with a different speed factor. So, running a suboptimal algorithm for n steps is
precisely equivalent (in the limit) to running the optimal algorithm for m steps, where
m < n. In other words, with a suboptimal algorithm you have to run for longer to achieve
precisely the same result, which is less efficient by any sensible efficiency measure at all,
including all of those in Section 4.1.4.

Do these results hold for, say, Metropolis-within-Gibbs algorithms?

No, since they are proved for full-dimensional Metropolis updates only. Indeed, the
Metropolis-within-Gibbs algorithm involves updating just one coordinate at a time, and
thus essentially corresponds to the case d = 1. In that case, it appears that the optimal
acceptance rate is usually closer to 0.44 than 0.234.

Isn’t it too restrictive to scale σ specifically asO(d−1/2) for RWM, orO(d−1/6) forMALA?
Wouldn’t other scalings lead to other optimality results?

No, a smaller scaling would correspond to letting � → 0, while a larger scaling would
correspond to letting � →∞, either of which would lead to an asymptotically zero-
efficiency algorithm (cf. Figure 4.5). The O(d−1/2) or O(d−1/6) scaling is the only
one that leads to a nonzero limit, and thus the only scaling leading to optimality
as d→∞.

4.3 Adaptive MCMC
Even if we have some idea of what criteria make an MCMC algorithm optimal, this still
leaves the question of how to find this optimum, that is, how to run a Markov chain with
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(approximately) optimal characteristics. For example, even if we are convinced that an
acceptance rate of 0.234 is optimal, how do we find the appropriate proposal scaling to
achieve this?
One method, commonly used, is trial and error: if the acceptance rate seems too high,

then we reduce the proposal scaling σ and try again (or if it seems too low, then we increase
the scaling). This method is often successful, but it is generally time-consuming, requiring
repeatedmanual intervention by the user. Furthermore, such amethod cannot hope to find
more complicated improvements, for example making the proposal covariance matrix Σp
approximately proportional to the (unknown) target covariancematrixΣ as in Equation 4.5
(which requires choosing d(d − 1)/2 separate covariancematrix entries). It is possible to use
more refined versions of this, for example with increasing trial run lengths to efficiently
zero in on good proposal scale and shape values (Pasarica and Gelman, 2010), but this is
still not sufficient in difficult high-dimensional problems.
As an alternative, we consider algorithms which themselves try to improve the Markov

chain. Specifically, let {Pγ}γ∈Y be a family of Markov chain kernels, each having the same
stationary distribution π. Let Γn be the chosen kernel choice at the nth iteration, so

Pr(Xn+1 ∈ A |Xn = x,Γn = γ,Xn−1, . . . ,X0,Γn−1, . . . ,Γ0) = Pγ(x,A),

for n = 0, 1, 2, . . .. Here the {Γn} are updated according to some adaptive updat-
ing algorithm. In principle, the choice of Γn could depend on the entire history
Xn−1, . . . ,X0,Γn−1, . . . ,Γ0, though in practice it is often the case that the pairs process
{(Xn,Γn)}∞n=0 isMarkovian. In general the algorithms are quite easy to implement, requiring
only moderate amounts of extra computer programming—and there are even some efforts
at generic adaptive software, such as Rosenthal (2007).
Whether such an adaptive scheme will improve convergence depends, obviously, on the

adaptive algorithm selected.An evenmore fundamental question, whichwe now consider,
is whether the adaptation might destroy convergence.

4.3.1 Ergodicity of Adaptive MCMC

One might think that, as long as each individual Markov chain Pγ converges to π, any
adaptive mixture of the chains must also converge to π. However, this is not the case. For
a simple counterexample (illustrated interactively by Rosenthal, 2004; see also Atchadé
and Rosenthal, 2005; Roberts and Rosenthal, 2007), let Y = {1, 2}, let X = {1, 2, 3, 4}, let
π(1) = π(3) = π(4) = 0.333 and π(2) = 0.001. Let each Pγ be an RWM algorithm, with
proposal Yn+1 ∼ U{Xn − 1,Xn + 1} for P1, or Yn+1 ∼ U{Xn − 2,Xn − 1,Xn + 1,Xn + 2} for
P2. (Of course, any proposed moves out of X are always rejected, i.e. π(x) = 0 for x ∈ X .)
Define the adaptation by saying that Γn+1 = 2 if the nth proposal was accepted, otherwise
Γn+1 = 1. Then each Pγ is reversible with respect to π. However, the adaptive algorithm
can get “stuck” with Xn = Γn = 1 for long stretches (and only escape with probability
0.001/0.333), so the limiting distribution of Xn is weighted too heavily toward 1 (and too
lightly toward 3 and 4).
In light of such counterexamples, it is important to have sufficient conditions to guaran-

tee convergence in distribution of {Xn} to π. In recent years, a number of authors (Haario et
al., 2001; Atchadé and Rosenthal, 2005; Andrieu and Moulines, 2006; Giordani and Kohn,
2006; Andrieu and Atchadé, 2007; Roberts and Rosenthal, 2007) have proved ergodicity of
adaptive MCMC under various assumptions.
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In particular, Roberts and Rosenthal (2007) proved that limn→∞ supA⊆X ‖Pr(Xn ∈ A)−
π(A)‖ = 0 (asymptotic convergence), and also limn→∞ 1

n
∑n

i=1 g(Xi) = π(g) for all bounded
g : X → R (WLLN), assuming only the diminishing (a.k.a. vanishing) adaptation condition

lim
n→∞ sup

x∈X
‖PΓn+1(x, ·)− PΓn(x, ·)‖ = 0 in probability, (4.6)

and also the containment (a.k.a. bounded convergence) condition

{Mε(Xn,Γn)}∞n=0 is bounded in probability, ε > 0, (4.7)

whereMε(x, γ) = inf{n ≥ 1 : ‖Pnγ(x, ·)− π(·)‖ ≤ ε} is the convergence time of the kernel Pγ
when beginning in state x ∈ X .
Now, Equation 4.7 is a technical condition which is satisfied for virtually all reason-

able adaptive schemes. For example, it holds whenever X × Y is finite, or is compact in
some topology in which either the transition kernels Pγ, or the Metropolis–Hastings pro-
posal kernels Qγ, have jointly continuous densities. It also holds for adaptive RWM and
Metropolis-within-Gibbs algorithms under very general conditions (Bai et al., 2008). (It is,
however, possible to construct pathological counterexamples, where containment does not
hold; see Yang, 2008b and Bai et al., 2008.) So, in practice, the requirement (Equation 4.7)
can be largely ignored.
By contrast, condition (Equation 4.6) is more fundamental. It requires that the amount of

adapting at the nth iteration goes to 0 as n→∞. (Note that the sum of the adaptations can
still be infinite, i.e. an infinite total amount of adaptation is still permissible, and it is not
necessarily required that the adaptive parameters {Γn} converge to some fixed value.) Since
the user can choose the adaptive updating scheme, Equation 4.6 can be ensured directly
through careful planning. For example, if the algorithm adapts at the nth iteration only
with probability p(n), then Equation 4.6 is automatically satisfied if p(n) → 0.Alternatively,
if the choice of γ depends on an empirical average over iterations 1 through n, then the
influence of the nth iteration is just O(1/n) and hence goes to 0.
Such results allow us to update our parameters {Γn} in virtually any manner we wish, so

long as (Equation 4.6) holds. So, what adaptations are beneficial?

4.3.2 Adaptive Metropolis

The first important modern use of adaptive MCMC was the adaptive Metropolis (AM)
algorithm of Haario et al. (2001). This algorithm is motivated by the observation (Equa-
tion 4.5) that, for RWM in Rd, at least with normal target distributions, it is optimal to have
a proposal covariance matrix of the form (2.38)2/d times the target covariance matrix Σ.
Since Σ is in general unknown, it is estimated by Σn, the empirical covariance matrix of
X0, . . . ,Xn.
Thus, the AM algorithm essentially uses a proposal distribution for the nth iteration

given by

Yn+1 ∼ N(Xn,
[

(2.38)2

d

]
Σn) .

To ensure that the proposal covariances do not simply collapse to 0 (which could vio-
late (Equation 4.7)), Haario et al. (2001) added ε Id to Σn at each iteration, for some small
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FIGURE 4.6
Trace plot of first coordinate of AM in dimension 100.

ε > 0. Another possibility (Roberts and Rosenthal, 2009) is to instead let the proposal be a
mixture distribution of the form

(1− β)N(Xn,
[

(2.38)2

d

]
Σn
)+ βN(Xn,Σ0)

for some 0 < β < 1 and some fixed nonsingular matrix Σ0 (e.g. Σ0 = [(0.1)2/d] Id). (With
either version, it is necessary to use some alternative fixed proposal distribution for the
first few iterations when the empirical covariance Σn is not yet well defined.)
Since empirical estimates change at the nth iteration by only O(1/n), it follows that the

diminishing adaptation condition (Equation 4.6)will be satisfied. Furthermore, the contain-
ment condition (Equation 4.7) will certainly be satisfied if one restricts to compact regions
(Haario et al., 2001; Roberts and Rosenthal, 2009), and in fact containment still holds pro-
vided the target density π decays at least polynomially in each coordinate, a very mild
assumption (Bai et al., 2008). So, AM is indeed a valid sampling algorithm.
Computer simulations (Roberts andRosenthal, 2009) demonstrate that thisAMalgorithm

will indeed “learn” the target covariance matrix, and approach an optimal algorithm, even
in very high dimensions. While it may take many iterations before the adaptation sig-
nificantly improves the algorithm, in the end it will converge considerably faster than a
nonadapted RWM algorithm. For an AM run in dimension d = 100 (where the target was
a normal distribution with an irregular and highly skewed covariance matrix), Figure 4.6
shows a trace plot of thefirst coordinate andFigure 4.7 a graphof the inhomogeneity factor b
in Equation 4.4. These figures show that the run initially underestimates the variability of
the first coordinate, which would lead to drastically incorrect estimates. However, after
about 250,000 iterations, the algorithm has “found” a good proposal increment covariance
matrix, so that b gets close to 1, and the trace plot correctly finds the true variability of
the first coordinate. Such adaptation could never have been done manually, because of
the large dimension, but the computer eventually finds a good algorithm. This shows the
potential of adaptive MCMC to find good algorithms that cannot be found by hand.

4.3.3 Adaptive Metropolis-within-Gibbs

A standard alternative to the usual full-dimensional Metropolis algorithm is the
“Metropolis-within-Gibbs” algorithm (arguably a misnomer, since the original work of
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FIGURE 4.7
Trace plot of inhomogeneity factor b for AM in dimension 100.

Metropolis et al., 1953, corresponded to what we now call Metropolis-within-Gibbs). Here
the variables are updated one at a time (in either systematic or random order), each using
a Metropolis algorithm with a one-dimensional proposal.
To be specific, suppose that the ith coordinate is updated using a proposal increment

distributionN(0, e2 lsi ), so lsi is the log of the standarddeviation of the increment. Obviously,
we would like to find optimal values of the lsi, which may of course be different for the
different variables. We even have a rule of thumb from the end of Section 4.2.3, that each
lsi should be chosen so that the acceptance rate is approximately 0.44. However, even with
this information, it is very difficult (if not impossible) in high dimensions to optimize each
lsi manually. Instead, an adaptive algorithm might be used.
One way (Roberts and Rosenthal, 2009) to adapt the lsi values is to break up the run into

“batches” of, say, 50 iterations each. After the nth batch, we update each lsi by adding or
subtracting an adaptation amount δ(n). The adapting attempts to make the acceptance rate
of proposals for variable i as close as possible to 0.44. Specifically, we increase lsi by δ(n) if
the fraction of acceptances of variable iwas more than 0.44 on the nth batch, or decrease lsi
by δ(n) if itwas less. (Arelated componentwise adaptive scalingmethod, a one-dimensional
analog of the original AM algorithm of Haario et al., 2001, is presented in Haario
et al., 2005.)
To satisfy condition (Equation 4.6) we require δ(n) → 0; for example, we might take

δ(n) = min(0.01, n−1/2). As for Equation 4.7, it is easily seen to be satisfied if we restrict
each lsi to a finite interval [−M,M]. However, even this is not necessary, since it is
proved by Bai et al. (2008) that Equation 4.7 is always satisfied for this algorithm, pro-
vided only that the target density π decreases at least polynomially in each direction (a
very mild condition). Hence, the restriction (Equation 4.7) is once again not of practical
concern.
Simulations (Roberts and Rosenthal, 2009) indicate that this adaptiveMetropolis-within-

Gibbs algorithm does a good job of correctly scaling the lsi values, even in dimensions as
high as 500, leading to chains which mix much faster than those with pre-chosen proposal
scalings. The algorithm has recently been applied successfully to high-dimensional infer-
ence for statistical genetics (Turro et al., 2007). We believe it will be applied to many more
sampling problems in the near future. Preliminary general-purpose software to implement
this algorithm is now available (Rosenthal, 2007).
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4.3.4 State-Dependent Proposal Scalings

Another approach involves letting the proposal scaling depend on the current state Xn,
so that, for example, given Xn = x, we might propose Yn+1 ∼ N(x, σ2x). In this case, the
acceptance probability (Equation 4.1) becomes

α(x, y) = min
[
1,
π(y)
π(x)

(
σx
σy

)d
exp

(
−1
2
(x − y)2(σ−2y − σ−2x )

)]
. (4.8)

The functional form of σx can be chosen and adapted in various ways to attempt to achieve
efficient convergence.
For example, in many problems the target distribution becomes more spread out as we

move farther from theorigin. In that case, itmight be appropriate to let, say,σx = ea(1+ |x|)b,
where a and b are determined adaptively. For example, we could again divide the run into
batches of 50 iterations as in the previous subsection. After each iteration, the algorithm
updates a by adding or subtracting δ(n) in an effort to make the acceptance rate as close
as possible to, for example, 0.234 or 0.44. The algorithm also adds or subtracts δ(n) to
b in an effort to equalize the acceptance rates in the two regions

{
x ∈ X : |x| > C

}
and{

x ∈ X : |x| ≤ C
}
for some fixed C.

Once again, condition (Equation 4.6) is satisfied provided δ(n) → 0, and (Equation 4.7)
is satisfied under very mild conditions. So, this provides a convenient way to give a useful
functional form to σx, without knowing in advance what values of a and bmight be appro-
priate. Simulations (Roberts and Rosenthal, 2009) indicate that this adaptive algorithm
works well, at least in simple examples.
Another approach, sometimes called the regional adaptive Metropolis algorithm

(RAMA), use a finite partition of the state space: X = X1
•∪ . . .

•∪Xm. The proposal scaling
is then given by σx = eai whenever x ∈ Xi, with the acceptance probability (Equation 4.8)
computed accordingly. Each of the values ai is again adapted after each batch of iterations,
by adding or subtracting δ(n) in an attempt to make the acceptance fraction of proposals
from Xi close to 0.234. (As a special case, if there were no visits to Xi during the batch, then
we always add δ(n) to ai, to avoid the problem of ai becoming so low that proposedmoves to
Xi are never accepted.) Once again, the algorithm will be valid under very mild conditions
provided δ(n) → 0.
RecentworkofCraiu et al. (2009) considers certainmodifications ofRAMA, inwhichmul-

tiple copies of the algorithm are run simultaneously in an effort to be sure to “learn” about
all modes rather than getting stuck in a single mode. Their work also allows the proposal
distribution to be a weighted mixture of the different N(x, e2ai ), to allow for the possibility
that the partition {Xi} was imperfectly chosen. It appears that such greater flexibility will
allow for wider applicability of RAMA-type algorithms.
Of course, Langevin (MALA) algorithms may also be regarded as a type of state-

dependent scaling, and it is possible to study adaptive versions of MALA as well
(Atchadé, 2006).

4.3.5 Limit Theorems

ManyapplicationsofMCMCmakeuseof suchMarkovchain limit theoremsas theweak law
of large numbers (WLLN), strong law of large numbers (SLLN), and central limit theorem
(CLT), in order to guarantee good asymptotic estimates and estimate standard errors (see,
e.g. Tierney, 1994; Jones and Hobert, 2001; Hobert et al., 2002; Jones, 2004; Roberts and
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Rosenthal, 2004). So, it is natural to ask if such limit theorems hold for adaptive MCMC
as well.
Under the assumptions of diminishing adaptation and containment, the WLLN does

hold for all bounded functionals (Roberts and Rosenthal, 2007, Theorem 23). So, this at least
means that when using adaptiveMCMC for estimatingmeans of bounded functionals, one
will obtain an accurate answer with high probability if the run is sufficiently long.
For unbounded functionals, the WLLN usually still holds, but not always (Yang, 2008a,

Theorem 2.1). Even for bounded functionals, the SLLN may not hold (Roberts and
Rosenthal, 2007, Example 24), and that same example shows that a CLT might not hold
as well. So, this suggests that the usual estimation of MCMC standard errors may be
more challenging for adaptive MCMC if we assume only diminishing adaptation and
containment.
Under stronger assumptions,more canbe said. For example,AndrieuandMoulines (2006;

see alsoAndrieu andAtchadé, 2007;Atchadé, 2007) prove various limit theorems (including
CLTs) for adaptive MCMC algorithms, assuming that the adaptive parameters converge
to fixed values sufficiently quickly. They also prove that such adaptive algorithms will
inherit many of the asymptotic optimality properties of the corresponding fixed-parameter
algorithms. Such results facilitate further applications of adaptive MCMC; however, they
require various technical conditions which may be difficult to check in practice.

4.3.6 Frequently Asked Questions

Can’t I adapt my MCMC algorithm any way I like, and still preserve convergence?
No. In particular, if the diminishing adaptation condition (Equation 4.6) does not hold, then
there are simple counterexamples showing that adaptiveMCMCcan converge to thewrong
answer, even though each individual Markov chain kernel would correctly converge to π.

Do I have to learn lots of technical conditions before I can apply adaptive MCMC?
Not really.As long as you satisfy diminishing adaptation (Equation 4.6), which is important
but quite intuitive, then your algorithm will probably be asymptotically valid.

Have adaptive MCMC algorithms actually been used to speed up convergence on high-
dimensional problems?
Yes, they have. Simulations on test problems involving hundreds of dimensions have been
quite successful (Roberts and Rosenthal, 2009), and adaptive Metropolis-within-Gibbs has
also been used on statistical genetics problems (Turro et al., 2007).

Does adaptation have to be designed specifically to seek out optimal parameter values?
No. The ergodicity results presentedhereindonot require that the parameters {Γn} converge
at all, only that they satisfy (Equation 4.6) which still allows for the possibility of infinite
total adaptation. However, many of the specific adaptive MCMC algorithms proposed are
indeed designed to attempt to converge to specific values (e.g. to proposal scalings which
give an asymptotic acceptance rate of 0.234).

Why not just do the adaptation by hand, with trial runs to determine optimal parameter
values, and then a long run using these values?
Well, if you can really determine optimal parameter values from a few trial runs, then that’s
fine. However, in high dimensions, with many parameters to choose (e.g. a large proposal
covariance matrix), it is doubtful that you can find good parameter values manually.
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Suppose I just have the computer adapt for some fixed, finite amount of time, and then
continue the runwithout further adapting.Won’t that guarantee asymptotic convergence
to π?

Yes, it will (provided each individual kernel Pγ is ergodic), and this is a sensible method to
try. However, it may be unclear howmuch adaptation should be done before you stop. For
example, with adaptive Metropolis in 200 dimensions, it took well over a million iterations
(Roberts and Rosenthal, 2009) before a truly good proposal covariance matrix was found—
and it was not clear a priori that it would take nearly so long.

Can I use adaptation for other types of MCMC algorithms, like the Gibbs sampler?

In principle, yes. For example, an adaptive Gibbs sampler could adapt such quantities
as the order of update of coordinates (for systematic scan), or the probability weights
of various coordinates (for random scan), or coordinate blockings for joint updates, or
such reparameterizations as rotations and centerings and so on. Only time will tell what
adaptations turn out to be useful in what contexts.

AmI restricted to the specific adaptiveMCMCalgorithms (adaptiveMetropolis, adaptive
Metropolis-within-Gibbs, RAMA, …) presented herein?

Not at all! You canmake up virtually any rules for how yourMarkov chain parameters {Γn}
adapt over time, as long as the adaptation diminishes, and your algorithmwill probably be
valid. The challenge is then to find sensible/clever adaptation rules. Hopefully more and
better adaptive methods will be found in the future!

Are any other methods, besides adaptive MCMC, available to help algorithms “learn”
how to converge well?

Yes, there are many. For example, particle filters (e.g. Pitt and Sheppard, 1999), population
MonteCarlo (e.g.Cappé et al., 2004), and sequentialMonteCarlo (e.g.DelMoral et al., 2006),
can all be considered as methods which attempt to “learn” faster convergence as they go.
However, the details of their implementations are rather different than the adaptiveMCMC
algorithms presented herein.

4.4 Conclusion
We have reviewed optimal proposal scaling results, and adaptive MCMC algorithms.
While the optimal scaling theorems are all proved under very restrictive and unrealis-

tic assumptions (e.g. target distributions with independent coordinates), they appear to
provide useful guidelines much more generally. In particular, results about asymptotic
acceptance rates provide useful benchmarks for Metropolis algorithms in a wide variety of
settings.
Adaptive MCMC algorithms appear to provide simple, intuitive methods of finding

quickly-converging Markov chains without great effort on the part of the user—aside
from the initial programming, and there is even some generic software available, such
as Rosenthal, (2007). While certain conditions (notably diminishing adaptation) must be
satisfied to guarantee asymptotic convergence, these conditions are generally not onerous
or difficult to achieve.
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Overall, we feel that these results indicate the widespread applicability of both optimal
scaling and adaptive MCMC algorithms to many different MCMC settings (Roberts and
Rosenthal, 2009; Turro et al., 2007), including to complicated high-dimensional distribu-
tions. We hope that many MCMC users will be guided by optimal scaling results, and
experiment with adaptive algorithms, in their future applications.
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5
MCMC Using Hamiltonian Dynamics

Radford M. Neal

5.1 Introduction
Markov chain Monte Carlo (MCMC) originated with the classic paper of Metropolis et al.
(1953), where it was used to simulate the distribution of states for a system of idealized
molecules. Not long after, another approach tomolecular simulationwas introduced (Alder
and Wainwright, 1959), in which the motion of the molecules was deterministic, following
Newton’s laws ofmotion,which have an elegant formalization asHamiltonian dynamics. For
finding the properties of bulk materials, these approaches are asymptotically equivalent,
since even in a deterministic simulation, each local region of the material experiences
effectively random influences from distant regions. Despite the large overlap in their appli-
cation areas, the MCMC and molecular dynamics approaches have continued to coexist in
the following decades (see Frenkel and Smit, 1996).
In 1987, a landmark paper by Duane, Kennedy, Pendleton, and Roweth united the

MCMC and molecular dynamics approaches. They called their method “hybrid Monte
Carlo,” which abbreviates to “HMC,” but the phrase “Hamiltonian Monte Carlo,” retain-
ing the abbreviation, is more specific and descriptive, and I will use it here. Duane et al.
applied HMC not to molecular simulation, but to lattice field theory simulations of quan-
tum chromodynamics. Statistical applications of HMC began with my use of it for neural
network models (Neal, 1996a). I also provided a statistically-oriented tutorial on HMC in a
review of MCMC methods (Neal, 1993, Chapter 5). There have been other applications
of HMC to statistical problems (e.g. Ishwaran, 1999; Schmidt, 2009) and statistically-
oriented reviews (e.g. Liu, 2001, Chapter 9), but HMC still seems to be underappreciated
by statisticians, and perhaps also by physicists outside the lattice field theory community.
This review begins by describing Hamiltonian dynamics. Despite terminology that may

be unfamiliar outside physics, the features of Hamiltonian dynamics that are needed for
HMC are elementary. The differential equations of Hamiltonian dynamics must be dis-
cretized for computer implementation. The “leapfrog” scheme that is typically used is
quite simple.
Following this introduction to Hamiltonian dynamics, I describe how to use it to con-

struct an MCMCmethod. The first step is to define a Hamiltonian function in terms of the
probability distribution we wish to sample from. In addition to the variables we are inter-
ested in (the “position” variables), we must introduce auxiliary “momentum” variables,
which typically have independent Gaussian distributions. The HMC method alternates
simple updates for these momentum variables with Metropolis updates in which a new
state is proposed by computing a trajectory according to Hamiltonian dynamics, imple-
mented with the leapfrog method. A state proposed in this way can be distant from the
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current state but nevertheless have a high probability of acceptance. This bypasses the slow
exploration of the state space that occurs whenMetropolis updates are done using a simple
random-walkproposal distribution. (Analternativewayof avoiding randomwalks is touse
short trajectories but only partially replace the momentum variables between trajectories,
so that successive trajectories tend to move in the same direction.)
After presenting the basic HMCmethod, I discuss practical issues of tuning the leapfrog

stepsize and number of leapfrog steps, as well as theoretical results on the scaling of HMC
with dimensionality. I then present a number of variations on HMC. The acceptance rate
for HMC can be increased for many problems by looking at “windows” of states at the
beginning and end of the trajectory. For many statistical problems, approximate computa-
tion of trajectories (e.g. using subsets of the data) may be beneficial. Tuning of HMC can
be made easier using a “short-cut” in which trajectories computed with a bad choice of
stepsize take little computation time. Finally, “tempering” methods may be useful when
multiple isolated modes exist.

5.2 Hamiltonian Dynamics
Hamiltonian dynamics has a physical interpretation that can provide useful intuitions.
In two dimensions, we can visualize the dynamics as that of a frictionless puck that slides
over a surface of varying height. The state of this system consists of the position of the puck,
given by a two-dimensional vector q, and the momentum of the puck (its mass times its
velocity), given by a two-dimensional vector p. The potential energy, U(q), of the puck is
proportional to the height of the surface at its current position, and its kinetic energy, K(p),
is equal to |p|2/(2m), where m is the mass of the puck. On a level part of the surface, the
puck moves at a constant velocity, equal to p/m. If it encounters a rising slope, the puck’s
momentum allows it to continue, with its kinetic energy decreasing and its potential energy
increasing, until the kinetic energy (and hence p) is zero, at which point it will slide back
down (with kinetic energy increasing and potential energy decreasing).
In nonphysical MCMC applications of Hamiltonian dynamics, the position will cor-

respond to the variables of interest. The potential energy will be minus the log of the
probability density for these variables.Momentumvariables, one for eachposition variable,
will be introduced artificially.
These interpretations may help motivate the exposition below, but if you find otherwise,

the dynamics can also be understood as simply resulting from a certain set of differential
equations.

5.2.1 Hamilton’s Equations

Hamiltonian dynamics operates on a d-dimensional position vector, q, and a d-dimensional
momentum vector, p, so that the full state space has 2d dimensions. The system is described
by a function of q and p known as the Hamiltonian, H(q, p).

5.2.1.1 Equations of Motion

The partial derivatives of the Hamiltonian determine how q and p change over time, t,
according to Hamilton’s equations:
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dqi
dt
= ∂H

∂pi
, (5.1)

dpi
dt
= −∂H

∂qi
, (5.2)

for i = 1, . . ., d. For any time interval of duration s, these equations define a mapping, Ts,
from the state at any time t to the state at time t+ s. (Here,H, and hence Ts, are assumed to
not depend on t.)
Alternatively, we can combine the vectors q and p into the vector z = (q, p) with 2d

dimensions, and write Hamilton’s equations as

dz
dt
= J ∇H(z),

where ∇H is the gradient of H (i.e. [∇H]k = ∂H/∂zk), and

J =
[
0d×d Id×d
−Id×d 0d×d

]
(5.3)

is a 2d× 2dmatrixwhosequadrants aredefinedabove in termsof identity andzeromatrices.

5.2.1.2 Potential and Kinetic Energy

For HMC we usually use Hamiltonian functions that can be written as

H(q, p) = U(q)+ K(p). (5.4)

Here U(q) is called the potential energy, and will be defined to be minus the log probability
density of the distribution for q thatwewish to sample, plus any constant that is convenient.
K(p) is called the kinetic energy, and is usually defined as

K(p) = pTM−1p/2. (5.5)

Here M is a symmetric, positive-definite “mass matrix,” which is typically diagonal, and
is often a scalar multiple of the identity matrix. This form for K(p) corresponds to minus
the log probability density (plus a constant) of the zero-mean Gaussian distribution with
covariance matrixM.
With these forms forH and K, Hamilton’s equations 5.1 and 5.2 can be written as follows,

for i = 1, . . ., d:

dqi
dt
= [M−1p]i, (5.6)

dpi
dt
= −∂U

∂qi
. (5.7)
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5.2.1.3 A One-Dimensional Example

Consider a simple example in one dimension (for which q and p are scalars and will be
written without subscripts), in which the Hamiltonian is defined as follows:

H(q, p) = U(q)+ K(p), U(q) = q2

2
, K(p) = p2

2
. (5.8)

As we will see later in Section 5.3.1, this corresponds to a Gaussian distribution for q with
mean zero and variance one. The dynamics resulting from this Hamiltonian (following
Equations 5.6 and 5.7) is

dq
dt
= p,

dp
dt
= −q.

Solutions have the following form, for some constants r and a:

q(t) = r cos(a+ t), p(t) = −r sin(a+ t). (5.9)

Hence, the mapping Ts is a rotation by s radians clockwise around the origin in the (q, p)
plane. In higher dimensions, Hamiltonian dynamics generally does not have such a simple
periodic form, but this example does illustrate some important properties that we will look
at next.

5.2.2 Properties of Hamiltonian Dynamics

Several properties of Hamiltonian dynamics are crucial to its use in constructing MCMC
updates.

5.2.2.1 Reversibility

First,Hamiltoniandynamics is reversible—themappingTs from the state at time t, (q(t), p(t)),
to the state at time t+ s, (q(t+ s), p(t+ s)), is one-to-one, and hence has an inverse, T−s.
This inverse mapping is obtained by simply negating the time derivatives in Equations
5.1 and 5.2. When the Hamiltonian has the form in Equation 5.4, and K(p) = K(−p), as in
the quadratic form for the kinetic energy of Equation 5.5, the inverse mapping can also be
obtained by negating p, applying Ts, and then negating p again.
In the simple one-dimensional example of Equation 5.8, T−s is just a counterclockwise

rotation by s radians, undoing the clockwise rotation of Ts.
The reversibility of Hamiltonian dynamics is important for showing thatMCMCupdates

that use the dynamics leave the desired distribution invariant, since this is most eas-
ily proved by showing reversibility of the Markov chain transitions, which requires
reversibility of the dynamics used to propose a state.

5.2.2.2 Conservation of the Hamiltonian

A second property of the dynamics is that it keeps the Hamiltonian invariant (i.e. conserved).
This is easily seen from Equations 5.1 and 5.2 as follows:

dH
dt
=

d∑
i=1

[
dqi
dt

∂H
∂qi

+ dpi
dt

∂H
∂pi

]
=

d∑
i=1

[
∂H
∂pi

∂H
∂qi

− ∂H
∂qi

∂H
∂pi

]
= 0. (5.10)
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With the Hamiltonian of Equation 5.8, the value of the Hamiltonian is half the squared
distance from the origin, and the solutions (Equation 5.9) stay at a constant distance from
the origin, keeping H constant.
For Metropolis updates using a proposal found by Hamiltonian dynamics, which form

part of the HMC method, the acceptance probability is one if H is kept invariant. We will
see later, however, that in practice we can onlymakeH approximately invariant, and hence
we will not quite be able to achieve this.

5.2.2.3 Volume Preservation

A third fundamental property of Hamiltonian dynamics is that it preserves volume in (q, p)
space (a result known as Liouville’s theorem). If we apply the mapping Ts to the points
in some region R of (q, p) space, with volume V, the image of R under Ts will also have
volume V.
With the Hamiltonian of Equation 5.8, the solutions (Equation 5.9) are rotations, which

obviously do not change the volume. Such rotations also do not change the shape of a
region, but this is not so in general—Hamiltonian dynamics might stretch a region in one
direction, as long as the region is squashed in some other direction so as to preserve volume.
The significance of volume preservation for MCMC is that we need not account for any

change in volume in the acceptance probability for Metropolis updates. If we proposed
new states using some arbitrary, non-Hamiltonian, dynamics, we would need to compute
the determinant of the Jacobianmatrix for the mapping the dynamics defines, whichmight
well be infeasible.
The preservation of volume by Hamiltonian dynamics can be proved in several ways.

One is to note that the divergence of the vector field defined by Equations 5.1 and 5.2 is
zero, which can be seen as follows:

d∑
i=1

[
∂

∂qi
dqi
dt
+ ∂

∂pi
dpi
dt

]
=

d∑
i=1

[
∂

∂qi
∂H
∂pi

− ∂

∂pi
∂H
∂qi

]
=

d∑
i=1

[
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

]
= 0.

A vector field with zero divergence can be shown to preserve volume (Arnold, 1989).
Here, I will show informally that Hamiltonian dynamics preserves volumemore directly,

without presuming this property of the divergence. I will, however, take as given that
volume preservation is equivalent to the determinant of the Jacobian matrix of Ts having
absolute value one, which is related to the well-known role of this determinant in regard
to the effect of transformations on definite integrals and on probability density functions.
The 2d× 2d Jacobianmatrix of Ts, seen as a mapping of z = (q, p), will be written as Bs. In

general, Bs will depend on the values of q and p before the mapping. When Bs is diagonal,
it is easy to see that the absolute values of its diagonal elements are the factors by which
Ts stretches or compresses a region in each dimension, so that the product of these factors,
which is equal to the absolute value of det(Bs), is the factor by which the volume of the
region changes. I will not prove the general result here, but note that if we were to (say)
rotate the coordinate system used, Bs would no longer be diagonal, but the determinant
of Bs is invariant to such transformations, and so would still give the factor by which the
volume changes.
Let us first consider volume preservation for Hamiltonian dynamics in one dimension

(i.e. with d = 1), for which we can drop the subscripts on p and q. We can approximate Tδ
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for δ near zero as follows:

Tδ(q, p) =
[
q
p

]
+ δ

[
dq/dt
dp/dt

]
+ terms of order δ2 or higher.

Taking the timederivatives fromEquations 5.1 and 5.2, the Jacobianmatrix can bewritten as

Bδ =

⎡
⎢⎢⎢⎣
1+ δ ∂2H

∂q∂p
δ
∂2H
∂p2

−δ∂
2H

∂q2
1− δ ∂2H

∂p∂q

⎤
⎥⎥⎥⎦+ terms of order δ2 or higher. (5.11)

We can then write the determinant of this matrix as

det(Bδ) = 1+ δ ∂2H
∂q∂p

− δ ∂2H
∂p∂q

+ terms of order δ2 or higher

= 1+ terms of order δ2 or higher.

Since log(1+ x) ≈ x for x near zero, log det(Bδ) is zero, except perhaps for terms of order
δ2 or higher (though we will see later that it is exactly zero). Now consider log det(Bs) for
some time interval s that is not close to zero. Setting δ = s/n, for some integer n, we can
write Ts as the composition of Tδ applied n times (from n points along the trajectory), so
det(Bs) is the n-fold product of det(Bδ) evaluated at these points. We then find that

log det(Bs) =
n∑
i=1

log det(Bδ)

=
n∑
i=1

{
terms of order 1/n2 or smaller

}
(5.12)

= terms of order 1/n or smaller.

Note that the value of Bδ in the sum in Equation 5.12 might perhaps vary with i, since
the values of q and p vary along the trajectory that produces Ts. However, assuming that
trajectories are not singular, the variation in Bδ must be bounded along any particular
trajectory. Taking the limit as n→∞, we conclude that log det(Bs) = 0, so det(Bs) = 1, and
hence Ts preserves volume.
When d > 1, the same argument applies. The Jacobianmatrixwill nowhave the following

form (compare Equation 5.11), where each entry shown below is a d× d submatrix, with
rows indexed by i and columns by j:

Bδ=

⎡
⎢⎢⎢⎢⎢⎢⎣
I + δ

[
∂2H

∂qj∂pi

]
δ

[
∂2H

∂pj∂pi

]

−δ
[

∂2H
∂qj∂qi

]
I − δ

[
∂2H

∂pj∂qi

]

⎤
⎥⎥⎥⎥⎥⎥⎦
+ terms of order δ2 or higher.
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As for d = 1, the determinant of this matrix will be one plus terms of order δ2 or higher,
since all the terms of order δ cancel. The remainder of the argument above then applies
without change.

5.2.2.4 Symplecticness

Volume preservation is also a consequence of Hamiltonian dynamics being symplectic. Let-
ting z = (q, p), and defining J as in Equation 5.3, the symplecticness condition is that the
Jacobian matrix, Bs, of the mapping Ts satisfies

BTs J−1 Bs = J−1.

This implies volume conservation, since det(BTs )det( J−1)det(Bs) = det( J−1) implies that
det(Bs)2 is one.When d > 1, the symplecticness condition is stronger than volumepreserva-
tion. Hamiltonian dynamics and the symplecticness condition can be generalized to where
J is any matrix for which JT = −J and det( J) = 0.
Crucially, reversibility, preservation of volume, and symplecticness can be maintained

exactly even when, as is necessary in practice, Hamiltonian dynamics is approximated, as
we will see next.

5.2.3 Discretizing Hamilton’s Equations—The Leapfrog Method

For computer implementation,Hamilton’s equationsmust be approximated bydiscretizing
time,using somesmall stepsize, ε. Startingwith the state at timezero,we iteratively compute
(approximately) the state at times ε, 2ε, 3ε, etc.
In discussing how to do this, I will assume that the Hamiltonian has the form H(q, p) =

U(q)+ K(p), as in Equation 5.4. Although themethods below can be applied with any form
for the kinetic energy, I assume for simplicity thatK(p) = pTM−1p/2, as in Equation 5.5, and
furthermore thatM is diagonal, with diagonal elements m1, . . . ,md, so that

K(p) =
d∑
i=1

p2i
2mi

. (5.13)

5.2.3.1 Euler’s Method

Perhaps the best-known way to approximate the solution to a system of differential equa-
tions is Euler’s method. For Hamilton’s equations, this method performs the following
steps, for each component of position and momentum, indexed by i = 1, . . ., d:

pi(t+ ε) = pi(t)+ ε dpidt (t) = pi(t)− ε ∂U
∂qi

(q(t)), (5.14)

qi(t+ ε) = qi(t)+ ε dqidt (t) = qi(t)+ ε pi(t)mi
. (5.15)

The time derivatives in Equations 5.14 and 5.15 are from the form of Hamilton’s equa-
tions given by Equations 5.6 and 5.7. If we start at t = 0 with given values for qi(0) and
pi(0), we can iterate the steps above to get a trajectory of position and momentum values



120 Handbook of Markov Chain Monte Carlo

at times ε, 2ε, 3ε, . . . , and hence find (approximate) values for q(τ) and p(τ) after τ/ε steps
(assuming τ/ε is an integer).
Figure 5.1a shows the result ofusingEuler’smethod toapproximate thedynamicsdefined

by theHamiltonian of Equation 5.8, starting from q(0) = 0 and p(0) = 1, andusing a stepsize
of ε = 0.3 for 20 steps (i.e. to τ = 0.3× 20 = 6). The results are not good—Euler’s method
produces a trajectory that diverges to infinity, but the true trajectory is a circle. Using a
smaller value of ε, and correspondingly more steps, produces a more accurate result at
τ = 6, but although the divergence to infinity is slower, it is not eliminated.
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(b) Modified Euler’s method, stepsize 0.3
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(c) (d)Leapfrog method, stepsize 0.3

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Position (q)
−2 −1 0 1 2

Leapfrog method, stepsize 1.2

FIGURE 5.1
Results using three methods for approximating Hamiltonian dynamics, when H(q, p) = q2/2+ p2/2. The initial
statewas q = 0, p = 1. The stepsizewas ε = 0.3 for (a), (b), and (c), and ε = 1.2 for (d). Twenty steps of the simulated
trajectory are shown for each method, along with the true trajectory (in gray).
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5.2.3.2 A Modification of Euler’s Method

Much better results can be obtained by slightly modifying Euler’s method, as follows:

pi(t+ ε) = pi(t)− ε ∂U
∂qi

(q(t)), (5.16)

qi(t+ ε) = qi(t)+ ε pi(t+ ε)mi
. (5.17)

We simply use the new value for the momentum variables, pi, when computing the new
value for the position variables, qi. Amethod with similar performance can be obtained by
instead updating the qi first and using their new values to update the pi.
Figure 5.1b shows the results using this modification of Euler’s method with ε = 0.3.

Though not perfect, the trajectory it produces is much closer to the true trajectory than
that obtained using Euler’s method, with no tendency to diverge to infinity. This better
performance is related to themodifiedmethod’s exact preservation of volume, which helps
avoid divergence to infinity or spiraling into the origin, since these would typically involve
the volume expanding to infinity or contracting to zero.
To see that this modification of Euler’s method preserves volume exactly despite the

finite discretization of time, note that both the transformation from (q(t), p(t)) to (q(t),
p(t+ ε)) via Equation 5.16 and the transformation from (q(t), p(t+ ε)) to (q(t+ ε), p(t+ ε))
via Equation 5.17 are “shear” transformations, in which only some of the variables change
(either the pi or the qi), by amounts that depend only on the variables that do not change.
Any shear transformation will preserve volume, since its Jacobian matrix will have deter-
minant one (as the only nonzero term in the determinant will be the product of diagonal
elements, which will all be one).

5.2.3.3 The Leapfrog Method

Even better results can be obtained with the leapfrog method, which works as follows:

pi (t+ ε/2) = pi(t)− (ε/2)
∂U
∂qi

(q(t)), (5.18)

qi(t+ ε) = qi(t)+ ε pi(t+ ε/2)mi
, (5.19)

pi(t+ ε) = pi (t+ ε/2)− (ε/2)
∂U
∂qi

(q(t+ ε)). (5.20)

We start with a half step for the momentum variables, then do a full step for the position
variables, using the newvalues of themomentumvariables, andfinally do another half step
for themomentum variables, using the new values for the position variables.An analogous
scheme can be used with any kinetic energy function, with ∂K/∂pi replacing pi/mi above.
When we apply Equations 5.18 through 5.20 a second time to go from time t+ ε to t+ 2ε,

we can combine the last half step of the first update, from pi(t+ ε/2) to pi(t+ ε), with the
first half step of the second update, from pi(t+ ε) to pi(t+ ε+ ε/2). The leapfrog method
then looks very similar to the modification of Euler’s method in Equations 5.17 and 5.16,
except that leapfrog performs half steps for momentum at the very beginning and very end
of the trajectory, and the time labels of the momentum values computed are shifted by ε/2.
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The leapfrog method preserves volume exactly, since Equations 5.18 through 5.20 are
shear transformations. Due to its symmetry, it is also reversible by simply negating p,
applying the same number of steps again, and then negating p again.
Figure 5.1c shows the results using the leapfrog method with a stepsize of ε = 0.3, which

are indistinguishable from the true trajectory, at the scale of this plot. In Figure 5.1d, the
results of using the leapfrog method with ε = 1.2 are shown (still with 20 steps, so almost
four cycles are seen, rather than almost one). With this larger stepsize, the approximation
error is clearlyvisible, but the trajectory still remains stable (andwill stay stable indefinitely).
Only when the stepsize approaches ε = 2 do the trajectories become unstable.

5.2.3.4 Local and Global Error of Discretization Methods

I will briefly discuss how the error from discretizing the dynamics behaves in the limit as
the stepsize, ε, goes to zero; Leimkuhler and Reich (2004) provide a much more detailed
discussion. Forusefulmethods, the errorgoes tozeroas εgoes tozero, so that anyupper limit
on the error will apply (apart from a usually unknown constant factor) to any differentiable
function of state—for example, if the error for (q, p) is no more than order ε2, the error for
H(q, p) will also be no more than order ε2.
The local error is the error after one step, that moves from time t to time t+ ε. The global

error is the error after simulating for some fixed time interval, s, which will require s/ε
steps. If the local error is order εp, the global error will be order εp−1—the local errors of
order εp accumulate over the s/ε steps to give an error of order εp−1. If we instead fix ε
and consider increasing the time, s, for which the trajectory is simulated, the error can in
general increase exponentially with s. Interestingly, however, this is often not what hap-
pens when simulating Hamiltonian dynamics with a symplectic method, as can be seen in
Figure 5.1.
The Euler method and its modification above have order ε2 local error and order ε global

error. The leapfrog method has order ε3 local error and order ε2 global error. As shown by
Leimkuhler andReich (2004, Section 4.3.3), this difference is a consequence of leapfrogbeing
reversible, since any reversible method must have global error that is of even order in ε.

5.3 MCMC from Hamiltonian Dynamics
UsingHamiltonian dynamics to sample from a distribution requires translating the density
function for this distribution to a potential energy function and introducing “momentum”
variables to gowith the original variables of interest (now seen as “position” variables). We
can then simulate a Markov chain in which each iteration resamples the momentum and
then does a Metropolis update with a proposal found using Hamiltonian dynamics.

5.3.1 Probability and the Hamiltonian: Canonical Distributions

The distribution we wish to sample can be related to a potential energy function via the
concept of a canonical distribution from statistical mechanics. Given some energy function,
E(x), for the state, x, of some physical system, the canonical distribution over states has
probability or probability density function

P(x) = 1
Z
exp

(−E(x)
T

)
. (5.21)
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Here, T is the temperature of the system,∗ and Z is the normalizing constant needed for
this function to sum or integrate to one. Viewing this the opposite way, if we are interested
in some distribution with density function P(x), we can obtain it as a canonical distribu-
tion with T = 1 by setting E(x) = − log P(x)− logZ, where Z is any convenient positive
constant.
The Hamiltonian is an energy function for the joint state of “position,” q, and “momen-

tum,” p, and so defines a joint distribution for them as follows:

P(q, p) = 1
Z
exp

(−H(q, p)
T

)
.

Note that the invariance of H under Hamiltonian dynamics means that a Hamiltonian
trajectory will (if simulated exactly) move within a hypersurface of constant probability
density.
If H(q, p) = U(q)+ K(p), the joint density is

P(q, p) = 1
Z
exp

(−U(q)
T

)
exp

(−K(p)
T

)
, (5.22)

andwe see that q and p are independent, and each have canonical distributions,with energy
functions U(q) and K(p). We will use q to represent the variables of interest, and introduce
p just to allow Hamiltonian dynamics to operate.
In Bayesian statistics, the posterior distribution for the model parameters is the usual

focus of interest, and hence these parameters will take the role of the position, q. We can
express the posterior distribution as a canonical distribution (with T = 1) using a potential
energy function defined as

U(q) = − log
[
π(q)L(q | D)

]
,

where π(q) is the prior density, and L(q|D) is the likelihood function given data D.

5.3.2 The Hamiltonian Monte Carlo Algorithm

We now have the background needed to present the Hamiltonian Monte Carlo algorithm.
HMC can be used to sample only from continuous distributions on R

d for which the den-
sity function can be evaluated (perhaps up to an unknown normalizing constant). For the
moment, I will also assume that the density is nonzero everywhere (but this is relaxed in
Section 5.5.1). We must also be able to compute the partial derivatives of the log of the
density function. These derivatives must therefore exist, except perhaps on a set of points
with probability zero, for which some arbitrary value could be returned.
HMC samples from the canonical distribution for q and p defined by Equation 5.22, in

which q has the distribution of interest, as specified using the potential energy function
U(q). We can choose the distribution of themomentum variables, p, which are independent
of q, as we wish, specifying the distribution via the kinetic energy function, K(p). Current
practice with HMC is to use a quadratic kinetic energy, as in Equation 5.5, which leads
p to have a zero-mean multivariate Gaussian distribution. Most often, the components of

∗ Note to physicists: I assume here that temperature is measured in units that make Boltzmann’s constant unity.
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p are specified to be independent, with component i having variancemi. The kinetic energy
function producing this distribution (setting T = 1) is

K(p) =
d∑
i=1

p2i
2mi

. (5.23)

We will see in Section 5.4 how the choice for the mi affects performance.

5.3.2.1 The Two Steps of the HMC Algorithm

Each iteration of the HMC algorithm has two steps. The first changes only the momentum;
the second may change both position and momentum. Both steps leave the canonical joint
distribution of (q, p) invariant, and hence their combination also leaves this distribution
invariant.
In the first step, new values for the momentum variables are randomly drawn from their

Gaussian distribution, independently of the current values of the position variables. For the
kinetic energy of Equation 5.23, the dmomentum variables are independent, with pi having
meanzeroandvariancemi. Since q is not changed, andp is drawn from its correct conditional
distribution given q (the same as its marginal distribution, due to independence), this step
obviously leaves the canonical joint distribution invariant.
In the second step, a Metropolis update is performed, using Hamiltonian dynamics to

propose a new state. Starting with the current state, (q, p), Hamiltonian dynamics is simu-
lated for L steps using the leapfrogmethod (or some other reversiblemethod that preserves
volume), with a stepsize of ε. Here, L and ε are parameters of the algorithm, which need to
be tuned to obtain good performance (as discussed below in Section 5.4.2). Themomentum
variables at the endof thisL-step trajectory are thennegated, giving aproposed state (q∗, p∗).
This proposed state is accepted as the next state of the Markov chain with probability

min
[
1, exp(−H(q∗, p∗)+H(q, p))

] = min
[
1, exp(−U(q∗)+U(q)− K(p∗)+ K(p))

]
.

If the proposed state is not accepted (i.e. it is rejected), the next state is the sameas the current
state (and is counted again when estimating the expectation of some function of state by
its average over states of the Markov chain). The negation of the momentum variables at
the end of the trajectory makes the Metropolis proposal symmetrical, as needed for the
acceptance probability above to be valid. This negation need not be done in practice, since
K(p) = K(−p), and the momentum will be replaced before it is used again, in the first step
of the next iteration. (This assumes that these HMC updates are the only ones performed.)
If we look at HMC as sampling from the joint distribution of q and p, the Metropolis step

using a proposal found by Hamiltonian dynamics leaves the probability density for (q, p)
unchanged or almost unchanged. Movement to (q, p) points with a different probability
density is accomplished only by the first step in an HMC iteration, in which p is replaced
by a new value. Fortunately, this replacement of p can change the probability density for
(q, p) by a large amount, so movement to points with a different probability density is
not a problem (at least not for this reason). Looked at in terms of q only, Hamiltonian
dynamics for (q, p) can produce a value for q with a much different probability density
(equivalently, a much different potential energy, U(q)). However, the resampling of the
momentum variables is still crucial to obtaining the proper distribution for q. Without
resampling, H(q, p) = U(q)+ K(p) will be (nearly) constant, and since K(p) and U(q) are
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HMC = function (U, grad_U, epsilon, L, current_q)
{
q = current_q
p = rnorm(length(q),0,1) # independent standard normal variates
current_p = p

# Make a half step for momentum at the beginning
p = p - epsilon * grad_U(q) / 2

# Alternate full steps for position and momentum

for (i in 1:L)
{
# Make a full step for the position
q = q + epsilon * p
# Make a full step for the momentum, except at end of trajectory
if (i!=L) p = p - epsilon * grad_U(q)

}

# Make a half step for momentum at the end.
p = p - epsilon * grad_U(q) / 2
# Negate momentum at end of trajectory to make the proposal symmetric
p = -p

# Evaluate potential and kinetic energies at start and end of trajectory

current_U = U(current_q)
current_K = sum(current_pˆ2) / 2
proposed_U = U(q)
proposed_K = sum(pˆ2) / 2

# Accept or reject the state at end of trajectory, returning either
# the position at the end of the trajectory or the initial position

if (runif(1) < exp(current_U-proposed_U+current_K-proposed_K))
{
return (q) # accept

}
else
{
return (current_q) # reject

}
}

FIGURE 5.2
The Hamiltonian Monte Carlo algorithm.

nonnegative, U(q) could never exceed the initial value of H(q, p) if no resampling for p
were done.
A function that implements a single iteration of the HMC algorithm, written in the R

language,∗ is shown in Figure 5.2. Its first two arguments are functions: U, which returns

∗ R is available for free from www.r-project.org
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the potential energy given a value for q, and grad_U, which returns the vector of partial
derivatives ofU given q. Other arguments are the stepsize, epsilon, for leapfrog steps; the
number of leapfrog steps in the trajectory, L; and the current position, current_q, that the
trajectory starts from.Momentumvariables are sampledwithin this function, anddiscarded
at the end,with only the next position being returned. The kinetic energy is assumed to have
the simplest form, K(p) =∑ p2i /2 (i.e. all mi are one). In this program, all components of p
and of q are updated simultaneously, using vector operations. This simple implementation
of HMC is available from my web page,∗ along with other R programs with extra features
helpful for practical use, and that illustrate some of the variants of HMC in Section 5.5.

5.3.2.2 Proof That HMC Leaves the Canonical Distribution Invariant

The Metropolis update above is reversible with respect to the canonical distribution for q
and p (withT = 1), a condition also known as “detailed balance,” andwhich can be phrased
informally as follows. Suppose that we partition the (q, p) space into regions Ak, each with
the same small volume V. Let the image of Ak with respect to the operation of L leapfrog
steps, plus a negation of themomentum, be Bk. Due to the reversibility of the leapfrog steps,
the Bk will also partition the space, and since the leapfrog steps preserve volume (as does
negation), each Bk will also have volume V. Detailed balance holds if, for all i and j,

P(Ai)T(Bj | Ai) = P(Bj)T(Ai | Bj), (5.24)

where P is probability under the canonical distribution, and T(X|Y) is the conditional prob-
ability of proposing and then accepting a move to region X if the current state is in region
Y. Clearly, when i = j, T(Ai | Bj) = T(Bj | Ai) = 0 and so Equation 5.24 will be satisfied.
Since the Hamiltonian is continuous almost everywhere, in the limit as the regions Ak
and Bk become smaller, the Hamiltonian becomes effectively constant within each region,
with value HX in region X, and hence the canonical probability density and the transition
probabilities become effectively constant within each region as well. We can now rewrite
Equation 5.24 for i = j (say, both equal to k) as

V
Z
exp(−HAk )min

[
1, exp(−HBk+HAk )

] = V
Z
exp(−HBk )min

[
1, exp(−HAk+HBk )

]
,

which is easily seen to be true.
Detailed balance implies that thisMetropolis update leaves the canonical distribution for

q and p invariant. This can be seen as follows. LetR(X) be the probability that theMetropolis
update for a state in the small region X leads to rejection of the proposed state. Suppose
that the current state is distributed according to the canonical distribution. The probability
that the next state is in a small region Bk is the sum of the probability that the current state is
in Bk and the update leads to rejection, and the probability that the current state is in some
region fromwhich a move to Bk is proposed and accepted. The probability of the next state

∗ www.cs.utoronto.ca/∼radford
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being in Bk can therefore be written as

P(Bk)R(Bk)+
∑
i
P(Ai)T(Bk|Ai) = P(Bk)R(Bk)+

∑
i
P(Bk)T(Ai|Bk)

= P(Bk)R(Bk)+ P(Bk)
∑
i
T(Ai|Bk)

= P(Bk)R(Bk)+ P(Bk)(1− R(Bk))

= P(Bk).

The Metropolis update within HMC therefore leaves the canonical distribution invariant.
Since both the sampling of momentum variables and the Metropolis update with a pro-

posal found byHamiltonian dynamics leave the canonical distribution invariant, the HMC
algorithm as a whole does as well.

5.3.2.3 Ergodicity of HMC

Typically, theHMCalgorithmwill alsobe“ergodic”—itwill notbe trapped in somesubset of
the state space, andhencewill asymptotically converge to its (unique) invariantdistribution.
In an HMC iteration, any value can be sampled for the momentum variables, which can
typically then affect the position variables in arbitrary ways. However, ergodicity can fail if
the L leapfrog steps in a trajectory produce an exact periodicity for some function of state.
For example, with the simple Hamiltonian of Equation 5.8, the exact solutions (given by
Equation 5.9) are periodic with period 2π. Approximate trajectories found with L leapfrog
steps with stepsize εmay return to the same position coordinate when Lε is approximately
2π. HMCwith such values for L and εwill not be ergodic. For nearby values of L and ε, HMC
may be theoretically ergodic, but take a very long time to move about the full state space.
This potential problem of nonergodicity can be solved by randomly choosing ε or L

(or both) from some fairly small interval (Mackenzie, 1989). Doing this routinely may be
advisable. Although in real problems interactions between variables typically prevent any
exact periodicities from occurring, near periodicities might still slow HMC considerably.

5.3.3 Illustrations of HMC and Its Benefits

I will now illustrate some practical issues with HMC, and demonstrate its potential to
sample muchmore efficiently than simple methods such as random-walkMetropolis. I use
simpleGaussian distributions for these demonstrations, so that the results can be compared
with known values, but of course HMC is typically used for more complex distributions.

5.3.3.1 Trajectories for a Two-Dimensional Problem

Consider sampling from a distribution for two variables that is bivariate Gaussian, with
means of zero, standard deviations of one, and correlation 0.95. We regard these as
“position” variables, and introduce two corresponding “momentum” variables, defined
to have a Gaussian distribution with means of zero, standard deviations of one, and zero
correlation. We then define the Hamiltonian as

H(q, p) = qTΣ−1q/2+ pTp/2, with Σ =
[
1 0.95

0.95 1

]
.
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FIGURE 5.3
A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a stepsize of
0.25. The ellipses plotted are one standard deviation from the means. The initial state had q = [−1.50,−1.55]T and
p = [−1, 1]T .

Figure 5.3 shows a trajectory based on thisHamiltonian, such asmight be used to propose
a new state in the HMC method, computed using L = 25 leapfrog steps, with a stepsize of
ε = 0.25. Since the full state space is four-dimensional, Figure 5.3 shows the two position
coordinates and the two momentum coordinates in separate plots, while the third plot
shows the value of the Hamiltonian after each leapfrog step.
Notice that this trajectory does not resemble a random walk. Instead, starting from the

lower left-hand corner, the position variables systematicallymove upward and to the right,
until they reach the upper right-hand corner, at which point the direction of motion is
reversed. The consistency of this motion results from the role of the momentum variables.
The projection of p in the diagonal direction will change only slowly, since the gradient
in that direction is small, and hence the direction of diagonal motion stays the same for
many leapfrog steps. While this large-scale diagonal motion is happening, smaller-scale
oscillations occur,moving back and forth across the “valley” created by the high correlation
between the variables.
The need to keep these smaller oscillations under control limits the stepsize that can

be used. As can be seen in the rightmost plot in Figure 5.3, there are also oscillations in
the value of the Hamiltonian (which would be constant if the trajectory were simulated
exactly). If a larger stepsize were used, these oscillations would be larger. At a critical
stepsize (ε = 0.45 in this example), the trajectory becomes unstable, and the value of the
Hamiltonian grows without bound. As long as the stepsize is less than this, however, the
error in the Hamiltonian stays bounded regardless of the number of leapfrog steps done.
This lack of growth in the error is not guaranteed for all Hamiltonians, but it does hold for
many distributions more complex than Gaussians. As can be seen, however, the error in
the Hamiltonian along the trajectory does tend to be positive more often than negative. In
this example, the error is +0.41 at the end of the trajectory, so if this trajectory were used
for an HMC proposal, the probability of accepting the endpoint as the next state would be
exp(−0.41) = 0.66.

5.3.3.2 Sampling from a Two-Dimensional Distribution

Figures 5.4 and 5.5 show the results of using HMC and a simple random-walk Metropolis
method to sample from a bivariate Gaussian similar to the one just discussed, but with
stronger correlation of 0.98.
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FIGURE 5.4
Twenty iterations of the random-walk Metropolis method (with 20 updates per iteration) and of the Hamiltonian
Monte Carlo method (with 20 leapfrog steps per trajectory) for a two-dimensional Gaussian distribution with
marginal standard deviations of one and correlation 0.98. Only the two position coordinates are plotted, with
ellipses drawn one standard deviation away from the mean.

In this example, as in the previous one, HMCused a kinetic energy (defining themomen-
tum distribution) of K(p) = pTp/2. The results of 20 HMC iterations, using trajectories of
L = 20 leapfrog steps with stepsize ε = 0.18, are shown in the right plot of Figure 5.4. These
values were chosen so that the trajectory length, εL, is sufficient to move to a distant point
in the distribution, without being so large that the trajectory will often waste computation
time by doubling back on itself. The rejection rate for these trajectories was 0.09.
Figure 5.4 also shows every 20th state from 400 iterations of random-walk Metropolis,

with a bivariate Gaussian proposal distributionwith the current state asmean, zero correla-
tion, and the same standarddeviation for the two coordinates. The standarddeviation of the
proposals for this examplewas 0.18,which is the same as the stepsize used forHMCpropos-
als, so that the change in state in these random-walk proposals was comparable to that for a
single leapfrog step for HMC. The rejection rate for these random-walk proposals was 0.37.
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FIGURE 5.5
Twohundred iterations, startingwith the 20 iterations shownabove,with only the first position coordinate plotted.
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Onecan see inFigure 5.4howthe systematicmotionduringanHMCtrajectory (illustrated
in Figure 5.3) produces larger changes in state than a corresponding number of random-
walk Metropolis iterations. Figure 5.5 illustrates this difference for longer runs of 20× 200
random-walk Metropolis iterations and of 200 HMC iterations.

5.3.3.3 The Benefit of Avoiding Random Walks

Avoidance of random-walk behavior, as illustrated above, is one major benefit of HMC. In
this example, because of the high correlation between the two position variables, keeping
the acceptance probability for random-walk Metropolis reasonably high requires that the
changes proposed have a magnitude comparable to the standard deviation in the most
constrained direction (0.14 in this example, the square root of the smallest eigenvalue of
the covariance matrix). The changes produced using one Gibbs sampling scan would be
of similar magnitude. The number of iterations needed to reach a state almost independent
of the current state ismostly determined by how long it takes to explore the less constrained
direction, which for this example has standard deviation 1.41—about ten times greater than
the standard deviation in the most constrained direction. We might therefore expect that
we would need around 10 iterations of random-walk Metropolis in which the proposal
was accepted to move to a nearly independent state. But the number needed is actually
roughly the square of this—around 100 iterations with accepted proposals—because the
random-walk Metropolis proposals have no tendency to move consistently in the same
direction.
To see this, note that the variance of the position after n iterations of random-walk

Metropolis from some start state will grow in proportion to n (until this variance becomes
comparable to the overall variance of the state), since the position is the sum of mostly
independent movements for each iteration. The standard deviation of the amount moved
(which gives the typical amount of movement) is therefore proportional to

√
n.

The stepsize used for the leapfrog steps is similarly limited by the most constrained
direction, but the movement will be in the same direction for many steps. The distance
moved after n steps will therefore tend to be proportional to n, until the distance moved
becomes comparable to the overall width of the distribution. The advantage compared to
movement by a random walk will be a factor roughly equal to the ratio of the standard
deviations in the least confined direction and most confined direction—about 10 here.
Because avoiding a random walk is so beneficial, the optimal standard deviation for

random-walk Metropolis proposals in this example is actually much larger than the value
of 0.18 used here. A proposal standard deviation of 2.0 gives a very low acceptance rate
(0.06), but this ismore thancompensated forby the largemovement (toanearly independent
point) on the rare occasions when a proposal is accepted, producing a method that is about
as efficient asHMC.However, this strategy ofmaking large changeswith a small acceptance
rate works only when, as here, the distribution is tightly constrained in only one direction.

5.3.3.4 Sampling from a 100-Dimensional Distribution

More typical behavior of HMC and random-walk Metropolis is illustrated by a 100-
dimensional multivariate Gaussian distribution in which the variables are independent,
with means of zero, and standard deviations of 0.01, 0.02, . . . , 0.99, 1.00. Suppose that we
have no knowledge of the details of this distribution, so we will use HMC with the same
simple, rotationally symmetric kinetic energy function as above, K(p) = pTp/2, and use
random-walk Metropolis proposals in which changes to each variable are independent, all
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with the same standard deviation. As discussed below in Section 5.4.1, the performance of
both these sampling methods is invariant to rotation, so this example is illustrative of how
they perform on any multivariate Gaussian distribution in which the square roots of the
eigenvalues of the covariance matrix are 0.01, 0.02, . . . , 0.99, 1.00.
For this problem, the position coordinates, qi, and corresponding momentum coordi-

nates, pi, are all independent, so the leapfrog steps used to simulate a trajectory operate
independently for each (qi, pi) pair. However, whether the trajectory is accepted depends
on the total error in the Hamiltonian due to the leapfrog discretization, which is a sum of
the errors due to each (qi, pi) pair (for the terms in the Hamiltonian involving this pair).
Keeping this error small requires limiting the leapfrog stepsize to a value roughly equal to
the smallest of the standard deviations (0.01), which implies that many leapfrog steps will
be needed to move a distance comparable to the largest of the standard deviations (1.00).
Consistent with this, I applied HMC to this distribution using trajectories with L = 150

and with ε randomly selected for each iteration, uniformly from (0.0104, 0.0156), which
is 0.013± 20%. I used random-walk Metropolis with proposal standard deviation drawn
uniformly from (0.0176, 0.0264), which is 0.022± 20%. These are close to optimal set-
tings for both methods. The rejection rate was 0.13 for HMC and 0.75 for random-walk
Metropolis.
Figure 5.6 shows results from runs of 1000 iterations of HMC (right) and of random-

walk Metropolis (left), counting 150 random-walk Metropolis updates as one iteration, so
that the computation time per iteration is comparable to that for HMC. The plot shows
the last variable, with the largest standard deviation. The autocorrelation of these values
is clearly much higher for random-walk Metropolis than for HMC. Figure 5.7 shows the
estimates for the mean and standard deviation of each of the 100 variables obtained using
the HMC and random-walk Metropolis runs (estimates were just the sample means and
sample standard deviations of the values from the 1000 iterations). Except for the first few
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FIGURE 5.6
Values for the variable with largest standard deviation for the 100-dimensional example, from a random-walk
Metropolis run and an HMC run with L = 150. To match computation time, 150 updates were counted as one
iteration for random-walk Metropolis.
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FIGURE 5.7
Estimates of means (top) and standard deviations (bottom) for the 100-dimensional example, using random-walk
Metropolis (left) and HMC (right). The 100 variables are labeled on the horizontal axes by the true standard
deviaton of that variable. Estimates are on the vertical axes.

variables (with smallest standard deviations), the error in the mean estimates fromHMC is
roughly 10 times less than the error in the mean estimates from random-walk Metropolis.
The standard deviation estimates from HMC are also better.
The randomization of the leapfrog stepsize done in this example follows the advice dis-

cussed at the end of Section 5.3.2. In this example, not randomizing the stepsize (fixing
ε = 0.013) does in fact cause problems—the variables with standard deviations near 0.31 or
0.62 change only slowly, since 150 leapfrog steps with ε = 0.013 produces nearly a full or
half cycle for these variables, so an accepted trajectory does not make much of a change in
the absolute value of the variable.
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5.4 HMC in Practice and Theory
Obtaining the benefits from HMC illustrated in the previous section, including random-
walk avoidance, requires proper tuning of L and ε. I discuss tuning of HMC below, and
also show how performance can be improved by using whatever knowledge is available
regarding the scales of variables and their correlations. After briefly discussing what to do
when HMC alone is not enough, I discuss an additional benefit of HMC—its better scaling
with dimensionality than simple Metropolis methods.

5.4.1 Effect of Linear Transformations

Like allMCMCmethods I amawareof, theperformanceofHMCmaychange if thevariables
being sampled are transformed bymultiplication by somenonsingularmatrix,A. However,
performance stays the same (except perhaps in terms of computation time per iteration) if
at the same time the corresponding momentum variables are multiplied by (AT)−1. These
facts provide insight into the operation of HMC, and can help us improve performance
when we have some knowledge of the scales and correlations of the variables.
Let the new variables be q′ = Aq. The probability density for q′ will be given by P′(q′) =

P(A−1q′)/|det(A)|, where P(q) is the density for q. If the distribution for q is the canoni-
cal distribution for a potential energy function U(q) (see Section 5.3.1), we can obtain the
distribution for q′ as the canonical distribution for U′(q′) = U(A−1q′). (Since |det(A)| is a
constant, we need not include a log |det(A)| term in the potential energy.)
We can choose whatever distribution we wish for the corresponding momentum vari-

ables, so we could decide to use the same kinetic energy as before. Alternatively, we can
choose to transform themomentumvariables by p′ = (AT)−1p, anduse a newkinetic energy
of K′(p′) = K(ATp′). If we were using a quadratic kinetic energy, K(p) = pTM−1p/2 (see
Equation 5.5), the new kinetic energy will be

K′(p′) = (ATp′)TM−1(ATp′)/2 = (p′)T(AM−1AT) p′/2 = (p′)T(M′)−1p′/2, (5.25)

whereM′ = (AM−1AT)−1 = (A−1)TMA−1.
If we use momentum variables transformed in this way, the dynamics for the new vari-

ables, (q′, p′), essentially replicates the original dynamics for (q, p), so the performance of
HMCwill be the same. To see this, note that if we follow Hamiltonian dynamics for (q′, p′),
the result in terms of the original variables will be as follows (see Equations 5.6 and 5.7):

dq
dt
= A−1 dq

′

dt
= A−1(M′)−1 p′ = A−1(AM−1AT)(AT)−1 p =M−1 p,

dp
dt
= AT

dp′

dt
= −AT ∇U′(q′) = −AT (A−1)T ∇U(A−1q′) = −∇U(q),

which matches what would happen following Hamiltonian dynamics for (q, p).
If A is an orthogonal matrix (such as a rotation matrix), for which A−1 = AT , the per-

formance of HMC is unchanged if we transform both q and p by multiplying by A (since
(AT)−1 = A). Ifwechosea rotationally symmetricdistribution for themomentum,withM =
mI (i.e. the momentum variables are independent, each having variancem), such an ortho-
gonal transformationwill not change the kinetic energy function (and hence not change the
distribution of the momentum variables), since we will haveM′ = (A (mI)−1AT)−1 = mI.
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Such an invariance to rotation holds also for a random-walkMetropolis method inwhich
the proposal distribution is rotationally symmetric (e.g. Gaussian with covariance matrix
mI). In contrast, Gibbs sampling is not rotationally invariant, nor is a scheme in which the
Metropolis algorithm is used to update each variable in turn (with a proposal that changes
only that variable).However,Gibbs sampling is invariant to rescalingof thevariables (trans-
formation by a diagonal matrix), which is not true for HMC or random-walk Metropolis,
unless the kinetic energy or proposal distribution is transformed in a corresponding way.
Suppose thatwehaveanestimate,Σ, of the covariancematrix for q, andsupposealso that q

hasat least a roughlyGaussiandistribution.Howcanweuse this information to improve the
performance ofHMC?Oneway is to transform the variables so that their covariancematrix
is close to the identity, byfinding theCholeskydecomposition,Σ = LLT ,withLbeing lower-
triangular, and letting q′ = L−1q. We then let our kinetic energy function be K(p) = pTp/2.
Since the momentum variables are independent, and the position variables are close to
independent with variances close to one (if our estimate Σ and our assumption that q
is close to Gaussian are good), HMC should perform well using trajectories with a small
number of leapfrog steps,whichwillmove all variables to a nearly independent point.More
realistically, the estimateΣmaynotbeverygood,but this transformationcould still improve
performance compared to using the same kinetic energy with the original q variables.
An equivalent way to make use of the estimated covariance Σ is to keep the original q

variables, but use the kinetic energy functionK(p) = pTΣp/2—that is,we let themomentum
variables have covariance Σ−1. The equivalence can be seen by transforming this kinetic
energy to correspond to a transformation to q′ = L−1q (see Equation 5.25), which gives
K(p′) = (p′)TM′−1p′ withM′ = (L−1(LLT)(L−1)T)−1 = I.
Using such a kinetic energy function to compensate for correlations between position

variables has a long history in molecular dynamics (Bennett, 1975). The usefulness of this
technique is limitedby the computational cost ofmatrixoperationswhen thedimensionality
is high.
Using a diagonal Σ can be feasible even in high-dimensional problems. Of course, this

provides information only about the different scales of the variables, not their correlation.
Moreover,when the actual correlations are nonzero, it is not clearwhat scales touse.Making
an optimal choice is probably infeasible. Some approximation to the conditional standard
deviation of each variable given all the othersmay be possible—as I have done for Bayesian
neural network models (Neal, 1996a). If this also is not feasible, using approximations to
the marginal standard deviations of the variables may be better than using the same scale
for them all.

5.4.2 Tuning HMC

One practical impediment to the use of Hamiltonian Monte Carlo is the need to select
suitable values for the leapfrog stepsize, ε, and the number of leapfrog steps, L, which
together determine the length of the trajectory in fictitious time, εL. Most MCMCmethods
have parameters that need to be tuned, with the notable exception of Gibbs samplingwhen
the conditional distributions are amenable to direct sampling. However, tuning HMC is
more difficult in some respects than tuning a simple Metropolis method.

5.4.2.1 Preliminary Runs and Trace Plots

Tuning HMC will usually require preliminary runs with trial values for ε and L. In judg-
ing how well these runs work, trace plots of quantities that are thought to be indicative
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of overall convergence should be examined. For Bayesian inference problems, high-level
hyperparameters are often among the slowest-moving quantities. The value of the potential
energy function, U(q), is also usually of central significance. The autocorrelation for such
quantities indicates how well the Markov chain is exploring the state space. Ideally, we
would like the state after oneHMC iteration to be nearly independent of the previous state.
Unfortunately, preliminary runs can be misleading, if they are not long enough to have

reached equilibrium. It is possible that the best choices of ε and L for reaching equilibrium
are different from the best choices once equilibrium is reached, and even at equilibrium, it
is possible that the best choices vary from one place to another. If necessary, at each iteration
of HMC, ε and L can be chosen randomly from a selection of values that are appropriate
for different parts of the state space (or these selections and can be used sequentially).
Doing several runswithdifferent randomstarting states is advisable (for bothpreliminary

and final runs), so that problemswith isolatedmodes can be detected. Note that HMC is no
less (or more) vulnerable to problemswith isolatedmodes than otherMCMCmethods that
make local changes to the state. If isolated modes are found to exist, something needs to be
done to solve this problem—just combining runs that are each confined to a single mode is
not valid. A modification of HMC with “tempering” along a trajectory (Section 5.5.7) can
sometimes help with multiple modes.

5.4.2.2 What Stepsize?

Selecting a suitable leapfrog stepsize, ε, is crucial. Too large a stepsize will result in a very
low acceptance rate for states proposed by simulating trajectories. Too small a stepsize will
either waste computation time, by the same factor as the stepsize is too small, or (worse)
will lead to slow exploration by a randomwalk, if the trajectory length, εL, is then too short
(i.e. L is not large enough; see below).
Fortunately, as illustrated in Figure 5.3, the choice of stepsize is almost independent of

how many leapfrog steps are done. The error in the value of the Hamiltonian (which will
determine the rejection rate) usually does not increase with the number of leapfrog steps,
provided that the stepsize is small enough that the dynamics is stable.
The issue of stability can be seen in a simple one-dimensional problem in which the

following Hamiltonian is used:

H(q, p) = q2

2σ2
+ p2

2
.

Thedistribution for q that this defines isGaussianwith standarddeviation σ.Aleapfrog step
for this system (as for any quadratic Hamiltonian) will be a linear mapping from (q(t), p(t))
to (q(t+ ε), p(t+ ε)). Referring to Equations 5.18 through 5.20, we see that this mapping can
be represented by a matrix multiplication as follows:[

q(t+ ε)
p(t+ ε)

]
=
[

1− ε2/2σ2 ε

−ε/σ2 + ε3/4σ4 1− ε2/2σ2
][

q(t)
p(t)

]
.

Whether iterating this mapping leads to a stable trajectory, or one that diverges to infinity,
depends on the magnitudes of the eigenvalues of the above matrix, which are(

1− ε2

2σ2

)
±
( ε
σ

)√
ε2/4σ2 − 1.
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When ε/σ > 2, these eigenvalues are real, and at least one will have absolute value greater
than one. Trajectories computed using the leapfrog method with this ε will therefore be
unstable.When ε/σ < 2, the eigenvalues are complex, and both have squaredmagnitude of

(
1− ε2

2σ2

)2
+
(
ε2

σ2

)(
1− ε2

4σ2

)
= 1.

Trajectories computed with ε < 2σ are therefore stable.
Formultidimensional problems inwhich thekinetic energyused isK(p) = pTp/2 (as in the

example above), the stability limit for εwill be determined (roughly) by thewidth of the dis-
tribution in the most constrained direction—for a Gaussian distribution, this would the
square root of the smallest eigenvalue of the covariance matrix for q. Stability for more
general quadratic Hamiltonians with K(p) = pTM−1p/2 can be determined by applying a
linear transformation that makes K(p′) = (p′)Tp′/2, as discussed above in Section 5.4.1.
When a stepsize, ε, that produces unstable trajectories is used, the value of H grows

exponentially with L, and consequently the acceptance probability will be extremely small.
For low-dimensional problems, using a value for ε that is just a little below the stability limit
is sufficient to produce a good acceptance rate. For high-dimensional problems, however,
the stepsize may need to be reduced further than this to keep the error in H to a level that
produces a good acceptance probability. This is discussed further in Section 5.4.4.
Choosing too large a value of ε can have very bad effects on the performance of HMC.

In this respect, HMC is more sensitive to tuning than random-walkMetropolis. A standard
deviation for proposals needs to be chosen for random-walk Metropolis, but performance
degrades smoothly as this choice is made too large, without the sharp degradation seen
withHMCwhen ε exceeds the stability limit. (However, in high-dimensional problems, the
degradation in random-walk Metropolis with too large a proposal standard deviation can
also be quite sharp, so this distinction becomes less clear.)
This sharp degradation in performance of HMC when the stepsize is too big would not

be a serious issue if the stability limit were constant—the problem would be obvious from
preliminary runs, and so could be fixed. The real danger is that the stability limit may differ
for several regions of the state space that all have substantial probability. If the preliminary
runs are started in a regionwhere the stability limit is large, a choice of ε a little less than this
limit might appear to be appropriate. However, if this ε is above the stability limit for some
other region, the runsmay never visit this region, even though it has substantial probability,
producing a drastically wrong result. To see why this could happen, note that if the run
ever does visit the regionwhere the chosen εwould produce instability, it will stay there for
a very long time, since the acceptance probability with that ε will be very small. Since the
method nevertheless leaves the correct distribution invariant, it follows that the run only
rarely moves to this region from a region where the chosen ε leads to stable trajectories.
One simple context where this problem can arise is when sampling from a distributionwith
very light tails (lighter than a Gaussian distribution), for which the log of the density will
fall faster than quadratically. In the tails, the gradient of the log density will be large, and a
small stepsize will be needed for stability. See Roberts and Tweedie (1996) for a discussion
of this in the context of the Langevin method (see Section 5.5.2).
Thisproblemcanbealleviatedby choosing ε randomly fromsomedistribution. Even if the

mean of this distribution is too large, suitably small values for εmay be chosen occasionally.
(See Section 5.3.2 for another reason to randomly vary the stepsize.) The random choice of
ε should be done once at the start of a trajectory, not for every leapfrog step, since even if
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all the choices are below the stability limit, random changes at each step lead to a random
walk in the error for H, rather than the bounded error that is illustrated in Figure 5.3.
The “short-cut” procedures described in Section 5.5.6 can be seen as ways of saving

computation time when a randomly chosen stepsize is inappropriate.

5.4.2.3 What Trajectory Length?

Choosing a suitable trajectory length is crucial if HMC is to explore the state space sys-
tematically, rather than by a random walk. Many distributions are difficult to sample from
because they are tightly constrained in some directions, but much less constrained in other
directions. Exploring the less constrained directions is best done using trajectories that are
long enough to reach a point that is far from the current point in that direction. Trajectories
can be too long, however, as is illustrated in Figure 5.3. The trajectory shown on the left of
that figure is a bit too long, since it reverses direction and then ends at a point that might
have been reachedwith a trajectory about half its length. If the trajectorywere a little longer,
the result could be even worse, since the trajectory would not only take longer to compute,
but might also end near its starting point.
For more complex problems, one cannot expect to select a suitable trajectory length by

looking at plots like Figure 5.3. Finding the linear combination of variables that is least
confined will be difficult, and will be impossible when, as is typical, the least confined
“direction” is actually a nonlinear curve or surface.
Setting the trajectory length by trial and error therefore seems necessary. For a problem

thought to be fairly difficult, a trajectory with L = 100 might be a suitable starting point.
If preliminary runs (with a suitable ε; see above) show that HMC reaches a nearly inde-
pendent point after only one iteration, a smaller value of L might be tried next. (Unless
these “preliminary” runs are actually sufficient, in which case there is of course no need to
do more runs.) If instead there is high autocorrelation in the run with L = 100, runs with
L = 1000 might be tried next.
As discussed at the end of Sections 5.3.2 and 5.3.3, randomly varying the length of the tra-

jectory (over a fairly small interval) may be desirable, to avoid choosing a trajectory length
that happens to produce a near-periodicity for some variable or combination of variables.

5.4.2.4 Using Multiple Stepsizes

Using the results in Section 5.4.1, we can exploit information about the relative scales of
variables to improve the performance of HMC. This can be done in two equivalent ways. If
si is a suitable scale for qi, we could transform q, by setting q′i = qi/si, orwe could instead use
a kinetic energy function of K(p) = pTM−1p, withM being a diagonal matrix with diagonal
elements mi = 1/s2i .
A third equivalent way to exploit this information, which is often the most convenient,

is to use different stepsizes for different pairs of position and momentum variables. To see
how this works, consider a leapfrog update (following Equations 5.18 through 5.20) with
mi = 1/s2i :

pi (t+ ε/2) = pi(t)− (ε/2)
∂U
∂qi

(q(t)),

qi(t+ ε) = qi(t)+ ε s2i pi (t+ ε/2) ,

pi(t+ ε) = pi (t+ ε/2)− (ε/2)
∂U
∂qi

(q(t+ ε)).
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Define (q(0), p(0)) to be the state at the beginning of the leapfrog step (i.e. (q(t), p(t))),
define (q(1), p(1)) to be the final state (i.e. (q(t+ ε), p(t+ ε))), and define p(1/2) to be half-way
momentum (i.e. p(t+ ε/2)). We can now rewrite the leapfrog step above as

p(1/2)
i = p(0)

i − (ε/2)
∂U
∂qi

(q(0)),

q(1)i = q(0)i + ε s2i p(1/2)
i ,

p(1)
i = p(1/2)

i − (ε/2)
∂U
∂qi

(q(1)).

If we now define rescaled momentum variables, p̃i = sipi, and stepsizes εi = siε, we can
write the leapfrog update as

p̃(1/2)
i = p̃(0)

i − (εi/2)
∂U
∂qi

(q(0)),

q(1)
i = q(0)i + εi p̃(1/2)

i ,

p̃(1)
i = p̃(1/2)

i − (εi/2)
∂U
∂qi

(q(1)).

This is just like a leapfrog update with all mi = 1, but with different stepsizes for different
(qi, pi) pairs. Of course, the successive values for (q, p̃) can no longer be interpreted as
following Hamiltonian dynamics at consistent time points, but that is of no consequence
for the use of these trajectories in HMC. Note that when we sample for the momentum
before each trajectory, each p̃i is drawn independently from a Gaussian distribution with
mean zero and variance one, regardless of the value of si.
This multiple stepsize approach is often more convenient, especially when the estimated

scales, si, are not fixed, as discussed in Section 5.4.5, and the momentum is only partially
refreshed (Section 5.5.3).

5.4.3 Combining HMC with Other MCMC Updates

For some problems, MCMC using HMC alone will be impossible or undesirable. Two
situations where non-HMC updates will be necessary are when some of the variables are
discrete, and when the derivatives of the log probability density with respect to some of
the variables are expensive or impossible to compute. HMC can then be feasibly applied
only to the other variables. Another example is when special MCMC updates have been
devised that may help convergence in ways that HMC does not—for example, by moving
between otherwise isolated modes—but which are not a complete replacement for HMC.
As discussed in Section 5.4.5 below, Bayesian hierarchical models may also be best handled
with a combination of HMC and other methods such as Gibbs sampling.
In such circumstances, one or more HMC updates for all or a subset of the variables can

be alternated with one or more other updates that leave the desired joint distribution of
all variables invariant. The HMC updates can be viewed as either leaving this same joint
distribution invariant, or as leaving invariant the conditional distribution of the variables
that HMC changes, given the current values of the variables that are fixed during the HMC
update. These are equivalent views, since the joint density canbe factored as this conditional
density times the marginal density of the variables that are fixed, which is just a constant
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from the point of view of a single HMC update, and hence can be left out of the potential
energy function.
When both HMC and other updates are used, it may be best to use shorter trajectories

for HMC than would be used if only HMCwere being done. This allows the other updates
to be done more often, which presumably helps sampling. Finding the optimal tradeoff is
likely to be difficult, however.Avariation onHMC that reduces the need for such a tradeoff
is described below in Section 5.5.3.

5.4.4 Scaling with Dimensionality

In Section 5.3.3, one of the main benefits of HMC was illustrated—its ability to avoid the
inefficient exploration of the state space via a random walk. This benefit is present (to at
least somedegree) formost practical problems. For problems inwhich the dimensionality is
moderate to high, another benefit of HMC over simple random-walk Metropolis methods
is a slower increase in the computation time needed (for a given level of accuracy) as the
dimensionality increases. (Note that here I will consider only sampling performance after
equilibrium is reached, not the time needed to approach equilibrium from some initial state
not typical of the distribution, which is harder to analyze.)

5.4.4.1 Creating Distributions of Increasing Dimensionality by Replication

To talk about how performance scales with dimensionality we need to assume something
about how the distribution changes with dimensionality, d.
Iwill assume that dimensionality increases by adding independent replicas of variables—

that is, the potential energy function for q = (q1, . . . , qd) has the form U(q) = Σ ui(qi), for
functions ui drawn independently from some distribution. Of course, this is not what any
real practical problem is like, but it may be a reasonable model of the effect of increas-
ing dimensionality for some problems—for instance, in statistical physics, distant regions
of large systems are often nearly independent. Note that the independence assumption
itself is not crucial since, as discussed in Section 5.4.1, the performance of HMC (and of
simple random-walk Metropolis) does not change if independence is removed by rotat-
ing the coordinate system, provided the kinetic energy function (or random-walk proposal
distribution) is rotationally symmetric.
For distributions of this form, in which the variables are independent, Gibbs sampling

will perform very well (assuming it is feasible), producing an independent point after each
scanof all variables.ApplyingMetropolis updates to eachvariable separatelywill alsowork
well, provided the time for a single-variable update does not grow with d. However, these
methods are not invariant to rotation, so this good performance may not generalize to the
more interesting distributions for which we hope to obtain insight with the analysis below.

5.4.4.2 Scaling of HMC and Random-Walk Metropolis

Here, I discuss informally how well HMC and random-walk Metropolis scale with
dimension, loosely following Creutz (1988, Section III).
To begin, Cruetz notes that the following relationship holds when any Metropolis-style

algorithm is used to sample a density P(x) = (1/Z) exp(−E(x)):

1 = E [P(x∗)/P(x)] = E [exp(−(E(x∗)− E(x)))] = E [exp(−Δ)], (5.26)
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where x is the current state, assumed to be distributed according to P(x), x∗ is the proposed
state, and Δ = E(x∗)− E(x). Jensen’s inequality then implies that the expectation of the
energy difference is nonnegative:

E [Δ] ≥ 0.

The inequality will usually be strict.
WhenU(q) = Σ ui(qi), andproposals areproduced independently for each i,we can apply

these relationships either to a single variable (or pair of variables) or to the entire state. For a
single variable (or pair), I will writeΔ1 forE(x∗)− E(x), with x = qi andE(x) = ui(qi), or x =
(qi, pi) andE(x) = ui(qi)+ p2i /2. For the entire state, I will writeΔd forE(x∗)− E(x), with x =
q and E(x) = U(q), or x = (q, p) and E(x) = U(q)+ K(p). For both random-walk Metropolis
and HMC, increasing dimension by replicating variables will lead to increasing energy
differences, sinceΔd is the sumofΔ1 for eachvariable, eachofwhichhaspositivemean. This
will lead to a decrease in the acceptance probability—equal to min(1, exp(−Δd))—unless
the width of the proposal distribution or the leapfrog stepsize is decreased to compensate.
More specifically, for random-walk Metropolis with proposals that change each variable

independently, the difference in potential energy between a proposed state and the current
state will be the sum of independent differences for each variable. If we fix the standard
deviation, ς, for each proposed change, the mean and the variance of this potential energy
difference will both grow linearly with d, which will lead to a progressively lower accep-
tance rate. To maintain reasonable performance, ς will have to decrease as d increases.
Furthermore, the number of iterations needed to reach a nearly independent point will be
proportional to ς−2, since exploration is via a random walk.
Similarly, when HMC is used to sample from a distribution in which the components

of q are independent, using the kinetic energy K(p) = Σ p2i /2, the different (qi, pi) pairs do
not interact during the simulation of a trajectory—each (qi, pi) pair follows Hamiltonian
dynamics according to just the one term in the potential energy involving qi and the one
term in the kinetic energy involving pi. There is therefore no need for the length in fictitious
time of a trajectory to increasewith dimensionality. However, acceptance of the endpoint of
the trajectory is based on the error inH due to the leapfrog approximation, which is the sum
of the errors pertaining to each (qi, pi)pair. For a fixed stepsize, ε, and fixed trajectory length,
εL, both the mean and the variance of the error in H grow linearly with d. This will lead to
a progressively lower acceptance rate as dimensionality increases, if it is not counteracted
by a decrease in ε. The number of leapfrog steps needed to reach an independent point will
be proportional to ε−1.
To see which method scales better, we need to determine how rapidly we must reduce

ς and ε as d increases, in order to maintain a reasonable acceptance rate. As d increases
and ς or ε goes to zero, Δ1 will go to zero as well. Using a second-order approximation of
exp(−Δ1) as 1−Δ1 +Δ2

1/2, together with Equation 5.26, we find that

E [Δ1] ≈ E [Δ2
1]

2
. (5.27)

It follows from this that the variance of Δ1 is twice the mean of Δ1 (when Δ1 is small),
which implies that the variance ofΔd is twice the mean ofΔd (even whenΔd is not small).
To achieve a good acceptance rate, wemust therefore keep the mean ofΔd near one, since a
largemeanwill not be saved by a similarly large standard deviation (whichwould produce
fairly frequent acceptances as Δd occasionally takes on a negative value).
For random-walk Metropolis with a symmetric proposal distribution, we can see how ς

needs to scale by directly averaging Δ1 for a proposal and its inverse. Let the proposal for
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one variable be x∗ = x + c, and suppose that c = a and c = −a are equally likely. Approx-
imating U(x∗) to second order as U(x)+ cU′(x)+ c2U′′(x)/2, we find that the average of
Δ1 = U(x∗)−U(x) over c = a and c = −a is a2U′′(x). Averaging this over the distribution
of a, with standard deviation ς, and over the distribution of x, we see that E [Δ1] is propor-
tional to ς2. It follows that E [Δd] is proportional to dς2, so we can maintain a reasonable
acceptance rate by letting ς be proportional to d−1/2. The number of iterations needed to
reach a nearly independent point will be proportional to ς−2, which will be proportional
to d. The amount of computation time needed will typically be proportional to d2.
As discussed at the end of Section 5.2.3, the error inHwhen using the leapfrog discretiza-

tion to simulate a trajectory of a fixed length is proportional to ε2 (for sufficiently small ε).
The error in H for a single (qi, pi) pair is the same as Δ1, so we see that Δ2

1 is proportional
to ε4. Equation 5.27 then implies that E [Δ1] is also proportional to ε4. The average total
error in H for all variables, E [Δd], will be proportional to dε4, and hence we must make ε
be proportional to d−1/4 to maintain a reasonable acceptance rate. The number of leapfrog
updates to reach a nearly independent point will therefore grow as d1/4, and the amount of
computation time will typically grow as d5/4, which is much better than the d2 growth for
random-walk Metropolis.

5.4.4.3 Optimal Acceptance Rates

By extending the analysis above, we can determine what the acceptance rate of proposals
is when the optimal choice of ς or ε is used. This is helpful when tuning the algorithms—
provided, of course, that the distribution sampled is high-dimensional, and has properties
that are adequately modeled by a distribution with replicated variables.
To find this acceptance rate, we first note that since Metropolis methods satisfy detailed

balance, the probability of an accepted proposal with Δd negative must be equal to the
probability of an accepted proposal with Δd positive. Since all proposals with negative
Δd are accepted, the acceptance rate is simply twice the probability that a proposal has a
negative Δd. For large d, the central limit theorem implies that the distribution of Δd is
Gaussian, since it is a sum of d independent Δ1 values. (This assumes that the variance
of each Δ1 is finite.) We saw above that the variance of Δd is twice its mean, E [Δd] =
μ. The acceptance probability can therefore be written as follows (Gupta et al., 1990),
for large d:

P(accept) = 2Φ
(

(0− μ)√
2μ

)
= 2Φ

(
−√μ/2

)
= a(μ), (5.28)

whereΦ(z) is the cumulative distribution function for a Gaussian variable with mean zero
and variance one.
For random-walk Metropolis, the cost of obtaining an independent point will be propor-

tional to 1/(aς2),where a is the acceptance rate.We sawabove thatμ = E [Δd] is proportional
to ς2, so the cost follows the proportionality

Crw ∝ 1
(a(μ)μ)

.

Numerical calculation shows that this is minimized when μ = 2.8 and a(μ) = 0.23.
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For HMC, the cost of obtaining an independent point will be proportional to 1/(aε), and
as we saw above, μ is proportional to ε4. From this we obtain

CHMC ∝ 1
(a(μ)μ1/4)

.

Numerical calculation shows that the minimum is when μ = 0.41 and a(μ) = 0.65.
The same optimal 23% acceptance rate for random-walk Metropolis was previously

obtained using a more formal analysis by Roberts et al. (1997). The optimal 65% accep-
tance rate for HMC that I derive above is consistent with previous empirical results on
distributions following themodel here (Neal, 1994, Figure 2), and on real high-dimensional
problems (Creutz, 1988, Figures 2 and 3; Sexton and Weingarten, 1992, Table 1). Kennedy
andPendleton (1991) obtainedexplicit and rigorous results forHMCapplied tomultivariate
Gaussian distributions.

5.4.4.4 Exploring the Distribution of Potential Energy

The better scaling behavior of HMC seen above depends crucially on the resampling of
momentum variables. We can see this by considering how well the methods explore the
distribution of the potential energy,U(q) = Σ ui(qi). BecauseU(q) is a sumof d independent
terms, its standard deviation will grow in proportion to d1/2.
Following Caracciolo et al. (1994), we note that the expected change in potential energy

from a single Metropolis update will be no more than order 1—intuitively, large upwards
changes are unlikely to be accepted, and since Metropolis updates satisfy detailed balance,
large downward changes must also be rare (in equilibrium). Because changes in U will
followa randomwalk (due again todetailed balance), itwill take at least order (d1/2/ 1)2 = d
Metropolis updates to explore the distribution of U.
In the first step of anHMC iteration, the resampling ofmomentumvariableswill typically

change the kinetic energy by an amount that is proportional to d1/2, since the kinetic energy
is also a sum of d independent terms, and hence has standard deviation that grows as d1/2
(more precisely, its standard deviation is d1/2/21/2). If the second step of HMC proposes a
distant point, this change in kinetic energy (and hence in H) will tend, by the end of the
trajectory, to have becomeequally split betweenkinetic andpotential energy. If the endpoint
of this trajectory is accepted, the change in potential energy from a single HMC iteration
will be proportional to d1/2, comparable to its overall range of variation. So, in contrast to
random-walk Metropolis, we may hope that only a few HMC iterations will be sufficient
to move to a nearly independent point, even for high-dimensional distributions.
Analyzing how well methods explore the distribution of U can also provide insight into

their performance on distributions that are not well modeled by replication of variables, as
we will see in the next section.

5.4.5 HMC for Hierarchical Models

Many Bayesian models are defined hierarchically. A large set of low-level parameters have
prior distributions that are determined by fewer higher-level “hyperparameters,” which in
turn may have priors determined by yet-higher-level hyperparameters. For example, in a
regression model with many predictor variables, the regression coefficients might be given
Gaussian prior distributions, with a mean of zero and a variance that is a hyperparame-
ter. This hyperparameter could be given a broad prior distribution, so that its posterior
distribution is determined mostly by the data.
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One could applyHMCto thesemodels in anobviousway (after taking the logs of variance
hyperparameters, so they will be unconstrained). However, it may be better to apply HMC
only to the lower-level parameters, for reasons I will now discuss. (See Section 5.4.3 for
general discussion of applying HMC to a subset of variables.)
I will use my work on Bayesian neural network models (Neal, 1996a) as an exam-

ple. Such models typically have several groups of low-level parameters, each with an
associated variance hyperparameter. The posterior distribution of these hyperparameters
reflects important aspects of the data, such as which predictor variables are most rele-
vant to the task. The efficiency with which values for these hyperparameters are sampled
from the posterior distribution can often determine the overall efficiency of the MCMC
method.
I use HMC only for the low-level parameters in Bayesian neural network models, with

the hyperparameters being fixed during an HMC update. These HMC updates alternate
with Gibbs sampling updates of the hyperparameters, which (in the simpler versions of
the models) are independent given the low-level parameters, and have conditional distri-
butions of standard form. By using HMC only for the low-level parameters, the leapfrog
stepsizes used can be set using heuristics that are based on the current hyperparameter val-
ues. (I use the multiple stepsize approach described at the end of Section 5.4.2, equivalent
to using different mass values, mi, for different parameters.) For example, the size of the
network “weights” on connections out of a “hidden unit” determine how sensitive the like-
lihood function is to changes inweights on connections into the hidden unit; the variance of
the weights on these outgoing connections is therefore useful in setting the stepsize for the
weights on the incoming connections. If the hyperparameters were changed by the same
HMC updates as change the lower-level parameters, using them to set stepsizes would not
be valid, since a reversed trajectory would use different stepsizes, and hence not retrace the
original trajectory. Without a good way to set stepsizes, HMC for the low-level parameters
would likely be much less efficient.
Choo (2000) bypassed this problem by using a modification of HMC in which trajec-

tories are simulated by alternating leapfrog steps that update only the hyperparameters
with leapfrog steps that update only the low-level parameters. This procedure maintains
both reversibility and volume-preservation (though not necessarily symplecticness), while
allowing the stepsizes for the low-level parameters to be set using the current values of
the hyperparameters (and vice versa). However, performance did not improve as hoped
because of a second issue with hierarchical models.
In these Bayesian neural network models, and many other hierarchical models, the joint

distribution of both low-level parameters and hyperparameters is highly skewed, with
the probability density varying hugely from one region of high posterior probability to
another. Unless the hyperparameters controlling the variances of low-level parameters
have very narrow posterior distributions, the joint posterior density for hyperparame-
ters and low-level parameters will vary greatly from when the variance is low to when it
is high.
For instance, suppose that in its region of high posterior probability, a variance hyperpa-

rameter varies by a factor of 4. If this hyperparameter controls 1000 low-level parameters,
their typical prior probability density will vary by a factor of 21000 = 1.07 × 10301, corre-
sponding to a potential energy range of log(21000) = 693, with a standard deviation of
693/121/2 = 200 (since the variance of a uniform distribution is one twelfth of its range). As
discussed at the end of Section 5.4.4, one HMC iteration changes the energy only through
the resampling of the momentum variables, which at best leads to a change in potential
energy with standard deviation of about d1/2/23/2. For this example, with 1000 low-level
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parameters, this is 11.2, so about (200/11.2)2 = 319 HMC iterations will be needed to reach
an independent point.
One might obtain similar performance for this example using Gibbs sampling. However,

for neural network models, there is no feasible way of using Gibbs sampling for the pos-
terior distribution of the low-level parameters, but HMC can be applied to the conditional
distribution of the low-level parameters given the hyperparameters. Gibbs sampling can
then be used to update the hyperparameters. As we have seen, performance would not be
improved by trying to update the hyperparameters with HMC as well, and updating them
by Gibbs sampling is easier.
Choo (2000) tried another approach that could potentially improve on this—

reparameterizing low-level parameters θi, all with variance exp(κ), by letting θi =
φi exp(κ/2), and then sampling for κ and the φi using HMC. The reparameterization elim-
inates the extreme variation in probability density that HMC cannot efficiently sample.
However, he found that it is difficult to set a suitable stepsize for κ, and that the error in H
tended to grow with trajectory length, unlike the typical situation when HMC is used only
for the low-level parameters. Use of “tempering” techniques (see Section 5.5.7) is another
possibility.
Even though it does not eliminate all difficulties, HMC is very useful for Bayesian neural

networkmodels—indeed,without it, theymightnot be feasible formost applications.Using
HMC for at least the low-level parameter can produce similar benefits for other hierarchical
models (e.g. Ishwaran, 1999), especially when the posterior correlations of these low-level
parameters are high.As in any application of HMC, however, careful tuning of the stepsize
and trajectory length is generally necessary.

5.5 Extensions of and Variations on HMC
The basic HMC algorithm (Figure 5.2) can be modified in many ways, either to improve its
efficiency, or to make it useful for a wider range of distributions. In this section, I will start
by discussing alternatives to the leapfrog discretization of Hamilton’s equations, and also
show how HMC can handle distributions with constraints on the variables (e.g. variables
that must be positive). I will then discuss a special case of HMC—when only one leapfrog
step is done—and show how it can be extended to produce an alternativemethod of avoid-
ing random walks, which may be useful when not all variables are updated by HMC.
Most applications of HMC can benefit from using a variant in which “windows” of states
are used to increase the acceptance probability. Another widely applicable technique is to
use approximations to theHamiltonian to compute trajectories, while still obtaining correct
results by using the exactHamiltonianwhen decidingwhether to accept the endpoint of the
trajectory. Tuning of HMCmay be assisted by using a “short-cut” method that avoids com-
puting the whole trajectory when the stepsize is inappropriate. Tempering methods have
potential to help with distributions having multiple modes, or which are highly skewed.
There are many other variations that I will not be able to review here, such as the use

of a “shadow Hamiltonian” that is exactly conserved by the inexact simulation of the real
Hamiltonian (Izagguirre and Hampton, 2004), and the use of symplectic integration meth-
odsmore sophisticated than the leapfrogmethod (e.g. Creutz andGocksch, 1989), including
a recent proposal by Girolami et al. (2009) to use a symplectic integrator for a nonseparable
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Hamiltonian in whichM in the kinetic energy of (Equation 5.5) depends on q, allowing for
“adaptation” based on local information.

5.5.1 Discretization by Splitting: Handling Constraints and Other Applications

The leapfrogmethod is not the only discretization ofHamilton’s equations that is reversible
and volume-preserving, and hence can be used for HMC. Many “symplectic integration
methods” have been devised, mostly for applications other than HMC (e.g. simulating the
solar system for millions of years to test its stability). It is possible to devise methods that
have a higher order of accuracy than the leapfrog method (see, e.g. McLachlan and Atela,
1992). Using such a method for HMCwill produce asymptotically better performance than
the leapfrogmethod, as dimensionality increases. Experience has shown, however, that the
leapfrog method is hard to beat in practice.
Nevertheless, it is worth taking a more general look at how Hamiltonian dynamics can

be simulated, since this also points to how constraints on the variables can be handled, as
well as possible improvements such as exploiting partial analytic solutions.

5.5.1.1 Splitting the Hamiltonian

Many symplectic discretizations of Hamiltonian dynamics can be derived by “splitting”
the Hamiltonian into several terms, and then, for each term in succession, simulating the
dynamics defined by that term for some small time step, then repeating this procedure
until the desired total simulation time is reached. If the simulation for each term can be
done analytically, we obtain a symplectic approximation to the dynamics that is feasible to
implement.
This general scheme is described by Leimkuhler and Reich (2004, Section 4.2) and by

Sexton and Weingarten (1992). Suppose that the Hamiltonian can be written as a sum of k
terms, as follows:

H(q, p) = H1(q, p)+H2(q, p)+ · · · +Hk−1(q, p)+Hk(q, p).

Suppose also that we can exactly implement Hamiltonian dynamics based on each Hi,
for i = 1, . . ., k, with Ti,ε being the mapping defined by applying dynamics based on Hi for
time ε.As shownbyLeimkuhler andReich, if theHi are twicedifferentiable, the composition
of these mappings, T1,ε ◦ T2,ε ◦ · · · ◦ Tk−1,ε ◦ Tk,ε, is a valid discretization of Hamiltonian
dynamics based on H, which will reproduce the exact dynamics in the limit as ε goes to
zero, with global error of order ε or less.
Furthermore, this discretizationwill preserve volume, andwill be symplectic, since these

properties are satisfiedbyeachof theTi,εmappings. Thediscretizationwill alsobe reversible
if the sequence ofHi is symmetrical—that is,Hi(q, p) = Hk−i+1(q, p).Asmentionedat the end
of Section 5.2.3, any reversiblemethodmust have global error of evenorder in ε (Leimkuhler
and Reich, 2004, Section 4.3.3), which means that the global error must be of order ε2 or
better.
We can derive the leapfrog method from a symmetrical splitting of the Hamiltonian.

If H(q, p) = U(q)+ K(p), we can write the Hamiltonian as

H(q, p) = U(q)
2

+ K(p)+ U(q)
2

,
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which corresponds to a split with H1(q, p) = H3(q, p) = U(q)/2 and H2(q, p) = K(p).
Hamiltonian dynamics based on H1 is (Equations 5.1 and 5.2):

dqi
dt
= ∂H1

∂pi
= 0,

dpi
dt
= −∂H1

∂qi
= −1

2
∂U
∂qi

.

Applying this dynamics for time ε just adds−(ε/2) ∂U/∂qi to each pi, which is the first part
of a leapfrog step (Equation 5.18). The dynamics based on H2 is as follows:

dqi
dt
= ∂H2

∂pi
= ∂K

∂pi
,

dpi
dt
= −∂H2

∂qi
= 0.

If K(p) = 1
2
∑

p2i /mi, applying this dynamics for time ε results in adding εpi/mi to each qi,
which is the second part of a leapfrog step Equation 5.19. Finally, H3 produces the third
part of a leapfrog step (Equation 5.20), which is the same as the first part, since H3 = H1.

5.5.1.2 Splitting to Exploit Partial Analytical Solutions

One situation where splitting can help is when the potential energy contains a term that
can, on its own, be handled analytically. For example, the potential energy for a Bayesian
posterior distribution will be the sum of minus the log prior density for the parameters
and minus the log likelihood. If the prior is Gaussian, the log prior density term will be
quadratic, and can be handled analytically (see the one-dimensional example at the end of
Section 5.2.1).
We can modify the leapfrog method for this situation by using a modified split. Suppose

that U(q) = U0(q)+U1(q), with U0 being analytically tractable, in conjunction with the
kinetic energy, K(p). We use the split

H(q, p) = U1(q)
2

+ [U0(q)+ K(p)
]+ U1(q)

2
, (5.29)

that is, H1(q, p) = H3(q, p) = U1(q)/2 and H2(q, p) = U0(q)+ K(p). The first and last half
steps for p are the same as for ordinary leapfrog, based on U1 alone. The middle full step
for q, which in ordinary leapfrog just adds εp to q, is replaced by the analytical solution for
following the exact dynamics based on the Hamiltonian U0(q)+ K(p) for time ε.
With this procedure, it should be possible to use a larger stepsize (and hence use fewer

steps in a trajectory), since part of the potential energy has been separated out and handled
exactly. The benefit of handling the prior exactly may be limited, however, since the prior
is usually dominated by the likelihood.

5.5.1.3 Splitting Potential Energies with Variable Computation Costs

Splitting can also help if the potential energy function can be split into two terms, one of
which requires less computation time to evaluate than the other (Sexton and Weingarten,
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1992). Suppose thatU(q) = U0(q)+U1(q), withU0 being cheaper to compute thanU1, and
let the kinetic energy be K(p). We can use the following split, for someM> 1:

H(q, p) = U1(q)
2

+
M∑
m=1

[
U0(q)
2M

+ K(p)
M

+ U0(q)
2M

]
+ U1(q)

2
.

We label the k = 3M + 2 terms as H1(q, p) = Hk(q, p) = U1(q)/2 and, for i = 1, . . .,M,
H3i−1(q, p) = H3i+1(q, p) = U0(q)/2M and H3i(q, p) = K(p)/M. The resulting discretization
can be seen as a nested leapfrog method. TheM inner leapfrog steps involve only U0, and
use an effective stepsize of ε/M. The outer leapfrog step takes half steps for p using only
U1, and replaces the update for q in the middle with theM inner leapfrog steps.
If U0 is much cheaper to compute than U1, we can use a large value for M without

increasing computation time by much. The stepsize, ε, that we can use will then be limited
mostly by the properties of U1, since the effective stepsize for U0 is much smaller, ε/M.
Using a bigger ε than with the standard leapfrog method will usually be possible, and
hence we will need fewer steps in a trajectory, with fewer computations of U1.

5.5.1.4 Splitting according to Data Subsets

When sampling from the posterior distribution for a Bayesian model of independent data
points, it may be possible to save computation time by splitting the potential energy into
terms for subsets of the data.
Suppose that we partition the data into subsets Sm, form = 1, . . .,M, typically of roughly

equal size. We can then write the log likelihood function as �(q) =∑M
m=1 �m(q), where �m

is the log likelihood function based on the data points in Sm. If π(q) is the prior density for
the parameters, we can let Um(q) = − log(π(q))/M − �m(q), and split the Hamiltonian as
follows:

H(q, p) =
M∑
m=1

[
Um(q)
2

+ K(p)
/
M + Um(q)

2

]
;

that is, we let the k = 3M terms be H3m−2(q, p) = H3m(q, p) = Um(q)/2 and H3m−1(q, p) =
K(p)/m. The resulting discretization with stepsize ε effectively performsM leapfrog steps
with stepsize ε/M, with the mth step usingMUm as the potential energy function.
This scheme can be beneficial if the data set is redundant, with many data points that are

similar. We then expectMUm(q) to be approximately the same as U(q), and we might hope
that we could set ε to beM times larger than with the standard leapfrog method, obtaining
similar results with M times less computation. In practice, however, the error in H at the
end of the trajectory will be larger than with standard leapfrog, so the gain will be less than
this. I found (Neal, 1996a, Sections 3.5.1 and 3.5.2) that the method can be beneficial for
neural network models, especially when combined with the windowed HMC procedure
described below in Section 5.5.4.
Note that unlike the other examples above, this split is not symmetrical, and hence the

resulting discretization is not reversible. However, it can still be used to produce a proposal
for HMC as long as the labeling of the subsets is randomized for each iteration, so that the
reverse trajectory has the same probability of being produced as the forward trajectory. (It
is possible, however, that some symmetrical variation on this split might produce better
results.)
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5.5.1.5 Handling Constraints

An argument based on splitting shows how to handle constraints on the variables being
sampled. Here, I will consider only separate constraints on some subset of the variables,
with the constraint on qi taking the form qi ≤ ui, or qi ≥ li, or both. A similar scheme can
handle constraints taking the form G(q) ≥ 0, for any differentiable function G.
We can impose constraints on variables by letting the potential energy be infinite for

values of q that violate any of the constraints, which will give such points probabil-
ity zero. To see how to handle such infinite potential energies, we can look at a limit
of potential energy functions that approach infinity, and the corresponding limit of the
dynamics.
To illustrate, suppose that U∗(q) is the potential energy ignoring constraints, and that qi

is constrained to be less than ui. We can take the limit as r→∞ of the following potential
energy function (which is one of many that could be used):

U(q) = U∗(q)+ Cr(qi, ui), where Cr(qi, ui) =
{
0, if qi ≤ ui,
rr+1(qi − ui)r , if qi > ui.

It is easy to see that limr→∞ Cr(qi, ui) is zero for any qi ≤ ui and infinity for any qi > ui. For
any finite r > 1, U(q) is differentiable, so we can use it to define Hamiltonian dynamics.
To simulate the dynamics based on thisU(q), with a kinetic energy K(p) = 1

2
∑

p2i /mi, we
can use the split of Equation 5.29, with U1(q) = U∗(q) and U0(q) = Cr(qi, ui):

H(q, p) = U∗(q)
2

+ [Cr(qi, ui)+ K(p)
]+ U∗(q)

2
.

This produces a variation on the leapfrog method in which the half steps for p (Equa-
tions 5.18 and 5.19) remain the same, but the full step for q (Equation 5.19) is modified to
account for the constraint on qi. After computing q′i = qi(t)+ εpi(t+ ε/2)/mi, we check if
q′i > ui. If not, the value of Cr(qi, ui)must be zero all along the path from qi to q′i, and we can
set q(t+ ε) to q′i. But if q′i > ui, the dynamics based on the Hamiltonian Cr(qi, ui)+ K(p)will
be affected by the Cr term. This term can be seen as a steep hill, which will be climbed as qi
moves past ui, until the point is reached where Cr is equal to the previous value of 12p

2
i /mi,

at which point pi will be zero. (If r is sufficiently large, as it will be in the limit as r→∞,
this point will be reached before the end of the full step.) We will then fall down the hill,
with pi taking on increasingly negative values, until we again reach qi = ui, when pi will be
just the negative of the original value of pi. We then continue, now moving in the opposite
direction, away from the upper limit.
If several variables have constraints, wemust follow this procedure for each, and if a vari-

able has both upper and lower constraints, wemust repeat the procedure until neither con-
straint is violated. The end result is that the full step for q of Equation 5.19 is replaced by the
procedure shown in Figure 5.8. Intuitively, the trajectory just bounces off the “walls” given
by the constraints. If U∗(q) is constant, these bounces are the only interesting aspect of the
dynamics, and the procedure is sometimes referred to as “billiards” (see, e.g. Ruján, 1997).

5.5.2 Taking One Step at a Time—The Langevin Method

A special case of HMC arises when the trajectory used to propose a new state consists
of only a single leapfrog step. Suppose that we use the kinetic energy K(p) = 1

2
∑

p2i . An
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For each variable, i=1, . . . ,d:

1) Let p′i= pi(t+ε/2)

2) Let q ′i=qi(t)+εp′i/mi

3) If qi is constrained, repeat the following until q ′i satisfies
all constraints:

a) If qi has an upper constraint, and q ′i > ui

Let q ′i=ui-(q ′i-ui) and p′i=-p′i
b) If qi has a lower constraint, and q ′i < li

Let q ′i=li+(li-q ′i) and p′i=-p′i
4) Let qi(t+ε)=q

′
i and pi(t+ε/2)=p

′
i

FIGURE 5.8
Modification to the leapfrog update of q (Equation 5.19) to handle constraints of the form qi ≤ ui or qi ≤ li .

iteration of HMCwith one leapfrog step can be expressed in the following way. We sample
values for the momentum variables, p, from their Gaussian distributions with mean zero
and variance one, and then propose new values, q∗ and p∗, as follows:

q∗i = qi − ε
2

2
∂U
∂qi

(q)+ εpi, (5.30)

p∗i = pi − ε2
∂U
∂qi

(q)− ε
2

∂U
∂qi

(q∗). (5.31)

We accept q∗ as the new state with probability

min
[
1, exp

(
−(U(q∗)−U(q))− 1

2
∑
i

((p∗i )
2 − p2i )

)]
, (5.32)

and otherwise keep q as the new state. Equation 5.30 is known in physics as one type of
“Langevin equation,” and this method is therefore known as Langevin Monte Carlo (LMC)
in the lattice field theory literature (e.g. Kennedy, 1990).
One can also remove any explicit mention ofmomentumvariables, and view thismethod

as performing a Metropolis–Hastings update in which q∗ is proposed from a Gaussian dis-
tribution where the q∗i are independent, with means of qi − (ε2/2)[∂U/∂qi](q) and variances
of ε2. Since this proposal is not symmetrical, it must be accepted or rejected based both on
the ratio of the probability densities of q∗ and q and on the ratio of the probability densities
for proposing q from q∗ and vice versa (Hastings, 1970). To see the equivalence with HMC
using one leapfrog step, we can write the Metropolis–Hastings acceptance probability as
follows:

min

⎡
⎣1, exp(−U(q∗))

exp(−U(q))

d∏
i=1

exp
(− (qi − q∗i + (ε2/2) [∂U/∂qi](q∗)

)2
/ 2ε2

)
exp

(− (q∗i − qi + (ε2/2) [∂U/∂qi](q)
)2

/ 2ε2
)
⎤
⎦ . (5.33)
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To see that this is the same as Equation 5.32, note that using Equations 5.30 and 5.31, we
can write

p = 1
ε

[
q∗i − qi + ε

2

2
∂U
∂qi

(q)
]
,

p∗ = −1
ε

[
qi − q∗i +

ε2

2
∂U
∂qi

(q∗)
]
.

After substituting these into Equation 5.32, it is straightforward to see the equivalence
to Equation 5.33.
In this Metropolis–Hastings form, the LMC method was first proposed by Rossky

et al. (1978) for use in physical simulations. Approximate Langevin methods without an
accept/reject step can also be used (for a discussion of this, see Neal, 1993, Section 5.3)—as,
for instance, in a paper on statistical inference for complexmodels byGrenander andMiller
(1990), where also an accept/reject step is proposed in the discussion by J. Besag (p. 591).
Although LMC can be seen as a special case of HMC, its properties are quite different.

Since LMCupdates are reversible, and generallymake only small changes to the state (since
ε typically cannot be very large), LMCwill explore the distribution via an inefficient random
walk, just like random-walk Metropolis updates.
However, LMC has better scaling behavior than random-walk Metropolis as dimension-

ality increases, as can be seen from an analysis paralleling that in Section 5.4.4 (Creutz, 1988;
Kennedy, 1990). The local error of the leapfrog step is of order ε3, so E [Δ2

1], the average
squared error inH from one variable, will be of order ε6. From Equation 5.27, E [Δ]will also
be of order ε6, and with d independent variables, E [Δd]will be of order dε6, so that εmust
scale as d−1/6 in order tomaintain a reasonable acceptance rate. Since LMC explores the dis-
tribution via a randomwalk, the number of iterations needed to reach a nearly independent
point will be proportional to ε−2, which grows as d1/3, and the computation time to reach
a nearly independent point grows as d4/3. This is better than the d2 growth in computation
time for random-walkMetropolis, but worse than the d5/4 growth when HMC is used with
trajectories that are long enough to reach a nearly independent point.
Wecanalsofindwhat theacceptance rate forLMCwill bewhen theoptimal ε isused,when

sampling a distributionwith independent variables replicated d times.As for random-walk
Metropolis and HMC, the acceptance rate is given in terms of μ = E [Δd] by Equation 5.28.
The cost of obtaining a nearly independent point using LMC is proportional to 1/(a(μ)ε2),
and since μ is proportional to ε6, we can write the cost as

CLMC ∝ 1
(a(μ)μ1/3)

.

Numerical calculation shows that this is minimized when a(μ) is 0.57, a result obtained
more formally by Roberts and Rosenthal (1998). Thismay be useful for tuning, if the behav-
ior of LMC for the distribution being sampled resembles its behavior when sampling for
replicated independent variables.

5.5.3 Partial Momentum Refreshment: Another Way to Avoid RandomWalks

The single leapfrog step used in the LMC algorithmwill usually not be sufficient tomove to
a nearly independent point, so LMCwill explore the distribution via an inefficient random
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walk. This is why HMC is typically used with trajectories of many leapfrog steps. An alter-
native that can suppress random-walk behavior even when trajectories consist of just one
leapfrog step is to only partially refresh the momentum between trajectories, as proposed
by Horowitz (1991).
Suppose that the kinetic energy has the typical form K(p) = pTM−1p/2. The following

update for p will leave invariant the distribution for the momentum (Gaussian with mean
zero and covarianceM):

p′ = αp+ (1− α2)1/2n. (5.34)

Here, α is any constant in the interval [−1,+1], and n is a Gaussian random vector with
mean zero and covariance matrix M. To see this, note that if p has the required Gaussian
distribution, the distribution of p′ will also be Gaussian (since it is a linear combination of
independent Gaussians), with mean 0 and covariance α2M + (1− α2)M =M.
If α is only slightly less than one, p′ will be similar to p, but repeated updates of this

sort will eventually produce a value for the momentum variables almost independent of
the initial value. When α = 0, p′ is just set to a random value drawn from its Gaussian
distribution, independent of its previous value. Note that whenM is diagonal, the update
of eachmomentumvariable,pi, is independentof theupdatesof othermomentumvariables.
Thepartialmomentumupdate of Equation 5.34 canbe substituted for the full replacement

of themomentum in the standardHMCalgorithm. This gives a generalizedHMCalgorithm
in which an iteration consists of three steps:

1. Update the momentum variables using Equation 5.34. Let the new momentum
be p′.

2. Propose a new state, (q∗, p∗), by applying L leapfrog steps with stepsize ε, starting
at (q, p′), and then negating the momentum. Accept (q∗, p∗) with probability

min
[
1, exp

(−U(q∗)+U(q)− K(p∗)+ K(p′)
)]
.

If (q∗, p∗) is accepted, let (q′′, p′′) = (q∗, p∗); otherwise, let (q′′, p′′) = (q, p′).
3. Negate the momentum, so that the new state is (q′′, −p′′).

The transitions in each of these steps—(q, p) → (q, p′), (q, p′) → (q′′, p′′), and (q′′, p′′) →
(q′′, −p′′)—leave the canonical distribution for (q, p) invariant. The entire update there-
fore also leaves the canonical distribution invariant. The three transitions also each satisfy
detailed balance, but the sequential combination of the three does not satisfy detailed bal-
ance (except when α = 0). This is crucial, since if the combination were reversible, it would
still result in random-walk behavior when L is small.
Note that omitting step (3) above would result in a valid algorithm, but then, far from

suppressing random walks, the method (with α close to one) would produce nearly back-
and-forthmotion, since thedirectionofmotionwould reversewithevery trajectoryaccepted
in step (2). With the reversal in step (3), motion continues in the same direction as long as
the trajectories in step (2) are accepted, since the two negations of p will cancel. Motion
reverses whenever a trajectory is rejected, so if random-walk behavior is to be suppressed,
the rejection rate must be kept small.
If α = 0, the above algorithm is the same as standard HMC, since step (1) will completely

replace themomentumvariables, step (2) is the same as for standardHMC, and step (3) will
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have no effect, since the momentum will be immediately replaced anyway, in step (1) of
the next iteration.
Since this algorithm can be seen as a generalization of standard HMC, with an additional

α parameter, one might think it will offer an improvement, provided that α is tuned for
best performance. However, Kennedy and Pendleton (2001) show that when the method is
applied to high-dimensional multivariate Gaussian distributions only a small constant fac-
tor improvement is obtained, with no better scaling with dimensionality. Best performance
is obtained using long trajectories (L large), and a value for α that is not very close to one
(but not zero, so the optimum choice is not standard HMC). If L is small, the need to keep
the rejection rate very low (by using a small ε), as needed to suppress randomwalks, makes
the method less advantageous than standard HMC.
It is disappointing that only a small improvement is obtained with this generalization

when sampling a multivariate Gaussian, due to limitations that likely apply to other distri-
butions as well. However, the methodmay be more useful than one would think from this.
For reasons discussed in Sections 5.4.3 and 5.4.5, we will often combine HMC updates with
other MCMC updates (perhaps for variables not changed by HMC). There may then be a
tradeoff between using long trajectories to make HMC more efficient, and using shorter
trajectories so that the other MCMC updates can be done more often. If shorter-than-
optimal trajectories are to be used for this reason, setting α greater than zero can reduce the
random-walk behavior that would otherwise result.
Furthermore, rejection rates can be reduced using the “window”method described next.

An analysis of partial momentum refreshment combined with the window method might
find that using trajectories of moderate length in conjunctionwith a value for α greater than
zero produces a more substantial improvement.

5.5.4 Acceptance UsingWindows of States

Figure 5.3 (right plot) shows how the error in H varies along a typical trajectory computed
with the leapfrog method. Rapid oscillations occur, here with a period of between 2 and
3 leapfrog steps, due to errors in simulating the motion in the most confined direction (or
directions, for higher-dimensional distributions). When a long trajectory is used to propose
a state forHMC, it is essentially randomwhether the trajectoryendsat a statewhere the error
inH is negative or close to zero, and hence will be acceptedwith probability close to one, or
whether it happens to end at a state with a large positive error inH, and a correspondingly
lower acceptance probability. If somehowwe could smooth out these oscillations, wemight
obtain a high probability of acceptance for all trajectories.
I introduced a method for achieving this result that uses “windows” of states at the

beginning and end of the trajectory (Neal, 1994). Here, I will present the method as an
application of a general technique in whichwe probabilistically map to a state in a different
space, perform aMarkov chain transition in this new space, and then probabilistically map
back to our original state space (Neal, 2006).
Our original state space consists of pairs, (q, p), of position andmomentum variables. We

will map to a sequence ofW pairs, [(q0, p0), . . ., (qW−1, pW−1)], in which each (qi, pi) for i>0
is the result of applying one leapfrog step (with some fixed stepsize, ε) to (qi−1, pi−1). Note
that even though a point in the new space seems to consist of W times as many numbers
as a point in the original space, the real dimensionality of the new space is the same as the
old, since the whole sequence ofW pairs is determined by (q0, p0).
To probabilistically map from (q, p) to a sequence of pairs, [(q0, p0), . . ., (qW−1, pW−1)], we

select s uniformly from {0, . . .,W − 1}, and set (qs, ps) in the new state to our current state
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(q, p). The other (qi, pi) pairs in the new state are obtained using leapfrog steps from (qs, ps),
for i>s, or backwards leapfrog steps (i.e. done with stepsize −ε) for i<s. It is easy to see,
using the fact that leapfrog steps preserve volume, that if our original state is distributed
with probability density P(q, p), then the probability density of obtaining the sequence
[(q0, p0), . . ., (qW−1, pW−1)] by this procedure is

P
([(q0, p0), . . ., (qW−1, pW−1)]

) = 1
W

W−1∑
i=0

P(qi, pi), (5.35)

since we can obtain this sequence from a (q, p) pair that matches any pair in the sequence,
and the probability is 1/W that we will produce the sequence starting from each of these
pairs (which happens only if the random selection of s puts the pair at the right place in the
sequence).
Having mapped to a sequence of W pairs, we now perform a Metropolis update that

keeps the sequence distribution defined by Equation 5.35 invariant, before mapping back
to the original state space. To obtain aMetropolis proposal, we perform L−W + 1 leapfrog
steps (for some L ≥W−1), starting from (qW−1, pW−1), producing pairs (qW , pW) to (qL, pL).
We then propose the sequence [(qL,−pL), . . ., (qL−W+1,−pL−W+1)]. We accept or reject this
proposed sequence by the usualMetropolis criterion, with the acceptance probability being

min

⎡
⎣1,

∑L
i=L−W+1 P(qi, pi)∑W−1

i=0 P(qi, pi)

⎤
⎦ , (5.36)

with P(q, p) ∝ exp(−H(q, p)). (Note here that H(q, p) = H(q,−p), and that starting from the
proposed sequence would lead symmetrically to the original sequence being proposed.)
ThisMetropolisupdate leavesuswitheither the sequence [(qL, pL), . . ., (qL−W+1, pL−W+1)],

called the “accept window,” or the sequence [(q0, p0), . . ., (qW−1, pW−1)], called the “reject
window.” (Note that these windows will overlap if L+ 1 < 2W.) We label the pairs in
the window chosen as [(q+0 , p+0 ), . . ., (q+W−1, p

+
W−1)]. We now produce a final state for the

windowed HMC update by probabilistically mapping from this sequence to a single pair,
choosing (q+e , p+e ) with probability

P(q+e , p+e )∑W−1
i=0 P(q+i , p

+
i )

.

If the sequence in the chosen window was distributed according to Equation 5.35, the pair
(q+e , p+e ) chosen will be distributed according to P(q, p) ∝ exp(−H(q, p)), as desired. To see
this, let (q+e+n, p+e+n) be the result of applying n leapfrog steps (backward ones if n < 0)
starting at (q+e , p+e ). The probability density that (q+e , p+e ) will result from mapping from a
sequence to a single pair can then be written as follows, considering all sequences that can
contain (q+e , p+e ) and their probabilities:

e∑
k=e−W+1

⎡
⎣ 1
W

k+W−1∑
i=k

P(q+i , p
+
i )

⎤
⎦ P(q+e , p+e )∑k+W−1

i=k P(q+i , p
+
i )

= P(q+e , p+e ).

The entire procedure therefore leaves the correct distribution invariant.
WhenW> 1, the potential problem with ergodicity discussed at the end of Section 5.3.2

does not arise, since there is a nonzero probability of moving to a state only one leapfrog
step away, where qmay differ arbitrarily from its value at the current state.
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It might appear that the windowed HMC procedure requires saving all 2W states in the
accept and reject windows, since any one of these statesmight become the new statewhen a
state is selected from either the acceptwindow or reject window.Actually, however, atmost
three states need to be saved—the start state, so that forward simulation can be resumed
after the initial backward simulation, plus one state from the reject window and one state
from the acceptwindow, one ofwhichwill become the new state after one of thesewindows
is chosen. As states in each window are produced in sequence, a decision is made whether
the state just produced should replace the state presently saved for that window. Suppose
that the sum of the probability densities of states seen so far is si = p1 + · · · + pi. If the state
just produced has probability density pi+1, it replaces the previous state saved from this
window with probability pi+1/(si + pi+1).
I showed (Neal, 1994) that, compared to standard HMC, using windows improves the

performance of HMC by a factor of 2 or more, on multivariate Gaussian distributions in
which the standard deviation in some directions is much larger than in other directions.
This is because the acceptance probability in Equation 5.36 uses an average of probability
densities over states in a window, smoothing out the oscillations in H from inexact sim-
ulation of the trajectory. Empirically, the advantage of the windowed method was found
to increase with dimensionality. For high-dimensional distributions, the acceptance proba-
bility when using the optimal stepsize was approximately 0.85, larger than the theoretical
value of 0.65 for HMC (see Section 5.4.4).
These results for multivariate Gaussian distributions were obtained with a window size,

W, much less than the trajectory length, L. For less regular distributions, it may be advanta-
geous touse amuch largerwindow.WhenW = L/2, the acceptance test determineswhether
the new state is from the first half of the trajectory (which includes the current state) or the
second half; the new state is then chosen from one half or the other with probabilities
proportional to the probability densities of the states in that half. This choice ofW guards
against the last few states of the trajectory having lowprobability density (highH), asmight
happen if the trajectory had by then entered a region where the stepsize used was too big.
The windowed variant of HMC may make other variants of HMC more attractive. One

suchvariant (Section 5.5.1) splits theHamiltonian intomany terms corresponding to subsets
of the data, which tends to make errors in H higher (while saving computation). Errors in
H have less effect when averaged over windows. As discussed in Section 5.5.3, very low
rejection rates are desirablewhenusingpartialmomentumrefreshment. It is easier to obtain
a low rejection probability usingwindows (i.e. a less drastic reduction in ε is needed), which
makes partial momentum refreshment more attractive.
Qin and Liu (2001) introduced a variant on windowed HMC. In their version, L leapfrog

steps are done from the start state, with the accept window consisting of the states after the
last W of these steps. A state from the accept window is then selected with probabilities
proportional to their probability densities. If the state selected is k states before the end, k
backwards leapfrog steps are done from the start state, and the states found by these steps
along with those up to W − k − 1 steps forward of the start state form the reject window.
The state selected from the accept window then becomes the next state with probability
given by the analog of Equation 5.36; otherwise the state remains the same.
Qin and Liu’s procedure is quite similar to the original windowed HMC procedure. One

disadvantage of Qin and Liu’s procedure is that the state is unchanged when the accept
window is rejected, whereas in the original procedure a state is selected from the reject
window (which might be the current state, but often will not be). The only other difference
is that the number of steps from the current state to an accepted state ranges from L−
W + 1 to L (average L− (W + 1)/2) with Qin and Liu’s procedure, versus from L− 2W + 2
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to L (average L−W + 1) for the original windowed HMC procedure, while the number
of leapfrog steps computed varies from L to L+W − 1 with Qin and Liu’s procedure,
and is fixed at L with the original procedure. These differences are slight if W � L. Qin
and Lin claim that their procedure performs better than the original on high-dimensional
multivariate Gaussian distributions, but their experiments are flawed.∗
Qin and Liu (2001) also introduce the more useful idea of weighting the states in the

accept and reject windows nonuniformly, which can be incorporated into the original pro-
cedure as well. When mapping from the current state to a sequence ofW weighted states,
the position of the current state is chosen with probabilities equal to the weights, and when
computing the acceptance probability or choosing a state from the accept or reject win-
dow, the probability densities of states are multiplied by their weights. Qin and Liu use
weights that favor states more distant from the current state, which could be useful by
usually causing movement to a distant point, while allowing choice of a nearer point if the
distant points have low probability density. Alternatively, if one sees a window as a way of
smoothing the errors in H, symmetrical weights that implement a better “low pass filter”
would make sense.

5.5.5 Using Approximations to Compute the Trajectory

The validity of HMC does not depend on using the correct Hamiltonian when simulating
the trajectory. We can instead use some approximate Hamiltonian, as long as we sim-
ulate the dynamics based on it by a method that is reversible and volume-preserving.
However, the exact Hamiltonian must be used when computing the probability of accept-
ing the endpoint of the trajectory. There is no need to look for an approximation to the
kinetic energy, when it is of a simple form such as Equation 5.13, but the potential energy is
often much more complex and costly to compute—for instance, it may involve the sum of
log likelihoods based on many data points, if the data cannot be summarized by a simple
sufficient statistic. When using trajectories of many leapfrog steps, we can therefore save
much computation time if a fast and accurate approximation to the potential energy is avail-
able, while still obtaining exact results (apart from the usual sampling variation inherent
in MCMC).
Many ways of approximating the potential energy might be useful. For example, if its

evaluation requires iterative numerical methods, fewer iterations might be done than are
necessary to get a result accurate to machine precision. In a Bayesian statistical application,
a less costly approximation to the unnormalized posterior density (whose log gives the
potential energy) may be obtainable by simply looking at only a subset of the data. This
may not be a good strategy in general, but I have found it useful for Gaussian process
models (Neal, 1998; Rasmussen and Williams, 2006), for which computation time scales
as the cube of the number of data points, so that even a small reduction in the number of
points produces a useful speedup.
Rasmussen (2003) has proposed approximating the potential energy by modeling it as a

Gaussian process, inferred from values of the potential energy at positions selected during
an initial exploratoryphase. Thismethodassumesonly adegree of smoothness of thepoten-
tial energy function, and so could be widely applied. It is limited, however, by the cost of

∗ In their first comparison, their method computes an average of 55 leapfrog steps per iteration, but the original
only computes 50 steps, a difference in computation time which if properly accounted for negates the slight
advantage they see for their procedure. Their second comparison has a similar problem, and it is also clear from
an examination of the results (in their Table I) that the sampling errors in their comparison are too large for any
meaningful conclusions to be drawn.



156 Handbook of Markov Chain Monte Carlo

Gaussian process inference, and so is most useful for problems of moderate dimensionality
for which exact evaluation of the potential energy is very costly.
An interesting possibility, to my knowledge not yet explored, would be to express

the exact potential energy as the sum of an approximate potential energy and the error
in this approximation, and to then apply one of the splitting techniques described in
Section 5.5.1—exploiting either the approximation’s analytic tractability (e.g. for aGaussian
approximation, with quadratic potential energy), or its low computational cost, so that its
dynamics can be accurately simulated at little cost using many small steps. This would
reduce the number of evaluations of the gradient of the exact potential energy if the vari-
ation in the potential energy removed by the approximation term permits a large stepsize
for the error term.

5.5.6 Short-Cut Trajectories: Adapting the Stepsize without Adaptation

One significant disadvantage of HMC is that, as discussed in Section 5.4.2, its performance
depends critically on the settings of its tuning parameters—which consist of at least the
leapfrog stepsize, ε, and number of leapfrog steps, L, with variations such as windowed
HMC having additional tuning parameters as well. The optimal choice of trajectory length
(εL) depends on the global extent of the distribution, so finding a good trajectory length
likely requires examining a substantial number of HMC updates. In contrast, just a few
leapfrog steps can reveal whether some choice of stepsize is good or bad, which leads to
the possibility of trying to set the stepsize “adaptively” during an HMC run.
Recent work on adaptive MCMCmethods is reviewed byAndrieu and Thoms (2008). As

they explain, naively choosing a stepsize for each HMC update based on results of previ-
ous updates—for example, reducing the stepsize by 20% if the previous 10 trajectories were
all rejected, and increasing it by 20% if less than two of the 10 previous trajectories were
rejected—undermines proofs of correctness (in particular, the process is no longer aMarkov
chain), and will in general produce points from the wrong distribution. However, correct
results can be obtained if the degree of adaptation declines over time. Adaptive methods
of this sort could be used for HMC, in much the same way as for any other tunable MCMC
method.
An alternative approach (Neal, 2005, 2007) is to perform MCMC updates with various

values of the tuning parameters, set according to a schedule that is predetermined or cho-
sen randomly without reference to the realized states, so that the usual proofs of MCMC
convergence and error analysis apply, but to do this using MCMC updates that have been
tweaked so that they require little computation time when the tuning parameters are not
appropriate for the distribution. Most of the computation time will then be devoted to
updates with appropriate values for the tuning parameters. Effectively, the tuning param-
eters are set adaptively from a computational point of view, but not from a mathematical
point of view.
For example, trajectories that are simulated with a stepsize that is much too large can

be rejected after only a few leapfrog steps, by rejecting whenever the change (either way)
in the Hamiltonian due to a single step (or a short series of steps) is greater than some
threshold—that is, we reject if |H(q(t+ ε), p(t+ ε))−H(q(t), p(t))| is greater than the thresh-
old. If this happens early in the trajectory, little computation time will have been wasted
on this unsuitable stepsize. Such early termination of trajectories is valid, since anyMCMC
update that satisfies detailed balance will still satisfy detailed balance if it is modified to
eliminate transitions either way between certain pairs of states.
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With this simplemodification, we can randomly choose stepsizes from some distribution
without wastingmuch time on those stepsizes that turn out to bemuch too large. However,
if we set the threshold small enough to reject when the stepsize is only a little too large,
we may terminate trajectories that would have been accepted, perhaps after a substantial
amount of computation has already been done. Trying to terminate trajectories early when
the stepsize is smaller than optimal carries a similar risk.
Alessdrastic alternative to terminating trajectorieswhen the stepsize seems inappropriate

is to instead reverse the trajectory. Suppose that we perform leapfrog steps in groups of k
steps. Based on the changes in H over these k steps, we can test whether the stepsize is
inappropriate—for example, the groupmay fail the test if the standard deviation ofH over
the k + 1 states is greater than some upper threshold or less than some lower threshold
(any criterion that would yield the same decision for the reversed sequence is valid). When
a group of k leapfrog steps fails this test, the trajectory stays at the state where this group
started, rather thanmoving k steps forward, and themomentum variables are negated. The
trajectory will now exactly retrace states previously computed (and which therefore need
not be recomputed), until the initial state is reached, at which point new states will again
be computed. If another group of k steps fails the test, the trajectory will again reverse,
after which the whole remainder of the trajectory will traverse states already computed,
allowing its endpoint to be found immediately without further computation.
This scheme behaves the same as standard HMC if no group of k leapfrog steps fails the

test. If there are two failures early in the trajectory, little computation time will have been
wasted on this (most likely) inappropriate stepsize. Between these extremes, it is possible
that one or two reversals will occur, but not early in the trajectory; the endpoint of the
trajectorywill then usually not be close to the initial state, so the nonnegligible computation
performed will not be wasted (as it would be if the trajectory had been terminated).
Such short-cut schemes can be effective at finding good values for a small number of

tuning parameters, for which good values will be picked reasonably often when drawing
them randomly. It will not be feasible for setting a large number of tuning parameters,
such as the entries in the “mass matrix” of Equation 5.5 when dimensionality is high, since
even if two reversals happen early on, the cost of using inappropriate values of the tuning
parameters will dominate when appropriate values are chosen only very rarely.

5.5.7 Tempering during a Trajectory

StandardHMCand the variations described so far have asmuch difficultymoving between
modes that are separated by regions of low probability as other local MCMC methods,
such as random-walk Metropolis and Gibbs sampling. Several general schemes have been
devised for solving problemswith such isolatedmodes that involve sampling from a series
of distributions that aremore diffuse than the distribution of interest. Such schemes include
parallel tempering (Geyer, 1991; Earl and Deem, 2005), simulated tempering (Marinari
and Parisi, 1992), tempered transitions (Neal, 1996b), and annealed importance sampling
(Neal, 2001). Most commonly, these distributions are obtained by varying a “temperature”
parameter, T, as in Equation 5.21, with T = 1 corresponding to the distribution of interest,
and larger values ofT givingmore diffuse distributions.Any of these “tempering”methods
could be used in conjunction with HMC. However, tempering-like behavior can also be
incorporated directly into the trajectory used to propose a new state in theHMCprocedure.
In the simplest version of such a “tempered trajectory” scheme (Neal, 1999, Section 6),

each leapfrog step in the first half of the trajectory is combined with multiplication of the
momentum variables by some factor α slightly greater than one, and each leapfrog step
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in the second half of the trajectory is combined with division of the momentum by the
same factor α. These multiplications and divisions can be done in various ways, as long
as the result is reversible, and the divisions are paired exactly with multiplications. The
most symmetrical scheme is to multiply the momentum by

√
α before the first half step for

momentum(Equation5.18) andafter the secondhalf step formomentum(Equation5.20), for
leapfrog steps in the first half of the trajectory, and correspondingly, to divide the momen-
tum by

√
α before the first and after the second half steps for momentum in the second

half of the trajectory. (If the trajectory has an odd number of leapfrog steps, for the middle
leapfrog step of the trajectory, the momentum is multiplied by

√
α before the first half step

for momentum, and divided by
√
α after the second half step for momentum.) Note that

most of the multiplications and divisions by
√
α are preceded or followed by another such,

and so can be combined into a single multiplication or division by α.
It is easy to see that the determinant of the Jacobianmatrix for such a tempered trajectory

is one, just as for standard HMC, so its endpoint can be used as a proposal without any
need to include a Jacobian factor in the acceptance probability.
Multiplying the momentum by an α that is slightly greater than one increases the value

of H(q, p) slightly. If H initially had a value typical of the canonical distribution at T = 1,
after this multiplication, H will be typical of a value of T that is slightly higher.∗ Initially,
the change in H(q, p) = K(p)+U(q) is due entirely to a change in K(p) as p is made bigger,
but subsequent dynamical steps will tend to distribute the increase in H between K and
U, producing a more diffuse distribution for q than is seen when T = 1. After many such
multiplications of p by α, values for q can be visited that are very unlikely in the distribution
atT = 1, allowingmovement betweenmodes that are separated by low-probability regions.
The divisions by α in the second half of the trajectory result in H returning to values that
are typical for T = 1, but perhaps now in a different mode.
If α is too large, the probability of accepting the endpoint of a tempered trajectory will

be small, since H at the endpoint will likely be much larger than H at the initial state. To
see this, consider a trajectory consisting of only one leapfrog step. If ε = 0, so that this step
does nothing, the multiplication by

√
α before the first half step for momentum would be

exactly canceled by the division by
√
α after the second half step for momentum, so H

would be unchanged, and the trajectory would be accepted. Since we want something to
happen, however,wewill use a nonzero ε, whichwill on average result in the kinetic energy
decreasing when the leapfrog step is done, as the increase in H from the multiplication by√
α is redistributed from K alone to both K and U. The division of p by

√
α will now not

cancel the multiplication by
√
α—instead, on average, it will reduce H by less than the

earlier increase. This tendency forH to be larger at the endpoint than at the initial state can
be lessened by increasing the number of leapfrog steps, say by a factor of R, while reducing
α to α1/R, which (roughly) maintains the effective temperature reached at the midpoint of
the trajectory.
Figure 5.9 illustrates tempered trajectories used to sample from an equal mixture of

two bivariate Gaussian distributions, with means of [0 0] and [10 10], and covariances
of I and 2I. Each trajectory consists of 200 leapfrog steps, done with ε = 0.3, with tem-
pering done as described above with α = 1.04. The left plots show how H varies along
the trajectories; the right plots show the position coordinates for the trajectories. The

∗ This assumes that the typical value of H is a continuous function of T, which may not be true for systems that
have a “phase transition.”Where there is a discontinuity (in practice, a near-discontinuity) in the expected value
of H as a function of T, making small changes to H, as here, may be better than making small changes to T
(which may imply big changes in the distribution).
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FIGURE 5.9
Illustration of tempered trajectories on a mixture of two Gaussians. The trajectory shown in the top plots moves
between modes; the one shown in the bottom plots ends in the same mode.

top plots are for a trajectory starting at q = [−0.4 −0.9] and p = [0.7 −0.9], which has
an endpoint in the other mode around [10 10]. The bottom plots are for a trajectory
starting at q = [0.1 1.0] and p = [0.5 0.8], which ends in the same mode it begins in.
The change in H for the top trajectory is 0.69, so it would be accepted with probabil-
ity exp(−0.69) = 0.50. The change in H for the bottom trajectory is −0.15, so it would be
accepted with probability one.
By using such tempered trajectories, HMC is able to sample these two well-separated

modes—11% of the trajectories move to the other mode and are accepted—whereas stan-
dard HMC does very poorly, being trapped for a very long time in one of the modes.
The parameters for the tempered trajectories in Figure 5.9 were chosen to produce easily
interpreted pictures, and are not optimal. More efficient sampling is obtained with a much
smaller number of leapfrog steps, larger stepsize, and largerα—for example,L = 20, ε = 0.6,
and α = 1.5 give a 6% probability of moving between modes.
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Afundamental limitationof the temperingmethoddescribedabove is that (as for standard
HMC) the endpoint of the tempered trajectory is unlikely to be accepted if the value for H
there is much higher that for the initial state. This corresponds to the probability density
at the endpoint being much lower than at the current state. Consequently, the method will
not move well between two modes with equal total probability if one mode is high and
narrow and the other low and broad, especially when the dimensionality is high. (Since
acceptance is based on the joint density for q and p, there is some slack for moving to a
point where the density for q alone is different, but not enough to eliminate this problem.)
I have proposed (Neal, 1999) a modification that addresses this, in which the point moved
to can come from anywhere along the tempered trajectory, not just the endpoint. Such a
point must be selected based both on its value for H and the accumulated Jacobian factor
for that point, which is easily calculated, since the determinant of the Jacobian matrix for a
multiplication of p by α is simply αd, where d is the dimensionality. Thismodified tempering
procedure can not only move between modes of differing width, but also move back and
forth between the tails and the central area of a heavy-tailed distribution.
More details on these variations onHMCcan be found in theR implementations available

from my web page, at www.cs.utoronto.ca/∼radford
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6
Inference from Simulations
and Monitoring Convergence

Andrew Gelman and Kenneth Shirley

Constructing efficient iterative simulation algorithms can be difficult, but inference and
monitoring convergence are relatively easy. We first give our recommended strategy
(following Section 11.10 of Gelman et al., 2003) and then explain the reasons for our rec-
ommendations, illustrating with a relatively simple example from our recent research: a
hierarchical model fit to public-opinion survey data.

6.1 Quick Summary of Recommendations
1. Simulate three or more chains in parallel. We typically obtain starting points by
adding random perturbations to crude estimates based on a simpler model or
approximation.

2. Check convergence by discarding the first part of the simulations—we discard
the first half, although that may be overly conservative—and using within-chain
analysis to monitor stationarity and between/within chains comparisons to
monitor mixing.

3. Once you have reached approximate convergence, mix all the simulations from the
second halves of the chains together to summarize the target distribution. Formost
purposes there is no longer any need to worry about autocorrelations in the chains.

4. Adaptive Markov chain Monte Carlo (MCMC)—for example, tuning the jumping
distribution of a Metropolis algorithm—can often be a good idea and presents no
problems for convergence if you restart after adapting. For example, if you have
already run 400 iterations and have not reached approximate convergence, you can
adjust your algorithmand run another 400 steps, discarding the earlier simulations.
At the next step of adaptation, you can run another 400, and so forth, possibly
adapting the adaptation time itself to balance the goals of rapid convergence and
computational efficiency. (Newer, more sophisticated algorithms have the promise
of allowing continuous adaptation and do not necessarily require discarding early
iterations.)

5. If you have run your simulations for a while and they are not close to conver-
gence, stop, look at plots of simulations from different chains, and go back and
improve your algorithm, for example, by adding new kinds of jumps to get faster
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mixing (see, e.g., Sections 11.8 through 11.9 of Gelman et al., 2003, for some simple
approaches, or some of the chapters in this handbook for more advanced ideas for
tackling harder problems). It is not generally a good idea to wait hours for conver-
gence, and in many practical examples there is a real gain from getting an answer
in ten seconds, say, rather than twominutes. Faster computation translates into the
ability to fit more models and to do more real-time data analysis.

6. When all is done, compare inferences to those from simpler models or approxima-
tions. Examine discrepancies to see whether they represent programming errors,
poor convergence, or actual changes in inferences as the model is expanded. (Here
we are talking about using these comparisons as a way to diagnose potential prob-
lems in a simulation. Other chapters in this handbook discuss ways of combining
MCMC runs from different models to perform more efficient computations, using
techniques such as parallel tempering and path sampling.)

Another useful debugging technique is the fake-data check: Choose or simulate some
“true values” of the parameters and simulate data given these parameters. Then run the
MCMC algorithm and check that it converges to a distribution consistent with the assumed
true parameter values.∗
To illustrate the concepts in this chapter, we introduce a model fit using MCMC that

comes from a political science application: modeling state-level attitudes on the death
penalty over time using national survey data (Shirley and Gelman, 2010). The model is a
multilevel logistic regression for the binary response representing support ( y = 1) or oppo-
sition ( y = 0) to the death penalty for people convicted of murder (this is how the question
was phrased in repeated polls given by Gallup and the National Opinion Research Center
during the time span 1953–2006). The predictors in the model include demographics such
as race, sex, and age, as well as the state of residence of the respondent (nested within one
of four regions of the United States), so that we can model opinion trends in different parts
of the country.

6.2 Key Differences between Point Estimation and MCMC Inference
Markov chainMonteCarlomethods arewonderfully convenient andflexible but, compared
to simpler methods of statistical computation, they involve two difficulties: running the
Markov chains long enough for convergence, and having enough simulation draws for
suitably accurate inference.

• The distribution of simulations depends on starting values of the algorithm. The
user must correct for starting-value bias or else run simulations long enough that
starting values have essentially been forgotten.

• Inferences are based on simulations rather than deterministic estimates; as a result
theusermust account forMonteCarlo error or else averageover enough simulation
draws that such error is negligible.

∗ The basic idea is that, over many simulations, 50% of the 50% posterior intervals should contain the true value,
95% of the 95% intervals should contain the true value, and so forth. Cook et al. (2006) provide a more formal
procedure along these lines.
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The first item above is sometimes called the problem of monitoring convergence of
the sampler and is commonly assessed in two ways: by studying time trends within
chains (thus detecting movement away from the starting points) and by examining
mixing between chains (thus detecting influence of the starting values of the different
chains).
The second item above arises because, even if all chains were started from randomdraws

from the target distribution, we would still need to think about their speed of mixing:
the iterative simulation must cycle through the distribution enough times to give us the
equivalent of many independent draws. In practice, though, once chains have been run
long enough that the distribution of each of them is close to the distribution of all of them
mixed together, we usually have created enough simulation draws that Monte Carlo error
is not a problem. So typically we simply monitor convergence and then stop. It can also be
a good idea to examine movement within chains (via trace plots or time series summaries)
to catch the occasional situation when a group of chains have mixed but still have not
converged to a stable distribution.
Beyond this, there can be convergence problems which are essentially undetectable from

output analysis alone, for example if a target distribution has multiple, well-separated
modes and all the chains are started from within a single mode. Here there may be specific
workarounds forparticularmodels, but ingeneral theonly solution is theusual combination
of subject-matter understanding, comparisons to previous fitted models, and mathemati-
cal analysis: the usual set of tools we use in any data analysis. In the words of Brooks et al.
(2003):

Diagnostics can only reliably be used to determine a lack of convergence and not detect
convergence per se. For example, it is relatively easy for a sampler to become stuck in
a local mode and naively applied diagnostics would not detect that the chain had not
explored the majority of the model/parameter space. Therefore, it is important to use a
range of techniques, preferably assessing different aspects of the chains and each based
upon independent chains started at a range of different starting points. If only a single
diagnostic is used and it detects no lack of convergence, then this provides only mild
reassurance that the sampler has performed well. However, if a range of diagnostics can
be used and each detects no lack of convergence, then we can be far more confident that
we would gain reliable inference from the sampler output.

Ultimately, MCMC computation, and simulation in general, is part of a larger statistical
enterprise.
In the case of our example, we aim to summarize patterns and trends in public opinion

on the death penalty for political scientists by fitting a model to survey data. To see how
knowledge of the problem leads to better decision-making regarding inferences via simula-
tion, consider the situation inwhichwe encountermultiplemodes in the target distribution
of some parameter, such as the time trend for the coefficient of a particular state. Given that
we are modeling survey data, we might hypothesize that the multiple modes represent a
mixture of distributions that correspond to different subgroups of the population in that
state, andwewould thenwant to add an interaction term in themodel between state of res-
idence and some demographic variable, such as sex, to see if themultimodality disappears.
Such situations highlight that the convergence of MCMC algorithms depends strongly on
whether the model actually fits the data: these are never totally separate, and convergence
problems are often related to modeling issues.
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6.3 Inference for Functions of the Parameters vs. Inference
for Functions of the Target Distribution

It is sometimes said that simulation-based inference is all about the problem of estimating
expectations E(θ) under the target distribution, p(θ).∗ This is not correct. There are actually
two sorts of inferential or computational task:

Task 1. Inference about θ or, more generally, about any quantity of interest g(θ). Such
inference will typically be constructed using a collection of 1000 (say) simulations
of the parameter vector, perhaps summarized by amean and standarddeviation, or
maybe a 95% interval using the empirical distribution of the simulations that have
been saved. Even if these summaries could be computed analytically, we would in
general still want simulations because these allow us directly to obtain inferences
for any posterior or predictive summary.

Task 2.Computation of E(θ) or, more generally, any function of the target distribution.
For example, supposewe are interested in a parameter θ andwe plan to summarize
our inference using a posterior mean and standard deviation. Then what we really
want are E(θ) andE(θ2), which indeed are expectations of functions of θ. Or suppose
we plan to summarize our inference using a 95% central posterior interval. These
can be derived from posterior expectations; for example, the lower endpoint of the
interval is the value L for which Pr(θ < L) = 0.025.

The precision we need depends on our inferential goals. Consider a scalar parameter θ
whose posterior distribution happens to be approximately normalwithmean and standard
deviation estimated at 3.47 and 1.83, respectively. Suppose you are now told that theMonte
Carlo standard deviation of the mean is estimated to be 0.1. If your goal is inference for
θ—Task 1 above—you can stop right there: the Monte Carlo error is trivial compared to
the inherent uncertainty about θ in your posterior distribution, and further simulation will
be a waste of time (at least for the purposes of estimating 50% and 95% intervals for θ).†
However, if your goal is to compute E(θ)—Task 2—then you might want to go further:
depending on your ultimate goal, you might want to learn that E(θ) is actually 3.53 or
3.53840 or whatever.
Task 1 is by far the more common goal in Bayesian statistics, but Task 2 arises in other

applicationareas suchas statisticalphysics and, in statistics, the computationofnormalizing
constants and marginal distributions. Much of the routine use of Markov chain simulation
(e.g. inferences for hierarchical models using the Bayesian software package BUGS) culmi-
nates in inferences for parameters and model predictions (i.e. Task 1). Many of the most
technically demanding simulation problems have Task 2 as a goal.

∗ In Bayesian applications, the target distribution is the posterior distribution, p(θ | y), but more generally it can
be any probability distribution. Our discussion of inference and convergence does not require that the MCMC
be done for a Bayesian purpose, so we simply write the target distribution as p(θ), with the understanding that
it might be conditional on data.

† In this example, the standard deviation is only estimated, not known, but our point remains. If the standard
deviation is estimated at 1.83, it is highly doubtful that adding further precision to the E(θ)will tell us anything
useful about θ itself. If computation is free, it is fine to run longer, but to the extent that computation time
is an issue and some stopping criterion must be used, it makes sense to tie the convergence to the estimated
uncertainty in θ rather than to keep going to get some arbitrary preset level of precision.
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It may be that much of the confusion of the statistical literature on MCMC convergence
involvesmethods being designed for Task 1 problems and applied to Task 2, and vice versa.
One goal of our death penalty analysis is to measure the changes in attitudes during the

past half-century in eachof the four regions of theUnitedStates (Northeast, South,Midwest,
and West). We model changes as being linear on the logistic scale, estimating a different
slope parameter for each region, βNorth, βSouth, βMidwest, and βWest, and also estimating
the standard deviation among regions, σregion. We will take the posterior distributions of
these five parameters as our target distribution of interest, and our inferential goals are
of the Task 1 variety. That is, we care about basic summaries of the distributions of these
parameters, and not functions of them, such as their means.

6.4 Inference from Noniterative Simulations
We first consider the simple problem of inference based on simulations taken directly from
the targetdistribution. Let us consider specific instances of the two tasksmentionedabove:

1. Inference about a parameter (or function of parameters) θ, to be represented by a
set of simulations and possibly a 95% interval. We can order our simulation draws
and use the 2.5% and 97.5% quantiles of these simulations.

As pointed out by Raftery and Lewis (1992), these extreme order statistics are numerically
unstable. For example, Table 6.1 shows five replications of inferences from a unit normal
distribution based on 100 simulations, then based on 1000 simulations. If the goal is to
precisely determine the endpoints of the interval (e.g. to determine if a coefficient is sta-
tistically significant, or simply to present a replicable value for publication), then many
simulations are required—even in this extremely easy problem, 1000 independent draws
are not enough to pin down the interval endpoints to one decimal place. However, if the
goal is to get an interval for θ with approximate 95% coverage in the target distribution,
even 100 draws are reasonable.

TABLE 6.1

Simple Examples of Inference from Direct Simulation
Inferences Based on 100 Random Inferences Based on 1000 Random
Draws Draws

[–1.79, 1.69] [–1.83, 1.97]
[–1.80, 1.85] [–2.01, 2.04]
[–1.64, 2.15] [–2.10, 2.13]
[–2.08, 2.38] [–1.97, 1.95]
[–1.68, 2.10] [–2.10, 1.97]

Simple examples of inference from direct simulation. Left column: five replications of 95% intervals for a
hypothetical parameter θ that has a unit normal distribution, each based on 100 independent simulation
draws. Right column: five replications of the same inference, each basedon 1000draws. For either column,
the correct answer is [−1.96, 1.96]. From one perspective, these estimates are pretty bad: even with 1000
simulations, either bound can easily be off by more than 0.1, and the entire interval width can easily be
off by 10%. On the other hand, for the goal of inference about θ, even the far-off estimates above aren’t
so bad: the interval [−2.08, 2.38] has 97% probability coverage, and [−1.79, 1.69] has 92% coverage.
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Our practical advice is to use the estimated uncertainty in the target distribution to
decide when simulations are sufficient; the purpose of this particular simple example is
to demonstrate that an appropriate minimal number of simulations depends on inferential
goals.
Many fewer draws are needed for everyday inference than for a final published result.

Andwe see this evenwith direct simulations without even getting into the “Markov chain”
part of MCMC.

2. Inference about the mean, E(θ). We can divide our simulations of θ into k groups,
compute the sample mean for each group, and then get a standard error for the
grandmean by taking the standard deviation of the k groupmeans, divided by

√
k.

Dividing intogroups is an arbitrary choice—presumably itwouldbebetter touse a tool such
as the jackknife (EfronandTibshirani, 1993)—butwegowitha simplebatchmeansapproach
here because it generalizes so naturally toMCMCwith blocking and parallel chains. In any
case, the appropriate number of simulation draws will depend on the inferential goal. For
example, 1000 randomdraws fromaunit normal distribution allow itsmean to be estimated
to within a standard error of approximately 0.03.

6.5 Burn-In
It is standard practice to discard the initial iterations of iterative simulation as they are
too strongly influenced by starting values and do not provide good information about the
target distribution. We follow this “burn-in” idea ourselves and generally discard the first
half of simulated sequences. Thus, if we run MCMC for 100 iterations, we keep only the
iterations 51–100 of each chain. If we then run another 100 iterations, we discard the 50 we
have already kept, now keeping only iterations 101–200, and so forth.
Burn-in is convenient, but discarding early iterations certainly cannot be themost efficient

approach; see Geyer (1998) for a general argument and Liu and Rubin (1996, 2002) for
specific methods for output analysis accounting for the dependence of the simulations on
the starting values. That said, we typically go with the simple burn-in approach, accepting
the increased Monte Carlo error involved in discarding half the simulations.
There has been some confusion on this point, however. For example, we recently received

the following question by email:

I was wondering aboutMCMC burn-in andwhether the oft-cited emphasis on this in the
literature might not be a bit overstated. My thought was that the chain is Markovian. In a
Metropolis (orMetropolis–Hastings) context, once you establish the scale of the proposal
distribution(s), successful burn-in gets you only a starting location inside the posterior—
nothing else is remembered, by definition! However, there is nothing really special about
this particular starting point; it would have been just as valid had it been your initial
guess and the burn-in would then have been superfluous. Moreover, the sampling phase
will eventually reach the far outskirts of the posterior, often a lot more extreme than the
sampling starting location, yet it will still (collectively) describe the posterior correctly.
This implies that anyvalid startingpoint is just as goodas anyother, burn-in or noburn-in.
The only circumstance that I can think of in which a burn-in would be essential is in

the case in which prior support regions for the parameters are not all jointly valid (inside
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the joint posterior), if that is even possible given the min/max limits set for the priors.
Am I missing something?

Indeed, our correspondent wasmissing the point that any inference from a finite number
of simulations is an approximation, and the starting point can affect the quality of the
approximation. Consider an extreme example in which your target distribution is normal
withmeanμ and standard deviation σ; and your sampler takes independent draws directly
from the target distribution; but you pick a starting value ofX. The average of n simulations
will then have the value, in expectation, of (1/n)X + ((n− 1)/n)μ, instead of the correct
value of μ. If, for example,X = 100, n = 100, and μ = 1, you are in trouble! But a burn-in of
1 will solve all your problems in this example. True, if you draw a fewmillion simulations,
the initial value will be forgotten, but why run a fewmillion simulations if you do not have
to? That will just take time away from your more important work.
More generally, the starting distribution will persist for a while, basically as long as it

takes for your chains to converge. If your starting values persist for a time T, then these
will pollute your inferences for some time of order T, by which time you can already have
stopped the simulations if you had discarded some early steps. In this example, you might
say that it would be fine to just start at the center of the distribution. One difficulty, though,
is that you do not know where the center of the distribution is before you have done your
simulations. More realistically, we start from estimates ± uncertainty as estimated from
some simpler model that was easier to fit.
We illustrate with our example. Figure 6.1a contains a trace plot of βSouth, the slope coeffi-

cient for the Southern region. We initialized three chains at values that were overdispersed
relative to the estimate of this parameter from a simpler model (a linear model of the differ-
ences in the sample percentages of supporters in the South relative to the national average).
The crude estimate of βSouth from the simplemodel was 0.33, with a standard error of about
0.03, so we started our three chains at –0.7, 0.3, and 1.3, which are roughly centered at
the crude estimate, but widely dispersed relative to the crude estimate’s standard error,
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FIGURE 6.1
(a) Trace plots of βSouth, the time trend in the logistic regression coefficients for death penalty support (per decade)
for the Southern states. Three chains were initialized at –0.7, 0.3, and 1.3, respectively, and they converge to the
target distribution within about 20 or 30 iterations. (b) The first 50 iterations, showing the movement away from
the starting values.
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so that we would be unlikely to miss a local mode in the potentially multimodal poste-
rior distribution. The model converges very quickly, so that the initial values have been
essentially forgotten after about 25 iterations (see Figure 6.1b). We ran the MCMC for 2000
iterations, because not every parameter converged as quickly as βSouth, and also because
it only took a few minutes to obtain chains of this length. Had the algorithm been much
slower, we could have stopped partway through, inspected trace plots, and then made a
decision about continuing the algorithm.

6.6 Monitoring Convergence Comparing between and within Chains
We never reach exact convergence; as a result it does not make sense to try to check con-
vergence using statistical hypothesis tests of the null hypothesis of perfect mixing. Instead,
we use statistical estimation—postprocessing of simulation results—to estimate how far
current simulations are from perfect mixing.
We typicallymonitor the convergence of all theparameters andother quantities of interest

separately. There have also been some methods proposed for monitoring the convergence
of the entire distribution at once (see, e.g. Brooks and Gelman, 1998), but these methods
may sometimes represent overkill: individual parameters can bewell estimated evenwhile
approximate convergence of simulations of a multivariate distribution can take a very long
time.
Our usual approach is, for each parameter or quantity of interest, to compute the vari-

ance of the simulations from each chain (after the first halves of each have been discarded,
as explained in our discussion of burn-in), to average these within-chain variances, and
compare this to the variances of all the chains mixed together. We take themixture variance
divided by the average within-chain variance, compute the square root of this ratio, and
call it R.hat or the “potential scale reduction factor” (Gelman and Rubin, 1992, following
ideas of Fosdick, 1959). R.hat is calculated in various MCMC software including BUGS
(Spiegelhalter et al., 1994, 2003) and the R2WinBUGS and coda packages (Plummer et al.,
2005; Sturtz et al., 2005) in R, and the underlying idea has also been applied to transdimen-
sional simulations—mixture of models with different parameter spaces (see Brooks and
Giudici, 2000; Brooks et al., 2003).
At convergence, the chains will have mixed, so that the distribution of the simulations

between and within chains will be identical, and the ratio R.hat should equal 1. If R.hat
is greater than 1, this implies that the chains have not fully mixed and that further sim-
ulation might increase the precision of inferences. In practice we typically go until R.hat
is less than 1.1 for all parameters and quantities of interest; however, we recognize that
this rule can declare convergence prematurely, which is one reason why we always recom-
mend comparing results to estimates from simpler models. It can also be useful to check
other convergence diagnostics (Cowles and Carlin, 1996). In our death penalty example,
Figure 6.2a illustrates that convergence happens quickly—if we recompute R.hat every 50
iterations, discarding the first half of the iterations as burn-in in our computations, we see
that it is less than 1.05 for every batch of such samples after 200 iterations and is less than
1.02 for every batch of such samples after about 500 iterations.
When problems show up, we typically look at time series plots of simulated chains to

see where the poor mixing occurs and get insight into how to fix the algorithm to run more
efficiently. Multivariate visual tools can make this graphical process more effective (Venna
et al., 2003; Peltonen et al., 2009).



Inference from Simulations and Monitoring Convergence 171

0
1.00

1.20

1.15

1.10

1.05

500 1000
Iteration

Potential scale reduction factor (R.hat)

1500 2000

(a)
R.

ha
t

0.25

0

8

10

12

6

4

2

0.30 0.35
South slope

Histogram: south slope

0.40 0.45

(b)

D
en

sit
y

FIGURE 6.2
(a) R.hat, the potential scale reduction factor, for βSouth, calculated repeatedly every 50 iterations using only the
last half of each set of iterations. That is, it was calculated using iterations 26–50, then using iterations 51–100, then
using iterations 76–150, and so on. R.hat was less than 1.05 for all batches of samples after 200 iterations and was
less than 1.02 for all batches of samples after about 500 iterations. (b) The 900 posterior samples formed by taking
iterations 301–600 from each of the three chains, with a density estimate overlain.

Mixing of chains can also bemonitored nonparametrically, for example by computing the
80% (say) central interval from each chain and then determining its coverage with respect
to the empirical distribution of all the other chains combined together (as always, after
discarding the early burn-in iterations). At convergence, the average coverage of these 80%
intervals should be 80%; a much lesser value indicates poor mixing. Brooks and Gelman
(1998) and Brooks et al. (2003) discuss this and other methods for monitoring convergence
by measuring mixing of multiple sequences, along with problems that can arise.

6.7 Inference from Simulations after Approximate Convergence
In considering inferential summaries from our simulations, we again separately consider
our two tasks:

1. Inference about a parameter (or function of parameters) θ, to be summarized by a
set of simulations and possibly a 95% interval.

Here we can use the collection of all our simulation draws (after discarding burn-in), or
we can “thin” them by saving every nth iteration. The purpose of thinning (i.e. setting n
to some integer greater than 1) is computational, not statistical. If we have a model with
2000 parameters and we are running three chains with a million iterations each, we do not
want to be carrying around 6 billion numbers in our simulation. The key is to realize that,
if we really needed a million iterations, they must be so highly autocorrelated that little is
gained by saving them all. In practice, we find it is generally more than enough to save
1000 iterations in total, and so we thin accordingly. But ultimately this will depend on the
size of the model and computational constraints.

2. Inference about an expectation, E(θ).
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To estimate expectations, we can use the batch means method, dividing the chains (again,
after discarding burn-in) into k batches and then computing the mean and standard error
based on the average of the batch means. Each chain should be divided into batches, so
that k is the number of chains multiplied by the number of batches per chain. The number
of batches per chain should be set large enough that the standard error can be estimated
reasonably precisely (the precision is essentially that of a chi-squared distribution with
k − 1 degrees of freedom) while still having the batch means be approximately statistically
independent (so that the 1/

√
k standard error formula is applicable). If necessary, the stan-

dard error can be adjusted upward to correct for any autocorrelation remaining even after
batching.
In the death penalty example, our inference for βSouth, as noted above, is of the Task 1

variety.According to Figure 6.2a, we can assume that the three chains have converged after
300 iterations, andwe can use the next 300 iterations from each of the three chains to form a
posterior sample of size 900 for our inference. From this we estimate the posterior mean of
βSouth to be 0.363 and the standard deviation of βSouth to be 0.029. A 95% interval for βSouth
is obtained by taking the 2.5th and 97.5th percentiles of this sample, which are 0.31 and
0.42, respectively. Figure 6.2b contains a histogram of these 900 posterior samples, with a
smooth density estimate overlain.
To estimate the uncertainty about the expectation (in this case the posterior mean,

E(βSouth|y)), we can use the batch means method. We divide the 300 samples from each
chain into six batches each, and compute the standard error of these k = 18 batch means
(where each set of six batch means per chain has autocorrelation approximately zero). This
approximate standard error is about 0.002. As in the toy example from earlier, the uncer-
tainty about the mean is tiny compared to the uncertainty in the posterior distribution of
the parameter βSouth, and we conclude that these 900 samples are sufficient for our Task 1
inference for βSouth. We can double-check our batch means calculations by computing the
effective sample size of these 900draws (which accounts for autocorrelation) using standard
methods (Kass et al., 1998), andwe compute that the approximate total number of indepen-
dent draws from these three sets of 300 autocorrelated samples is 169. Thus, the standard
error of the mean computed this way is 0.029/

√
169, which is about 0.002, confirming our

earlier batch means calculation.
In practice, we could compute more accurate estimates of summaries of the posterior

distribution of βSouth, for example the expectation, variance, and various quantiles, by
including iterations 101–2000 in our posterior sample: visual inspection of the trace plot
that the chains converged by iteration 100, and in fact R.hat = 1.00 when it is computed
using iterations 101–2000. But more samples will not improve our Task 1 inference in any
meaningful way, and since this was our goal, we could have stopped the samplers after
about 600 iterations (instead of running them for 2000 iterations as we did).
We have also worked on problems that have required tens of thousands of iterations or

more to reach approximate convergence, and the same inferential principles apply.

6.8 Summary
Monitoring convergence of iterative simulation is straightforward (discard the first part
of the simulations and then compare the variances of quantities of interest within and
between chains) and inference given approximate convergence is even simpler (just mix
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the simulations together and use them as a joint distribution). Both these ideas can be and
have been refined, but the basic concepts are straightforward and robust.
The hard part is knowing what to do when the simulations are slow to converge. Then

it is a good idea to look at the output and put together a more efficient simulation algo-
rithm,which sometimes can be easy enough (e.g. using redundant parameterization for the
Gibbs sampler or tuning the proposal distributions for a Metropolis algorithm), sometimes
can require more elaborate algorithms (such as hybrid sampling or parallel tempering),
and sometimes requires development of a simulation algorithm specifically tailored to the
problem at hand. Once we have an improved algorithm, we again monitor its convergence
bymeasuring themixing of independent chains and checking that each chain seems to have
reached a stationary distribution.And then we can perform simulation-based inferences as
described above.
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7
Implementing MCMC: Estimating with Confidence

James M. Flegal and Galin L. Jones

7.1 Introduction
Our goal is to introduce some of the tools useful for analyzing the output of a Markov
chain Monte Carlo (MCMC) simulation. In particular, we focus on methods which allow
the practitioner (and others!) to have confidence in the claims put forward. The following
are the main issues we will address: (1) initial graphical assessment of MCMC output; (2)
using the output for estimation; (3) assessing the Monte Carlo error of estimation; and (4)
terminating the simulation.
Let π be a density function with support X ⊆ R

d about which we wish to make an infer-
ence. This inference often is based on some feature ofπ. For example, if g : X→ R a common
goal is the calculation of

Eπg =
∫
X
g(x)π(x) dx. (7.1)

Wewill typically want the value of several features such as mean and variance parameters,
along with quantiles and so on. As a result, the features of interest form a p-dimensional
vector which we call θπ. Unfortunately, in practically relevant settings we often cannot
calculate any of the components of θπ analytically or even numerically. Thus we are faced
with a classical statistical problem: given a density π, we want to estimate several fixed,
unknown features of it. For ease of exposition we focus on the case where θπ is univariate,
but we will come back to the general case at various points throughout.
Consider estimating an expectation as in Equation 7.1. The basic MCMC method entails

constructing a Markov chain X = {X0,X1,X2, . . .} on X having π as its invariant density.
(See Chapter 1, this volume, for an introduction to MCMC algorithms.) Then we simulate
X for a finite number of steps, say n, and use the observed values to estimate Eπg with a
sample average

ḡn := 1
n

n−1∑
i=0

g(xi).

The use of this estimator is justified through theMarkov chain strong law of large numbers
(SLLN)∗: If Eπ|g| < ∞, then ḡn → Eπg almost surely as n→∞. From a practical point

∗ This is a special case of the Birkhoff ergodic theorem (Fristedt and Gray, 1997, p. 558).
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of view, this means we can obtain an accurate estimate of Eπg with a sufficiently long
simulation.
Outside of toy examples, no matter how long our simulation, there will be an unknown

Monte Carlo error, ḡn − Eπg. While it is impossible to assess this error directly, we can
obtain its approximate sampling distribution if aMarkov chain central limit theorem (CLT)
holds—that is, if

√
n( ḡn − Eπg)

d→ N(0, σ2g) (7.2)

as n→∞, where σ2g ∈ (0,∞). It is important to note that due to the correlation present in a
Markov chain, σ2g = varπg, except in trivial cases. For now, suppose we have an estimator
such that σ̂2n → σ2g almost surely as n→∞ (see Section 7.4 for some suitable techniques).
This allows construction of an asymptotically valid confidence interval for Eπg with half-
width

t∗
σ̂n√
n
, (7.3)

where t∗ is an appropriate quantile.
Most importantly, calculating and reporting the Monte Carlo standard error (MCSE),

σ̂n/
√
n, allows everyone to judge the reliability of the estimates. In practice this is done in

the following way. Suppose that after n simulations our estimate of Eπg is ḡn = 1.3. Let hα
denote the half-width given in Equation 7.3 of a (1− α)100% interval. We can be confident
in the “3” in our estimate if 1.3± hα ⊆ [1.25, 1.35). Otherwise, reasonable values such as
1.2 or 1.4 could be obtained by rounding. If the interval is too wide for our purposes,
then more simulation should be conducted. Of course, we would be satisfied with a wider
interval if we only wanted to trust the “1” or the sign of our estimate. Thus the interval
estimator (Equation 7.3) allows us to describe the confidence in the reported estimate, and
moreover, including an MCSE with the point estimate allows others to assess its reliability.
Unfortunately, this is not currently standard practice in MCMC (Flegal et al., 2008).
The rest of this chapter is organized as follows. In Section 7.2 we consider some basic

techniques forgraphical assessmentofMCMCoutput, thenSection7.3 contains adiscussion
of various point estimators of θπ. Next, Section 7.4 introduces techniques for constructing
interval estimators of θπ. Then Section 7.5 considers estimating marginal densities associ-
atedwithπ and Section 7.6 further considers stopping rules forMCMCsimulations. Finally,
in Section 7.7 we give conditions for ensuring the CLT (Equation 7.2). The computations
presented in our examples were carried out using the R language. See Flegal and Jones
(2010c) for an Sweave file from which the reader can reproduce all of our calculations.

7.2 Initial Examination of Output
As a first step it pays to examine the empirical finite-sample properties of theMarkov chain
being simulated. A few simple graphical methods are often used in the initial assessment
of the simulation output. These include scatterplots, histograms, time series plots, autocor-
relation plots and plots of sample means. We will content ourselves with an illustration of
some of these techniques; see Chapter 1 (this volume) for further discussion. Consider the
following toy example, which we will return to several times.
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Example 7.1 (Normal AR(1) Markov Chains)

The normal AR(1) time series is defined by

Xn+1 = ρXn + εn. (7.4)

where the εn are i.i.d. N(0, 1) and ρ < 1. This Markov chain has invariant distribution
N
(
0, 1/(1− ρ2)

)
.

As a simple numerical example, consider simulating the chain (Equation 7.4) in order to estimate
the mean of the invariant distribution, that is EπX = 0.While this is a toy example, it is quite useful
because ρ plays a crucial role in the behavior of this chain. Figure 7.1 contains plots based on
single sample path realizations starting at X1 = 1 with ρ = 0.5 and ρ = 0.95. In each figure the
top plot is a time series plot of the observed sample path. The mean of the target distribution is 0
and the horizontal lines are 2 standard deviations above and below the mean. Comparing the
time series plots, it is apparent that while we may be getting a representative sample from the
invariant distribution, when ρ = 0.95 the sample is highly correlated. This is also apparent from
the autocorrelation (middle) plots in both figures. When ρ = 0.5 the autocorrelation is negligible
after about lag 4, but when ρ = 0.95 there is a substantial autocorrelation until about lag 30. The
impact of this correlation is apparent in the bottom two plots which plot the running estimates
of the mean versus iterations in the chain. The true value is displayed as the horizontal line at 0.
Clearly, the more correlated sequence requires many more iterations to achieve a reasonable
estimate. From these plots, we can see that the simulation with ρ = 0.5 may have been run long
enough while the simulation with ρ = 0.95 likely has not.

In the example, the plots were informative because we were able to draw horizontal
lines depicting the true values. In practically relevant MCMC settings—where the truth
is unavailable—it is hard to know when to trust these plots. Nevertheless, they can still
be useful since a Markov chain that is mixing well would tend to have time series and
autocorrelation plots that look like Figure 7.1a, while time series and autocorrelation plots
like the one in Figure 7.1b would indicate a potentially problematic simulation in the sense
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Initial output examination for AR(1) model: (a) ρ = 0.5 and (b) ρ = 0.95.
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that a large simulation effortwill be required to obtain good estimates.Also, plots of current
parameter estimates (with no reference to a standard error) versus number of iterations are
not as helpful since they provide little information as to the quality of estimation.
In simulating a d-dimensional Markov chain to simultaneously estimate the p-dimen-

sional vector θπ of features of π, p can be either greater than or less than d. When either d
or p is large, the standard graphical techniques are obviously problematic. That is, even if
each component’s time series plot indicates good mixing, one should not necessarily infer
that the chain has converged to its joint target distribution. In addition, if either d or p is
large it will be impractical to look at plots of each component. These issues have received
very little attention in the MCMC literature, but see Peltonen et al. (2009) and Sturtz et al.
(2005) for some recent work.

7.3 Point Estimates of θπ

In this section, we consider two specific cases of θπ: estimating a univariate expectation
Eπg; and estimating a quantile of one of the univariate marginal distributions from π.

7.3.1 Expectations

Suppose that θπ = Eπg and assume that Eπ|g| < ∞. Recall from Section 7.1 that there is an
SLLN and hence it is natural to use the sample average ḡn to estimate θπ. Alternatively, we
couldusepoint estimates of θπ obtained through theuse of burn-in or averaging conditional
expectations.
Consider the use of burn-in. Usually, the simulation is not started with a draw from π

since otherwise we would just do ordinary Monte Carlo. It follows that marginally each
Xi � π and Eπg = E[g(Xi)]. Thus ḡn is a biased estimator of Eπg. In the current setting, we
have that Xn

d→ π as n→∞ so, in order to diminish the effect of this “initialization bias,”
an alternative estimator may be employed:

ḡn,B = 1
n

n+B−1∑
i=B

g(xi),

where B denotes the burn-in or amount of simulation discarded. By keeping only the draws
obtained after B− 1 we are effectively choosing a new initial distribution that is “closer”
to π. The SLLN still applies to ḡn,B since if it holds for any initial distribution it holds for
every initial distribution.Of course, onepossible (perhaps even likely) consequenceofusing
burn-in is that var( ḡn,B) ≥ var( ḡn+B,0), that is, the bias decreases but the variance increases
for the same total simulation effort. Obviously, this means that using burn-in could result
in an estimator having larger mean-squared error than one without burn-in. Moreover,
without some potentially difficult theoretical work (Jones and Hobert, 2001; Latuszynski
and Niemiro, 2009; Rosenthal, 1995; Rudolf, 2009), it is not clear what value of B should be
chosen. Popular approaches to determining B include simply discarding a fraction of the
total run length (see Gelman and Rubin, 1992), or are based on convergence diagnostics (for
a review, see Cowles and Carlin, 1996). Unfortunately, there simply is no guarantee that
any of these diagnostics will detect a problem with the simulation and, in fact, using them
can introduce bias (Cowles et al., 1999).
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Now consider the estimator obtained by averaging conditional expectations. Tomotivate
this discussion, suppose that the target is a function of two variables π(x, y) and we are
interested in estimating the expectation of a function of only one of the variables, say g(x).
Let (X,Y) = {(X0,Y0) , (X1,Y1) , (X2,Y2) , . . .} denote the Markov chain, mY( y) denote the
marginal density, and fX|Y(x | y) denote the conditional density. Notice that

Eπg =
∫ ∫

g(x)π(x, y)dx dy =
∫ [∫

g(x)fX|Y(x | y) dx
]
mY(y) dy

so, by letting

h(y) =
∫
g(x)fX|Y(x | y) dx,

we can appeal to the SLLN again to see that, as n→∞,

h̄n = 1
n

n−1∑
i=0

h(yi) = 1
n

n−1∑
i=0

∫
g(x)fX|Y(x | yi) dx a.s.→ Eπg.

This estimator is conceptually the same as ḡn in the sense that both are sample averages and
theMarkov chain SLLNapplies to both. The estimator h̄n is often called theRao-Blackwellized
(RB) estimator∗ of Eπg (Casella and Robert, 1996). A natural question is which of ḡn, the
sample average, or h̄n, the RB estimator, is better. It is obvious that h̄n will sometimes be
impossible to use if fX|Y(x | y) is not available in closed form or if the integral is intractable.
Hence, h̄n will not be as generally practical as ḡn. However, there are settings, such as in
data augmentation (Chapter 10, this volume), where h̄n is theoretically and empirically
superior to ḡn; see Liu et al. (1994) and Geyer (1995) for theoretical investigation of these
two estimators.

Example 7.2

This example is also considered in Chapter 10 (this volume). Suppose that our goal is to estimate
the first two moments of a Student’s t distribution with 4 degrees of freedom and having density

m(x) = 3
8

(
1+ x2

4

)−5/2

.

There is nothing about this that requires MCMC since we can easily calculate that EmX = 0 and
EmX2 = 2. Nevertheless, we will use a data augmentation algorithm based on the joint density

π(x , y) = 4√
2π

y3/2e−y
(
2+x2/2

)
,

so that the full conditionals are X | Y ∼ N(0, y−1) and Y | X ∼ Γ(5/2, 2+ x2/2). Consider the
Gibbs sampler that updates X then Y so that a one-step transition looks like (x ′, y ′) → (x , y ′) →

∗ This is an unfortunate name since it is only indirectly related to the Rao–Blackwell theorem, but the name has
stuck in the literature.
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(x , y). Suppose that we have obtained n observations {xi , yi ; i = 0, . . . , n − 1} from running the
Gibbs sampler. Then the standard sample average estimates of EmX and EmX2 are

1
n

n−1∑
i=0

xi and
1
n

n−1∑
i=0

x2i ,

respectively. Further, the RB estimates are easily computed. Since X | Y ∼ N(0, y−1) the RB
estimate of EmX is 0. On the other hand, the RB estimate of EmX2 is

1
n

n−1∑
i=0

y−1i .

As an illustration of these estimators we simulated 2000 iterations of the Gibbs sampler and plotted
the running values of the estimators in Figure 7.2. In this example, the RB averages are less variable
than the standard sample averages.

It is not the case that RB estimators are always better than sample means. Whether they
are better depends on the expectation being estimated as well as the properties of the
MCMC sampler. In fact, Liu et al. (1994) and Geyer (1995) give an example where the RB
estimator is provably worse than the sample average. RB estimators are more general than
our presentation suggests. Let h be any function and set

f (x) = E[g(X) | h(X) = h(x)]
so that Eπg = Eπf . Thus, by the Markov chain SLLN with probability 1 as n→∞,

1
n

n−1∑
i=0

f (Xi) = 1
n

n−1∑
i=0

E[g(X) | h(Xi) = h(xi)] → Eπg.

As long as the conditional distribution X | h(x) is tractable, RB estimators are available.
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FIGURE 7.2
Estimators of the first two moments for Example 7.2. The horizontal line denotes the truth, the solid curves are
the running sample averages while the dotted curves are the running RB sample averages. (a) EmX and (b) EmX2.
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7.3.2 Quantiles

It is common to report estimated quantiles in addition to estimated expectations. Actu-
ally, what is nearly always reported is not a multivariate quantile but rather quantiles of
the univariate marginal distributions associated with π. This is the only setting we con-
sider. Let F be a marginal distribution function associated with π. Then the qth quantile
of F is

φq = F−1(q) = inf{x : F(x) ≥ q}, 0 < q < 1. (7.5)

There are many potential estimates of φq, but we consider only the inverse of the empirical
distribution function from the observed sequence. First define {X(1), . . . ,X(n)} as the order
statistics of {X0, . . . ,Xn−1}; then the estimator of φq is given by

φ̂q,n = X( j+1), where
j
n
≤ q <

j + 1
n

. (7.6)

Example 7.3 (Normal AR(1) Markov Chains)

Consider again the time series defined in Equation 7.4. Our goal in this example is to illus-
trate estimating the first and third quartiles, denoted Q1 and Q3. The true values of Q1 and Q3
are ±Φ−1(0.75)/

√
1− ρ2, where Φ is the cumulative distribution function of a standard normal

distribution.
Using the same realization of the chain as in Example 7.1, Figure 7.3 shows plots of the run-

ning quartiles versus iteration number when ρ = 0.5 and ρ = 0.95. It is immediately apparent
that estimation is more difficult when ρ = 0.95 and hence the simulation should continue. Also,
without the horizontal lines, these plots would not be as useful. Recall that a similar conclusion
was reached for estimating the mean.
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FIGURE 7.3
Plots for AR(1) model of running estimates of Q1 and Q3. The horizontal lines are the true quartiles. (a) ρ = 0.5
and (b) ρ = 0.95.
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7.4 Interval Estimates of θπ

In our examples we have known the truth, enabling us to draw the horizontal lines on the
plotswhich allowus to gauge the quality of estimation.Obviously, the true parameter value
is unknown in practical settings, and hence the size of the Monte Carlo error is unknown.
For this reason, when reporting a point estimate of θπ, a MCSE should be included so that
the reader can assess the quality of the reported point estimates. In this section we address
how to calculate MCSEs and construct asymptotically valid interval estimates of θπ.

7.4.1 Expectations

Suppose that θπ = Eπg, which will be estimated with ḡn = ḡn,0 (i.e. with no burn-in). How-
ever, using burn-in presents no theoretical difficulties since, as with the SLLN, if the CLT
holds for any initial distribution then it holds for every initial distribution. Thus the use of
burn-in does not affect the existence of a CLT, but it may affect the quality of the asymptotic
approximation. If σ̂2n is an estimate of σ2g, then one can form a confidence interval for Eπg
with half-width

t∗
σ̂n√
n
, (7.7)

where t∗ is an appropriate quantile. Thus thedifficulty infinding interval estimates is in esti-
mating σ2g, which requires specialized techniques to account for correlation in the Markov
chain.We restrict attention to strongly consistent estimators of σ2g. Some interval estimation
techniques do not require consistent estimation of σ2g (see Schruben, 1983) but we need it
for the methods presented later in Section 7.6. The methods yielding strongly consistent
estimators include batch means methods, spectral variance methods and regenerative
simulation. Alternatives include the initial sequence methods of Geyer (1992); however,
the theoretical properties of Geyer’s estimators are not well understood. We will focus on
batchmeans as it is themost generally applicablemethod; formore on spectralmethods, see
Flegal and Jones (2010a), while Hobert et al. (2002) andMykland et al. (1995) study regener-
ative simulation. There are many variants of batch means; here we emphasize overlapping
batch means (OLBM).

7.4.1.1 Overlapping Batch Means

As the name suggests, in OLBM we divide the simulation into overlapping batches of
length bn, say. For example, if bn = 3, then {X0,X1,X2} and {X1,X2,X3} would be the first
two overlapping batches. In general, there are n− bn + 1 batches of length bn, indexed by
j running from 0 to n− bn. Let Ȳj(bn) := b−1n

∑bn−1
i=0 g(Xj+i) for j = 0, . . . , n− bn. Then the

OLBM estimator of σ2g is

σ̂2OLBM = nbn
(n− bn)(n− bn + 1)

n−bn∑
j=0

(Ȳj(bn)− ḡn)2. (7.8)

Batch means estimators are not generally consistent for σ2g (Glynn and Whitt, 1991). How-
ever, roughly speaking, Flegal and Jones (2010a) show that if the Markov chain mixes
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quickly and bn is allowed to increase as the overall length of the simulation does, then
σ̂2OLBM is a strongly consistent estimator of σ2g . It is often convenient to take bn = �nν� for
some 0 < ν < 3/4, and ν = 1/2 may be a reasonable default. However, ν values yielding
strongly consistent estimators are dependent on the number of finite moments of g with
respect to the target π and the mixing conditions of the Markov chain. These conditions
are similar to those required for a Markov chain CLT, see Flegal and Jones (2010a), Jones
(2004), and Jones et al. (2006). Finally, when constructing the interval (Equation 7.7), t∗ is a
quantile from a Student’s t distribution with n− bn degrees of freedom.

Example 7.4 (Normal AR(1) Markov Chains)

Recall theAR(1) model defined in Equation 7.4. Using the same realization of the chain as in Exam-
ple 7.1, that is, 2000 iterations with ρ ∈ {0.5, 0.95} starting from X1 = 1, we consider estimating
the mean of the invariant distribution, that is, EπX = 0. Utilizing OLBM with bn = �√n�, we
calculated an MCSE and resulting 80% confidence interval. Figure 7.4 shows the running means
versus number of iterations for ρ = 0.5 and ρ = 0.95. The dashed lines correspond to upper and
lower 80% confidence bounds. Notice that for the larger value of ρ it takes longer for the MCSE
to stabilize and begin decreasing. After 2000 iterations for ρ = 0.5 we obtained an interval of
−0.034± 0.056, while for ρ = 0.95 the interval is −0.507± 0.451.
Many of our plots are based on simulating only 2000 iterations. We chose this value strictly for

illustration purposes. An obvious question is whether the simulation has been run long enough—
that is, whether the interval estimates are sufficiently narrow after 2000 iterations. In the ρ = 0.5
case, the answer is “perhaps,” while in the ρ = 0.95 case it is clearly “no.” Consider the final
interval estimate of the mean with ρ = 0.5, that is,−0.034± 0.056 = (−0.090, 0.022). If the user
is satisfied with this level of precision, then 2000 iterations are sufficient. On the other hand, when
ρ = 0.95 our interval estimate is −0.507± 0.451 = (−0.958,−0.056), indicating that we cannot
trust any of the significant figures reported in the point estimate.
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FIGURE 7.4
Plots forAR(1) model of running estimates of the mean alongwith confidence intervals calculated via OLBM. The
horizontal line denotes the truth. (a) ρ = 0.5 and (b) ρ = 0.95.
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Recall the RB estimators of Section 7.3.1. It is straightforward to use OLBM to calculate
theMCSE for these estimators since the conditional expectations being averaged define the
sequence of batch means Ȳj(bn).

Example 7.5

Recall Example 7.2, where the first two moments of a Student’s t distribution with 4 degrees of
freedom were estimated using sample average and RB estimators. Using the same Markov chain,
an 80% confidence interval is calculated via OLBM with bn = �√n� at each iteration. Figure 7.5a
shows the running estimate of EπX versus iteration number and includes confidence bounds for
the sample average estimator. Recall that the RB estimator is exact, so there is no uncertainty
in this estimate. Figure 7.5b shows the running estimate of EπX2 versus iteration number, with
confidence bounds for both estimates. Here it is provable that the RB estimator has a smaller
asymptotic variance than the sample average estimator (Geyer, 1995). This is clearly reflected by
the narrower interval estimates.

7.4.1.2 Parallel Chains

To this point, the recipe for implementing MCMC seems straightforward: given a sampler,
pick a starting value and run the simulation for a sufficiently long time using the SLLN
and the CLT to produce a point estimate and a measure of its uncertainty. A variation
of this procedure relies on simulating multiple independent, or parallel, chains. Debate
between a single long run and parallel chains began in the early statistics literature on
MCMC (see Gelman and Rubin, 1992; Geyer, 1992), even earlier in the operations research
and physics literature (Bratley et al., 1987; Fosdick, 1959; Kelton and Law, 1984), and con-
tinues today (Alexopoulos and Goldsman, 2004; Alexopoulos et al., 2006). The main idea
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FIGURE 7.5
Estimators of the first two moments from a t distribution with 4 degrees of freedom. The horizontal line denotes
the truth, the solid curves are the running sample averages with confidence bounds, while the dotted curves are
the running RB sample averages with confidence bounds. (a) EmX and (b) EmX2.
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of parallel chains is to run r independent chains using different starting values, where
each chain is the same length and using the same burn-in. This yields r independent
estimates of Eπg, namely ḡn,B,1, ḡn,B,2, . . . , ḡn,B,r. The grandmeanwould then estimate Eπg—
although Glynn and Heidelberger (1991) have shown that an alternative estimator may be
superior—and our estimate of its performance, σ2g, would be the usual sample variance of
the ḡn,B,i.
This approach has some intuitive appeal in that estimation avoids some of the serial

correlation inherent in MCMC and it is easily implemented when more than one processor
is available. Moreover, there is value in trying a variety of initial values for any MCMC
experiment. It has also been argued that by choosing the r starting points in a widely dis-
persed manner there is a greater chance of encountering modes that one long run may
have missed. Thus, for example, some argue that using independent replications results
in “superior inferential validity” (Gelman and Rubin, 1992, p. 503). However, there is no
agreement on this issue; indeed, Bratley et al. (1987, p. 80) “are skeptical about [the] ratio-
nale” of someproponents of independent replications.Notice that the total simulation effort
using independent replications is r(n+ B). To obtain good estimates of σ2g will require r to
be large, which will require n+ B to be small for a given computational effort. If we use
the same value of B as we would when using one long run, this means that each ḡn,B,i will
be based on a comparatively small number n of observations. Using more than one chain
will also enhance the initialization bias, so that a careful choice of B can be quite important
to the statistical efficiency of the estimator of Eπg (Glynn and Heidelberger, 1991). More-
over, since each run will be comparatively short, there is a reasonable chance that a given
replication will not move far from its starting value. Alexopoulos and Goldsman (2004)
have shown that this can result in much poorer estimates (in terms of mean square error)
of Eπg than a single long run. On the other hand, if we can find a variety of starting values
that are from a distribution very close to π, then independent replications may indeed be
superior. This should not be surprising since independent draws directly fromπ are clearly
desirable.
There is an important caveat to the above analysis. There are settings (see Chapter 20,

this volume) where it is prohibitively difficult (or time-consuming) to produce a suffi-
ciently large Monte Carlo sample without parallel computing. This has received limited
attention in MCMC settings (Brockwell, 2006; Rosenthal, 2000), but perhaps deserves
more.

7.4.2 Functions of Moments

Suppose that we are interested in estimating φ(Eπg), where φ is some function. If φ is con-
tinuous, then φ( ḡn) → φ(Eπg) with probability 1 as n→∞, making estimation of φ(Eπg)
straightforward.Also, a validMonte Carlo error can be obtained via the delta method (Fer-
guson, 1996; van der Vaart, 1998). Assuming (Equation 7.2), the delta method says that if φ
is continuously differentiable in a neighborhood of Eπg and φ′(Eπg) = 0, then as n→∞,

√
n
(
φ( ḡn)− φ(Eπg)

) d→ N
(
0, [φ′(Eπg)]2σ2g

)
.

If the estimator of σ2g, say σ̂2n, is strongly consistent and φ′ is continuous, then [φ′(ḡn)]2σ̂2n is
strongly consistent for [φ′(Eπg)]2σ2g.
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Example 7.6

Consider estimating (EπX )2 with (X̄n)2. Let φ(x) = x2 and assume EπX = 0 and a CLT as in
Equation 7.2. Then as n →∞,

√
n
(
(X̄n)2 − (EπX )2

) d→ N(0, 4(EπX )2σ2x ),

andwe can useOLBM to consistently estimate σ2x with σ̂
2
n, whichmeans that 4(X̄n)2σ̂2n is a strongly

consistent estimator of 4(EπX )2σ2x .

From this example we see that the univariate delta method makes it straightforward
to handle powers of moments. The multivariate delta method allows us to handle more
complicated functions of moments. Let Tn denote a sequence of d-dimensional random
vectors and θ be a d-dimensional parameter. If, as n→∞,

√
n(Tn − θ) d→ N(μ,Σ)

and φ is continuously differentiable in a neighborhood of θ and φ′(θ) = 0, then as
n→∞,

√
n(φ(Tn)− φ(θ)) d→ N(φ′(θ)μ,φ′(θ)Σφ′(θ)T).

Example 7.7

Consider estimating varπg = Eπg2 − (Eπg)2 with, setting h = g2,

1
n

n∑
i=1

h(Xi )−
⎛
⎝1

n

n∑
i=1

g(Xi)

⎞
⎠
2

:= v̂n .

Assume

√
n
((

ḡn
h̄n

)
−
(
Eπg
Eπg2

))
d→ N

((
0
0

)
,

(
σ2g c
c σ2h

))
,

where c = Eπg3 − EπgEπg2. Let φ(x , y) = y − x2. Then as n →∞,

√
n(v̂n − varπg)

d→ N(0, 4(Eπg)(σ2gEπg − Eπg3 + EπgEπg2)+ σ2h).

Since it is easy to use OLBM to construct strongly consistent estimators of σ2g and σ2h, a strongly
consistent estimator of the variance in the asymptotic normal distribution for v̂n is given by

4(ḡn)(σ̂2g ,n ḡn − j̄n + ḡnh̄n)+ σ̂2h,n,

where j = g3.
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7.4.3 Quantiles

Suppose that our goal is to estimate φq with φ̂q,n defined in Equations 7.5 and 7.6, respec-
tively.We now turn our attention to constructing an interval estimate of φq. It is tempting to
think that bootstrapmethodswould be appropriate for this problem. Indeed, there has been
a substantial amount of research into bootstrap methods for stationary time series which
would be appropriate for MCMC settings (see Bertail and Clémençon, 2006; Bühlmann,
2002; Datta and McCormick, 1993; Politis, 2003). Unfortunately, our experience has been
that these methods are extremely computationally intensive (compared to theMCMC simu-
lation itself) and have inferior finite-sample properties compared to the method presented
below.
As above, we assume the existence of an asymptotic normal distribution for the Monte

Carlo error—that is, there is a constant γ2q ∈ (0,∞) such that, as n→∞,

√
n(φ̂q,n − φq) d→ N(0, γ2q). (7.9)

Flegal and Jones (2010b) give conditions under which Equation 7.9 obtains. Just as when
we were estimating an expectation, we find ourselves in the position of estimating a com-
plicated constant γ2q . We focus on the use of the subsampling bootstrap method (SBM) in
this context. The reader should be aware that our use of the term “subsampling” is quite
different than the way it is often used in the context of MCMC, in that we are not deleting
any observations of the Markov chain.

7.4.3.1 Subsampling Bootstrap

This section will provide a brief overview of SBM in the context of MCMC and illus-
trate its use for calculating the MCSE of φ̂q,n. While this section focuses on quantiles,
SBM methods apply much more generally; the interested reader is encouraged to consult
Politis et al. (1999).
The main idea for SBM is similar to OLBM in that we are taking overlapping batches

(or subsamples) of size bn from the first n observations of the chain {X0,X1, . . . ,Xn−1}.
There are n− bn + 1 such subsamples. Let {Xi, . . . ,Xi+bn−1} be the ith subsample with cor-
responding ordered subsample {X∗(1), . . . ,X∗(bn)}. Then define the quantile based on the ith
subsample as

φ∗i = X∗( j+1) where
j
bn
≤ q <

j + 1
bn

for i = 0, . . . , n− bn.

The SBM estimate of γ2q is then

γ̂2q =
bn

n− bn + 1

n−bn+1∑
i=0

(φ∗i − φ̄∗)2,

where

φ̄∗ = 1
n− bn + 1

n−bn+1∑
i=0

φ∗i .
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Politis et al. (1999) give conditions that ensure this estimator is strongly consistent, but
their conditions could be difficult to check in practice. SBM implementation requires
choosing bn such that, as n→∞, we have bn →∞ and bn/n→ 0. A natural choice is
bn = �√n�.

Example 7.8 (Normal AR(1) Markov Chains)

Using the AR(1) model defined in Equation 7.4, we again consider estimating the first
and third quartiles, denoted Q1 and Q3. Recall that the true values for the quartiles are
±Φ−1(0.75)/

√
1− ρ2, respectively.

Figure 7.6 shows the output from the same realization of the chain used previously in Exam-
ple 7.3, but this time the plot includes an interval estimate of the quartiles. Figure 7.6a shows a plot
of the running quartiles versus iteration number when ρ = 0.5. In addition, the dashed lines show
the 80% confidence interval bounds at each iteration. These intervals were produced with SBM
using bn = �√n�. At around 200 iterations, the MCSE (and hence interval estimates) seem to stabi-
lize and begin to decrease.At 2000 iterations, the estimates forQ1 andQ3 are−0.817± 0.069 and
0.778± 0.065, respectively. Figure 7.6b shows the same plot when ρ = 0.95. At 2000 iterations,
the estimates for Q1 and Q3 are −2.74± 0.481 and 1.78± 0.466, respectively.
Are the intervals sufficiently narrow after 2000 iterations? In both cases (ρ = 0.5 and ρ = 0.95)

the answer is likely “no.” Consider the narrowest interval, which is the one for Q3 with ρ = 0.5,
that is, 0.778± 0.065 = (0.713, 0.843), which indicates that all we can say is that this is evidence
that the true quantile is between 0.71 and 0.85. Note that in a real problem we would not have
the horizontal line in the plot depicting the truth.

SBM is applicable much more generally than presented here and, in fact, essentially
generalizes the method of OLBM previously discussed in the context of estimating an
expectation. The subsample mean is Ȳj(bn) and the resulting estimate of σ2g is

σ̂2SBM =
bn

n− bn + 1

n−bn∑
j=0

(Ȳj(bn)− Ȳ∗)2, (7.10)
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FIGURE 7.6
Plots forAR(1)model of running estimates ofQ1 andQ3, alongwith 80%pointwise confidence intervals calculated
via SBM. The horizontal lines denote the true values. (a) ρ = 0.5 and (b) ρ = 0.95.
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where

Ȳ∗ = 1
n− bn + 1

n−bn+1∑
i=0

Ȳj(bn).

It is straightforward to establish that the OLBM estimate defined in Equation 7.8 is
asymptotically equivalent to the SBM estimate defined in Equation 7.10.

7.4.4 Multivariate Estimation

While we have largely focused on the univariate setting, recall from Section 7.1 that
a typical MCMC experiment is conducted with the goal of estimating a p-dimensional
vector of parameters, θπ, associated with the d-dimensional target π. Generally, θπ could
be composed of expectations, quantiles and so on, and p could be either much larger or
much smaller than d. Suppose that each component θπ,i can be estimated with θ̂n,i so that
θ̂n = (θ̂n,1, . . . , θ̂n,1) → θπ almost surely as n→∞. It is natural to seek to establish the exis-
tence of an asymptotic distribution of the Monte Carlo error θ̂n − θπ and then use this
distribution to construct asymptotically valid confidence regions. To our knowledge this
problem has not been investigated. However, it has received some attention in the case
where θπ consists only of expectations; we know of one paper in the statistics literature
(Kosorok, 2000) and a fewmore in operations research, includingMuñoz andGlynn (2001),
Seila (1982), and Yang and Nelson (1992). Currently, the most common approach is to
ignore the multiplicity issue and simply construct the MCSE for each component of the
Monte Carlo error. If p is not too large then a Bonferroni correction could be used, but this
is clearly less than optimal. This is obviously an area in MCMC output analysis that could
benefit from further research.

7.5 Estimating Marginal Densities
Acommon inferential goal is the production of a plot of a marginal density associated with
π. In this section we cover two methods for doing this. We begin with a simple graphical
method, and then introduce a clever method due toWei and Tanner (1990) that reminds us
of the Rao-Blackwellization methods of Section 7.3.
A histogram approximates the true marginal by the Markov chain SLLN. Moreover, his-

tograms are popular because they are so easy to construct with existing software. Another
common approach is to report a nonparametric density estimate or smoothed histogram. It
is conceptually straightforward to construct pointwise interval estimates for the smoothed
histogramusingSBM.However, outside of toy examples, the computational cost is typically
prohibitive.

Example 7.9

Suppose that Yi |μ, θ ∼ N(μ, θ) independently for i = 1, . . . ,m, where m ≥ 3, and assume the

standard invariant prior ν(μ, θ) ∝ θ−1
2 . The resulting posterior density is

π(μ, θ|y) ∝ θ−(m+1)/2e− m
2θ (s

2+(ȳ−μ)2),
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FIGURE 7.7
Histograms for estimating the marginal densities of Example 7.7: (a) marginal density of μ and (b) marginal
density of θ.

where s2 is the usual biased sample variance. It is easy to see that μ | θ, y ∼ N(ȳ , θ/m) and that
θ|μ, y ∼ Γ−1((m − 1)/2,m[s2 + (ȳ − μ)2]/2), and hence a Gibbs sampler is easily implemented.
We consider the Gibbs sampler that updates μ then θ so that a one-step transition is given by
(μ′, θ′) → (μ, θ′) → (μ, θ) and use this sampler to estimate the marginal densities of μ and θ.
Now suppose m = 11, ȳ = 1 and s2 = 4.We simulated 2000 realizations of the Gibbs sampler

starting from (μ0,λ0) = (1, 1). The marginal density plots were created using the default settings
for the density function in R and are shown in Figure 7.7, while an estimated bivariate density
plot (created using R functions kde2d and persp) is given in Figure 7.8. It is obvious from these
figures that the posterior is simple, so it is no surprise that the Gibbs sampler has been shown to
converge in just a few iterations (Jones and Hobert, 2001).

A clever technique for estimating a marginal is based on the same idea as RB estimators
(Wei and Tanner, 1990). To keep the notation simple, suppose that the target is a function
of only two variables, π(x, y), and let mX and mY be the associated marginals. Then

mX(x) =
∫
π(x, y) dy =

∫
fX|Y(x | y)mY(y) dy = EmY fX|Y(x | y),

θ

μ

FIGURE 7.8
Estimated posterior density of Example 7.7.
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suggesting that, by the Markov chain SLLN, we can get a functional approximation to mX
since for each x, as n→∞,

1
n

n−1∑
i=0

fX|Y(x | yi) → mX(x). (7.11)

Of course, just as with RB estimators this will only be useful when the conditionals
are tractable. Note also, that it is straightforward to use OLBM to get pointwise confi-
dence intervals for the resulting curve; that is for each x we can calculate an MCSE of the
sample average in Equation 7.11.

Example 7.10

Recall the setting of Example 7.9. We will focus on estimation of the marginal posterior density
of μ|y , that is, π(μ|y). Note that

π(μ | y) =
∫
π(μ | θ, y)π(θ | y) dθ,

so that by the Markov chain SLLN we can estimate π(μ | y) with

1
n

n−1∑
i=0

π(μ | θi , y),

which is straightforward to evaluate since μ|θi , y ∼ N(ȳ , θi/m). Note that the resulting marginal
estimate is a linear combination of normal densities. Using the same realization of the chain
from Example 7.9, we estimated π(μ|y) using this method. Figure 7.9 shows the results with our
previous estimates. One can also calculate pointwise confidence intervals using OLBM, which
results in a very small Monte Carlo error (and is therefore not included in the plot). Notice that
the estimate based on Equation 7.11 is a bit smoother than either the histogram or the smoothed
histogram estimate, but is otherwise quite similar.
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FIGURE 7.9
Estimates of the marginal density μ. The three estimates are based on a histogram, smoothed marginal densities
(solid line), and the method of Wei and Tanner (1990) (dashed line).
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7.6 Terminating the Simulation
Acommon approach to stopping anMCMCexperiment is to simulate for a fixed run length.
That is, the simulation is terminated using a fixed-time rule. Notice that this makes MCSEs
crucial to understanding the reliability of the resulting estimates. There are settings where,
due to the nearly prohibitive difficulty of the simulation, a fixed-time rule may be the only
practical approach. However, this is not the case for many MCMC experiments.
Perhaps themost popular approach to terminating the simulation is to simulate an initial

Monte Carlo sample of size n0, say. The output is examined and if the results are found to be
unsatisfactory, the simulation is continued for another n1 steps and the output reanalyzed.
If the results are still unsatisfactory, the process is repeated. Notice that this is a sequential
procedure that will result in a random total simulation effort.
When implementing this sequential procedure the examination of the output can take

many forms; it is often based on the use of graphical methods such as those described in
Section 7.2 or on convergence diagnostics. We advocate terminating the simulation the first
time theMCSE is sufficiently small. Equivalently, the simulation is terminated the first time
the half-width of a confidence interval for θπ is sufficiently small, resulting in a fixed-width
rule. There is a substantial amount of research on fixed-width procedures in MCMCwhen
θπ is an expectation—see Flegal et al. (2008), Glynn andWhitt (1992), and Jones et al. (2006)
and the references therein—but none that we are aware of when θπ is not an expectation.
Let σ̂2n be a strongly consistent estimator of σ2g fromEquation 7.2. Given a desired half-width
ε the simulation terminates the first time

t∗
σ̂n√
n
+ p(n) ≤ ε, (7.12)

where t∗ is the appropriate quantile and p(n) is a positive function such that p(n) = o(n−1/2)
as n→∞. Letting n∗ be the desired minimum simulation effort, a reasonable default is
p(n) = εI(n ≤ n∗)+ n−1. Glynn and Whitt (1992) established conditions ensuring that the
interval at Equation 7.12 is asymptotically valid† in the sense that the desired coverage
probability is obtained as ε→ 0. The use of these intervals in MCMC settings has been
extensively investigated and found to work well by Flegal et al. (2008), Flegal and Jones
(2010a), and Jones et al. (2006).

Example 7.11 (Normal AR(1) Markov Chains)

Consider the normal AR(1) time series defined in Equation 7.4. In Example 7.4 we simulated 2000
iterations from the chain with ρ = 0.95 starting from X0 = 1 and found that a 80% confidence
interval for the mean of the invariant distribution was −0.507± 0.451.
Suppose that we wanted to continue our simulation until we were 80% confident that our

estimate was within 0.1 of the true value after a minimum of 1000 iterations—a fixed-width pro-
cedure. If we use OLBM to estimate the variance in the asymptotic distribution, then Equation 7.12
becomes

t∗
σ̂n√

n
+ 0.1I(n ≤ 1000)+ n−1 ≤ 0.1,

† Glynn andWhitt (1992) also provide a counterexample to show that weak consistency of σ̂2n for σ2g is not enough
to achieve asymptotic validity.
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where t∗ is the appropriate quantile from a Student’s t distribution with n − bn degrees of freedom.
It would be computationally expensive to check this criterion after each iteration, so instead we
added 1000 iterations before recalculating the half-width each time. In this case, the simulation
terminated after 60,000 iterations, resulting in an interval estimate of −0.0442± 0.100. Notice
that this simple example required a relatively large simulation effort compared to what is often
done in much more complicated settings, but note that ρ is large. Further, either narrowing the
interval or increasing the desired confidence level will require a larger simulation effort.

7.7 Markov Chain Central Limit Theorems
Throughout we have assumed the existence of a Markov chain central limit theorem—see,
for example, Equations 7.2 and 7.9. In this section we provide a brief discussion of the
conditions required for these claims; the reader can find much more detail in Chan and
Geyer (1994), Jones (2004), Meyn and Tweedie (1993), Roberts and Rosenthal (2004), and
Tierney (1994).
Implicitly, we assumed that the Markov chain X isHarris ergodic, that is, Harris recurrent

and aperiodic. To fully explain these conditions would require a fair amount of Markov
chain theory, so we will content ourselves with providing references; the interested reader
should consult Meyn and Tweedie (1993), Nummelin (1984) or Roberts and Rosenthal
(2004). However, it is frequently trivial to verify Harris ergodicity (see Chapter 10, this
volume; Tan and Hobert, 2009; Tierney, 1994).
Harris ergodicity alone is not sufficient for the Markov chain SLLN or a CLT. However,

if X is Harris ergodic and Eπ|g| < ∞, then the SLLN holds: ḡn → Eπg with probability 1 as
n→∞. A CLT requires stronger conditions. In fact, it is important to be aware that there
are simple nonpathological examples of Harris ergodic Markov chains that do not enjoy a
CLT (Roberts, 1999). Let the conditional distribution ofXn givenX0 = x be denoted Pn(x, ·),
that is,

Pn(x,A) = Pr(Xn ∈ A | X0 = x).

Then Harris ergodicity implies that, for every starting point x ∈ X,

‖Pn(x, ·)− π(·)‖ ↓ 0 as n→∞, (7.13)

where ‖ · ‖ is the total variation norm. We will need to know the rate of the convergence
in Equation 7.13 to say something about the existence of a CLT. LetM(x) be a nonnegative
function on X and γ(n) be a nonnegative function on Z+ such that

‖Pn(x, ·)− π(·)‖ ≤M(x)γ(n). (7.14)

When X is geometrically ergodic, γ(n) = tn for some t < 1; while uniform ergodicity means
that X is geometrically ergodic andM is bounded. These are key sufficient conditions for
the existence of an asymptotic normal distribution of the Monte Carlo error but they are
not the only conditions guaranteeing a CLT. In particular, a CLT as in Equation 7.2 holds
if X is geometrically ergodic and Eπg2+δ < ∞ for some δ > 0, or if X is uniformly ergodic
and Eπg2 < ∞. Moreover, geometric ergodicity is a key sufficient condition for the strong
consistency of the estimators of σ2g from Equation 7.2. For example, Flegal and Jones (2010a)
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establish that when X is geometrically ergodic and Eπg2+δ < ∞ for some δ > 0, the OLBM
method produces a strongly consistent estimator of σ2g . Geometric ergodicity is also an
important sufficient condition for establishing (Equation 7.9) when estimating a quantile
(Flegal and Jones, 2010b).
In general, establishing (Equation 7.14) directly is apparently daunting. However, if

X is finite (no matter how large), then a Harris ergodic Markov chain is uniformly ergodic.
When X is a general space there are constructive methods which can be used to estab-
lish geometric or uniform ergodicity; see Chapter 10 (this volume), and Jones and Hobert
(2001) for accessible introductions. These techniques have been applied to many MCMC
samplers. For example, Metropolis–Hastings samplers with state-independent proposals
can be uniformly ergodic (Tierney, 1994). Standard random-walk Metropolis–Hastings
chains on R

d, d ≥ 1, cannot be uniformly ergodic but may still be geometrically ergodic;
see Mengersen and Tweedie (1996). An incomplete list of other research on establishing
convergence rates of Markov chains used inMCMC is given byAtchadé and Perron (2007),
Christensen et al. (2001), Geyer (1999), Jarner andHansen (2000),Meyn and Tweedie (1994),
and Neath and Jones (2009) who considered Metropolis–Hastings algorithms, and Doss
and Hobert (2010), Hobert and Geyer (1998), Hobert et al. (2002), Johnson and Jones (2010),
Jones and Hobert (2004), Marchev and Hobert (2004), Roberts and Polson (1994), Roberts
and Rosenthal (1999), Rosenthal (1995, 1996), Roy and Hobert (2007, 2010), Tan and Hobert
(2009), and Tierney (1994) who examined Gibbs samplers.

7.8 Discussion
The main point of this chapter is that a MCSE should be reported along with the point
estimate obtained from an MCMC experiment. At some level this probably seems obvious
to most statisticians, but it is not the case in the reporting of most MCMC-based simulation
experiments. In fact, Doss and Hobert (2010) recently wrote:

Before theMCMCrevolution,whenclassicalMonteCarlomethodsbasedon i.i.d. samples
were used to estimate intractable integrals, it would have been deemed unacceptable
to report a Monte Carlo estimate without an accompanying asymptotic standard error
(based on theCLT).Unfortunately, this seems to have changedwith the advent ofMCMC.

While it is tempting to speculate on the reasons for this change, the fact remains that most
currently published work inMCMC reports point estimates while failing to even acknowl-
edge an associatedMCSE; see also Flegal et al. (2008). Thuswehave little ability to assess the
reliability of the reported results. This is especially unfortunate since it is straightforward
to compute a valid MCSE.
The only potentially difficult part of the method presented here is in establishing the

existence of a Markov chain CLT. In essence, this means simulating aMarkov chain known
to be geometrically ergodic and checking a moment condition. Given the amount of work
that has beendone on establishing geometric ergodicity for standard algorithms in common
statistical settings, this is not the obstacle it was in the past. However, this remains an area
rich in important open research questions.
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8
Perfection within Reach: Exact MCMC Sampling

Radu V. Craiu and Xiao-Li Meng

8.1 Intended Readership
The amount of research done by the Markov chain Monte Carlo (MCMC) community has
been very impressive in the last two decades, as testified by this very volume. The power of
MCMC has been demonstrated in countless instances in which more traditional numerical
algorithms are helpless. However, one ubiquitous problem remains: the detection of con-
vergence or lack thereof.Among the large number of procedures designed for detecting lack
of convergence or for establishing convergence bounds (see, e.g. Chapters 6 and 7 in this
volume), there is one class of MCMC algorithms that stands apart simply because it avoids
the problem altogether. Whereas examples of such algorithms can be traced back to at least
1989 (see [56]), it is Propp andWilson’s 1996 seminal paper [48] that introduced the general
scheme of coupling from the past (CFTP). Since then, there has been an intense search for per-
fect sampling or exact sampling algorithms, so named because such algorithms useMarkov
chains andyet obtaingenuine independent and identicallydistributed (i.i.d.) draws—hence
perfect or exact—from their limiting distributions within a finite number of iterations.
There is, of course, no free lunch.Whereas this is a class of very powerful algorithms, their

construction and implementation tend to require a gooddeal of labor andgreat care. Indeed,
even the most basic general themes are not entirely trivial to understand, and subtleties
and traps can be overwhelming for novices. Our central goal in this chapter is therefore to
provide an intuitive overview of some of the most basic sampling schemes developed since
[48]. We do not strive for completeness, nor for mathematical generality or rigorousness.
Rather, we focus on a few basic schemes and try to explain them as intuitively as we can,
via figures and simple examples. The chapter is therefore not intended for the residents
but rather the visitors of the MCMC kingdom who want to tour the magic land of perfect
sampling. There are of course a number of other tour packages—see, for example, the
list provided at http://dimacs.rutgers.edu/∼dbwilson/exact.html, maintained by David
Wilson. But we hope ours is one of the least expensive ones in terms of readers’ mental
investment, though by no means are we offering a free ride.

8.2 Coupling from the Past
8.2.1 Moving from Time-Forward to Time-Backward

The CFTP algorithm is based on an idea that is both simple and revolutionary. Suppose
that we are interested in sampling from a distribution with probability lawΠ(·) with state
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space S ⊂ R
d. We define a Markov chain with stationary law Π using a transition kernel

K(x, ·) whose transitions can be written in a stochastic recursive sequence (SRS) form,
Xt+1 = φ(Xt, ξt+1), t = 0, 1, 2, . . ., (8.1)

where φ is a deterministic map and ξt+1 is a random variable with state space Λ ⊂ R
r.

(Sometimes it is automatically assumed that Λ = (0, 1)r, but that is not necessary here.)
More precisely, the distribution of ξ is such that P(Xt+1 ∈ A) = Π(A) = ∫

K(xt,A)Π(dxt),
that is, it guarantees that the output Xt+1 has the same (marginal) distribution as the input
Xt if Xt ∼ Π.
To explain the key idea of CFTP, let us first review the usual implementation of MCMC.

When the chain can be written as in Equation 8.1, we can simply compute it iteratively
starting from an arbitrary starting point X0 ∈ S, by generating a sequence of ξ1, ξ2, . . ., ξt,
if we decide to run for t iterations. If the Markov chain formed by Equation 8.1 is positive
recurrent and aperiodic (see Chapter 10, this volume), then we know that as t→∞, the
probability law of Xt, Pt, will approach Π, regardless of the distribution of X0. Of course,
how large t needs to be before the difference between Pt and Π becomes too small to have
practical consequences is the very thorny issue we try to avoid here.
The CFTP, as its name suggests, resolves this problem using an ingenious idea of running

the chain from the past instead of into the future. To see this clearly, compare the following
two sequences based on the same random sequence {ξ1, ξ2, . . ., ξt} used above:

Forward: X(x)
0→t = φ(φ(. . .φ(φ(x, ξ1), ξ2), . . . ξt−1), ξt);

Backward: X(x)
t→0 = φ(φ(. . .φ(φ(x, ξt), ξt−1), . . . ξ2), ξ1). (8.2)

The time-forward sequence X(x)
0→t is obviously identical to the Xt computed previously with

X0 = x. The time-backward sequenceX(x)
t→0 is evidently not the same asX

(x)
0→t but clearly they

have identical distribution whenever {ξ1, ξ2, . . ., ξt} are exchangeable, which certainly is the
case when {ξt, t = 1, 2, . . .} are i.i.d., as in a typical implementation. (Note a slight abuse of
notation: the use of t both as the length of the chain and as a generic index.) Consequently,
we see that if we can somehow compute X(x)

t→0 at its limit at t = ∞, then it will be a genuine
draw from the desired distribution because it has the same distribution as X(x)

0→t at t = ∞.

8.2.2 Hitting the Limit

At first sight, we seem to have accomplished absolutely nothing by constructing the time-
backward sequence because computing X(x)

t→0 at t = ∞ surely should be as impossible as
computing X(x)

0→t at t = ∞! However, a simple example reveals where the magic lies. Con-
sider a special case where φ(Xt, ξt+1) = ξt+1, that is, the original {Xt, t = 1, 2, . . .} already
forms an i.i.d. sequence, which clearly has the distribution of ξ1 as its stationary distri-
bution (again, we assume {ξt, t = 1, 2, . . .} are i.i.d.). It is easy to see that in such cases,
X(x)
0→t = ξt, but X(x)

t→0 = ξ1, for all t. Therefore, with X(x)
0→∞ we can only say that it has the

same distribution as ξ1, whereas for X(x)
∞→0 we can say it is ξ1!

More generally, under regularity conditions, one can show that there exists a stopping time
T such that P(T < ∞) = 1 and that the distribution ofX(x)

T→0 is exactlyΠ, that is,X
(x)
T→0 “hits

the limit” with probability 1. Intuitively, this is possible because unlike X(x)
t ≡ X(x)

0→t, which
forms aMarkov chain, X̃(x)

t ≡ X(x)
t→0 depends on the entire history of {X̃1, . . ., X̃t−1}. It is this



Perfection within Reach 201

dependence that restricts the set of possible paths X̃t can take and hence makes it possible
to “hit the limit” in a finite number of steps. For a mathematical proof of the existence of
such T, we refer readers to [48,53,54].
The CFTP strategy, in a nutshell, is to identify the aforementioned stopping time T via

coupling. To see how it works, let us first map t to −t and hence relabel X(x)
T→0 as X

(x)
−T→0,

which makes the meaning from the past clearer. That is, there is a chain coming from the
infinite past (and hence negative time) whose value at the present time t = 0 is the draw
from the desired stationary distribution. This is because coming from infinite past and
reaching the present time is mathematically the same as starting from the present time
and reaching the infinite future. However, this equivalence will remain just a mathematical
statement ifwe really have to go into the infinite past in order to determine the current value
of the chain. But the fact that the backward sequence can hit the limit in a finite number of
steps suggests that, for a given infinite sequence {ξt, t = −1,−2, . . .}, there exists a finite T
such that, when t ≥ T, X(x)

−t→0 will no longer depend on x, that is, all paths determined by{ξt, t = −1,−2, . . .}will coalesce by time 0, regardless of their origins at the infinite past. It
was proved in [10] that such coupling is possible if and only if theMarkov chain {X1,X2, . . .}
determined by φ is uniformly ergodic.

8.2.3 Challenges for Routine Applications

Clearly once all paths coalesce, their common value X0 = X(x)
−T→0 is a genuine draw from

the stationary lawΠ. Therefore, the CFTPprotocol relies on our ability to design theMCMC
process given by φ, or more generally by the transition kernel K, such that the coalescence of
all paths takes place formoderate values of T. This requirement poses immediate challenges
in its routine applications, especially for Bayesian computation, where S typically contains
many states, very often uncountably many. The brute-force way of monitoring each path is
infeasible for two reasons. First, it is simply impossible to follow infinitelymany paths indi-
vidually. Second, when the state space is continuous, even if we manage to reduce the pro-
cess to just two paths (aswith themonotone coupling discussed below), the probability that
thesewillmeet is zero if they are left to run independently. Therefore, our first challenge is to
design the algorithm so that the number of paths shrinks to a finite onewithin a few steps.A
hidden obstacle in this challenge is being able to figure out exactly which paths will emerge
from this reduction process as they are the ones that need to bemonitored until coalescence.
The second challenge is tofindeffectiveways to “force”paths tomeet, that is, to couple them
in such a way that, at each step, the probability that they take the same value is positive.
The rest of this chapter will illustrate a variety of methods designed to address both

challenges and other implementation issues. We do not know any universal method, nor
do we believe it exists. But there are methods for certain classes of problems, and some of
them are rather ingenious.

8.3 Coalescence Assessment
8.3.1 Illustrating Monotone Coupling

Suppose that the space S is endowed with a partial order relationship ≺ so that

x ≺ y⇒ φ(x, ξ) ≤ φ(y, ξ) (8.3)
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for any x, y ∈ S, ξ ∈ Λ, andwhereφ is an SRS as in Equation 8.1. If we can find theminimum
andmaximumstatesXmin,Xmax ∈ Swith respect to theorder≺, thenwe can implement this
monotone coupler—asdefined byEquation 8.3—inwhich it is sufficient to verify the coupling
of the paths started at these two extremal points because all other states are “squeezed”
between them. Therefore, themonotone coupler is an efficient way to address the first chal-
lenge discussed in Section 8.2.3. For illustration, consider the randomwalkwith state space
S = {0.25, 0.5, 2, 4}, with probability p of moving up or staying if the chain is already at the
ceiling state Xt = 4, and probability 1− p of moving down or staying if already at the floor
state Xt = 0.25. It is easy to see that this construction forms a monotone chain, expressible
as Xt = φ(Xt−1, ξt), where ξt ∼ Bernoulli(p) and its value determines the direction of the
walk, with one going up and zero going down.
Figure 8.1 shows a realization of the CFTP process, corresponding to

{ξ−8, ξ−7, . . ., ξ−2, ξ−1} = {0, 1, 0, 1, 1, 1, 1, 0}. (8.4)

One can see that the order between paths is preserved by φ. In particular, all the paths are at
all times between the paths started at Xmin = 0.25 (solid line) and Xmax = 4 (dashed line),
respectively. Therefore, in order to check the coalescence of all four paths, we only need to
check if the top chain starting fromX = 4 and the bottom chain starting fromX = 0.25 have
coalesced. In this toy example, the saving from checking two instead of all four is obviously
insignificant, but one can easily imagine the potentially tremendous computational savings
when there are many states, such as with the Ising model applications in [48].

8.3.2 Illustrating Brute-Force Coupling

This toy example also illustrates well the “brute-force” implementation of CFTP, that is,
checking directly the coalescence of all paths. Figure 8.1 establishes that for any infinite
binary sequences {ξt, t ≤ −1}, as long its last eight values (i.e. from t = −8 to t = −1) are
the same as that given in Equation 8.4, the backward sequence given in Equation 8.2 will
hit the limit X = 2, that is, the value of the coalesced chain at t = 0. Pretending that the
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FIGURE 8.1
Illustration of a monotone SRS which preserves the natural order on the real line (i.e. paths can coalesce but never
cross each other). Different lines represent sample paths started from different states.
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monotone property was not noticed, we can still check the coalescence step by step for all
paths. Or, more efficiently, we can use the “binary back-off” scheme proposed in [48]; that
is, whenever a check fails to detect coalescence,we double the number of “backward” steps.
Specifically, imagine we first made one draw of ξ, and it is zero (corresponding to ξ−1 = 0).
We compute X(x)

−1→0 of Equation 8.2 for all values of x ∈ S, which leads to

X(4)
−1→0 = 2, X(2)

−1→0 = 0.5, X(0.5)
−1→0 = X(0.25)

−1→0 = 0.25,

indicating that coalescence has not occurred. We therefore double the number of steps
going back, which requires only one new draw from ξ ∼ Bernuolli(p), as we already have
ξ−1 = 0. It is important to emphasize that we always reuse the draws of ξt that we have
already made because the point here is to simply check what the coalesced value would
be for a given infinite sequence of {ξt, t ≤ −1}. The device of making draws starting from
t = −1 and going backward is the ingenious part of CFTP because it allows us to determine
the property of an infinite sequence by revealing and examining only a finite number of its
last elements. That is, since the remaining numbers in the (infinite) sequence cannot alter
the value of the chain at t = 0, we do not even need to care what they are.
Now this new draw yields ξ = 1, and hence we have {ξ−2, ξ−1} = {1, 0}, which is then

used to compute Equation 8.2 again but with T = −2:

X(4)
−2→0 = X(2)

−2→0 = 2, X(0.5)
−2→0 = 0.5, X(0.25)

−2→0 = 0.25,

hence, again, no coalescence.Once againwedouble the steps andgo further back toT = −4,
which means we need two more draws of ξ, and this time they both are one, yielding
{ξ−4, ξ−3, ξ−2, ξ−1} = {1, 1, 1, 0}. Since we only need at most three consecutive upward steps
to bring any state to the ceiling state X = 4, the {1, 1, 1, 0} sequence immediately implies
that

X(x)
−4→0 = φ(4, 0) = 2, for all x ∈ S.

We have therefore detected coalescence after going back to only T = −4. This is not in any
contradiction to Figure 8.1, but points to an even stronger statement that only the last four
elements in the sequence (Equation 8.4), {ξ−4, ξ−3, ξ−2, ξ−1} = {1, 1, 1, 0}, rather than all
eight elements, are really relevant.

8.3.3 General Classes of Monotone Coupling

One may wonder when such ordering exists in more general situations and, if so, what
important classes of distributions can be identified to satisfy Equation 8.3. Such questions
have been investigated by [13,18] in the case of monotone (also called attractive) and anti-
monotone (also called repulsive) distributions Π. Suppose that S = Zd, for some set Z ⊂ R.
We consider the componentwise partial order on S so that x ≺ y if and only if xi ≤ yi for all
1 ≤ i ≤ d. The probability measure P on S is defined to be monotone if, for each 1 ≤ i ≤ d,

P(Xi ≤ s|X[−i] = a) ≥ P(Xi ≤ s|X[−i] = b), for all s ∈ S, (8.5)



204 Handbook of Markov Chain Monte Carlo

whenever a ≺ b in Zd−1, where X[−i] = (X1, . . .,Xi−1,Xi+1, . . .,Xd). Similarly, P is called
anti-monotone if

P(Xi ≤ s|X[−i] = a) ≤ P(Xi ≤ s|X[−i] = b),

whenever a ≺ b in Zd−1.
This definition of monotonicity via all full conditional distributions P(Xi|X[−i]), i =

1, . . ., d, was motivated by their use with the Gibbs sampler. In particular, Equations 8.3
and 8.5 are easily connected when the sampling from P(Xi ≤ s|X[−i] = a) is done via the
inverse CDF method. Put Fi(s|a) = P(Xi ≤ s|X[−i] = a) and assume that the ith compo-
nent is updated using φi(x,U) = (x1, x2, . . ., xi−1, inf{s : Fi(s|x[−i]) = U}, xi+1, . . ., xd), with
U ∼ U(0, 1). If we assume x ≺ y, then from Equation 8.5 we get

φi(x,U) ≺ φi(y,U) (8.6)

because inf{s : Fi(s|x[−i]) = U} ≤ inf{s : Fi(s|y[−i]) = U}. Applying Equation 8.6 in sequen-
tial order from i = 1 to i = d, as in a Gibbs sampler fashion, we can conclude that for
#U = {U1, . . .,Ud}, the composite map

φ(x, #U) = φd(φd−1(. . .φ2(φ1(x,U1),U2), . . .,Ud−1),Ud) (8.7)

is monotone in x with respect to the same partial order ≺.
In the case of anti-monotone target distributions, it is not hard to see that the φ(x, #U) of

Equation 8.7 is also anti-monotone with respect to ≺ if d is odd, but monotone if d is even.
Indeed, the ceiling/upper and floor/lower chains switch at each step (indexed by i = 1
to i = d), that is, the ceiling chain becomes the floor chain and vice versa. This oscillating
behavior, however, still permits us to construct bounding chains that squeeze in between all
the samplepaths such that thegeneral coalescence canbedetectedonce thebounding chains
have coalesced. See, for example, [13], which also discusses other examples of monotone
target distributions; see also [6,21].

8.3.4 Bounding Chains

In a more general setup, [18] discusses the use of bounding chains without any condition
of monotonicity. To better fix ideas, consider the following simple random walk with state
space S = {0.25, 0.5, 2} and with transition probability matrix

A =
⎛
⎝p 1− p 0
0 p 1− p
p 0 1− p

⎞
⎠,

where the (1, 1) entry corresponds to the probability that the chain stays at 0.25. Unlike
the previous random walk, the recursion defined by the matrix A is neither monotone
nor anti-monotone with respect to the natural order on the real line. For example, with
ξ ∼ Bernoulli(p), and if ξ = 1, we have φ(0.25, ξ) = 0.25 < φ(0.5, ξ) = 0.5 > φ(2, ξ) = 0.25,
where φ is the chain’s SRS. In contrast to the previous randomwalk, here ξ = 1 can indicate
both moving up or down depending on the starting position, and this is exactly what
destroys monotonicity with respect to the same ordering as in the previous random-walk
example. (This, of course, by no means implies that no (partial) ordering existed under
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FIGURE 8.2
Nonmonotone Markov chain. The upper and lower solid lines mark the bounding processes.

which the SRS is monotone; seeking such an ordering is indeed a common implementation
strategy for perfect sampling.)
In Figure 8.2, we show one run of the CFTP algorithm implemented for this simple

example with p = 0.1, where {ξ−8, . . ., ξ−1} = {0, 1, 0, 0, 0, 0, 0, 0}. One can see that the three
paths cross multiple times and no single path remains above or below all the others at all
times. Abounding chain, in the general definition introduced by [18], is a chain {Yt : t ≥ 0}
defined on 2S , the set of all subsets of S, with the property that if X(x)

t ∈ Yt for all x ∈ S
then X(x)

t+1 ∈ Yt+1 for all x ∈ S; evidently Y0 needs to contain all values in S. If, at some time
t, Yt is a singleton then coalescence has occurred. Clearly, there are many ways to define
the chain Yt, but only a few are actually useful in practice and these are obtained, usually,
from a careful study of the original chain Xt.
For instance, in our example we notice that after one iteration Y0 = S will become either

Y1 = {0.25, 0.5} or Y1 = {0.5, 2}, depending on whether ξ = 1 or ξ = 0, and therefore Yt will
always be a subset of these two sets (possibly themselves). Therefore, for t ≥ 1, the updating
rule Yt+1 = Ψ(Yt, ξ) can be simplified to

Ψ(Yt, ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yt, if ξ = 1 and Yt = {0.25, 0.5},
{0.25, 0.5} if ξ = 1 and Yt = {0.5, 2},
{0.5, 2}, if ξ = 0 and Yt = {0.25, 0.5},
{2}, if ξ = 0 and Yt = {0.5, 2},

φ(Xt, ξ), if Yt = {Xt}.

(8.8)

One can see then that having the ordered triplet {1, 0, 0} in the ξ-sequence triggers coales-
cence, after which one simply follows the path to time zero.
Two essential requirements for an effective bounding chain are that (i) it can detect coa-

lescence of the original chain and (ii) it requires less effort than running all original sample
paths. The chain Yt ≡ {S} for all t is a bounding chain and satisfies (ii), but clearly it is
useless. As an example of bounding chains that do not satisfy (ii), consider the upper and
lower solid paths in Figure 8.2. Here the upper solid path is the maximum value attained
by all paths at each time t, and the lower solid path is the minimal value (both have been
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slighted shifted for better visualization). For each time t, the interval between the upper
and lower solid paths, denoted by Ỹt, clearly forms a bounding chain. But unlike Yt in
Equation 8.8, the updating function for Ỹt is not easy to define, so running Ỹt involves
checking the extremes of all the paths forXt and is thus as complicated as running all paths
for Xt.
As far as general strategies go, [13] shows how to construct bounding chains when each

component of the random vector X is updated via a Gibbs sampler step, whereas [18]
presents a general method for constructing bounding chains and applies it to problems
from statistical mechanics and graph theory.

8.4 Cost-Saving Strategies for Implementing Perfect Sampling
The plain vanilla CFTP described in Section 8.2 suffers from twomain drawbacks. First, the
implementation “from the past” requires the random seeds used in the backward process to
be storeduntil coupling is observedanda randomsample is obtained. Second, the impatient
user cannot abandon runs that are too longwithout introducing sampling bias, because the
coupling time T is correlated with the sample obtained at time zero. In the following two
sections we provide intuitive explanations of the read-once CFTP and Fill’s interruptible
algorithm, designed respectively to address these two drawbacks.

8.4.1 Read-Once CFTP

Read-once CFTP (Ro-CFTP), as proposed byWilson [56], is a clever device that turns CFTP
into an equivalent “forward-moving” implementation. It collects the desired i.i.d. draws as
the process moves forward and without ever needing to save any of the random numbers
previously used. The method starts with a choice of a fixed block size K, such that the
K-composite map

φK(x; #ξ) = φ(φ(. . .φ(φ(x, ξ1), ξ2), . . ., ξK−1), ξK),

where #ξ = {ξ1, . . ., ξK}, has a high probability of coalescing, that is, the value of φK(x; #ξ)will
be free of x, or equivalently, all paths coalesce within the block defined by #ξ. In [56], Wilson
suggests selectingK such that theprobability ofφK coalescing, denotedby pK , is at least 50%.
GivensuchaφK ,wefirst initialize theprocessbygenerating i.i.d. #ξj, j = 1, 2, . . ., untilwefind
a #ξj0 such that φK(x; #ξj0) coalesces. Without loss of generality, in the top panel of Figure 8.3,
we assumed that j0 = 1; and we let S0 = φK(x; #ξj0). We then repeat the same process, that
is, generating i.i.d. #ξjs until φK(x; #ξ) coalesces again. In the top panel of Figure 8.3, this
occurred after three blocks. We denote the coalescent value as S1. During this process, we
follow from block to block only the coalescence path that goes through S0 while all the other
paths are reinitialized at the beginning of each block. The location of the coalescence path
just before the beginning of the next coalescent composite map is a sample from the desired
Π. In Figure 8.3 this implies that we retain the circled X1 as a sample. The process then is
repeated as we move forward, and this time we follow the path starting from S1 and the
next sample X2 (not shown) is the output of this path immediately before the beginning of
the next coalescent block. We continue this process to obtain i.i.d. draws X3, X4, and so on.
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FIGURE 8.3
Top: The read-once CFTP with blocks of fixed length. Bottom: Comparison with CFTP2.

The connection between the Ro-CFTP andCFTPmay not be immediately clear. Indeed, in
the plain vanilla CFTP, the concept of a composite/block map is not emphasized because,
although we “back off” in blocks, we do not require to have a coalescent composite map
of fixed length. For instance, if we set K = 4, we can see that in Figure 8.1 the paths started
at −2K coalesce in the interval (−K, 0) rather than within the block (−2K,−K). However,
suppose we consider a modified implementation of the plain vanilla CFTP, call it CFTP2,
in which we go back from time zero block by block, each with size K, until we find a block
that is coalescent, that is, all paths coalesce within that block. Clearly, if we trace the path
from the coalescent value from that block until it reaches time zero, it will be exactly the
same value as found by the original plain vanilla CFTP because once the coalescence takes
place, all paths will stay together forever. The bottom panel of Figure 8.3 illustrates CFTP2,
where the third block (counting backward from t = 0) is the coalescent block, and X1 is our
draw.
The resemblance of the bottom panel and the first three blocks in the top panel (counting

forward from time t = 0) is intended to highlight the equivalence between Ro-CFTP and
CFTP2. On its own, CFTP2 is clearly less cost-effective than CFTP because by insisting on
having block coalescence, it typically requires going back further in time than does the
original CFTP (since block coalescence is a more stringent detecting criterion, as discussed
above). However, by sacrificing a little of the efficiency of detecting coalescence,we gain the
independence between the block coalescent value S0 and the entire backward search process
for S0, and hence we can reverse the order of the search without affecting the end result.
As this independence is the backbone of the Ro-CFTP, here we show how critically it

depends on having fixed-size blocks. Intuitively, when the blocks all have the same size,
they each have the same probability of being a coalescent block, and the distribution of
the coalesced state given a coalescent block is the same regardless of which block it is.
To confirm this intuition and see how it implies the independence, let us define the block
random vector #ξ−t = (ξ−tK , ξ−tK+1 . . . , ξ−tK+K−1) and, for a given set #ξ−t, t = 1, 2, . . . , let T
be the first t such that φK(x; #ξ−t) coalesces, and let S0 = φK(x; #ξ−T) be the coalescent value.
Also let Cj = {φK(x, #ξ−j) coalesces}, that is, the event that the jth block map coalesces. Then
{T = t} = (∩t−1j=1C

c
j ) ∩ Ct. For notational simplicity, denote Aj = {φK(x, #ξ−j) ∈ A} and Bj =

{Ξj ∈ B}, where A and B are two arbitrary (measurable) sets on the appropriate probability
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spaces, and Ξj = {#ξ−1, . . . , #ξ−j}. Then for any positive integer t,
P(S0 ∈ A,T = t,ΞT−1 ∈ B) = P(At ∩ [∩t−1j=1C

c
j ∩ Ct] ∩ Bt−1)

= P(At ∩ Ct)P(∩t−1j=1C
c
j ∩ Bt−1)

= P(At|Ct)P(Ct)P(∩t−1j=1C
c
j ∩ Bt−1) (8.9)

= P(At|Ct)P(Ct ∩t−1j=1 C
c
j ∩ Bt−1)

= P(A1|C1)P(T = t,BT−1).

In deriving the above equalities, we have repeatedly used the fact that {At,Ct} are inde-
pendent of {At−1,Bt−1,Ct−1} since they are determined respectively by #ξ−t and {#ξj, j =
−1, . . .,−(t− 1)}. The last switching from P(At|Ct) to P(A1|C1) is due to the i.i.d. nature of
the {At,Ct}, because all blocks have the same sizeK. This switching is critical in establishing
the factorization in Equation 8.9, and hence the independence.
Clearly, as depicted in Figure 8.3, the output of CFTP2, namely X1, can be expressed

as M(S0,T,ΞT−1), where M is a deterministic map. The aforementioned independence
ensures that if we can find {T̃,ΞT̃−1} such that it has the same distribution as {T,ΞT−1}
and is independent of S0, then X̃1 =M(S0, T̃,ΞT̃−1) will have the same distribution as
X1 =M(S0,T,ΞT−1), and hence it is also an exact draw from the stationary distribution
Π. Because {#ξ−1, #ξ−2, . . ., } are i.i.d., obviously the distribution of {T,ΞT−1} is invariant to
the order at which we check for the block coalescence. We can therefore reverse the orig-
inal backward order into a forward one and start at an arbitrary block which must be
independent of S0. This naturally leads to the Ro-CFTP, because we can start with the block
immediately after a coalescence has occurred (which serves as S0), since it is independent of
S0. Moreover, the number of blocks and all the block randomnumbers (i.e. ξs) needed before
we reach the next coalescent block represents a sample from the distribution of {T,ΞT−1}. It
is worth emphasizing that each coalescent composite map fulfills two roles as it marks the
end of a successful run (inclusive) and the beginning of a new run (exclusive).Alternatively,
Equation 8.9 implies that we can first generate T from a geometric distribution with mean
1/pK (recall that pK is the probability of coalescence within each block), and then generate
T − 1 noncoalescent blocks, via which we then run the chain forward starting from S0.
This observation has little practical impact since pK is usually unknown, but it is useful for
understanding the connection with the splitting chain technique that will be discussed in
Section 8.5. The forward implementation brought by Ro-CFTP alsomakes it easier to imple-
ment the efficient use of perfect sampling tours proposed by [40], whichwill be discussed in
Section 8.6.

8.4.2 Fill’s Algorithm

Fill’s algorithm [8] and its extension to general chains [9] break the dependence between
the backward time to coalescence and the sample obtained at time zero. In the following
we use the slightly modified description from [39].
The algorithm relies on the time-reversal version of theMarkov chain designed to sample

fromΠ. If the original chain has transition kernel K(x, ·), then the time-reversal version has
kernel K̃(z, ·), such that

k̃(x|z)π(z) = k(z | x)π(x), ∀ (x, z) ∈ S × S, (8.10)
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where, for simplicity ofpresentation,wehaveassumed that the stationary lawΠhasdensity
π, and K(x, ·) and K̃(z, ·) have kernel densities k(·|x) and k̃(· | z), respectively. It also requires
that, given a particular pathX0 → X1 → · · · → Xt, we can sample, conditional on the observed
path, a sample of the same length from any state in S.
The algorithm starts by sampling a random Z ∈ S from an arbitrary distribution P0 (with

density p0) that is absolutely continuous with respect to Π, and by selecting a positive
integer T. The first stage is illustrated in the top panel of Figure 8.4: using the reversal
time chain, we simulate the path Z = XT → XT−1 → · · · → X1 → X0 (note that the arrow
is pointing against the direction of time). In the second stage, we sample forward from
all the states in S conditional on the existing path X0 → X1 → · · · → XT = Z (note that
this path is considered now in the same direction as time). If by time T all the paths have
coalesced, as depicted in themiddle panel of Figure 8.4 (wherewe usedmonotone coupling
for simplicity of illustration, but the idea is general), we retain X0 as a sample from π, as
shown in the bottom panel of Figure 8.4, and restart with a new pair (Z,T). Otherwise, we
select a new T or we restart with a new pair (Z,T).
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FIGURE 8.4
Illustration of Fill’s algorithm.
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To understand why the algorithm produces i.i.d. samples from π, we first note that
Equation 8.10 holds in the more general form

k̃t(x|z)π(z) = kt(z | x)π(x), ∀ (x, z) ∈ S × S, (8.11)

where kt is the kernel density of the t-step forward transition kernel Kt and k̃t is the cor-
responding time-reversal one, K̃t. Fill’s algorithm retains only those paths from Z to X0
(obtained via K̃T) such that the corresponding kT(z|x) is free of x—and hence it can be
expressed as hT(z)—due to coalescence; in this sense Fill’s algorithm is a case of rejection
sampling. Therefore, using Equation 8.11, the probability density for those retained X0s is

p(x) =
∫
k̃T(x | z)p0(z) dz =

∫
π(x)hT(z)
π(z)

p0(z) dz ∝ π(x), (8.12)

hence the correctness of the sampling algorithm (see also [4]). Note that here, for simplicity,
we have deliberately blurred the distinction between the fixed t in Equation 8.11 and the
potentially random T in Equation 8.12; in this sense Equation 8.12 is a heuristic argument
for building intuition rather than a rigorous mathematical proof. In its general form, Fill’s
algorithm can search for the coalescence time T just as with CFTP—see [9] for a detailed
treatment of the general form of Fill’s algorithm, including a rigorous proof of its validity.
See also [4] for an alternative proof based directly on the rejection-sampling argument, as
well as for a numerical illustration.
The conditional sampling is the main difficulty encountered when implementing Fill’s

algorithm, but in some cases it can be straightforward. For instance, if Xt+1 = φ(Xt,Ut+1)
then it is possible thatUt+1 is uniquelydeterminedonce bothXt andXt+1 are fixed (e.g. ifwe
generate Xt+1 using the inverse CDF transformation). If we denote by {U1, . . .,UT} := U0

the set of random deviates determined by the path Z = XT → XT−1 → · · · → X1 → X0,
then at the second stage we simply run for T steps, from all the states of S, the Markov
chains using the recursive form (Equation 8.1) with the set U0 as random seeds.

8.5 Coupling Methods
All algorithms described so far require the coupling of a finite or infinite number of paths
in finite time. This is the greatest difficulty of applying perfect sampling algorithms to con-
tinuous state spaces, especially those with unbounded spaces (which is the case for most
routine applications in Bayesian computation) and this is where the greatest ingenuity is
required to run perfect sampling in more realistic settings. A good coupling method must
be usable in practice and it is even better if it is implementable for different models with
the same degree of success. In this section, we review some of the most useful coupling
techniques, which essentially belong to two different types: (i) those which induce a “com-
mon regeneration state” that all sample paths must enter with positive probability; and (ii)
those which explore hidden discretization and hence effectively convert the problem into
one with a finite state space.
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8.5.1 Splitting Technique

A very common technique for coupling MCMC paths is initiated in [46] and discussed in
detail by [54]. Consider the Markov chain X t defined using the transition kernel K and
suppose that there exist t > 0, 0 < ε < 1, a set C (called a small set) and a probability measure
ν such that

Kt(x, dy) ≥ εν(dy), ∀ x ∈ C,
where Kt represents the t-step transition kernel. Thus, for any x ∈ C,

Kt(x, dy) = εν(dy)+ (1− ε)Kt(x, dy)− εν(dy)
1− ε = εν(dy)+ (1− ε)Q(x, dy), (8.13)

where Q(x, dy) = [Kt(x, dy)− εν(dy)]/(1− ε). The representation given by Equation 8.13 is
important because with probability ε the updating of the chain will be done using the
probability measure ν, that is, independently of the chain’s current state. If at time t all the
paths are in the set C and all the updates use the same random numbers ξ that lead to
the transition into the ν component of Equation 8.13, then all paths will coalesce at time
t+ 1, even if there are uncountably many. However, for a set C ⊂ S it will be difficult, if
not impossible, to determine whether it contains all paths at a given time. This problem is
alleviated in the case of CFTP where the existence of successful coupling has been shown
(see [10]) to be equivalent to the uniform ergodicity of the chainX t, in which case the small
set is the whole sample space, S, so all paths are automatically within a small set at all
times. An example where this idea has been brought to fruition is the multigamma coupler
introduced by [37], following the gamma coupler of [25]. The method is further developed
by [36] in the context of perfect sampling from continuous state distributions.
The multigamma coupler applies when the update kernel density f (·|x) of the Markov

chain is known. In addition, it requires that there is a nonnegative function r such that

f (y | x) ≥ r(y), ∀x, y ∈ S. (8.14)

If we denote ρ = ∫
r(y)dy > 0, then in line with the splitting technique discussed above we

can write
P(Xt+1 ≤ y |Xt = x) = ρR(y)+ (1− ρ)Q(y|x), (8.15)

where R(y) = ρ−1 ∫y
−∞ r(v) dv and Q(y | x) = (1− ρ)−1 ∫y

−∞[f (v | x)− r(v)] dv.
As a simple example, assume that the transitionkernel has thegammadensity f (y | a, bx) =

ya−1bax exp(−ybx)/Γ(a), where a is fixed, and bx depends on the previous state Xt = x but
is always within a fixed interval, say bx ∈ [b0, b1], where b0 and b1 are known constants.
Then we can set r( y) = ya−1ba0 exp(−yb1)/Γ(a), which yields ρ = (b0/b1)a. At each t, we
sample ξ ∼ Bernoulli(ρ), and if ξ = 1, we draw y from Gamma(a, b1), and let all paths
Xt+1 = y regardless of their previous states, hence coalescence takes place. If ξ = 0, then
we draw from the Q component in Equation 8.15 (though this step requires drawing from
a nonstandard distribution).
In situations when no uniform bound can be found on S for Equation 8.14 to hold,

Murdoch and Green [37] propose partitioning S = S1 ∪ . . . ∪ Sm and bounding the kernel
density f on each S i with ri and introduce a partitioned multigamma coupler for this setting.A
more difficult coupling strategy has been described in [22] in the case of geometrically (but
not necessarily uniformly) ergodic chains, though the approach has not been implemented
on a wide scale.
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There is a direct connection between the multigamma coupler and the Ro-CFTP in
Section 8.4.1. With a block of size K = 1 the multigamma coupler construction implies
that the probability of coalescence within the block is ρ. As described above, we can there-
fore sample a geometric T with success probability ρ, and start from a coalesced value,
that is, an independent draw from R(y) in Equation 8.15. We then run the chain forward
for T − 1 steps conditioning on noncoalesced blocks, namely, we use the Q component of
Equation 8.15 as the transition kernel. The resulting value then is an exact draw fromΠ [37].
There is also a close connection between the multigamma coupler and the slice sampler

(see Section 8.5.4), as both can be viewed as building upon the following simple idea: For
a given (not necessarily normalized) density g(y), if (U,Y) is distributed uniformly on
Ωg = {(u, y) : u ≤ g(y)}, then the marginal density of Y is proportional to g(y). Therefore,
when f (y|x) ≥ r(y) for all x and y, we have

Ωr = {(u, y) : u ≤ r(y)} ⊂ Ωf ,x = {(u, y) : u ≤ f (y | x)}, ∀ x ∈ S. (8.16)

For simplicity of illustration, let us assume that all Ωf ,x are contained in the unit square
[0, 1] × [0, 1]. Imagine now we use rejection sampling to achieve the uniform sampling on
Ωf ,x for a particular x by drawing uniformly on the unit square. The chance that the draw
(u, y) will fall into Ωr is precisely ρ, and more importantly, if it is in Ωr, it is an acceptable
proposal for f (y|x) regardless of the value of x because of Equation 8.16. This is the geometric
interpretation of how the coalescence takes place for splitting coupling, which also hints at
the more general idea of coupling via a common proposal, to which we now turn.

8.5.2 Coupling via a Common Proposal

The idea of using a common proposal to induce coalescence was given in [3] as a way to
address the second challenge discussed in Section 8.2.3. (Note, however, that this strategy
does not directly address the first challenge, namely discretizing a continuous set of paths
into a finite set; that challenge is addressed by, for example, the augmentation method
described in the next subsection, or by other clever methods such as the multishift coupler
in [57].) Imagine that we have managed to reduce the number of paths to a finite one. In
practice, it may still take a long time (possibly too long) before all paths coalesce into one.
Intuitively, one would like to make it easier for paths that are close to each other to coalesce
more quickly.
Remarkably, the description of coupling via a common proposal can be formulated in

a general setting irrespective of the transition kernel used for the chain, as long as it has
a density. Suppose that the chain of interest has transition kernel with the (conditional)
density f (·|Xt). Instead of always accepting the next state asXt+1 ∼ f (·|Xt), we occasionally
replace it with a random draw Ỹ sampled from a user-defined density g. Thus, the Xt+1
from the original chain plays the role of a proposal and is no longer guaranteed to be the
next state; we therefore relabel it as X̃t+1.
Instead, given Xt = x, the next state Xt+1 is given by the updating rule

Xt+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Ỹ, if

f (Ỹ|x)g(X̃t+1)
f (X̃t+1|x)g(Ỹ)

> U,

X̃t+1, otherwise,

(8.17)
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where U ∼ U(0, 1) and is independent of any other variables. In other words, the above
coupler makes a choice between two independent random variables X̃t+1 and Ỹ using
a Metropolis–Hastings (MH) acceptance ratio. Note that the MH accept–reject move is
introduced here simply to ensure that the next state of the chain has distribution density
f (·|Xt) even if occasionally the state is “proposed” from g. The coupling via a common
proposal tends to increase the propensity of coalescing paths that are close to each other.
More precisely, suppose that two of the paths are close, that is, X(1)

t ≈ X(2)
t . Then the ratios

in Equation 8.17 will tend to be similar for the two chains, which implies that both chains
will likely accept/reject Ỹ simultaneously.
It is also worth emphasizing that the above scheme needs a modification in order to

be applicable to the MH sampler which does not admit a density with respect to the
Lebesgue measure. The basic idea is to introduce the common proposal into the MH pro-
posals themselves as in [3]. This perhaps is best seen via a toy example. Suppose that our
target distribution is N(0, 1), and we adopt a random-walk Metropolis algorithm, that is,
the proposal distribution is q(y|x) = N(y − x), whereN(z) is the density ofN(0, 1). Clearly,
because N(z) is continuous, two paths started at different points in the sample space will
have zero probability of coalescing if we just let them “walk randomly.” To stimulate coa-
lescence, we follow the ideas in [3] and create an intermediate step in which the proposals
used in the two processes can be coupled.
More precisely, at each time t we sample Z̃t+1 ∼ t3(·), where t3 is the t distribution with

three degrees of freedom. Suppose that the proposal for chain i at time t is Ỹ(i)
t+1, where

Ỹ(i)
t+1 ∼ N(X(i)

t , 1). We then define

W̃(i)
t+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
Z̃t+1, if

N(Z̃t+1 − X(i)
t )t3(Ỹ(i)

t+1)
N(Ỹ(i)

t+1 − X(i)
t )t3(Z̃t+1)

> U,

Ỹ(i)
t+1, otherwise,

(8.18)

where U ∼ U(0, 1) is independent of all the other variables. The proposal W̃(i)
t+1 is accepted

using the usual MH strategy because its density is still the density of the original proposal,
N(X(i)

t , 1); thenext state is theneither W̃(i)
t+1 (acceptance) orX

(i)
t (rejection).Whathas changed

is that regardless of which paths the chains have taken, their MH proposals now have a
positive probability of taking on a common value Z̃t+1 for all those chains forwhich the first
inequality in Equation 8.18 is satisfied. This does not guarantee coupling, but it certainly
makes it more likely. In Figure 8.5 we show two paths simulated using the simple model
described above, where the two paths first came very close at t = −8 and then coalesced
at t = −7.

8.5.3 Coupling via Discrete Data Augmentation

Data augmentation [51], also known in statistical physics as the auxiliary variable method,
is a very effectivemethod for constructing efficientMCMCalgorithms; see [55] for a review.
It turns out to be useful for perfect sampling as well, because we can purposely consider
auxiliary variables that are discrete and therefore convenient for assessing coalescence.
Specifically, suppose that our target density is f (x), where x may be continuous. Suppose
that we have a way to augment f (x) into f (x, l), where l is discrete. If we can perform Gibbs
sampling via f (x | l) and f (l|x), then we will automatically have a Markov sub-chain with
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FIGURE 8.5
Illustration of coupling with proposals for two paths.

f (l) as the stationary density (note the sub-chainwith l only isMarkovian because theGibbs
sampler here only involves two steps). Therefore,wehave effectively turned the continuous
problem for f (x) into a discrete one because once we have an authentic draw from f (l), then
we can easily get a corresponding authentic draw from f (x) by sampling from f (x | l).
To illustrate, consider finitemixtures,where the obvious auxiliary variable is the indicator

variable indicating the mixture component fromwhich a sample is obtained. The coupling
via augmentation has been successfully implemented by [17] in the case of two-component
mixtures of distributions and by [38] in the case of Bayesian mixture priors. Below is one of
the examples discussed by [17], whichwe recast in order to crystalize the essence of discrete
data augmentation.
Consider the mixture αf0(d)+ (1− α)f1(d), where only the mixture proportion α is

unknown and therefore we seek its posterior density, assuming a uniform prior on (0, 1).
Given a sample {d1, . . ., dn} from the mixture, the posterior for α is proportional to

p(α|#d) ∝
n∏
i=1
{αf0(di)+ (1− α)f1(di)}, (8.19)

involving 2n terms when expanded; note that here we use #d = {d1, . . ., dn} to denote the
data instead of the original {x1, . . ., xn}, to avoid the potential confusion of our generic
notation which uses X for the sampling variable, which is α here. Let the latent variables
#z = {z1, . . . , zn} be such that zi = 0 if di has been generated from f0 and zi = 1 if di has been
generated from f1. Then it is easy to see that

P(zi = 1|#d, α) = (1− α)f1(di)
αf0(di)+ (1− α)f1(di) := pi (8.20)

and

P(α|#z) = Beta
(
n+ 1−

n∑
i=1

zi,
n∑
i=1

zi + 1
)
. (8.21)
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This implies that we can construct the discrete augmentation as l =∑i zi, which has a
nonhomogenous binomial (NhB) distribution NhB(n, #p), where #p = {p1, . . ., pn}. That is, l
is the sum of n independent but not necessarily identically distributed Bernoulli variables.
Given this data augmentation scheme f (α, l), the algorithmgiven in [17] canbe reformulated
as follows.

1. Because of Equation 8.21, given lt = l, we generate αt+1 ∼ Beta(n+ 1− l, l+ 1),
which can be accomplished by drawing wj ∼ Exponential(1) for j ∈ {1, . . ., n+ 2}
and then letting

αt+1 =
∑n+1−l

i=1 wi∑n+2
i=1 wi

. (8.22)

2. Given αt+1 = α, because of Equation 8.20, we need to draw lt+1 from NhB(n, #p(α)),
where #p(α) = {p1, . . ., pn}, with pi ≡ pi(α) given by the right-hand side of Equa-
tion 8.20. This draw is accomplished by generating independent ui ∼ U(0, 1) and
letting

lt+1 =
n∑
i=1

1{ui ≤ pi}, (8.23)

where 1{A} is the usual indicator function of event A.

Combining Equations 8.22 and 8.23, we see that the SRS from lt to lt+1 can be written as

lt+1 ≡ φ(lt; #u, #w) =
n∑
i=1

1

⎧⎪⎨
⎪⎩ui ≤

⎡
⎣1+

( ∑n+2
i=1 wi∑n+1−lt

i=1 wi
− 1
)−1

f0(di)
f1(di)

⎤
⎦
−1⎫⎪⎬
⎪⎭ . (8.24)

For given #u = {u1, . . ., un} and #w = {w1, . . .,wn}, the function φ in Equation 8.24 is evidently
increasing in lt and thus defines, with respect to the natural integer ordering, a monotone
Markov chain on the state space Sl = {0, . . ., n}, with the ceiling and floor states given by
l = 0 and l = n. Through data augmentation we have therefore converted the problem of
drawing from the continuous distribution given by Equation 8.19 into one in which the
sample space is the finite discrete space Sl, given by Equation 8.24, for which we only need
to trace the two extreme paths starting from l = 0 and l = n.

8.5.4 Perfect Slice Sampling

Slice sampling is based on the simple observation that sampling fromΠ (assumed to have
density π) is equivalent to sampling from the uniform distribution g(u, x) ∝ 1{u ≤ f (x)},
where f is an unnormalized version of π and is assumed known. One can easily see that
the marginal distribution of x is then the desired one. In turn, the sampling from g can
be performed using a Gibbs scan in which both steps involve sampling from uniform
distributions:

I. Given Xt, sample U ∼ U(0, f (Xt)).
II. Given U from Step I, sample Xt+1 ∼ U[A(U)], where A(w) = {y : f (y) ≥ w}.
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Here, for simplicity, we assume that A(U) has finite Lebesgue measure for any U; more
general implementations of the slice sampler are discussed in [7,45]. The coupling for slice
sampling has been designed by [30] under the assumption that there exists a minimal
element xmin ∈ S with respect to the order x ≺ y⇔ f (x) ≤ f (y).
Specifically, the perfect slice sampler achieves coupling via introducing common random

numbers into the implementation of Steps I and II in the following fashion. We implement
Step I, regardless of the value of Xt, by drawing ε ∼ U(0, 1) and then letting U = U(Xt) =
εf (Xt); hence all the U(Xt) share the same random number ε.
Given theU = U(Xt) fromStep I,we need to implement Step II in such away that there is a

positive (and hopefully large) probability that allXt+1 will take the same value regardless of
the value Xt. This is achieved by forming a sequence of random variablesW = {Wj}j=1,2,...,
whereW1 ∼ U[A(f (xmin))] andWj ∼ U[A(f (Wj−1))], for any j ≥ 2. The desired draw Xt+1
is then the firstWj ∈ A(U(Xt)) = A(εf (Xt)), that is,

Xt+1 ≡ φ(Xt, (ε,W)) =Wτ(Xt),

where τ(x) = inf{j : f (Wj) ≥ εf (x)}.
In [30] it is proven that, almost surely, only a finite number of the elements of the

sequence W are needed in order to determine τ(x). The correctness of the algorithm is
satisfied ifWτ(x) ∼ U[A(εf (x))], and in [30] this is established by viewing it as a special case
of adaptive rejection sampling. Here we provide a simple direct proof. For any given x,
denote A(x) = A(εf (x)) and B(x)

j = {(W1, . . .,Wj) : f (Wi) < εf (x), i = 1, . . ., j}. Then clearly,
for any k ≥ 1, {τ(x) = k} = {Wk ∈ A(x)} ∩ B(x)

k−1 (assume B
(x)
0 = S for any x ∈ S). Hence, for

any (measurable) set C ⊂ A(x), we have

P({Wτ(x) ∈ C}|τ(x) = k) = P({Wk ∈ C ∩ A(x)} ∩ B(x)
k−1)

P({Wk ∈ A(x)} ∩ B(x)
k−1)

=
E
[
E
(
1{Wk ∈ C}1{B(x)

k−1}|W1, . . .,Wk−1
)]

E
[
E
(
1{Wk ∈ A(x)}1{B(x)

k−1}|W1, . . .,Wk−1
)]

=
E
[
1{B(x)

k−1}P({Wk ∈ C}|Wk−1)
]

E
[
1{B(x)

k−1}P({Wk ∈ A(x)}|Wk−1)
] .

(8.25)

In the above derivation, we have used the fact that {W1, . . .,Wk} forms a Markov
chain itself. Given Wk−1 = w, Wk is uniform on A( f (w)) by construction, so P({Wk ∈ B}|
Wk−1 = w) = μ(B)/μ(A(f (w))), where μ is the Lebesgue measure. Consequently, the last
ratio in Equation 8.25 is exactly μ(C)/μ(A(x)), the uniform measure on A(x). It follows
immediately thatWτ(x) ∼ U(A(x)) = U[A(εf (x))].
To visualize how Steps I and II achieve coupling, Figure 8.6 depicts the update for two

paths in the simple case inwhich f is strictly decreasingwith support (0, xmin). Suppose that
the two chains are currently in X1 and X2. Given the ε drawn in Step I, the monotonicity
of f allows us to write A(εf (X1)) = (0,A1) and A(εf (X2)) = (0,A2). Step II then starts by
sampling W1 ∼ U(0, xmin) and, since it is not in either of the intervals (0,A1) or (0,A2),
we follow by sampling uniformly W2 ∼ U(0,W1) which is the same as sampling W2 ∼
U[A(f (W1))] since f is decreasing. BecauseW2 ∈ (0,A2), we have τ(X2) = 2 soX2 is updated
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FIGURE 8.6
Illustration of perfect slice sampling.

into W2. As W2 ∈ (0,A1) we continue by sampling W3 ∼ U(0,W2), and since W3 ∈ (0,A1)
we can set τ(X1) = 3. Thus, in the case illustrated by Figure 8.6, the updates are φ(X1,W) =
W3 and φ(X2,W) =W2. To understand why this construction creates an opportunity for
coupling, imagine that the second uniform draw,W2, happens to be smaller thanA1. In this
case, τ(X1) = τ(X2) = 2 so both X1 and X2 are updated intoW2, which means that the two
paths have coalesced. In fact, for all X ∈ (0, xmin)with the property that f (X) ≤ f (W1)/εwe
have φ(X,W) =W1, for all X such that f (W1)/ε < f (X) ≤ f (W2)/ε we have φ(X,W) =W2,
and so on. This shows how the continuous set of paths is discretized in only one update.
Figure 8.6 also illustrates that the density ordering X2 ≺ X1 (since f (X2) < f (X1)) is con-

sistent with the same ordering for the updates: φ(X2,W) =W2 ≺ φ(X1,W) =W3 because
f (W2) ≤ f (W3) by construction. This is true in general because if X2 ≺ X1, that is, f (X2) ≤
f (X1), then τ(X2) ≤ τ(X1) because A(εf (X1)) ⊂ A(εf (X2)). Consequently, Wτ(X2) ≺Wτ(X1).
This property implies that we can implement the monotone CFTP as described in Section
1.3.1, if a maximal xmax exists. In situations in which the extremal states cannot be found,
Mira et al. [30] show how to construct bounding processes for this perfect slice sampler.

8.6 Swindles
The term “swindle” has traditionally been used in the Monte Carlo literature to character-
ize any strategy or modification that either reduces the computational effort or increases
the efficiency of the algorithm [12,50]. Usually, swindles are relatively easy-to-implement
generic methods applicable to a wide class of algorithms. In the following we describe
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some of the swindles proposed that either are for or take advantage of perfect sampling
algorithms.

8.6.1 Efficient Use of Exact Samples via Concatenation

The algorithms presented in Section 8.2 may be very slow in producing one draw from the
distributionof interestΠ,which isveryuneconomical considering that thewholegeneration
process involves a large number of random variables. Motivated by this observation, [40]
proposed alternative implementations and estimators that extractmore than onedraw from
each perfect sampling run.
One natural idea is that once a perfect draw is made, say X0 ∼ Π, then we obviously

can run the chain forward for, say, k steps, all of which will be genuine draws from Π.
However, this introduces serial correlation in the k samples retained for estimation. Sim-
ulations performed in [40] show that a more efficient implementation is the concatenated
CFTP (CCFTP). The strategy is illustrated in Figure 8.7, in which two consecutive runs of
the monotone CFTP have produced independent sample points X,Y ∼ Π. Instead of using
just the two sample points, CCFTP uses the tourmade up of all the realizations lying on the
path starting at −TY (the time needed to detect coalescence for sampling Y) that connects
X to Y, that is, the dashed line in Figure 8.7.
Since the time order of X and Y is irrelevant here (because all the random numbers are

i.i.d. along the sequence), one could construct another tour using the path that starts at
time −TX with state Y and ends in X; note that such a path must exist because all tours,
regardless of their initial position,must coalesce afterTX iterations bydesign.Whereas such
constructions are not hard to generalize to situations with more than two chains, it is much
more straightforward to construct the tours with the Ro-CFTP algorithm. That is, in Figure
8.3, instead of using just X1, we include in our sample the segment of the coalescence path
between X1 and X2 (the second sample point not shown in the figure), and then between
Xi and Xi+1 for all i.
Clearly all such tours are independent, but the samples within one tour are serially cor-

related. If we denote the length of the ith tour by Ti and draws within the tour by Xij,
j = 1, . . .,Ti, then obviously a consistent estimator for

Ig =
∫
g(x)π(dx) (8.26)

X Y

00 −TY−TX

FIGURE 8.7
Illustration of a perfect tour.
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that utilizes N tours is [44]

Îg =
∑N

i=1
∑Ti

j=1 g(Xij)∑N
i=1 Ti

=
∑N

i=1 Tiḡi∑N
i=1 Ti

,

where ḡi is the sample average of g(Xij) within the ith tour. Note, however, that this is a
ratio estimator since the tour lengths are random, but the added benefit here is that since
the tours are i.i.d., so are the {Ti, ḡi}. Hence, the variance of Îg can easily be estimated (when
N is large) by the usual variance estimator for ratio estimators based on i.i.d. samples (see
[24]), namely

v̂ar(Îg) =
∑N

i=1 Ti2(ḡi − Îg)2

(
∑N

i=1 Ti)2
. (8.27)

Note that in Equation 8.27, for the sake of simplicity, we have used denominator N instead
of the usual N − 1 in defining the cluster sample variance—we can view each tour as
a cluster of draws and there are N clusters in total. The beauty of Equation 8.27 is that
it entirely avoids the issue of dealing with within-tour dependence, just as in the usual
cluster sampling we do not need to be concerned with intra-cluster correlations when we
have genuine replications of clusters, which are the tours here.

8.6.2 Multistage Perfect Sampling

Perfect sampling offers the possibility of performing simple random sampling. It is well
known in the sampling survey literature that simple random sampling is surpassed in
statistical and/or cost efficiency by a number of alternative sampling protocols, for instance
multistage sampling. In light of this observation [27] proposed a different approach for
running amonotoneCFTPalgorithm. Themultistage backward coupling algorithm is designed
to perform multistage sampling within the CFTP protocol.
For the sake of simplicity, we describe first the case with two stages. Consider a partition

of the sample space into m clusters S = ∪mi=1Ci. In the first stage we run the CFTP until
cluster coalescence occurs, that is, all chains merge into a common cluster, say C j at time 0. In
the second stage, we run CFTP to sample from the conditional distributionΠ(·|C j) defined
viaΠ(A|Cj) = Π(A)/Π(Cj) for any measurable A ⊂ Cj. The two-stage method can easily be
extended tomultiple stages using a class of nested partitions—for example, each element of
the partition used in the second step can in turn be partitioned, Cj = ∪Kjh=1Cjh, and sampling
from Π(·|Cj) can be done again in two or more stages, and so on.
The astute reader may have realized that this procedure is valid only if the detection of

cluster Cj in the first stage guarantees that the sample we would eventually have obtained
was indeed going to belong to Cj. One way to achieve this is to restrict the proposal to Cj
when using MH algorithm for the second stage. In general, this “foretelling” requirement
can be quite stringent when implemented in brute-force ways; more effective methods
need to be developed before the multistage sampling methods see general applications.
Nevertheless, when the method can be implemented, empirical evidence provided in [27]
demonstrates that substantial reductions (e.g. 70%) in running time are possible.
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8.6.3 Antithetic Perfect Sampling

Stratified sampling is another efficient method widely used in sample surveys. An implicit
way of performing stratification in Monte Carlo simulations can be implemented via anti-
thetic variates [15]. Traditionally, antithetic sampling is performed inMonte Carlo using two
negatively correlated copies of anunbiased estimator. Suppose thatwe are interested in esti-
mating the Ig in Equation 8.26. Traditional Monte Carlo uses an i.i.d. sample {X1, . . .,X2n}
from Π and the estimator

Î2n =
∑2n

i=1 g(Xi)
2n

.

The variance of Î2n can be significantly decreased ifwe are able to sample, for each 1 ≤ j ≤ n,
X(1)
j ,X(2)

j ∼ Π such that corr(g(X(1)
j ), g(X(2)

j )) < 0 and use the estimator

Ĩ2n =
∑n

i=1
[
g(X(1)

i )+ g(X(2)
i )
]

2n
.

In the case where g is monotone, there are relatively simple ways to generate the desired
pairs (X(1)

j ,X(2)
j ). Moreover, we have shown in [6] that increasing the number of simultane-

ous negatively correlated samples can bring a significant additional variance reduction.
The more complex problem of generating k ≥ 3 random variables {X(1), . . .,X(k)} such
that any two satisfy corr( g(X(i)), g(X(j))) ≤ 0 can be solved, at least for monotone g,
using the concept of negative association (NA) introduced in [20]. The random variables
{Xi, i = 1, . . ., k}, where each Xi can be of arbitrary dimension, are said to be negatively
associated (NA) if for every pair of disjoint finite subsets A1,A2 of {1, . . ., k} and for any
nondecreasing functions g1, g2,

cov(g1(Xi, i ∈ A1), g2(Xj, j ∈ A2)) ≤ 0,

whenever the above covariance function is well defined. In light of this stringent condition
it is perhaps not surprising that NA is a stronger form of negative dependence which
is preserved by concatenation. More precisely, if {X1, . . .,Xk1} and {Y1, . . .,Yk2} are two
independent sets of NA random variables, then their union, {X1, . . .,Xk1 ,Y1, . . .,Yk2}, is
also a set of NA random variables. A number of methods used to generate vectors of NA
random deviates, especially the very promising iterative Latin hypercube sampling, are
discussed in [6].
The implementation of the antithetic principle for CFTP is relatively straightforward.

Given a method to generate NA {ξ(1), . . ., ξ(k)} (where ξ is as needed in Equation 8.1), one
can run k CFTP processes in parallel, the jth one using {ξ(j)t , t ≤ 0}, where {ξ(1)t , . . ., ξ(k)t },
t ≤ 0, are i.i.d. copies of {ξ(1), . . ., ξ(k)}, as sketched in Figure 8.8. Within the jth process
of CFTP all paths are positively coupled because they use the same {ξ(j)t , t ≤ 0}. At each
update, {ξ(1)t , . . ., ξ(k)t } are NA, a property that clearly does not alter the validity of each
individual CFTP process.
To obtain n = km draws, we repeat the above procedure independently m times, and collect

{X(j)
i , 1 ≤ i ≤ m; 1 ≤ j ≤ k}, where i indexes the replication, as our sample {X1, . . .,Xn}. Let
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Parallel antithetic backward CFTP processes.

σ2g = var[g(X)] and ρ(g)k = corr(g(X(1)
1 ), g(X(2)

1 )). Then

var
(
1
n

n∑
i=1

g(Xi)
)
= σ

2
g

n

[
1+ (k − 1)ρ(g)k

]
.

Consequently, the variance reduction factor (VRF), relative to the independent samplingwith
the same simulation size, is

S(g)
k = 1+ (k − 1)ρ(g)k .

We emphasize here the dependence of S(g)
k on k, and more importantly on g, and thus the

actual gain in reduction can be of practical importance for some g but not for others, but
S(g)
k ≤ 1 as long as ρ(g)k ≤ 0.

8.6.4 Integrating Exact and Approximate MCMC Algorithms

It is probably clear by now to the statistician with some travel experience in the MCMC
kingdom that perfect samplingmay not be the vehicle that one could take on every trip. But
it is possible to extend its range considerably if we couple it with more traditional MCMC
methods. Here we describe such an approach devised by [33] to deal with Bayesian com-
putation in cases where the sampling density is known only up to a constant that depends
on the model parameter, and hence the likelihood function itself cannot be evaluated
directly.
More precisely, consider the case in which the target of interest is the posterior density

π(θ|y) ∝ p(θ)p( y | θ), where p(θ) is the prior density and p( y | θ) is the sampling density of
the data. There is a large spectrum of problems (e.g. Markov random fields, image analysis,
Markov point processes, Gaussian graphical models, neural networks) for which p( y | θ)
is known only up to a constant, that is, p( y | θ) = q( y | θ)/Cθ, with the functional form of q
knownbut thenormalizing constantCθ unknown, in the sense that its valueat anyparticular
θ is hard or even impossible to calculate. Obviously, for such problems, the classicalMCMC
approach cannot be directly implemented. For instance, a Metropolis algorithm with a



222 Handbook of Markov Chain Monte Carlo

symmetric proposal, moving from θ→ θ′, would require the calculation of the acceptance
ratio

α(θ′; θ) = min
{
1,

p(θ′)q( y | θ′)
p(θ)q( y | θ) ×

Cθ
Cθ′

}

which involves the unknown ratio of two normalizing constants, Cθ/Cθ′ , a problem which
occurs in many areas (see, e.g., [11,28,29]).
One obviousway to dealwith this problem is to useMonteCarlo or other approximations

to estimate each ratio needed in the implementation of Metropolis–Hastings algorithm. A
more creative and “exact” solution is proposed by [33] with the help of perfect sampling.
The idea is to add into the mix an auxiliary variable x such that the chain updates not
only θ but (θ, x) via MH sampling with an acceptance ratio in which no unknown constant
appears. Since the auxiliary variable is just a computational artifact, as long as themarginal
distribution of θ is preserved there is a lot of freedom in choosing how to update x. In partic-
ular, we consider updating (θ, x) via a proposal (θ′, x′) in which the proposal θ′ is generated
as in the original chain (it does not depend on x) but x′|θ′, θ, x ∼ q(·|θ′)/Cθ′ . Essentially, x′ is
pseudo-data simulated from the sampling distribution when the parameter is equal to the
proposal, θ′. For the new chain, the acceptance ratio is then

α̃ = min
{
1,

p(θ′)q(y|θ′)q(x|θ)
p(θ)q(y|θ)q(x′|θ′)

}
, (8.28)

which no longer involves any unknown normalizing constant.
The perceptive reader may immediately have realized that the above scheme sim-

ply transfers one difficult problem into another, namely, simulating from the original
sampling density p(·|θ′) = q(·|θ′)/Cθ′ . Since Cθ′ is not available, direct methods such as
inverse CDF are out of the question (even when they are applicable otherwise). We can
of course apply the Metropolis–Hastings algorithm itself for this sampling, which will
not require any value of Cθ (since here we sample for x, not θ). But then we would
need to introduce a new proposal, and more critically we would need to worry about
the convergence of this imbedded Metropolis–Hastings algorithm within each step of cre-
ating a proposal (θ′, x′) as called for by Equation 8.28. This is clearly cumbersome and,
indeed, entirely defeats the purpose of introducing x′ in order to have a “clean” solution
to the problem without invoking any approximation (beyond the original Metropolis–
Hastings algorithm for θ). This is where the perfect sampling methodologies kick in,
because if we have an exact draw from p(x′|θ′), then the acceptance ratio given in Equa-
tion 8.28 is exactly correct for implementing theMetropolis–Hastings algorithm fordrawing
(θ, x) and hence for θ. This is particularly fitting, since intractable likelihoods are com-
mon in inference for point processes and this is also the area where exact sampling
has been most successful. For instance, in [33], the method is illustrated on the well-
known Ising model which was proposed as a main application in Propp and Wilson’s
landmark paper [48], which is a “must” for any tourist of the magic land of perfect
sampling.
In closing, we should mention that the method discussed here is only one among a

number of promising attempts that have been made to couple the power of traditional
MCMC to the precision of perfect sampling such as in [40,43]. See also [42] for related ideas
and algorithms.
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8.7 Where Are the Applications?
The most resounding successes of perfect sampling have been reported from applications
involving finite state spaces, especially in statistical physics (e.g. [13,19,48,49]) and point
processes (e.g. [1,14,21,23,26,31,34,35,52]). Other applications include sampling from trun-
cated distributions (e.g. [2,47]), queuing ([41]), Bayesian inference (as in [16,32,37,38]), and
mixture of distributions (see [5,17]).
Whereas applications are many, and some are exceedingly successful, much still needs

to be done before perfect sampling can be applied routinely. What is gained by per-
fect sampling is its “perfectness,” that is, once it delivers a draw, we are theoretically
guaranteed that its distribution is mathematically the same as our desired distribution.
The price one pays for this mathematical precision is that any perfect sampling method
refuses to produce a draw unless it is absolutely perfect, much like a craftsman reputed
for his fixation with perfection refuses to sell a product unless it is 100% flawless. In
contrast, any “nonperfect” MCMC method can sell plenty of its “products,” but it will
either ask the consumers to blindly trust their qualities or leave the consumers to deter-
mine their qualities at their own risk. The perfect sampling versus nonperfect sampling
is therefore a tradeoff between quality and quantity. As with anything else in life, per-
haps the future lies in finding a sensible balance. Perfect quality in small quantity only
excites treasure collectors, and lousy quality in abundant quantity only helps garbage col-
lectors. The future of perfect sampling methods lies in how successfully we can strike
a balance—producing many quality products at an affordable price in terms of users’
implementation cost.
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9
Spatial Point Processes

Mark Huber

9.1 Introduction
Spatial point processes arise naturally in many contexts, including population studies,
forestry, epidemiology, agriculture, and material science; for more examples, see Ripley
(1977), StoyanandStoyan (1995), andMøller andWaagepetersen (2007). Typically, statistical
models for these data sets are given by densities with respect to a Poisson point process.
In Section 9.2 these Poisson point processes and densities are described in detail, together
with several examples. As in many applications, these densities are often unnormalized,
and calculating the normalizing constant exactly is computationally unfeasible. Therefore
Monte Carlo methods are used instead.
Many of these methods involve construction of a Markov chain whose stationary dis-

tribution matches the target density. There are two primary types of chains used for these
point processes. In Section 9.3, the Metropolis–Hastings and reversible jump (Green, 1995)
methods are described. Section 9.4 shows how to build continuous-time spatial birth and
death chains for these problems.
Next, in Section 9.5 perfect sampling techniques are introduced. These methods draw

samples exactly drawn from the target distribution. Acceptance/rejection methods can
be used for small problems, while larger problems require methods such as Kendall and
Møller’s (2000) dominated coupling from the past.
Sections 9.2 through9.5develop techniques for sampling from the statisticalmodel.When

the interest is in sampling from the posterior, Section 9.6 goes further and shows how these
methods can bemodified in order to accomplish this task and carry out Bayesian inference.
Finally, Section 9.7 examines what is known about the running time of these methods,

and strategies for improving the convergence of these chains.

9.2 Setup
The models considered here are described by using densities with respect to a Poisson
point process. Consider a space S that is separable (so it has a countable dense subset)
equipped with a set of measurable sets B, and intensity measure λ satisfying λ(S) < ∞.
Usually this intensity is proportional to Lebesguemeasure; throughout this chapter we use
m(A) to denote the Lebesgue measure of a set A. Examples of point processes include the
following:

227
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• Spatial data.S ⊆ R
2,λ(A) is proportional tom(A) andB is the usual Borel σ-algebra.

• Marked spatial data. For instance S ⊆ R
2 × [0,∞), where the R

2 coordinate is the
location of the point and the [0,∞) coordinate is the radius of a disk centered at the
point. The intensity λ(·) is the cross product ofm(·) onR

2 and an arbitrarymeasure
on [0,∞). For instance, Fiksel (1984) studied data of Klier on Norwegian spruces
together with their trunk diameters.

• Typed spatial processes. When the mark is a finite set, it can be used to represent
the type of point. Here S ⊆ R

2 × {1, 2, . . . , k}, with intensity the cross product of
m(·)with a measure on {1, 2, . . ., k}. The value of the second coordinate determines
the type of point. For instance, Harkness and Isham (1983) analyzed locations of
ants’ nests where there were two different possible types of nests.

Configurations in a Poisson point process over a space S are vectors of random length
(including length 0) whose components are points, that is, elements of S. For example, if
S = [−10, 10]2, then ((2.78, 3.42), (1.23,−3.21)) and ∅ are valid configurations of points. The
process is governed by λ, the intensity measure on S. If X is a Poisson point process and A
a measurable region, then the expected number of components of X (the points) that lie in
Amust equal λ(A).
Formally, a Poisson point process can be viewed as a measure on these configurations

that can be defined using an exponential space; see Carter and Prenter (1972) for details. A
Poisson point process can also be viewed as the distribution of the output of the following
procedure.

ALGORITHM 9.1 POISSON POINT PROCESS GENERATOR
Input: space S, intensity measure λ(·) with λ(S) < ∞
Output: X
1: draw N ← Poisson(λ(S))

2: draw X1, . . .,XN i.i.d. from λ(·)
3: X ← (X1, . . .,XN )

In line 1, N (the number of points in the configuration) is a draw from a discrete Poisson
random variable with parameter λ(S), so P(N = i) = [λ(S)i/i!] exp(−λ(S)). In line 2, each
point is distributed according to the normalized intensity, so P(X1 ∈ A) = λ(A)/λ(S).
Note that if S is discrete or λ assigns positive measure to any point of S, then it is possible

that Xi = Xj for some i < j ≤ N. That is, it is possible to have repeated points in the config-
uration. On the other hand, when S is a continuous space and λ is atomless, the probability
of repeated points becomes 0.
Since the order of the points is immaterial, this means that the configurations can be

treated as a set rather than a vector. If x = {x1, . . ., x#x} is a set containing #x distinct points,
then there are exactly (#x)! different vectors that give rise to the set. Therefore, if μ is the
distribution of the output of this algorithm on sets of distinct points,

μ(dx) = (#x)!λ(S)
#x

(#x)! exp(−λ(S))
#x∏
i=1

λ(dxi)
λ(S)

= exp(−λ(S))
#x∏
i=1
λ(dxi). (9.1)

While it is easy to sample from the basic Poisson point process, it is far more difficult
to sample from models where the target distribution is given by an unnormalized density
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with respect to a Poisson point process. A random variable X has density f with respect to
measure μ if P(X ∈ A) = ∫

A f (x) dμ(x). Typically densities either reward or penalize point
processes by attaching multiplicative factors greater or less than 1.
In fact, for most models these densities are of the form

f (x) = g(x)
Z

, where g(x) = α(#x)h(x), Z =
∫
g(x) dμ(x),

and #x is the number of points in configuration x. Here the function α(n) controls the
numberofpoints,whileh(x) is ameasurable function thatdescribes the interaction structure
between points of the process. Z is the normalizing constant, and usually no direct method
is known for even approximating Z, let alone calculating it exactly.

Example 9.1

The Strauss process (Strauss, 1975) is a repulsive model that surrounds each point with a disk
of radius R, and then penalizes configurations for each pair of points whose disks overlap. This
process has three parameters: λ is the nonnegative activity of points, γ is the interaction parameter
in [0, 1], and R is the radius of the disks. Typically, S = R

2 and the density is with respect to μ
where the intensity is m(·):

g(x) = λ#xγs(x), s(x) = #{{i, j} : dist(xi , xj) < 2R}, (9.2)

where x consists of the points x1, . . ., x#x . In order to normalize g to be a probability density, set
Z (λ, γ,R) = ∫

g(s) dμ(s) and f (x) = g(x)/Z (λ, γ,R).
As γ→ 0, it becomes more and more unlikely to find overlapping disks. The limit of this process

is called a hard core model, since each disk becomes a hard core that cannot overlap.When γ > 0,
the process can be called a soft core model, as it is possible for the cores surrounding the disks to
interpenetrate. The Strauss process was generalized to pair-repulsion processes in Kelly and Ripley
(1976), where the penalty factor is allowed to be a general function, rather than a constant γ.

Aweakness of the Strauss process is that it can only be used to model repulsion, since if
γ > 1 then thedensity cannot be normalized. The next example, the area interactionprocess,
solves this problem and allows for both repulsion and attraction as one of its parameters
varies from 0 to infinity.

Example 9.2

The area interaction process (Baddeley and van Lieshout, 1995; Widom and Rowlinson, 1970)
has two parameters, λ and γ, each in [0,∞). Each point xi is surrounded by a region Ai called
the grain of xi . The unnormalized density is

g(x) = λ#xγ−m(∪Ai ). (9.3)

When γ > 1, points tend to clump closer together, making the model attractive; and when γ <

1, the points are forced farther apart, making the model repulsive. The model is written above
using Lebesgue measure, but in fact is very general and can be used with any measure on the
space.
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9.3 Metropolis–Hastings Reversible Jump Chains
Typical discrete-time Markov chains for approximately sampling from g operate by using
three types of moves: (1) shifting a point in the configuration, (2) adding a point to the
configuration, (3) removing a point from the configuration. These algorithms were first
described byGeyer andMøller (1994), and can be considered a special case of the reversible
jump procedure of Green (1995). Reversible jump is an extension of Metropolis–Hastings
chains (Hastings, 1970; Metropolis et al., 1953) for problems where the dimension of the
space is not fixed.
Metropolis–Hastings chains are constructed to satisfy the reversibility condition.

AMarkov chain with transition kernel K(x, ·) is reversible with respect to π if
π(dx)K(x, dy) = π(dy)K(y, dx).

The purpose of reversibility in the design of Markov chains is that if K is reversible with
respect to π, then π is a stationary distribution of the Markov chain.
To reach the goal of generating variates from a point process with distribution π, first

a Markov chain must be constructed with π as its stationary distribution. Suppose that π
has density g(x)/Z with respect to a Poisson point process with intensity λ(·) (so that the
underlying Poisson point process has measure μ(·) as in Equation 9.1). In other words,

π(dx) = g(x)
Z

· μ(dx). (9.4)

For a configuration x and points v ∈ S, let x + v denote the configuration that contains
all the points in x and v. For v ∈ x, let x − v denote the configuration x after removing the
point v.
Metropolis–Hastings chains begin with a proposal kernelK′(x, ·), where π(dy)K′(y, dx) is

absolutely continuous with respect to π(dx)K′(x, dy). Given the current state x, K′ is used
to generate a state y which is the proposed next state of the chain. Given x and y, the
Metropolis–Hastings ratio is

r(x, y) = π(dy)K′(y, dx)
π(dx)K′(x, dy)

= g(y)μ(dy)K′(y, dx)
g(x)μ(dx)K′(x, dy)

. (9.5)

Formally this is a Radon–Nikodym derivative, which is the reason for the absolute conti-
nuity requirement above. With probability min{1, r(x, y)}, the move from x to y is accepted,
and y becomes the next state in the chain. Otherwise the next state is the same as the cur-
rent state. Note that the normalizing constant Z in Equation 9.4 cancels out in the ratio
(Equation 9.5).

Shifting When y = x + v− w for some v,w ∈ S, suppose that the proposal move
shifts point w to point v. To find the ratio in Equation 9.5, recall that μ(dx) =
exp(−λ(S))∏#x

i=1 λ(dxi). The exp(−λ(S)) factor cancels out. Since the point w is shifted to
v in moving from x to y, μ(dy) contains a factor of λ(dv) that μ(dx) does not. In the other
direction μ(dx) contains a factor of λ(dw) that μ(dy) does not. All the other factors cancel,
and so Equation 9.5 becomes

r(x, y) = g(x + v− w)

g(x)
· K′(x + v− w, dx)
K′(x, d(x + v− w))

· λ(dv)
λ(dw)

.
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Birth When y = x + v, suppose that point v is born. In this case #y = #x + 1, and so μ(dy)
contains a factor of λ(dv) that μ(dx) lacks. So the Metropolis–Hastings ratio becomes

r(x, y) = g(x + v)
g(x)

· K′(x + v, dx)
K′(x, d(x + v))

λ(dv).

Death When y = x − w, suppose that point w died. In this case #y = #x − 1, and μ(dx)
contains a factor of λ(dw) that μ(dy) lacks. The Metropolis–Hastings ratio is

r(x, y) = g(x − w)

g(x)
· K′(x − w, dx)
K′(x, d(x − w))

· 1
λ(dw)

.

One choice that simplifies these ratios is to use P(shift) = P(birth) = P(death) = 1
3 . For

shifts or births, v is drawn from the normalized intensity measure λ(·)/λ(S), and for shifts
or deaths, w is drawn uniformly from the set of points in x. This makes the shifting ratio

g(x + v− w)

g(x)
·
1
3 (λ(dw)/λ(S))(1/#x)
1
3 (λ(dv)/λ(S))(1/#x)

· λ(dv)
λ(dw)

= g(x + v− w)

g(x)
.

Similarly, the birth ratio becomes

g(x + v)
g(x)

·
1
3 (1/(#x + 1))
1
3λ(dv)/λ(S)

· λ(dv) = g(x + v)
g(x)

· λ(S)
#x + 1

.

The death ratio becomes

g(x − w)

g(x)
·
1
3λ(dw)/λ(S)

1
3 (1/#x)

· 1
λ(dw)

= g(x − w)

g(x)
· #x
λ(S)

.

Therefore the following pseudocode takes one step in this chain:

ALGORITHM 9.2 METROPOLIS–HASTINGS STEP IN SHIFT–BIRTH–DEATH
CHAIN
Input: current state x,
Output: next state x ′
1: draw type← Unif({shift,birth,death}), U ← Unif([0,1]), v ← λ(·),

w ← Unif(x)

2: if type = shift and U < g(x + v − w )/g(x) then
3: x ′ ← x + v − w
4: else if type = birth and U < (g(x + v)/g(x))(λ(S)/[#x + 1]) then
5: x ′ ← x + v
6: else if type = death and U < (g(x − w )/g(x))(#x/λ(S)) then
7: x ′ ← x − w
8: else
9: x ′ ← x

10: end if

Calculation of g(y)/g(x) can be the most difficult part in coding these algorithms.
Fortunately, it is often the case that many factors in the ratio cancel.
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9.3.1 Examples

Consider Example 9.1. In the Strauss process density (Equation 9.2), adding (or removing)
a point changes the number of factors of λ by 1, and adds (or removes) a number of factors
of γ equal to the number of other points within distance 2R of the changing point. For u ∈ S,
let n(x, u) = #{j : dist(xj, u) < 2R}, so

g(x + v)
g(x)

= λγn(x,v), g(x − w)

g(x)
= λ−1γ−n(x,w),

g(x + v− w)

g(x)
= γn(x,v)−n(x,w).

In Example 9.2 (the area interaction process), it is easy towrite a formula for g(x + v)/g(x),
but difficult to compute in practice. Let a(x, v) denote the area of the region that is inside
the grain for v, but which is not inside the grain for any other point. Then

g(x + v)
g(x)

= λγ−a(x,v), g(x − w)

g(x)
= λ−1γa(x,v), g(x + v− w)

g(x)
= γ−a(x,v)+a(x+v,w).

So the ratio for a birth is (g(x + v)/g(x))(λ(S)/(#x + 1)) = (λ(S)/(#x + 1))λγ−a(x,v). Even
when the grain is a simple disk, calculation of a(x, v) can be time-consuming, which in
turn makes finding the Metropolis–Hastings ratio difficult. This problem is addressed in
Section 9.4, where continuous-time Markov chains are considered.

9.3.2 Convergence

Let Kt(x, ·) be the distribution of Xt given that the starting state of the chain is x. The
Metropolis–Hastings methodology gives a means for building a chain with an invariant π
so that

π(A) =
∫
K(x,A) π(dx).

For Monte Carlo purposes the goal is to have the limiting distribution match the stationary
distribution:

lim
t→∞ ||K

t(x, ·)− π(·)||TV = 0,

where ||ν||TV is the total variation norm of a signed measure given by

||ν||TV = sup
A
|ν(A)|.

The methods above build a Markov chain whose stationary distribution matches the
target distribution given by g, but that is not a guarantee that the limiting distribution
matches the stationary distribution.
The following definitions come from Section 5.6 of Durrett (2005). Suppose that aMarkov

chain is aHarris chain if there existmeasurable setsA,B, real ε > 0, andaprobabilitymeasure
ρ with ρ(B) = 1 where two properties hold. First, if τA := inf{n ≥ 0 : Xn ∈ A}, then P(τA <

∞|X0 = x) > 0 for all x. Second, if x ∈ A and C is a measurable subset of B then K(x,C) ≥
ερ(C). That is, from any starting state, there is positive probability of getting to A, and from
any state inA, there is a positive chance ε that a simulator can ignore the value of the current
state in deciding the location of the next state.
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Furthermore, if (∀x ∈ A)(P(τA < ∞|X0 = x) = 1) (so that the probability of returning to
A from any starting point in A is 1) then the chain will be recurrent. For a recurrent chain,
for all x ∈ A, the greatest common divisor of {t : Kt(x,A) > 0} will be the same. Call this
common value the period of A, and, if the period is 1, call the chain aperiodic. Then the fol-
lowing theorem gives sufficient conditions for the stationary distribution to be the limiting
distribution (see Durrett, 2005):

Theorem 9.1

Let Xn be an aperiodic recurrent Harris chain with stationary distribution π. If P(τA < ∞|X0 =
x) = 1, then as t→∞,

||Kt(x, ·)− π(·)|| → 0.

For chains on the space of point processes, using A = B = ∅ is usually a valid choice for
showing that a Harris chain is recurrent.Asufficient condition for the validity of this choice
is local stability:

Definition 9.1

A density g(x) is defined to be locally stable if there exists a constant K such that g(x +
v)/g(x) ≤ K for all x and v.

Note that both the Strauss process and the area interaction process discussed earlier are
locally stable. In addition, most Markov point processes such as the saturated and triplets
process (Geyer, 1999) or nearest-neighbor processes (Baddeley andMøller, 1989) are locally
stable as well. The Metropolis–Hastings step given above will be Harris recurrent for any
locally stable Markov chain; see Rosenthal (1995) for examples of this type of analysis.
Suppose that a chain is Harris recurrent, and that when the chain is in the empty set, there

is a positive chance that a death is proposed. Since the chain stays in the same configuration
when this happens, the chain also becomes aperiodic, thereby satisfying the conditions of
Theorem 1.

9.4 Continuous-Time Spatial Birth–Death Chains
AMetropolis–Hastings chain stays at the current state for a number of steps before jumping
to a new state. The time until the first jump is a geometric randomvariable. The continuous-
time analog is the exponential distribution, and so continuous-timeMarkov chains operate
by staying at the current state an exponential amount of time, and then jumping to a new
state. These chains are also known as jump processes (see Feller, 1966, Chapter X.3).
As with discrete-time chains, reversibility is the key to designing continuous-time chains

with the target distribution as their limiting distribution. Preston (1977) solved this problem
by introducing jump process where, for a configuration x, the rate of births is controlled by
a rate function b(x, v), and the rate of deaths is controlled by a death function d(x,w), where
d(x,w) > 0 if w ∈ x.
Reversibility holds with respect to g if the rate of births balances the rate of deaths for all

configurations x and points v:
g(x)b(x, v) = g(x + v)d(x + v, v). (9.6)
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The chain is updated as follows. For the total rate of births and of deaths we have

rb(x) =
∫
b(x, v) λ(dv), rd(x) =

∑
w∈x

d(x,w).

The time until the next birth is an exponential randomvariablewith rate rb(x). Similarly, the
time until the next death is exponential with rate rd(x). If a birth occurs, a point v is chosen
according to λ(·). If a death occurs, a point w ∈ x is chosen to be removed with probability
d(x,w)/rd.

ALGORITHM 9.3 CONTINUOUS-TIME BIRTH–DEATH CHAIN
Input: current time t, current state x
Output: new time t′, new state x ′
1: draw tb ← Exp(

∫
b(x,v)λ(dv)), td ← Exp(

∑
w∈x d(x,w ))

2: if tb < td (so a new point is born) then
3: draw v ← λ(·)
4: x ′ ← x + v, t′ ← t+ tb
5: else
6: draw w ← d(x, ·)
7: x ′ ← x − w, t′ ← t+ td
8: end if

To create birth and death rates that satisfy reversibility (Equation 9.6), a technique similar
toMetropolis–Hastings isused.Whenabirthoccurs, only accept thebirthwith a ratio r(x, v).
This thins the birth rate from b(x, v) to b′(x, v) = b(x, v)r(x, v). This procedure is easiestwhen
the density is locally stable with constant K, so that g(x + v)/g(x) ≤ K for all x and v.
To create a spatial birth–death jump process with a locally stable g as its target density,

set d(x,w) = 1 and b(x, v) = K for all configurations x and all points v and w. Hence rb =
Kλ(S) and rd = #x. Once a birth occurs, it is accepted with probability r(x, v) = (1/K)(g(x +
v)/g(x)). Hence,

g(x)b′(x, v) = g(x)b(x, v)r(x, v) = g(x)(K/K)(g(x + v)/g(x)) = d(x + v, v)g(x + v),

and reversibility holds. The pseudocode is as follows:

ALGORITHM 9.4 PRESTON SPATIAL BIRTH–DEATH CHAIN
Input: current time t, current state x
Output: new time t′, new state x ′
1: draw tb ← Exp(Kλ(S)), td ← Exp(#x)

2: if tb < td (a new point might be born) then
3: draw v ← λ(·), U ← Unif([0,1])
4: x ′ ← x, t′ ← t+ tb
5: if U < (g(x + v)/g(x))(1/K) then
6: x ′ ← x ′ + v
7: end if
8: else
9: draw w ← Unif(x)

10: x ′ ← x − w, t′ ← t+ td
11: end if
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An exponential with rate α can be drawn by taking −(1/α) lnU, where U is a uniform
random variable on [0, 1]. Therefore the work needed in this algorithm is similar to that
needed to take a discrete time step.

9.4.1 Examples

Consider Example 9.1, the Strauss point process. Here K is λ. For a point v that is born
into a configuration x, g(x + v)/g(x) is just λγn(x,v), where n(x, v) = #{j : dist(xj, v) < 2R} as
before. So lines 5 and 6 above become:

5: if U < γn(x,v) then
6: x ′ ← x + v

For Example 9.2, the area interaction process, it was difficult to create a Metropolis chain
because of the difficulty of calculating the acceptance ratio. As before, let a(x, v) denote
the area of the grain of v not already in a grain of a point of x and m(·) be the measure
used to determine areas in the process. Then the Metropolis ratio for accepting a birth is
rb = (m(S)/(#x + 1))λγ−a(x,v), which can be difficult to compute.
In contrast, the ratio for accepting a birth in the continuous-time chain is simpler. For

a configuration {x1, . . ., x#x}with grains {A1, . . .,A#x}, let A be the union of these grains (so
A = ∪w∈xAw). Suppose that γ > 1, so K = λ applies as the constant of local stability. Then
(g(x + v)/g(v))(1/K) = γ−a(x,v). While this value is no easier to compute than it was before,
a Bernoulli randomvariablewith this parameter can be generated as follows. First, generate
a Poisson point process with intensity measure (ln γ)m(·) overAv. Remove any points from
this process that lie in A. This is called thinning the process.
The result of thinning is a Poisson point process over the region Av ∩ AC with intensity

(ln γ)m(·) restricted to Av ∩ AC, since the expected number of points inside any subset of
Av ∩ ACwill be correct because it came fromthePoissonpointprocess over the larger region.
Since it is a Poisson point process, the number of points in the region will have the Poisson
distribution with parameter (ln γ)m(Av ∩ AC). Hence the probability the process contains
zero points will be exactly exp(−(ln γ)m(Av ∩ AC)) = γ−a(x,v). So if no points remain after
thinning, accept the birth of the grain, otherwise reject. In pseudocode:

6a: draw Z← as a Poisson point process on Av with intensity
(ln γ)m(·)

6b: if Z ∩ Ac = ∅ then
6c: x ′ ← x + v

Let a be themeasure of a grain surrounding v.When γ < 1, adding the point v changes the
density by a factor of at most λγ−a. Therefore the probability of accepting a birth becomes
[g(x + v)/g(x)][1/(λγ−a)] = λγ−a(x,v)/(λγ−a) = (γ−1)−(a−a(x,v)). A Bernoulli with this prob-
ability can be found by first generating a Poisson point process with intensity ln(γ−1) =
− ln γ inside the grain of v, and then accepting if none of the points lie in the area of the
grain that is already covered by grains of points in x. Again thinning can be used to verify
that the probabilities are correct:

6a: draw Z← as a Poisson point process on Av with intensity
−(ln γ)m(·)

6b: if Z ∩ A = ∅ then
6c: x ′ ← x + v
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9.4.2 Shifting Moves with Spatial Birth and Death Chains

Preston (1977) only included provisions for births and deaths in his examples, but his
method can be extended to allow for shifting moves as well. Suppose that point v is added
and point w is removed from the chain at rate s(x, v,w). Reversibility for the jump process
requires

g(x)s(x, v,w) = g(x + v− w)s(x + v− w,w, v).

Note that the shifting move rate can be multiplied by any constant without disturbing
reversibility. This allows the user to make shifting moves more or less prevalent compared
to births and deaths as needed to make the chain run more quickly.

9.4.3 Convergence

Kaspi and Mandelbaum (1994) studied Harris recurrence for continuous-time Markov
chains. The results are essentially the same as in the discrete-time case, although, because
of the exponential waiting time between jumps, there is no need for a notion of aperiodicity
in this context. As long as the chain returns infinitely often to a set A that is hit from the
starting state x with probability 1, then ||Kt(x, ·)− π(·)|| → 0 as t→∞. When the target
density is locally stable, then the empty configuration gives such a set when used with the
Preston spatial birth–death chain.

9.5 Perfect Sampling
While it may be possible to show convergence of the distribution of the state to the sta-
tionary distribution, it is far more difficult to assess how quickly this convergence occurs.
This is the primary drawback to Markov chain methods for approximately sampling from
distributions. Heuristics such as autocorrelation plots can show that a Markov chain is not
mixing, but they cannot prove that the chain is mixing.
Perfect sampling algorithms generate samples exactly from π (up to the natural limits

all Monte Carlo algorithms face: real numbers that are rounded to machine accuracy and
the use of pseudorandom numbers rather than true uniforms). The drawback to perfect
sampling algorithms is that they are Las Vegas type algorithms, and so their running time
is itself a random variable. While the running time has finite expectation, the support is
unbounded. That is:

Definition 9.2

A perfect simulation algorithm for π is an algorithm whose running time T is finite with
probability 1, whose output is a draw from π, and where, for all t, P(T > t) > 0.

9.5.1 Acceptance/Rejection Method

Asan illustration, consider the acceptance/rejectionmethod for generating from g, the basic
idea of which goes back to von Neumann (1951). Suppose that g(x) ≤ u(x), where u(x) is
an unnormalized density from which it is possible to generate samples. Then a random
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variate with density proportional to u(x) is drawn, and is accepted as a draw from density
g(x) with probability g(x)/u(x). Otherwise the process begins again.

ALGORITHM 9.5 ACCEPTANCE/REJECTION

Input: target g(x), upper bound u(x) satisfying g(x) ≤ u(x)

Output: X ∼ g(·)
repeat
draw X ← u(·)

until U ≤ g(X)/u(X)

Theorem 9.2

The output of the above procedure is distributed according to g(x).

Proof. Let X1,X2, . . . be the i.i.d. draws from u(x) used by the algorithm, U1,U2, . . . the
uniform i.i.d. draws, N the number of times through the repeat loop, and A a measurable
set. Then

P(XN ∈ A) =
∞∑
i=1

P(Xi ∈ A,N = i) =
∞∑
i=1

P
(
Xi ∈ A,Ui ≤ g(Xi)

u(Xi)

) i−1∏
j=1

P
(
Uj >

g(Xj)
u(Xj)

)
.

Each factor in the last product is the same (since Ui and Xi are i.i.d.), so call it 1− p. Then

P(XN ∈ A) =
∞∑
i=1

P(Xi ∈ A,N = i) =
∞∑
i=1

P
(
Xi ∈ A,Ui ≤ g(Xi)

u(Xi)

)
(1− p)i−1

=
∞∑
i=1

(1− p)i−1
∫
A
P(Ui ≤ g(Xi)/u(Xi))(u(x)/Zu) dμ(x)

=
∫
A
(g(x)/u(x))(u(x)/Zu) dμ(x)

∞∑
i=1

(1− p)i−1

=
[∫

A
(g(x)/Zu) dμ(x)

]
(1/p)

where Zu is the normalizing constant for u(x). Next calculate p and find P(XN ∈ A) :

p = P(Uj ≤ g(Xj)/u(Xj)) =
∫
(g(x)/u(x))(u(x)/Zu) dμ(x) = Zg/Zu,

P(XN ∈ A) =
∫
A
(g(x)/Zg) dμ(x),

exactly as desired. �

The running time of the algorithm T (as measured by the number of times through the
repeat loop) is a geometric random variable, and so P(T > t) > 0 for any fixed value of t.
The output does come from π, but can take an arbitrarily long time to do so.
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Moreover, the expected running time of 1/p = Zu/Zg is directly related to how close the
upper bound density u(x) is to g(x). For example, in the Strauss process density (Equa-
tion 9.2), u(x) = λ#x is a valid upper bound density, and is easy to sample from: simply
generate a Poisson point process with intensity λm(·) rather than m(·). Given a draw
X ∼ u(·), the probability of accepting the draw is g(X)/u(X) = γs(X). If λ is large, there
could be many pairs of points within distance 2R of each other, and so for (say) γ = 1

2 , the
probability of accepting could be very small. For this reason, acceptance/rejection is usu-
ally only useful on small problems, and for larger instances more sophisticated techniques
must be used.

9.5.2 Dominated Coupling from the Past

In this section the dominated coupling from the past (DCFTP) procedure of Kendall and
Møller (2000) is described. This method extends the coupling from the past procedure of
Propp and Wilson (1996) to work with chains with an unbounded number of dimensions
for locally stable processes.
Consider again the Preston spatial birth–death chain of Section 9.4. It is worth recalling

two important facts about exponential random variables here.

• IfA1,A2, . . .,An are exponential randomvariableswith ratesλ1,λ2, . . .,λn, then the
minimum of the A1, . . .,An variables will be an exponential random variable with
rate λ1 + · · · + λn. Hence, the death clock of rate rd can be thought of as putting
individual death clocks of rate 1 on each of the points in the set, and activating
them as needed.

• Exponential randomvariables arememoryless.Conditionedona clockbeing larger
than t, the remaining time on the clockwill still be an exponential randomvariable.
That is, if T ∼ Exp(λ1), then [T − t|T > t] ∼ Exp(λ1).

Using these properties, an equivalent method for simulating the Preston birth–death
chain is as follows. Always keep track of the time of the next birth of a point, and the times
of the deaths of the current points. When a point dies, it is removed from the process as
before; when it is born, it is assigned a death time, and then checked to see whether or not it
should be thinned. Call the resulting processXt, and this process has stationarity density g.
Also keep track of the process where no points are thinned, and call this processDt. Note

that Dt is using the same birth and death events as process Xt, it is just that some of the
births are thinned (and so those points do not appear) in Xt. So Dt always contains more
points than Xt, and Dt is a dominating process for Xt. Since Dt has no thinning it has birth
rate Kλ(S) and a death rate of 1 on each point. Hence D0 is a Poisson point process with
intensity measure Kλ(·), and so isDt for all times t. In order to knowwhether or not to thin
the point v ∈ Dt in the processXt, each point in the dominating processwill bemarkedwith
a value drawn uniformly from [0, 1]. That mark will be used to decide if the point should
be thinned. (This mark is in addition to any other mark that might be part of the spatial
point process model.) Figure 9.1 illustrates this process by showing a possible run of the
marked dominating process Dt and the thinned underlying process Xt. In this figure, the
line segments represent the lifespans of the points, while the squares are birth and death
events. Shaded squares indicate a point in both the dominated and underlying process,
while empty squares are in Dt, but were thinned at birth and so do not appear in Xt.
With a dominating process in hand, the CFTP procedure of Propp and Wilson (1996)

can now be used. Here, instead of running the Xt process to larger times t, think of the
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In Xt

Not in Xt

FIGURE 9.1
Dominated and underlying process.

process as running over all times in (−∞,∞) and just selecting X0. Intuitively, since over
time (−∞, 0] the process has already been running for an arbitrarily long amount of time,
X0 will be stationary. This involves running the dominating process backwards in time and
then running the coupled (Dt,Xt) process forwards in time up to time 0.
First consider how to run the dominating process backwards in time. This process is time

reversible, and so running backwards in time is straightforward.At time 0,D0 is just a draw
from a Poisson point process with intensity Kλ(S), which can be created using the Poisson
point sampler (Algorithm 9.1).
As the process moves backwards in time, the roles of births and deaths are reversed.

A “death” causes a new point to be added, and a “birth” removes an existing point from
the system. Hence deaths occur backwards in time at constant rate Kλ(S), while the total
birth rate for the dominating process is |Dt|.
Consider the following example. Let D(−n) denote the state of the marked dominating

process after n events (either births or deaths) backwards in time have been generated.
Suppose D0 = D(0) = {v1, v2}. Then the time until the first birth of v1 or v2 is exponential
with rate 2, and the time until the first death is exponential with rate Kλ(S). Suppose that
a death occurs. Then a random point v3 is chosen by λ(·) and added to the system so that
D(−1) = {v1, v2, v3}. Now suppose that the next event that occurs is the birth of v2. Then a
uniform on [0, 1] for v2 is rolled for itsmark (let us say it was 0.9863…), andD(−2) = {v1, v3}
since v2 is removed from the system. The list of events going backwards in time for the
dominating process now has two events in it, a death of v3 followed by a birth of v2 with
mark .09836 . . ., so

birth–death list =
[
death v3
birth v2 0.9836 . . .

]
.

In this fashion, given the current state of the marked dominating process D(−n) and the
list of the first n events, the list can be extended to give state D(−n′) and the first n′ events
using the following pseudocode:
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ALGORITHM 9.6 DOMINATED EVENT GENERATOR
Input: state D(−n), birth–death list BDL with n events, and the

new size of list n′
Output: D(−n′), new birth–death list BDL′ of size n′
1: D ← D(−n), BDL′ ← BDL
2: for i from n + 1 to n′ do
3: draw td ← Exp(Kλ(S)), tb ← Exp(#D)

4: if td < tb (then next event is a death) then
5: draw w ← λ(·)
6: D ← D + w, add [death w ] to list BDL′
7: else
8: draw v ← Unif(D), U ← Unif([0,1])
9: D ← D − v, add [birth v U ] to list BDL′
10: end if
11: end for
12: D(−n′) ← D

In the dominated event generator, the actual values of td and tb are not used, they are only
being used to determine if td < tb. For two independent random variables A1 ∼ Exp(λ1)
and A2 ∼ Exp(λ2), P(A1 < A2) = λ1/(λ1 + λ2), so lines 3 and 4 of the dominated event
generator can be replaced with:

draw U ← Unif([0,1])
if U < Kλ(S)/[Kλ(S)+ #D] then
Go back in time for n events, and suppose that the state X right before these events is

known, and that the list of the next n events is given. Then all the random choices needed
to calculate the state X0 have already been made in the BDL list. So from the list, the state
of the process up to time 0 can be calculated.

ALGORITHM 9.7 ADVANCE UNDERLYING STATE TO TIME 0
Input: state X after n events back in time, birth–death list BDL

consisting of n events
Output: X, the state at time 0
1: for all the events e in BDL from end to beginning do
2: if e = [death w ] then
3: X ← X − w
4: else if e = [birth v U ] then
5: if U ≤ [(g(X + v)/g(X)][1/K ] then
6: X ← X + v
7: end if
8: end if
9: end for

Note that this forms a coupling of the marked dominated processDt and the underlying
processXt.Acoupling is a jointprocess (in this case (Xt,Dt)) such that themarginalprocesses
have their original distribution. In this case Xt is evolving according to the Preston spatial
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birth–death chain, and Dt is evolving according to a simple spatial birth–death chain, so
marginally each has the correct distribution.
The problem with this procedure is that ifD(−n) = ∅ then X(−n) is unknown, making it

impossible to run theprocedure! SinceP(D(−n) = ∅) = exp(−Kλ(S)), this is unlikely except
for small spaces or very small values of K. So instead a bounding chain (Huber, 2004) is
used to try to find X(0).

Definition 9.3

Aprocess (Lt,Mt) is a bounding chain for Xt if there is a coupling (Lt,Xt,Mt) such that

Lt ⊆ Xt ⊆Mt ⇒ Lt′ ⊆ Xt′ ⊆Mt′ for all t′ > t.

For our purposes, it is sufficient to use processes L(−n) and M(−n), and verify that if
L(−n) ⊆ X(−n) ⊆M(−n), then L(−n+ 1) ⊆ X(−n+ 1) ⊆M(−n+ 1). Note that if a death
occurs, then in line 4 the point is always removed from the underlying state X. However,
if the point is a birth, then the probability that the point v is added to X is only r(X) =
(g(X + v)/g(X))(1/K). Thus a lower bound on the probability that the point is added toX is

rmin = min
X:L(−n)⊆X⊆M(−n) r(X).

Similarly, rmax = maxX:L(−n)⊆X⊆M(−n) r(X) is an upper bound on the probability of adding
v to X. Let X satisfy L(−n) ⊆ X ⊆M(−n). If U ≤ rmin then v will be added to X, and so
L(−n+ 1) = L(−n)+ v and M(−n+ 1) =M(−n)+ v is valid as a bounding chain step. If
U > rmax, then v is definitely not added to X, and so L(−n+ 1) = L(−n) andM(−n+ 1) =
M(−n) is a valid bounding chain step. Finally, if rmin < U ≤ rmax, setting L(−n+ 1) =
L(−n) and M(−n+ 1) =M(−n)+ v is a valid step. This is summarized in the following
pseudocode:

ALGORITHM 9.8 BOUNDING CHAIN STEP
Input: L(−n),M (−n), event e
Output: L(−n + 1),M (−n + 1)

1: if e = [death w ] then
2: L(−n + 1) ← L(−n)− w
3: M (−n + 1) ← M (−n)− w
4: else if e = [birth v U ] then
5: A← {x : L(−n) ⊆ x ⊆ M (−n)}
6: rmin ← minx∈A[g(x + v)/g(x)][1/K ], rmax ← maxx∈A[g(x + v)/g(x)][1/K ]
7: if u < rmin then
8: L(−n + 1) ← L(−n)+ v, M (−n + 1) ← M (−n)+ v
9: else if U < rmax then

10: M (−n + 1) ← M (−n)+ v
11: end if
12: end if

Now the main DCFTP loop can be created. The outline is as follows. First generate D(0),
and n events in the backward birth–death list. Set L(−n) = ∅ andM(−n) = D(−n) so that
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nomatter whatX(−n) is, L(−n) ⊆ X(−n) ⊆M(−n). Then advance forward to find L(0) and
M(0). If L(0) =M(0), thenX(0) is sandwiched in between and can be output as a stationary
state. If they are different, then generate events even farther back in time, and begin again.
This is summarized in the following pseudocode.

ALGORITHM 9.9 DOMINATED COUPLING FROM THE PAST
Input: starting value for n
Output: X a draw from the target density g
1: draw D(0) ← Poisson point process sampler(Kλ(·))
2: nold ← 0, BDL← ∅
3: repeat
4: (D(−n),BDL) ← Dominated event generator(D(−nold),BDL,nold,n)

5: U ← D(−n)

6: for e the events in BDL from end of list to beginning of
list do

7: (L,U ) ← Bounding chain step(L,U,e)

8: end for
9: nold ← n, n← 2n
10: until U = L
11: X ← U

It is important to note that the events generated in line 4 are being appended to the already
created events in BDL. That is, suppose that the backward events 1–10 have already been
created. If n = 20, then only events 11–20 will be added to the list, since events 1–10 are
currently in the list, and must be reused on each run through the repeat loop.
In line 9, the number of events checked is doubled at each step. Let N be the smallest

value of n such that L(−n) and M(−n), run forward in time, equal one another. Then by
doubling n each time, the longest run in the repeat loop will be for n ≤ 2N. This makes
the total time at most 2N +N +N/2+ · · · ≤ 4N, and so this method ensures that the total
number of steps taken is within a factor of 4 of the optimal value N.

9.5.3 Examples

The trickiest part of a DCFTP algorithm is the creation of an efficient bounding chain.
In lines 5 and 6 of the bounding chain step, the values of rmin and rmax are written as a
minimum and maximum over a large set A. In many instances, it is possible to find these
values without resorting to use of an optimization method.
Consider the Strauss process (Example 9.1), which is locally stable with K = λ. As

before, for a configuration x and point v, let n(x, v) = #{j : dist(xj, v) < 2R} so that (g(x +
v)/g(x))(1/K) = γn(x,v). Then since γ ≤ 1, this ratio is smallest when n(x, v) is largest, which
happens when x =M(−n), its upper bound. In the other direction, the ratio is largest when
n(x, v) is smallest, so rmax occurswhen x = L(−n). So there is no need to computeA, making
the relevant line for the Strauss process in the bounding chain step:

6: let rmin ← γn(M,v), rmax ← γn(L,v).

Now consider Example 9.2, the area interaction process. In Section 9.4.1, it was shown
how to take steps in the Preston birth–death chain by generating a Poisson point process Z
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with intensity | ln γ|m(·) inAv, the grain of the proposed birth v. LetA be the region covered
by the grains of points in x. If Z ∩ AC = ∅ and γ > 1, or if Z ∩ A = ∅ and γ < 1, then the
point is accepted. LetM(A) denote the region covered by the grains of points in the upper
process M, with L(A) defined similarly for the lower process L. Then L ⊆ x ⊆M implies
L(A) ⊆ A ⊆M(A), andM(A)C ⊆ AC ⊆ L(A)C. Forγ > 1, the equivalent to theuniformbeing
less than rmin is if Z ∩ L(A)C = ∅, and the uniform being less than rmax is Z ∩M(A)c = ∅.
So for the bounding chain step:

6: draw Z← Poisson point process sampler((ln γ)m(· ∩ Av ))

7: if Z ∩ L(A)C = ∅ then
8: M (−n + 1) ← M (−n)+ v, L(−n + 1) ← L(−n)+ v
9: else if Z ∩ M (A)C = ∅ then

10: M (−n + 1) ← M (−n)+ v

Another way to view this update is as follows. When Z ∩ L(A)C = ∅, add the birth to the
lower process L. When Z ∩M(A)C = ∅, add the birth to the upper process U. In effect, L
and U are being updated exactly as though they were states in the Markov chain. When
this choice of update works for the bounding chain, the update scheme is calledmonotonic.
When γ < 1, the update scheme is no longer monotonic. Now the point is least likely to

be born when X = U, and most likely to be born when X = L. The pseudocode becomes:

6: draw Z← Poisson point process sampler(−(ln γ)m(· ∩ Av ))

7: if Z ∩ M (A) = ∅ then
8: M (−n + 1) ← M (−n)+ v, L(−n + 1) ← L(−n)+ v
9: else if Z ∩ L(A) = ∅ then

10: M (−n + 1) ← M (−n)+ v

9.6 Monte Carlo Posterior Draws
Markov chain Monte Carlo for Bayesian analysis of spatial data creates a new set of chal-
lenges. The basic framework is as follows. First, a probabilistic model (such as the Strauss
process or area interaction process) is placed on the data. These models have parameters,
which are themselves treated as random variables. The distribution of these random vari-
ables is called the prior.Assuming that the data is drawn from the probabilistic model, then
the distribution of the parameters conditioned on the value of the data is different from the
prior, and is known as the posterior. This posterior can often bewritten as an unnormalized
density using Bayes’ rule. However, in Bayesian spatial analysis, the unnormalized density
can contain normalizing constants that are themselves difficult to compute—making the
problem exceptionally difficult!
Let p(·) denote the initial probability density of the random parameter θ (this is known

as the prior for θ). Let X denote the random value of the data, and suppose that the density
of X given θ is g(·|θ)/Zθ. Let π be the distribution of θ given X. From Bayes’ rule,

π(da|X = x) = [g(x|θ = a)/Za]p(a) da∫
(g(x|θ = b)/Zb)p(b) db

.
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So while the denominator is an unknown normalizing constant, the numerator contains
such a constant as well.
Metropolis–Hastings can be used to design a chain with limiting distribution π(·|X = x)

without knowing the denominator, but there is still the problem of Za. Suppose that θ = a,
and q(·|θ = a,X = x) is the proposal density used to generate a proposed move to θ = b.
Then the probability of accepting this move is

r = g(x|θ = b)/Zb
g(x|θ = a)/Za

· p(b)
p(a)

· q(a|θ = b,X = x)
q(b|θ = a,X = x)

. (9.7)

The last two factors in the ratio are typically easy to calculate, but the first represents a
problem. While g(x|θ = b)/g(x|θ = a) is straightforward, Za/Zb is not feasible to compute
directly.
Bognar and Cowles (2004) used importance sampling to approximate this ratio to take

approximate steps in the Metropolis chain. Møller et al. (2006) suggested an auxiliary vari-
able approach for dealingwith this problemwithout needing to find the ratio. By adding an
extra random variable to theMarkov chain, and choosing the appropriate proposal density,
the factor Za/Zb is eliminated in the Metropolis–Hastings acceptance ratio (Equation 9.7).
Alongside the random variable θ, create a new random variable Y, conditioned on θ and

X = x, that is itself a point process with normalized density f (·|θ,X = x) with respect to
a Poisson point process with intensity m(·). This is an example of the data augmentation
method: see Chapter 10 (this volume) for more information.
Note that θ has exactly the same distribution as earlier. Therefore, in a draw from the

limiting distribution of the Metropolis chain for (θ,Y|X = x), the marginal density of θwill
remain as before. The good news is that unlike the Metropolis chain for θ|X = x, a new
Metropolis chain for (θ,Y|X = x) can be constructed where the ratios can be calculated
explicitly.
Suppose that X = x, θ = a, and Y = y. Using density q(·|θ = a,X = x), propose a move

to θ = b. Now using density g(·|θ = b)/Zb, propose a new state y′ for Y to move to. This
makes the combined density for (b, y′) equal to g(y′|θ = b)q(b|θ = a,X = x)/Zb. This makes
the Metropolis–Hastings ratio for accepting the move from (a, y) to (b, y′):

r = g(x|θ = b)/Zb
g(x|θ = a)/Za

· p(b)
p(a)

· f (y
′|θ = b,X = x)

f (y|θ = a,X = x)
· g(y|θ = a)q(a|θ = b,X = x)/Za
g(y′|θ = b)q(b|θ = a,X = x)/Zb

.

Note that Za and Zb cancel out in this ratio, and so this method can be implemented to take
a Metropolis–Hastings step.

ALGORITHM 9.10 AUXILIARY VARIABLE METROPOLIS–HASTINGS STEP
Input: current state θ = a, Y = y, data x
Output: next state (θ,Y )

draw b ← q(·|θ = a,X = x), y ′ ← g(·|θ = b,X = x), U ← Unif([0,1])
r ← g(x|θ = b)p(b)f(y ′|θ = b,X = x)g(y |θ = a)q(a|θ = b,X = x)

g(x|θ = a)p(a)f(y |θ = a,X = x)g(y ′|θ = b)q(b|θ = a,X = x)
if U < r then
θ← b, Y ← y ′

end if
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The drawback of this method (as noted in Møller et al., 2006) is that the acceptance
probability can become very low, since the ratio involves f (·|θ = b,X = x). When f is very
far away from g, this can lead to proposals that are only rarely accepted. This problem has
been addressed by a variant of the method that uses the auxiliary variable in a different
fashion: see Murray et al. (2006) and Murray (2007) for details.

9.7 Running Time Analysis
Although it is not possible to analyze the mixing time of the Markov chains or the run-
ning time of the perfect simulation methods precisely for all models, when the model is
sufficiently noisy (in a sense to be described later), these methods will have a polynomial
running time.
The technique used here is coupling. As mentioned in Section 9.5, a coupling (Xt,Yt) is

a paired process where both Xt and Yt marginally have the correct distribution. Coupling
relates to the mixing time of a Markov chain as follows.

Theorem 9.3

(Doeblin, 1933) Let (Xt,Yt) be a coupling of two processes whose marginal distributions are a
Markov chain with stationary distribution π, and Y0 ∼ π. Then

||P(Xt ∈ ·)− π(·)||TV ≤ P(Xt = Yt).

Proof. Let A be a measurable set. Then P(Yt ∈ A) = π(A) and

P(Xt ∈ A) = P(Xt ∈ A,Yt = Xt)+ P(Xt ∈ A,Yt = Xt) ≤ P(Yt ∈ A)+ P(Yt = Xt).

Subtractingπ(A) = P(Yt ∈ A)yieldsP(Xt ∈ A)− π(A) ≤ P(Yt = Xt). ReversingXt andYt in
the above argument gives π(A)− P(Xt ∈ A) ≤ P(Yt = Xt), so |P(Xt ∈ A)− π(A)| ≤ P(Yt =
Xt). This is true for all A, so ||P(Xt ∈ ·)− π(·)||TV ≤ P(Xt = Yt) as desired. �

The processes Xt and Yt have coupled if Xt = Yt. Aldous (1982) used coupling to bound
mixing times of Markov chains, and the following proofs are in the same style, with some
differences necessary to deal with the nature of birth and death chains. Consider a process
Xt started at X0 = ∅, Y0 ∼ π, coupled as in Section 9.5 by using a dominating process Dt
and sharing birth and death events. Using the Preston spatial birth–death chain, if a birth
occurs inDt, it can be thinned so that the birth does not occur inXt. But if it survives, when
the point dies inDt, it dies in Xt as well. The same occurs for Yt, so that a point that is born
in Dt could be born in Xt or Yt or both.
Since births come from the dominating process Dt, both Xt and Yt are subsets of Dt.

Moreover, when a death occurs in one of the processes it will also occur in the other if that
point exists in the other. This tends to aid in coupling the two processes.
Births, on the other hand, might drive Xt and Yt apart, as a point might be accepted as

born into Xt but not Yt, or vice versa. Let Wt = Xt ⊕ Yt be those points in Xt or in Yt, but
not in both (this is the symmetric difference of the two configurations.) Let w(t) = E[#Wt].
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Abirth can only change the number of points inWt by 1, and so a differential equation for
w(t) can be derived by considering

lim
h→0

w(t+ h)− w(t)
h

= lim
h→0

E[E[#Wt+h|Xt,Yt] − #Wt]/h.

Theorem 9.4

Consider a Strauss process Xt (Example 9.1) started at X0 = ∅ , and let β be the Lebesgue measure
of a ball of radius 2R (this value depends on the distance metric used.) If βλ(1− γ) < 1, then

||P(Xt ∈ ·|X0 = ∅)− π(·)||TV ≤ λm(S) exp(−(1− βλ(1− γ))t).

Proof. The idea of the proof is to couple the X process started at X0 = ∅ with a Y process
started with Y0 ∼ π. At the beginning, Y most likely contains points that X does not. But
when a point in Y dies, the Y process and X process move closer together. Therefore, this
is referred to as a good event.
The point processWt = Xt ⊕ Yt is the set of points in X but not in Y, or in Y but not in X.

A good event is when one of these points dies, and so the rate at which good events occur
is just #Wt.
A bad event is when a point is born to X but not to Y, or born to Y but not to X. These bad

events increase the size ofWt by 1. The goal of the proof is to find an upper bound on the
rate of bad events. If the rate of bad events is smaller than the rate of good events, then the
good events will dominate, and eventually, the point processWt will lose more and more
points until it reaches the empty set.
For #Wt to increase by 1 (a bad event), a birth must occur at v andmust be accepted byXt

but not Yt or vice versa. The only way that can happen is if v lies within distance 2R of at
least onepoint inWt. The chance of adding toXt but notYt (or vice versa) is atmost 1− γn(v),
where n(v) denotes the number of points ofWt within distance 2R of v. Let Ai denote the
measure of the region within distance 2R of exactly i points inWt. Then

∑
i iAi ≤ β#Wt.

The birth rate of points within 2R of i points in #Wt in the Preston birth–death chain is
λAi. The total rate at which bad events occur is then at most

#Wt∑
i=1

Aiλβ(1− γi) ≤
#Wt∑
i=1

iAiλβ(1− γ) ≤ β#Wt(1− γ),

where the first inequality follows from

1− γi = (1− γ)(1+ γ+ · · · + γi−1) ≤ (1− γ)i.

Note that the rate of bad events is small when λ is small, β is small, or γ is close to 1. When
the bad event rate is smaller than the good event rate, the size of #Wt will tend to 0.
To make this intuition precise, consider the probability that exactly one event (good or

bad) occurs in the time interval from t to t+ h. This will yield a differential inequality on
w(t) := E[#Wt]. Because this is a continuous-time Markov chain, this probability is pro-
portional to h, and the probability that exactly n events occur in [t, t+ h] is O(hn). Putting
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this together with the known rate of good events (that decrease #W(t) by 1) and the upper
bound on the rate of bad events (that increase #W(t) by 1) yields an upper bound on w′(t):

w′(t) = lim
h→0

E[E[#Wt+h|Xt,Yt] − #Wt]
h

≤ lim
h→0

E[(h)(#Wtβλ(1− γ)− #Wt)+ (
∑∞

i=2 iO(hi))]
h

= −E[#Wt(βλ(1− γ)− 1)]
= −w(t)(1− βλ(1− γ)).

Now w(0) ≤ E[#W(0)] = λm(S) so, together with the differential inequality above,

w(t) ≤ λm(S) exp(−t(1− βλ(1− γ))).
The last trick is to note that #Wt is a nonnegative integer, and when #Wt does not equal

0, it is at least 1. This allows the use of Markov’s inequality to say that

P(Xt = Yt) = P(#Wt = 0) = P(#Wt ≥ 1) ≤ E(#W(t)) = w(t),

which completes the proof. �

Therefore, to get the total variation distance below an arbitrary ε > 0, when λβ(1− γ) < 1
it suffices to take t = (1− βλ(1− γ))−1[ln(λm(S))+ ln ε−1], and run this chain for this length
of time. The number of uniforms generated in running the chain for t steps is proportional
to the number of events in the dominating chain. Fortunately, this is closely related to t.
The following tail bounds on Poisson random variables will be helpful.

Lemma 9.1

Let A ∼ Poisson(α). Then E[A] = α, and for c ≥ 1,

P(A > αc) ≤ exp(−α(c ln c − c+ 1)), (9.8)

P(A < α/c) ≤ exp(−α(−(ln c)/c − (1/c)+ 1)). (9.9)

Proof. These are examples of Chernoff bounds (Chernoff, 1952). The idea is to use
Markov’s inequality for themoment generating function, thenminimize over the argument.
That is, for all a ≥ 0,

P(A > cα) = P(eaA > eacα) ≤ E[exp(aA)]
exp(acα)

= exp(α(ea − 1− ca)),

where the last inequality is using the fact that E[exp(tA)] = exp(α(et − 1)). Nowminimizing
ea − 1− ca gives a = ln c, making the bound exp(α(c− 1− c ln c)) as in Equation 9.8.
The second inequality follows similarly, first multiplying by −a where a ≥ 0 to obtain

P(−aA > −aα/c), and then using a = ln c as before. �
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Theorem 9.5

Let Nt be the number of events in the Preston spatial birth–death dominating chain to move from
time 0 to time t. Then E[Nt] = 2Kλ(S) and, for all c ≥ 1,

P[Nt > 2cKλ(S)] ≤ 2 exp(−2tKλ(S)(c ln c − c+ 1)).

Proof. Break the number of events Nt into the number of births Nb plus the number of
deathsNd. Thebirth anddeathprocesses in the chain are themselves eachaone-dimensional
Poisson process with rate Kλ(S), so Nb and Nd are each Poisson random variables with
parameter tKλ(S). The theorem essentially states that it is very likely that these two Poisson
random variables are close to their means, where E[Nb] = E[Nd] = tKλ(S).
IfNt > 2ctKλ(S) then, sinceNt = Nb +Nd, at least one ofNb andNd is at least ctKλ(S). So

P(Nt > 2ctKλ(S)) ≤ P(Nb > ctKλ(S))+ P(Nd > ctKλ(S)). The two tail probabilities on the
right are bounded using Lemma 1 to complete the proof. �

In other words, to run for time t in the Preston birth–death chain requires evaluation of
on average 2tKλ(S) events, and is unlikely to take very much more time than that.

Theorem 9.6

Consider an area interaction process Xt (Example 9.2) started at X0 = ∅, and let a be the maximum
area of a grain for any point in the space. Let B(v) be the area of the region where for a point w in
the region, the grains of w and v intersect, and let β = supv∈S B(v). If λβamax{γ, γ−1}a < 1, then

||P(Xt ∈ ·|X0 = ∅)− π(·)||TV ≤ λm(S) exp(−(1− λβamax{γ, γ−1}a)t).

Proof. As in the proof of Theorem 4, what is needed is to show that the rate of bad events
is smaller than the rate of good events. In the earlier proof, the rate of good events is exactly
#Wt, and the same rate holds here.
The rate of bad events can be bounded above by noting that a point vmust be born so that

its grain overlaps with a point inWt. This birth rate is at most #Wtλβ. Then the probability
of accepting the birth is γ−a(x,v) for γ > 1, and (γ−1)−(a−a(x,v)) for γ < 1. Either way, this is
bounded below by max{γ, γ−1}a, and the overall rate of bad events is #Wtλβamax{γ, γ−1}a.
The rest of the proof proceeds as in Theorem 4. �

9.7.1 Running Time of Perfect Simulation Methods

The advantage of using a perfect simulation method is that there is no need to know the
mixing timeof aMarkov chain—when themethod runs quickly, the samples are guaranteed
to come from the correct distribution.
On the other hand, it is still useful to have an a priori bound on the running time for a

nontrivial set of parameters of the model, and these bounds can be created in a fashion
similar to that used in finding the mixing time. The following theorem bounds the expec-
tation and the tail of the number of events generated in the birth–death list in the course of
creating a single random draw. The running time of dominated coupling from the past is
proportional to this number of events.
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Theorem 9.7

Consider perfect simulation of the Strauss process Xt using dominated coupling from the past. Let
n be the smallest number of events needed in the birth–death list before convergence occurs. Let
β = supv∈S m({w : dist(v,w) < 2R}) and b = 1− βλ(1− γ). If b ≥ 0, then

P(n ≥ a) ≤ exp(−0.15a)+ λm(S) exp(−2ba/[λm(S)])), E[n] ≤ 6.2+ 1.6λm(S)(λm(S)/b)).

Proof. This theorem is stated in terms of the smallest number of entries n on the birth–
death list needed for convergence to occur, rather than in time, since the running time of
DCFTP is directly proportional to this number.
Consider a fixed t < 0. Then suppose that entry number a in the birth–death list comes

before time t, and that, running forward from time t, the DCFTPprocedure brings the lower
process and upper process together. Then n ≤ a. Taking complements and using the union
bound, the probability that n > a is upper-bounded by the probability that fewer than a
events occur in [t, 0] plus the probability the lower and upper processes fail to converge in
time t.
Begin by bounding theprobability that the lower processL andupper processM converge

by time t. When a point dies, it is removed from both M and L, but when a point is born,
there is a chance it is added toM but not L, further separating the processes.
So consider a lower process L started at ∅, andM startedwith a draw from a Poisson point

process on S. Two types of events alter the size ofM\L. Type I events are deaths of points
in M\L. Type II events are the birth of points within distance R of M\L that are accepted
intoM but not L.
The rate of type I events is exactly #(M\L). The rate of type II points can be bounded

as follows. Recall that if a point is born within distance R of nM points inMn, rmin = γnM ,
while if it is born within distance R of nL points in Ln, rmax = γnL . Therefore, the chance of
adding a birth toM but not L is

γnL − γnM = γnL(1− γnM−nL) ≤ 1− γnM−nL .

Let Ai denote the area of points within distance R of exactly i points in M\L. Then the
total rate of births inM\L is bounded above by

#(M\L)∑
i=1

λAi(1− γi), where A1 + 2A2 + · · · + iAi ≤ β#(M\L).

Now use 1− γi = (1− γ)(1+ γ+ · · · + γi−1) ≤ (1− γ)i to say that
#(M\L)∑
i=1

λAi(1− γi) ≤
#(M\L)∑
i=1

λAi(i)(1− γ) ≤ βλ(1− γ)#(M\L).

Therefore, a sufficient condition for the rate of good events to outpace the rate of bad events
is that #(M \ L) ≥ βλ(1− γ)#(M \ L), or equivalently, that b = 1− βλ(1− γ) ≥ 0.
Let w(t) := E[#(Mt\Lt)], where Mt and Lt are the upper and lower processes after t

time has evolved. Then, as in the proof of Theorem 4, the rate computation above shows
that w(t) ≤ −w′(t)(1− βλ(1− γ)) and, taken with w(0) = E[#(M0\L0)] = λm(S), leads to
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the result that P(#(Mt\Lt) > 0) ≤ λm(S) exp(−tb). That is, the probability of not coupling
declines exponentially in the amount of time elapsed.
Now the second half of the proof starts, where it is shown that, for t = 2a/λm(S), the

probability that fewer than a events occur in [t, 0] is small. Consider birth events: they form
a Poisson process with rate λm(S), and so the probability that fewer than a births occur in
interval [t, 0] is bounded by the probability that a Poisson random variable with parameter
λm(S)t = 2a is at most a.
From Lemma 1, this probability is bounded above by exp(−0.15a). Therefore, the sum of

these probabilities is

exp(−0.15a)+ λm(S) exp(−2ab/[λm(S)]).

The bound on the expected value of n then follows from the tail sum formula. �

Some comments are in order. First, as b approaches zero, the bound approaches infinity.
In fact, in this situation it is possible to obtain a bound on E[n] that grows as O([λm(S)]2).
Second, no effort was made to obtain tight constants in the running time because in

practice they are unnecessary: this is a perfect simulation algorithm and so it can just be
run and the expected running time estimated as tightly as needed. The purpose of these
bounds is that under the same conditions where the Markov chain is known to be rapidly
mixing, the perfect simulation algorithm is polynomial as well. But in practice, the perfect
simulation algorithm could be fast over a much wider range of parameters, whereas the
mixing time of the Markov chain is completely unknown.
Third, suppose that the original call to dominated coupling from the past began with

n = 10, and after doubling twice to n = 40, the algorithm terminates. Then there were 40
events generated, and 40+ 20+ 10 evaluations of how the upper and lower processes
changed given those events. Because the number of calls is being doubled at each step, if
n is the minimum number of steps needed, the longest call to DCFTP will run for at most
2n steps. Each step is evaluated twice, and so the number of steps taken in the bounding
chain will be 2n+ n+ (n/2)+ · · · ≤ 4n. That is, the total expected number of steps will be
at most 4n, justifying the emphasis on bounding n in the preceding theorem.
A similar analysis can be done for the area interaction process.

Theorem 9.8

Consider perfect simulation of the area interaction process Xt using dominated coupling from the
past. Let n be the smallest number of events needed in the birth–death list before convergence occurs.
As earlier, let a be the maximum area of a grain over points in the space, and let B(v) be the area of the
region where, for a point w in the region, the grains of w and v intersect. Then let β = supv∈S B(v)
and b = 1− [λβa max{γ, γ−1}−a]. If b ≥ 0, then

P(n ≥ a) ≤ 2 exp(−0.15a)+ λm(S) exp(−2ba/(λm(S))), E[n] ≤ 6.2+ 1.6λm(S)(λm(S)/b).

The proof is the same as the previous theorem. The only difference is the definition of b,
which (roughly speaking) is 1 minus the rate at which a point in M\L is causing new
points to be born to M\L. (The 1 measures the rate at which these points are dying.)
Once b is known, the bounds on the tails of the running time, and the bound on the expected
running time, follow as before.
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10
The Data Augmentation Algorithm: Theory and
Methodology

James P. Hobert

10.1 Basic Ideas and Examples
Assume that the function fX : R

p → [0,∞) is a probability density function (pdf). Sup-
pose that g : R

p → R is a function of interest and that we want to know the value
of EfX g =

∫
Rp g(x)fX(x) dx, but that this integral cannot be computed analytically. There

are many ways of approximating such intractable integrals, including numerical inte-
gration, analytical approximations, and Monte Carlo methods. In this chapter, we will
describe a Markov chain Monte Carlo (MCMC) method called the data augmentation (DA)
algorithm.
Here is thebasic idea. In situationswhere classicalMonteCarlomethodsarenot applicable

because it is impossible to simulate from fX directly, it is often possible to find a joint pdf
f : R

p × R
q → [0,∞) that satisfies two properties: (i) the x-marginal is fX , that is,

∫
Rq
f (x, y) dy = fX(x);

and (ii) simulating from the associated conditional pdfs, fX|Y(x | y) and fY|X(y | x), is straight-
forward. The DA algorithm is based on this joint pdf. The first property allows for
the construction of a Markov chain that has fX as an invariant pdf, and the second
property provides a means of simulating this Markov chain. As long as the resulting
chain is reasonably well behaved, simulations of it can be used to consistently estimate
EfX g. We now begin to fill in the details, starting with the construction of the Markov
chain.
As usual, let fY(y) = ∫

Rp f (x, y) dx. Also, define X = {x ∈ R
p : fX(x) > 0} and Y = {y ∈ R

q :
fY(y) > 0} and assume that f (x, y) = 0 whenever (x, y) /∈ X× Y. Now define a function k :
X× X→ [0,∞) as follows:

k(x′ | x) =
∫
Y
fX|Y(x′ | y)fY|X(y | x) dy. (10.1)

(We will not need to perform the integration in Equation 10.1—remember that we are still
in the construction phase.) Since the integrand in Equation 10.1 is a product of conditional
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densities, k is never negative. Furthermore,
∫
X
k(x′ | x) dx′ =

∫
X

[ ∫
Y
fX|Y(x′ | y)fY|X(y | x) dy

]
dx′

=
∫
Y
fY|X(y | x)

[ ∫
X
fX|Y(x′ | y) dx′

]
dy

=
∫
Y
fY|X(y | x) dy

= 1.

Hence, for each fixed x ∈ X, k(x′ | x) is nonnegative and integrates to 1. The function k is
therefore aMarkov transition density (Mtd) that defines aMarkov chain,X = {Xn}∞n=0, with
state spaceX. The chain evolves as follows. If the current state of the chain isXn = x, then the
density of the next state,Xn+1, is k(· | x). This Markov chain is the basis of the DAalgorithm
and we now describe some of its properties.
The product k(x′ | x)fX(x) is symmetric in (x, x′). Indeed,

k(x′ | x)fX(x) = fX(x)
∫
Y
fX|Y(x′ | y)fY|X(y | x) dy =

∫
Y

f (x′, y)f (x, y)
fY(y)

dy.

Thus, for all x, x′ ∈ X,
k(x′ | x)fX(x) = k(x | x′)fX(x′), (10.2)

which implies that the Markov chain X is reversible with respect to fX (see, e.g. Ross, 1996,
Section 4.7). Equation 10.2 is sometimes called the detailed balance condition. Integrating both
sides of Equation 10.2 with respect to x yields

∫
X
k(x′ | x)fX(x) dx = fX(x′), (10.3)

which shows that fX is an invariant density for theMarkov chainX. What does it mean for fX
to be invariant forX? To answer this question, note that the integrand in Equation 10.3 is the
joint density of (X0,X1)when the starting value, X0, is drawn from fX . Thus, Equation 10.3
implies that, when X0 ∼ fX , the marginal density of X1 is also fX . Actually, since X is a
time homogeneous Markov chain, Equation 10.3 also implies that, if Xn ∼ fX , then Xn+1 ∼
fX . Hence, a simple induction argument leads to the conclusion that, if X0 ∼ fX , then the
marginal density of Xn is fX for all n. In other words, when X0 ∼ fX, the Markov chain X
is a sequence of dependent random vectors with density fX. Of course, in practice, it will
not be possible to start the chain by drawing X0 from fX . (If simulating directly from fX is
possible, then one should use classical Monte Carlo methods instead of the DA algorithm
for the reasons laid out in Subsections 10.2.4 and 10.3.1.) Fortunately, as long as theMarkov
chain X is well behaved (see Section 10.2.1), the marginal density of Xn will converge to
the invariant density fX no matter how the chain is started. And, more importantly, the
estimator n−1

∑n−1
i=0 g(Xi) will be strongly consistent for EfXg; that is, this estimator will

converge almost surely to EfX g as n→∞.
In order to keep things simple, we are considering only situationswhere fX and f (x, y) are

densities with respect to Lebesgue measure. However, all of the results and methodology
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that we discuss in this chapter can easily be extended to a much more general setting. See,
for example, Section 2 of Hobert and Marchev (2008).
Nowconsider the practical issue of simulating theMarkov chainX. Given that the current

state of the chain isXn = x, howdowe drawXn+1 from theMtd k(· | x)? The answer is based
on a sequential simulation technique that we now describe. Suppose that we would like to
simulate a random vector from some pdf fU(u), but that we cannot do this directly. Suppose
further that fU is the u-marginal of the joint pdf fU,V(u, v) and that we have the ability to
make draws from fV(v) and from fU |V(u | v) for fixed v. If we draw V ∼ fV(·), and then,
conditional onV = v, we drawU ∼ fU |V(· | v), then the observed pair, (u, v), is a draw from
fU,V , which means that u is a draw from fU . This general technique will be employed many
times throughout this chapter. We now explain how it is used to simulate from k(· | x).
Define

h(x′, y | x) = fX|Y(x′ | y)fY|X(y | x),

and note that, for fixed x ∈ X, h(x′, y | x) is a joint pdf in (x′, y)with
∫
Y h(x

′, y | x) dy = k(x′ | x).
We simply apply the technique described above with k(· | x) and h(·, · | x) playing the roles
of fU(·) and fU,V(·, ·), respectively. All we need is the y-marginal of h(x′, y | x), which is
fY|X(y | x), and the conditional density of X′ given Y = y, which is

h(x′, y | x)
fY|X(y | x) = fX|Y(x′ | y).

We now have a procedure for simulating one step of the DA algorithm. Indeed, if the
current state is Xn = x, we simulate Xn+1 as follows.

ONE ITERATION OF THE DA ALGORITHM

1. Draw Y ∼ fY|X(· | x), and call the observed value y.
2. Draw Xn+1 ∼ fX|Y(· | y).

So, as long as we can simulate from the conditional densities, fX|Y and fY|X , we can simulate
the Markov chain X. (Note that, as mentioned above, we do not need k(x′ | x) in closed
form.)
The name data augmentation algorithm comes from Tanner and Wong (1987) who used it

to describe an iterative algorithm for approximating complex posterior distributions. On
the last page of their paper, Tanner and Wong note that an “extreme” special case of their
algorithm (inwhich theirm is set equal to 1) yields aMarkov chainwhose transition density
has the form (10.1). However, it does not appear to be the case that Tanner andWong (1987)
“invented” the DA algorithm (as we have defined it here), since other researchers, such as
Swendsen andWang (1987), were using it at about the same time. Here is our first example.

Example 10.1

Suppose that fX is the standard normal density, fX (x) = e−x2/2/
√
2π. Obviously, there is nothing

intractable about this density. On the other hand, it is instructive to begin with a few simple
examples in which the basic ideas of the algorithm are not overshadowed by the complexity of the
target density. Take f (x , y) = (

√
2π)−1 exp

{− (x2 −√2xy + y2
)}
, which is a bivariate normal
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density with means equal to zero, variances equal to one, and correlation equal to 1/
√
2. The

x-marginal is clearly standard normal and the two conditionals are also normal. Indeed,

Y |X = x ∼ N
(

x√
2
,
1
2

)
and X |Y = y ∼ N

(
y√
2
,
1
2

)
.

Simulating from these conditionals is easy. For example, most statistically oriented programming
languages, such as R (R Development Core Team, 2006), produce variates from the normal dis-
tribution and many other standard distributions. Hence, we have a viable DA algorithm that can
be run by choosing an arbitrary starting value, X0 = x0, and then iterating the two-step procedure
described above.

We now provide two more toy examples that will be put to good use. Two realistic
examples are given in this section.

Example 10.2

Suppose that fX (x) = 3x2I(0,1)(x). If we take f (x , y) = 3x I(0 < y < x < 1), then the x-marginal
is fX (x) = 3x2I(0,1)(x) and the two conditional densities are given by

fY |X (y | x) = 1
x

I(0 < y < x) and fX |Y (x | y) = 2x
1− y2

I(y < x < 1).

Simulating from these conditionals is straightforward. Indeed, ifU ∼ U(0, 1), then xU ∼ fY |X (· | x)

and, using the probability integral transformation,
√

U(1− y2)+ y2 ∼ fX |Y (· | y).

Example 10.3

Suppose that fX (x) is a Student’s t density with 4 degrees of freedom,

fX (x) = 3
8

(
1+ x2

4

)−5
2

.

If we take

f (x , y) = 4√
2π

y
3
2 exp

{
−y

(
x2

2
+ 2

)}
I(0,∞)(y),

then
∫

R
f (x , y) dy = fX (x). Moreover, it is easy to show that X |Y = y ∼ N(0, y−1) and that Y |X =

x ∼ Γ(52 , x2
2 + 2

)
. (We say that W ∼ Γ(α, β) if its density is proportional to wα−1e−wβI(w > 0).)

The popularity of the DA algorithm is due in part to the fact that, given an intractable
fX , there are general techniques available for constructing a potentially useful joint density
f (x, y). Here is one such technique. Suppose that fX can be factorized as fX(x) = q(x)l(x).
Now define

f (x, y) = q(x)I(0,l(x))(y),
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and note that

∫
R

f (x, y) dy = q(x)
∫
R

I(0,l(x))(y) dy = q(x)
∫ l(x)
0

dy = q(x)l(x) = fX(x).

A simple calculation shows that Y |X = x ∼ U(0, l(x)), which is easy to sample. Thus, if
it is also possible to draw from fX|Y(x | y) ∝ q(x)I(y,∞)(l(x)), then the DA algorithm can be
applied. In this particular form, the DAalgorithm is known as the simple slice sampler (Neal,
2003). The reader may verify that the DA algorithm developed in Example 10.2 is actu-
ally a simple slice sampler based on the factorization fX(x) = 3x2I(0,1)(x) =

[
3xI(0,1)(x)

][x]
= [q(x)][l(x)].
Another general technique for identifying an appropriate f (x, y) involves the concept

of missing data that underlies the EM algorithm (Dempster et al., 1977). This technique is
applicable when the target, fX , is a posterior density. Let z denote some observed data,
which is assumed to be a sample from amember of a family of pdfs {p(z | θ) : θ ∈ Θ}, where
Θ ⊂ R

p. If π(θ) denotes the prior density, then the posterior density is given by π(θ | z) =
p(z | θ)π(θ)/c(z), where c(z) = ∫

Θ
p(z | θ)π(θ) dθ is the marginal density of the data. Assume

that expectations with respect to π(θ | z) are intractable; that is, π(θ | z) is now playing the
role of the problematic target fX(x).
Suppose that we can identify missing data y ∈ Y ⊂ R

q such that the joint density of z and
y, call it p(z, y | θ), satisfies

∫
Y
p(z, y | θ) dy = p(z | θ). (10.4)

Finding such missing data is often straightforward. Indeed, the joint density p(z, y | θ) is
precisely what is required to construct an EM algorithm for finding the maximum likeli-
hood estimate of θ; that is, the maximizer of p(z | θ) over θ ∈ Θ for fixed z. If such an EM
algorithm already exists, we can simply use the corresponding missing data. Now define
the complete data posterior density as

π(θ, y | z) = p(z, y | θ)π(θ)∫
Θ

∫
Y p(z, y | θ)π(θ) dy dθ

= p(z, y | θ)π(θ)∫
Θ
p(z | θ)π(θ) dθ

= p(z, y | θ)π(θ)

c(z)
.

The key feature of the complete data posterior density is that its θ-marginal is the target
density, π(θ | z). Indeed,

∫
Y
π(θ, y | z) dy = π(θ)

c(z)

∫
Y
p(z, y | θ) dy = p(z | θ)π(θ)

c(z)
= π(θ | z).

When an EM algorithm is constructed, the missing data is chosen to make likelihood cal-
culations under p(z, y | θ) much simpler than they are under the original density, p(z | θ).
Such a choice will usually also result in conditional densities, π(θ | y, z) and π(y | θ, z), that
are easy to sample. Regardless of whether or not our missing data came from a preexisting
EM algorithm, as long as π(θ | y, z) and π(y | θ, z) can be straightforwardly sampled, we
will have a viable DA algorithm with the complete data posterior density playing the role
of f (x, y). In particular, θ plays the role of x, and everything is done conditionally on the
observed data z.
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Example 10.4

LetZ1, . . .,Zm be a random sample from the location–scale Student’s t density with known degrees
of freedom, ν > 0. The common density of the Zi is given by

Γ
(
ν+1
2
)

σ
√
πνΓ

(
ν
2
)(1+ (z − μ)2

νσ2

)−(ν+1)
2

.

Here (μ, σ2) is playing the role of θ. The standard diffuse prior density for this location–scale
problem is π(μ, σ2) ∝ 1/σ2. Of course, whenever an improper prior is used, it is important to
check that the posterior is proper. In this case, the posterior is proper if and only ifm ≥ 2 (Fernández
and Steel, 1999), and we assume this throughout. The posterior density is an intractable bivariate
density that is characterized by

π(μ, σ2 | z) ∝
(
σ2
)−(m+2)

2
m∏

i=1

(
1+ (zi − μ)2

νσ2

)−(ν+1)
2

,

where z = (z1, . . ., zm). Meng and van Dyk (1999) described a DA algorithm for this problem in
which the missing data are based on the standard representation of a Student’s t variate in terms
of normal and χ2 variates. Conditional on (μ, σ2), let (Z1,Y1), . . ., (Zm ,Ym) be independent and
identically distributed (i.i.d.) pairs such that, for i = 1, . . .,m,

Zi |Yi ,μ, σ
2 ∼ N(μ, σ2/yi)

Yi |μ, σ2 ∼ Γ(ν/2, ν/2).

In this case, Y = R
m+ where R+ := (0,∞). Letting y = (y1, . . ., ym), we have

p(z , y |μ, σ2) =
m∏

i=1
p(zi | yi ,μ, σ

2)p(yi |μ, σ2)

=
m∏

i=1

√
yi√

2πσ2
exp

{
− yi

2σ2
(zi − μ)2

} ( ν2 )
ν
2

Γ
(
ν
2
)y (ν−2)

2
i exp

{
−νyi

2

}
.

Now,

∫
Y

p(z , y |μ, σ2) dy =
m∏

i=1

∫
R+

p(zi | yi ,μ, σ
2)p(yi |μ, σ2) dyi

=
m∏

i=1

Γ
(
ν+1
2
)

σ
√
πνΓ

(
ν
2
)(1+ (zi − μ)2

νσ2

)−(ν+1)
2

,

so Equation 10.4 is satisfied. The complete data posterior density is characterized by

π
(
(μ, σ2), y | z) ∝ 1

σ2

m∏
i=1

√
yi√

2πσ2
exp

{
− yi

2σ2
(zi − μ)2

} ( ν2 )ν/2

Γ
(
ν
2
) y

(ν−2)
2

i exp
{
− νyi

2

}
. (10.5)

In order to implement the DA algorithm, we must be able to draw from π(y |μ, σ2, z) and
from π(μ, σ2 | y , z). Since π(y |μ, σ2, z) ∝ π(μ, σ2, y | z), it is clear that the yi are conditionally
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independent given (μ, σ2, z) and, in fact,

Yi |μ, σ2, z ∼ Γ
(
ν+ 1
2

,
1
2

(
(zi − μ)2

σ2
+ ν
))

. (10.6)

We can simulate from π(μ, σ2|y , z) sequentially by first drawing from π(σ2|y , z) and then from
π(μ|σ2, y , z). (Remember our sequential method of drawing from fU,V ?) Let y· =∑m

i=1 yi and
define

μ̂ = 1
y·

m∑
j=1

zjyj and σ̂2 = 1
y·

m∑
j=1

yj(zj − μ̂)2.

Using the fact that π(μ | σ2, y , z) ∝ π(μ, σ2, y | z), it is straightforward to show that

μ|σ2, y , z ∼ N
(
μ̂,
σ2

y·

)
. (10.7)

Finally, π(σ2 | y , z) is proportional to what remains when μ is integrated out of Equation 10.5. This
integral can be computed in closed form and it follows that

σ2|y , z ∼ Γ−1
(

m + 1
2

,
y· σ̂2
2

)
, (10.8)

where Γ−1(α, β) is the distribution of 1/W when W ∼ Γ(α, β). We now know how to run the
DA algorithm for this problem. Given the current state, Xn = (μ, σ2), we simulate the next state,
Xn+1 = (μn+1, σ2n+1), by performing the following two steps:

1. Draw Y1, . . .,Ym independently according to Equation 10.6, and call the result y =
(y1, . . ., ym).

2. Draw σ2n+1 according to Equation 10.8, and then draw μn+1 according to Equation 10.7

with σ2n+1 in place of σ2.

The algorithm described above is actually a special case of amore general DA algorithm developed
by Meng and van Dyk (1999) that can handle observations from the multivariate location–scale
Student’s t density.

We end this section by describing Albert and Chib’s (1993) DA algorithm for Bayesian
probit regression, which is one of the most widely used DA algorithms.

Example 10.5

Let Z1, . . .,Zm be independent Bernoulli random variables such that Pr(Zi = 1) = Φ(vT
i β), where

vi is a p × 1 vector of known covariates associated with Zi , β is a p × 1 vector of unknown
regression coefficients and Φ(·) denotes the standard normal distribution function. We have

Pr(Z1 = z1, . . .,Zm = zm | β) =
m∏

i=1

[
Φ(vT

i β)
]zi
[
1−Φ(vT

i β)
]1−zi ,
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where each zi is binary—either 0 or 1. Consider a Bayesian analysis that employs a flat prior on
β. Letting z = (z1, . . ., zm) denote the observed data, the marginal density is given by

c(z) =
∫
Rp

m∏
i=1

[
Φ(vT

i β)
]zi
[
1−Φ(vT

i β)
]1−zi dβ.

Chen and Shao (2000) provide necessary and sufficient conditions on z and {vi}mi=1 for propriety
of the posterior; that is, for c(z) < ∞. We assume throughout that these conditions are satisfied.
The intractable posterior density of β is given by

π(β | z) = 1
c(z)

m∏
i=1

[
Φ(vT

i β)
]zi
[
1−Φ(vT

i β)
]1−zi .

Albert and Chib (1993) developed a DA algorithm for this problem. Let φ(u;μ, κ2) denote
the N(μ, κ2) density function evaluated at the point u ∈ R. Also, let R− = (−∞, 0), let y =
(y1, . . ., ym)T ∈ R

m , and consider the function

π(β, y | z) = 1
c(z)

m∏
i=1

{
IR+ (yi)I{1}(zi)+ IR− (yi)I{0}(zi)

}
φ(yi ; v

T
i β, 1). (10.9)

Integrating y out of π(β, y | z), we have

1
c(z)

∫
R

∫
R

· · ·
∫
R

m∏
i=1

{
IR+(yi)I{1}(zi)+ IR−(yi)I{0}(zi)

}
φ(yi ; v

T
i β, 1) dym . . . dy2 dy1

= 1
c(z)

m∏
i=1

∫
R

{
IR+(yi)I{1}(zi)+ IR−(yi)I{0}(zi)

}
φ(yi ; v

T
i β, 1) dyi

= 1
c(z)

m∏
i=1

{
I{1}(zi)

∫∞
0
φ(yi ; v

T
i β, 1) dyi + I{0}(zi)

∫0
−∞

φ(yi ; v
T
i β, 1) dyi

}

= 1
c(z)

m∏
i=1

{
I{1}(zi)Φ(vT

i β)+ I{0}(zi )
[
1−Φ(vT

i β)
]}

= 1
c(z)

m∏
i=1

[
Φ(vT

i β)
]zi
[
1−Φ(vT

i β)
]1−zi

= π(β | z).

Hence, π(β, y | z) is a joint density in (β, y) whose β-marginal is π(β | z). Albert and Chib’s (1993)
DA algorithm is based on this joint density. We now derive the conditional densities, π(β | y , z)

and π(y | β, z). Let V denote the m × p matrix whose ith row is vT
i . (A necessary condition for

propriety is that V have rank p.) Standard linear model-type calculations show that

m∏
i=1
φ(yi ; v

T
i β, 1) = (2π)−m/2e− 1

2 yT (I−H)y exp
{
− 1

2

(
β− β̂(y))T V T V (β− β̂(y)

)}
, (10.10)

where β̂(y) = (V T V )−1V T y and H = V (V T V )−1V T . This implies that π(β | y , z) is a p-variate
normal density with mean β̂(y) and covariance matrix (V T V )−1.
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Finally, let TN(μ, κ2, u) denote a normal distribution with mean μ and variance κ2 that is
truncated to be positive if u = 1 and negative if u = 0. It is clear from Equation 10.9 that, given β
and z , the Yi are independent with Yi ∼ TN(vT

i β, 1, zi). We now know exactly how to implement
the DA algorithm. Given the current state, Xn = β, we simulate the next state, Xn+1, by performing
the following two steps:

1. Draw Y1, . . .,Ym independently such that Yi ∼ TN(vT
i β, 1, zi), and call the result y =

(y1, . . ., ym)T .

2. Draw Xn+1 ∼ N
(
β̂(y), (V T V )−1

)
.

See Robert (1995) for an efficient method of simulating truncated normal random variables.

In the next section, we describe the theoretical properties of theMarkov chain underlying
the DA algorithm.

10.2 Properties of the DA Markov Chain
10.2.1 Basic Regularity Conditions

In Section 10.1 we described how to construct and simulate a Markov chain,X, that has the
intractable target, fX , as an invariant density. Unfortunately, without additional assump-
tions, there is no guarantee that this chain will be useful for approximating expectations
with respect to fX . Here is a simple example from Roberts and Smith (1994) that illustrates
one of the potential problems.

Example 10.6

Suppose that fX (x) = 1
2 I(0,2)(x). If we take

f (x , y) = 1
2

[
I(0,1)(x)I(0,1)(y)+ I[1,2)(x)I[1,2)(y)

]
,

then
∫

R
f (x , y) dy = 1

2 I(0,2)(x) and

fX |Y
(
x | y) = fY |X

(
y | x) = I(0,1)(x)I(0,1)(y)+ I[1,2)(x)I[1,2)(y).

Since the x-marginal of f (x , y) is fX and simulation from the conditionals is easy, there is a DA
algorithm based on f (x , y). However, this algorithm is useless from a practical standpoint because
the underlyingMarkov chain is not irreducible. For example, suppose we start the chain at x0 = 1

2 ,
and consider applying the two-step method to simulate X1. First, we draw Y ∼ U(0, 1) and then,
no matter what the result, we will draw X1 ∼ U(0, 1). Continuing along these lines shows that the
chain will be stuck forever in the set (0, 1). Hence, there is no sense in which the chain converges
to fX .

If the Markov chain X is ψ-irreducible, aperiodic and Harris recurrent, then the DA
algorithm can be employed to effectively explore the intractable target density, fX. When
X satisfies these three properties, we call it Harris ergodic. Unfortunately, a good bit of
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technical Markov chain theory must be developed before these conditions can even be
formally stated (Meyn and Tweedie, 1993; Roberts and Rosenthal, 2004). To avoid a lengthy
technical discussion, we simply provide one sufficient condition for Harris ergodicity of X
that is easy to check and holds for all of our examples and for many other DA algorithms
that are used in practice.
Define a condition (which we will refer to as condition K) on the Mtd k as follows:

k(x′ | x) > 0, for all x′, x ∈ X.

Condition K implies that the Markov chain X is Harris ergodic (see, e.g. Tan, 2008). In fact,
condition K implies that it is possible for the chain to move from any point x ∈ X to any
“big” set in a single step. To make this precise, let λ denote Lebesgue measure on X and let
P(·, ·) denote theMarkov transition function of the chain; that is, for x ∈ X and ameasurable
set A,

P(x,A) = Pr
(
Xn+1 ∈ A |Xn = x

) = ∫
A
k(x′ | x) dx′.

Under condition K, if A is big in the sense that λ(A) > 0, then

P(x,A) =
∫
A
k(x′ | x) dx′ > 0,

which means that there is positive probability of moving from x toA in a single step. Recall
that

k(x′ | x) =
∫
Y
fX|Y(x′ | y)fY|X(y | x) dy.

Clearly, if f (x, y) is strictly positive on X× Y, then condition K holds and the Markov chain
X is Harris ergodic. We now check that the Markov chains developed in the examples of
Section 10.1 are indeed Harris ergodic.

Examples 10.1 and 10.3 (cont.)

In Example 10.1, we have X = Y = R, while in Example 10.3, X = R, Y = R+. In both cases,
f (x , y) is strictly positive on X× Y. Hence, the Markov chains underlying the DA algorithms in
Examples 10.1 and 10.3 are Harris ergodic.

Example 10.4 (cont.)

The role of X is played byΘ = R× R+ and Y = R
m+ . Note that the complete data posterior density

(10.5) is strictly positive for all
(
(μ, σ2), y

) ∈ Θ× Y. Hence, the chain X is Harris ergodic.

Example 10.5 (cont.)

In this case, X = R
p and Y is a Cartesian product of m half-lines (R+ and R−), where the ith

component is R+ if zi = 1, and R− if zi = 0. It is clear that the joint density (Equation 10.9) is
strictly positive on X× Y, and this implies that the Markov chain underlying Albert and Chib’s
(1993) algorithm is Harris ergodic.
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Evenwhen f (x, y) is not strictly positive on X× Y, it is still often the case that condition K
holds.

Example 10.2 (cont.)

The joint density is given by f (x , y) = 3xI(0 < y < x < 1), which is not strictly positive on X× Y =
(0, 1)× (0, 1). However, we can show directly that condition K holds. Indeed, for fixed x ∈ (0, 1),
we have

k(x ′ | x) =
∫
R

2x ′
x(1− y2)

I(0 < y < x)I(y < x ′ < 1) dy

= 2x ′
x

I(0 < x ′ < 1)

∫min{x ,x ′}
0

1
1− y2

dy

= x ′
x
log
(
1+min{x , x ′}
1−min{x , x ′}

)
I(0 < x ′ < 1).

Hence, k(x ′ | x) is strictly positive for all x ′, x ∈ (0, 1) and Harris ergodicity follows. Actually, it
is intuitively clear that the Markov chain has a positive probability of moving from any x ∈ (0, 1)

to any set A ⊂ (0, 1) with λ(A) > 0 in one step. Indeed, to get from x to the new state, we first
draw Y ∼ U(0, x), and then, given Y = y , the new state is drawn from a density with support
(y , 1). Therefore, as long as the observed y is small enough, there will be a positive (conditional)
probability of the new state being in any open set in (0, 1).

It is not difficult to create examples ofwell-behavedDAalgorithms forwhich condition K
fails to hold. Fortunately, there are many general results available for establishing that X
is Harris ergodic in such situations; see, for example, Roberts and Smith (1994), Tierney
(1994), Roberts and Rosenthal (2006) and Hobert et al. (2007). In the next subsection, we
describe exactly what Harris ergodicity buys us.

10.2.2 Basic Convergence Properties

If X is Harris ergodic, then, no matter how the chain is started, the marginal distribution of
Xn will converge to (the distribution associated with) fX , and an analog of the strong law
of large numbers (SLLN) holds. To make this precise, some additional notation is required.
Define the n-step Markov transition function as

Pn(x,A) = Pr
(
Xn ∈ A |X0 = x

)
,

so P1 ≡ P. Also, let φ(·) denote the probability measure corresponding to fX; that is, for
measurable A, φ(A) = ∫

A fX(x) dx. If X is Harris ergodic, then the total variation distance
between the probabilitymeasures Pn(x, ·) and φ(·) decreases to 0 as n gets large. In symbols,

‖Pn(x, ·)− φ(·)‖ ↓ 0 as n→∞, (10.11)

where

‖Pn(x, ·)− φ(·)‖ := sup
A

∣∣Pn(x,A)− φ(A)
∣∣.
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Harris ergodicity is also sufficient for the ergodic theorem, which is the Markov chain
version of the SLLN. Let L1( fX) denote the set of functions h : X→ R such that

∫
X
| h(x) | fX(x) dx < ∞,

and, for h ∈ L1( fX), define EfX h =
∫
X h(x) fX(x) dx. The ergodic theorem implies that, if g ∈

L1( fX), then, no matter what the distribution of X0, we have

gn :=
1
n

n−1∑
i=0

g(Xi) → EfX g

almost surely as n→∞; that is, gn is a strongly consistent estimator of EfX g. The ergodic
theorem justifies estimating EfXg with gn where X0 is any point (or has any distribution)
fromwhich it is convenient to start the simulation.An important practical question that this
basic theory does not answer is “What is an appropriate value of n?” Tools for answering
this questionwill be presented in Section 10.3. For now,we simply point out that all rigorous
methods of choosing an appropriate (Markov chain) Monte Carlo sample size are based
on a central limit theorem (CLT) for gn. Assuming that

∫
X g

2(x) fX(x) dx < ∞, a simple
sufficient condition for the existence of such a CLT is that the Markov chain, X, converge
to its stationary distribution at a geometric rate.

10.2.3 Geometric Ergodicity

Assume thatX isHarris ergodic.Note thatEquation10.11givesno informationabout the rate
at which the total variation distance converges to 0. There are important practical benefits
to using a DA algorithm for which this rate is (at least) geometrically fast. Formally, the
chain X is called geometrically ergodic if there exist a functionM : X→ [0,∞) and a constant
ρ ∈ [0, 1) such that, for all x ∈ X and all n = 1, 2, . . .,

‖Pn(x, ·)− φ(·)‖ ≤M(x) ρn. (10.12)

Unfortunately, Harris ergodicity does not imply geometric ergodicity. The most straight-
forward method of proving that the Harris ergodic chain X is geometrically Harris ergodic
is by establishing a certain type of drift condition, which we now introduce.
A function V : X→ [0,∞) is said to be unbounded off compact sets if, for each β ∈ R, the

sub-level set
{
x ∈ X : V(x) ≤ β} is compact. We say that a geometric drift condition holds if

there exist a V : X→ [0,∞) that is unbounded off compact sets, and constants λ ∈ [0, 1)
and L ∈ R such that

E
[
V(Xn+1) |Xn = x

] ≤ λV(x)+ L. (10.13)

The functionV is called the drift function. If f (x, y) > 0 for all (x, y) ∈ X× Y, then the existence
of a geometric drift condition implies thatX is geometrically ergodic (Tan, 2008). (SeeMeyn
and Tweedie (1993, Chapter 15) for similar results that hold when f (x, y) is not strictly
positive.) In practice, establishing a geometric drift condition is simply a matter of trial and
error (and a lot of analysis). We now provide some pointers on calculating the expectation
in Equation 10.13.
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Note that the left-hand side of Equation 10.13 can be rewritten as

E
[
V(Xn+1) |Xn = x

] = ∫
X
V(x′) k(x′ | x) dx′

=
∫
X
V(x′)

[ ∫
Y
fX|Y(x′ | y)fY|X(y | x) dy

]
dx′

=
∫
Y

[ ∫
X
V(x′)fX|Y(x′ | y) dx′

]
fY|X(y | x) dy.

(10.14)

Thus, the expectation can be computed (or bounded) in two steps. The first step is to
compute (or bound) the expectation of V(X′) with respect to fX|Y(· | y); call the result e(y).
The second step entails calculating (or bounding) the expectation of e(Y) with respect
to fY|X(· | x). The fact that we are able to simulate straightforwardly from fX|Y(x | y) and
fY|X(y | x) often means that these conditional densities are easy to handle from an analytical
standpoint. Hence, it is usually possible to calculate (or, at least get sharp upper bounds on)
expectations with respect to fX|Y(x | y) and fY|X(y | x). We now give two simple examples
illustrating how to prove that a DA algorithm is geometrically ergodic by establishing a
geometric drift condition.

Example 10.3 (cont.)

Recall that f (x , y) is strictly positive on X× Y, so the drift technique can be used to establish
geometric convergence in this example. Consider the drift function V (x) = x2. For β < 0 the sub-
level set {x ∈ X : V (x) ≤ β} is the empty set, for β = 0 it is the set {0}, and for β > 0 it is a closed
interval. Thus, V is unbounded off compact sets. Recall that X |Y = y ∼ N(0, y−1). Hence, the
“inner expectation” in Equation 10.14 can be evaluated as follows:

E
[
V (X ′) | y] = E

[
(X ′)2 | y] = 1

y
.

Now, using the fact that Y |X = x ∼ Γ( 52 , x2
2 + 2

)
yields

E
[
V (Xn+1) |Xn = x

] = E
[
Y−1 | x] = 1

3
x2 + 4

3
= 1

3
V (x)+ 4

3
.

We have established that Equation 10.13 holds with λ = 1
3 and L = 4

3 , and this shows that the
Markov chain underlying this DA algorithm is geometrically ergodic.

In the toy example just considered, we were able to compute E
[
V(Xn+1) |Xn = x

]
exactly

and, luckily, the final expression involved the function V(x) in exactly the right way. Estab-
lishing geometric drift conditions in real examples is typically much more difficult, and
often involves what Fill et al. (2000) describe as “difficult theoretical analysis.” Geometric
drift conditions have been established for theMarkov chains underlying theDAalgorithms
in Examples 10.4 and 10.5 (Marchev and Hobert, 2004; Roy and Hobert, 2007), but these
calculations are too involved to present in this chapter. The next example is still a toy exam-
ple, in the sense that the intractable target density is univariate, but it does provide a nice
illustration of the type of bounding that is required in real examples.
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Example 10.7

Consider a simplification of the Student’s t setup in Example 10.4 where the variance is known
and equal to 1. In this case, the posterior density is an intractable univariate density given by

π(μ | z) ∝
m∏

i=1

(
1+ (zi − μ)2

ν

)−(ν+1)
2

,

where z = (z1, . . ., zm). Using the same missing data as before, the complete data posterior,
π(μ, y | z), is proportional to the right-hand side of Equation 10.5 with σ2 set equal to 1. Note that
π(μ, y | z) is strictly positive on X× Y = Θ× Y = R× R

m+ . Of course, to run the DA algorithm, we
need to be able to draw fromπ(y |μ, z) and fromπ(μ | y , z). Recall that μ̂ = μ̂(y) = 1

y·
∑m

j=1 zjyj .
(Since the data, z , is fixed, we suppress this dependence in the notation.) It is easy to show that
μ|y , z ∼ N

(
μ̂(y), 1y·

)
and that the yi s are conditionally independent given (μ, z) with

Yi |μ, z ∼ Γ
(
ν+ 1
2

,
(zi − μ)2 + ν

2

)
.

For notational convenience, we will denote the DAMarkov chain as {μn}∞n=0 (instead of the usual{Xn}∞n=0). The Mtd of the DA algorithm is then given by

k(μ′ |μ) =
∫
Y
π(μ′ | y , z)π(y |μ, z) dy .

We now show that this Markov chain is geometrically ergodic as long as ν > 1 and m > 1/

(ν− 1). The drift function we use is V (μ) =∑m
i=1(zi − μ)2. It is easy to see that V is unbounded

off compact sets. Indeed, fix β ∈ R and consider the sub-level set {μ ∈ R : V (μ) ≤ β}. Let z =
m−1∑m

i=1 zi . If β <
∑m

i=1(zi − z)2, then the sub-level set is the empty set, and if β ≥∑m
i=1

(zi − z)2, the sub-level set is a closed interval.
Let z∗ and z∗ denote the minimum and the maximum of the zi , respectively. Since μ̂(y)

is a convex combination of z1, . . ., zm, it follows that μ̂(y) ∈ [z∗, z∗] for all y ∈ Y. The inner
expectation in Equation 10.14 can now be bounded as follows:

E
[
V (μ′) | y , z] = E

[ m∑
i=1

(zi − μ′)2
∣∣ y , z

]

=
m∑

i=1
E
[
(zi − μ′)2

∣∣ y , z
]

=
m∑

i=1
var
[
(zi − μ′) | y , z

]+ m∑
i=1

{
E
[
(zi − μ′) | y , z

]}2

=
m∑

i=1
var
[
μ′ | y , z]+ m∑

i=1

{
zi − E

[
μ′ | y , z]}2

= m
y·
+

m∑
i=1

(zi − μ̂(y))2

≤ m
y·
+m(z∗ − z∗)2.
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Now, since the harmonic mean is less than or equal to the arithmetic mean, we have

m
y·
= 1

1
m
∑m

i=1 1
y−1i

≤ 1
m

m∑
i=1

y−1i .

We conclude that

E
[
V (μ′) | y , z] ≤ 1

m

m∑
i=1

y−1i +m(z∗ − z∗)2.

Therefore, as long as ν > 1, we have

E
[
V (μn+1) |μn = μ

] ≤ E
[(

1
m

m∑
i=1

Y−1i +m(z∗ − z∗)2
) ∣∣∣ μ, z]

= 1
m

m∑
i=1

E
[
Y−1i |μ, z]+m(z∗ − z∗)2

= 1
m(ν− 1)

m∑
i=1

[
(zi − μ)2 + ν]+m(z∗ − z∗)2

= 1
m(ν− 1)

m∑
i=1

(zi − μ)2 + ν

(ν− 1)
+m(z∗ − z∗)2

= 1
m(ν− 1)

V (μ)+ ν

(ν− 1)
+m(z∗ − z∗)2.

We have established that, when ν > 1, Equation 10.13 holds with λ = 1
m(ν−1)

. Thus, the Markov
chain is geometrically ergodic whenever ν > 1 and m(ν− 1) > 1.
Of course, the fact that our analysis did not lead to a geometric drift condition for the (extreme)

situations where ν ≤ 1 and/or m(ν− 1) ≤ 1 does not imply that the DA chain converges at a
sub-geometric rate in those cases. Indeed, it may be the case that a more delicate analysis of
E
[
V (μn+1) |μn = μ

]
would show that these chains are geometric as well. Or we might have

to resort to changing the drift function. Unfortunately, there are currently no simple methods of
proving that a DA chain is not geometrically ergodic.

The drift method that we have described and illustrated in this subsection provides only
qualitative information about the rate of convergence in the sense that, once (10.13) has been
established, all we can say is that there exist M and ρ satisfying Equation 10.12, but we
cannot say what they are. There are other (more complicated) versions of this method that,
in addition to establishing the existence of M and ρ, provide an upper bound on M(x)ρn
that decreases to zero geometrically in n. These methods were developed and refined in
a series of papers beginning with Meyn and Tweedie (1994) and Rosenthal (1995); for an
overview, see Jones and Hobert (2001). The final subsection of this chapter concerns CLTs
for the estimator gn.

10.2.4 Central Limit Theorems

Harris ergodicity alone does not imply the existence of CLTs. However, as we now explain,
if the DA Markov chain, X, is geometrically Harris ergodic, then there will be CLTs for
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square integrable functions. Let L2(fX) denote the set of functions h : X→ R such that
∫
X
h2(x) fX(x) dx < ∞.

Assume that g ∈ L2(fX) and define ck = cov
[
g(X0), g(Xk)

]
for k ∈ {1, 2, 3, . . .}, where the

covariances are calculated under the assumption that X0 ∼ fX . For example,

c1 =
∫
X

∫
X

(
g(x′)− EfX g

)(
g(x)− EfXg

)
k(x′ | x)fX(x) dx dx′,

where we have used the fact that X0 ∼ fX implies that X1 ∼ fX , so the expected value of
g(X1) is EfXg. Liu et al. (1994, Lemma 3.2) noted that this expression can be rearranged as
follows:

c1 =
∫
X

∫
X

(
g(x′)− EfXg

)(
g(x)− EfX g

)
k(x′ | x)fX(x) dx dx′

=
∫
X

∫
X

(
g(x′)− EfXg

)(
g(x)− EfX g

)[ ∫
Y
fX|Y(x′ | y)fY|X(y | x) dy

]
fX(x) dx dx′

=
∫
Y

∫
X

∫
X

(
g(x′)− EfXg

)(
g(x)− EfX g

)
fX|Y(x′ | y)fX|Y(x | y)fY(y) dx dx′ dy

=
∫
Y

[ ∫
X

(
g(x)− EfX g

)
fX|Y(x | y) dx

]2
fY(y) dy

= var
{
E
[(
g(X′)− EfX g

) |Y′]},
where (X′,Y′) ∼ f (x, y). This shows that c1 > 0. In fact, this result can be used in conjunction
with the reversibility of X to show that ck > 0 for all k ∈ {1, 2, 3, . . .}.
Assume that X is geometrically Harris ergodic and that g ∈ L2( fX). As before, put gn =

1
n
∑n−1

i=0 g(Xi). Define σ2 = EfX g2 −
(
EfXg

)2 and κ2 = σ2 + 2
∑∞

k=1 ck. Results in Roberts and
Rosenthal (1997) and Chan and Geyer (1994) imply that κ2 < ∞ and that, as n→∞,

√
n
(
gn − EfX g

) d→ N(0, κ2). (10.15)

This CLT does not require that X0 ∼ fX—it holds for all starting distributions, including
degenerate ones. We note that the reversibility of X plays a major role in the existence of
the CLT (10.15). In the next section, we explain how to consistently estimate the asymptotic
variance, κ2. But first, we briefly compare the estimators of EfX g based on DA and classical
Monte Carlo.
Let X∗1 ,X

∗
2 , . . . be an i.i.d. sequence from fX . The classical Monte Carlo estimator of EfXg

is g∗n := 1
n
∑n

i=1 g(X∗i ). If g ∈ L1( fX), then, by the SLLN, g∗n is a strongly consistent estimator
of EfX g. If, in addition, g ∈ L2( fX), then standard results from i.i.d. theory tell us that, as
n→∞,

√
n
(
g∗n − EfXg

) d→ N(0, σ2). (10.16)

If c1 = 0 (as will typically be the case), then κ2/σ2 > 1, so the asymptotic relative efficiency
(ARE) of g∗n with respect to gn is larger than one. Therefore, if it is possible to make an i.i.d.
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draw from fX , and the computational effort of doing so is similar to the effort of simulating
a single iteration of the DA algorithm, then the classical Monte Carlo estimator is to be
preferred over the estimator based on the DA algorithm. In the next section, we explain
how these CLTs can be used in practice to choose an appropriate Monte Carlo sample size.

10.3 Choosing the Monte Carlo Sample Size
10.3.1 Classical Monte Carlo

We begin by describing how the Monte Carlo sample size is chosen in the classical Monte
Carlo context. Assume that g ∈ L2(fX) and recall that the classical Monte Carlo estimator of
EfX g is g

∗
n = 1

n
∑n

i=1 g(X∗i ), whereX
∗
1 ,X

∗
2 , . . . are i.i.d. from fX . Themainmotivation for using

g∗n as an estimator of EfXg is that g
∗
n converges to EfXg almost surely as n→∞. Obviously,

in practice we cannot use an infinite sample size, so we must find a finite value of n such
that the error in g∗n is (likely to be) acceptably small. To make this more precise, suppose
we are willing to live with an error of size Δ. In other words, we would like to be able to
assert that the interval given by g∗n ±Δ is highly likely to contain the true, unknown value
of EfX g. As we now explain, this can be accomplished through routine use of the CLT given
in Equation 10.16.
Let σ̂2n denote the usual sample variance of the g(X∗i ),

σ̂2n =
1

n− 1

n∑
i=1

(
g(X∗i )− g∗n

)2.
Basic asymptotic theory tell us that, since σ̂2n is a consistent estimator of σ2,

√
n
(
g∗n − EfXg

)
√
σ̂2n

d→ N(0, 1).

Thus, for large n, the interval g∗n ± 2σ̂n/
√
n will contain the unknown value of EfX g with

probability (approximately) equal to 0.95. With this in mind, we can proceed as follows.
Choose an initial sample size, say n′, and make n′ i.i.d. draws from fX . (Hopefully, n′ is
large enough that σ̂2n′ is a reasonable estimate of σ

2.) If the observed value of 2σ̂n′/
√
n′ is

less than Δ, then the current estimate of EfXg is good enough and we stop. Otherwise, if
2σ̂n′/

√
n′ > Δ, then additional simulation is required. Moreover, the current estimate of σ2

can be used to calculate approximately how much more simulation will be necessary to
achieve the stated precision. Indeed, we require an n such that 2σ̂n/

√
n < Δ, so assuming

that our estimate of σ2 has stabilized, n > 4σ̂2n′/Δ
2 should suffice.

There are twomajor obstacles blocking the use of a similar program for choosing n in the
DAcontext. First, aswe have already seen, evenwhen theMarkov chainX isHarris ergodic,
the second moment condition, g ∈ L2( fX), is not enough to guarantee that the estimator
gn satisfies a CLT. To be sure that CLTs hold for L2( fX) functions, the practitioner must
either (i) employ a DAalgorithm that is known to be geometrically ergodic, or (ii) establish
geometric ergodicity of the DA algorithm in question. The second problem is that, even
when the CLT in Equation 10.15 is known to hold, consistent estimation of the asymptotic
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variance, κ2, is a challenging problem because this variance has a fairly complex form and
because the dependence among the variables in the Markov chain complicates asymptotic
analysis. Consistent estimators of κ2 have been developed using techniques from time
series analysis and using the method of batch means, but these estimators are much more
complicated than σ̂2n, both practically and theoretically. Good entry points into the statistical
literature on methods of estimating κ2 are Geyer (1992), Jones et al. (2006), and Flegal et al.
(2008).
There is no getting around the fact that establishing the existence of CLTs is harder for

Markov chains than it is for i.i.d. sequences. However, it is possible to circumvent the
difficulties associated with consistent estimation of κ2. Indeed, there is an alternative form
of the CLT in Equation 10.15 that is developed by introducing regenerations into theMarkov
chain. The advantage of this newCLT is that consistent estimation of its asymptotic variance
is very simple. The price we have to pay for this added simplicity is that the user must
develop a minorization condition for the Mtd k(· | ·). Fortunately, the form of k lends itself
to constructing a minorization condition. Before we can fully explain regeneration and
minorization,wehave to introduce three newMarkov chains that are all closely related toX.

10.3.2 Three Markov Chains Closely Related to X

Recall from Section 10.1 that, for fixed x ∈ X, the function h(x′, y′ | x) = fX|Y(x′ | y′)fY|X(y′ | x)
is a joint pdf in (x′, y′). Now, define k̃ : (X× Y)× (X× Y) → [0,∞) as

k̃(x′, y′ | x, y) = h(x′, y′ | x) = fX|Y(x′ | y′)fY|X(y′ | x).

For each fixed (x, y) ∈ X× Y, k̃(x′, y′ | x, y) is nonnegative and integrates to 1. Hence, the
function k̃ is an Mtd that defines a Markov chain, (X,Y) = {(Xn,Yn)}∞n=0, with state space
X× Y. If the current state of the chain is (Xn,Yn) = (x, y), then the density of the next
state, (Xn+1,Yn+1), is k̃(·, · | x, y). Furthermore, the chain (X,Y) has invariant density f (x, y);
indeed,

∫
X

∫
Y
k̃(x′, y′ | x, y)f (x, y) dy dx = fX|Y(x′ | y′)

∫
X
fY|X(y′ | x)

[ ∫
Y
f (x, y) dy

]
dx

= fX|Y(x′ | y′)
∫
X
f (x, y′) dx

= fX|Y(x′ | y′)fY(y′)

= f (x′, y′).

We refer to (X,Y) as the “Gibbs chain” because it is, in fact, just the Markov chain that is
induced by the two-variable Gibbs sampler based on the joint density f (x, y). The analogue
of condition K for the Gibbs chain is condition K̃:

k̃(x′, y′ | x, y) > 0 for all (x, y), (x′, y′) ∈ X× Y.

Condition K̃ implies that the Gibbs chain is Harris ergodic. A sufficient condition for
condition K̃ is that f (x, y) > 0 for all (x, y) ∈ X× Y.
The reader has probably already noticed that k̃(x′, y′ | x, y) does not actually depend on y.

In terms of theMarkov chain, this means that the future state, (Xn+1,Yn+1), depends on the
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current state, (Xn,Yn), only through Xn. This fact can be used to show that the conditional
distribution of Xn+1 given (X0,X1, . . .,Xn) does not depend on (X0,X1, . . .,Xn−1). In other
words, the sequence X = {Xn}∞n=0 is itself a Markov chain on X. Moreover, its Mtd is

∫
Y
k̃(x′, y′ | x, y) dy′ =

∫
Y
fX|Y(x′ | y′)fY|X(y′ | x) dy′ = k(x′ | x);

that is, the marginal sequenceX = {Xn}∞n=0 from the Gibbs chain is the original DAMarkov
chain. (This is why it made sense to use the symbol Xn to denote the x-coordinate of Gibbs
chain.) It follows that we can view our estimator, gn = n−1

∑n−1
i=0 g(Xi), as being an estima-

tor based on the Gibbs chain. Formally, gn = n−1
∑n−1

i=0 g̃(Xi,Yi), where g̃(x, y) = g(x). This
correspondence allows us work with the Gibbs chain instead of X, which turns out to be
easier because, unlike k, k̃ is a known closed-form function.
Concerning simulation of the Gibbs chain, recall that our two-step procedure for sim-

ulating one iteration of the DA algorithm involves drawing from the joint pdf h(x′, y′ | x)
and throwing away the y-coordinate. In other words, the two-step procedure given in
Section 10.1 actually simulates the Gibbs chain and just ignores the y-coordinates.
Not surprisingly, the marginal sequence Y = {Yn}∞n=0 from the Gibbs chain is also a

Markov chain. This chain lives on Y and its Mtd is

kY(y′|y) =
∫
X
fY|X(y′ | x)fX|Y(x | y) dx.

It follows that Y can be viewed as the Markov chain underlying a DA algorithm for the
target density fY(y), and, as such, Y is reversible with respect to fY . There is actually an
alternative estimator of EfX g based on Y that we now describe. Define

ĝ(y) =
∫
X
g(x) fX|Y(x | y) dx,

and note that
∫
Y ĝ(y) fY(y) dy = ∫

X g(x) fX(x) dx = EfXg. Thus, if we can write ĝ in closed
form, which is often the case in practice, then we can compute the alternative estimator of
EfX g given by

1
n

n−1∑
i=0

ĝ(Yi). (10.17)

If Y is Harris ergodic, then, like gn, the estimator (10.17) is strongly consistent for EfXg.
In fact, Liu et al. (1994) proved that, if X0 ∼ fX and Y0 ∼ fY , then the alternative estimator
has a smaller (small sample) variance than gn. (Comparing variances is appropriate here
since, ifX0 ∼ fX and Y0 ∼ fY , then both estimators are unbiased.) We note that the methods
described below for computing a valid asymptotic standard error for gn can just as easily
be applied to the estimator (10.17).
Finally, consider the Mtd given by

˜̃k(y′, x′ | y, x) = fY|X(y′ | x′)fX|Y(x′ | y),

and denote the corresponding Markov chain by (Y′,X′) = {(Y′n,X′n)}∞n=0. Of course, (Y′,X′)
is just the Markov chain induced by the two-variable Gibbs sampler for f (x, y) with the
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variables in the opposite order. The chain (Y′,X′) behaves just like (X,Y). Indeed, f (x, y)
remains invariant and, by symmetry, themarginal sequences {X′n}∞n=0 and {Y′n}∞n=0 are equiv-
alent (distributionally) to X = {Xn}∞n=0 and Y = {Yn}∞n=0. Consequently, we can also view
our estimator, gn = n−1

∑n−1
i=0 g(Xi), as being an estimator based on the chain (Y′,X′); that

is, gn = n−1
∑n−1

i=0 ˜̃g(Y′i ,X′i), where ˜̃g(y, x) = g(x). In some cases, it is more convenient to
work with ˜̃k than with k̃. An important fact that will be used later is that all four of the
Markov chains discussed in this section (X, Y, (X,Y) and (Y′,X′)) converge at exactly the
same rate (Diaconis et al., 2008; Roberts and Rosenthal, 2001). Therefore, either all four
chains are geometrically ergodic, or none of them is. We now describe the minorization
condition and how it is used to induce regenerations, which can in turn be used to derive
the alternative CLT.

10.3.3 Minorization, Regeneration and an Alternative CLT

We assume throughout this subsection that the Gibbs chain is Harris ergodic. Suppose
that we can find a function s : X→ [0, 1) with EfX s > 0 and a joint pdf d : X× Y→ [0,∞)

such that

k̃(x′, y′ | x, y) ≥ s(x) d(x′, y′) for all (x, y), (x′, y′) ∈ X× Y. (10.18)

Equation 10.18 is called aminorization condition (Jones andHobert, 2001;Meyn andTweedie,
1993; Roberts and Rosenthal, 2004). Here is a simple example.

Example 10.2 (cont.)

Here we have X = Y = (0, 1), and we can develop a minorization condition as follows:

k̃(x ′, y ′ | x , y) = fX |Y (x ′ | y ′)fY |X (y ′ | x)

= 2x ′
1− y ′2 I(y ′ < x ′ < 1)

1
x

I(0 < y ′ < x < 1)

≥ 2x ′
1− y ′2 I(y ′ < x ′ < 1)

1
x

I(0 < y ′ < 0.5) I(0.5 < x < 1)

= 1
x

I(0.5 < x < 1)
2x ′

1− y ′2 I(y ′ < x ′ < 1) I(0 < y ′ < 0.5)

=
[
1
2x

I(0.5 < x < 1)

][
4x ′

1− y ′2 I(y ′ < x ′ < 1) I(0 < y ′ < 0.5)

]

= s(x) d (x ′, y ′),

where we have used the fact that

∫1
0

∫1
0

2x
1− y2

I(y < x < 1) I(0 < y < 0.5) dx dy = 1
2
.

Note that the density d is not strictly positive on X× Y.
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Theminorization condition (10.18) can be used to represent theMtd k̃ as amixture of two
other Mtds. First, define

r(x′, y′ | x, y) = k̃(x′, y′ | x, y)− s(x)d(x′, y′)
1− s(x)

,

and note that r(x′, y′ | x, y) is an Mtd. Indeed, Equation 10.18 implies that r is nonnegative,
and it is also clear that

∫
X

∫
Y r(x

′, y′ | x, y) dy′ dx′ = 1. We can now express k̃ as

k̃(x′, y′ | x, y) = s(x)d(x′, y′)+ (1− s(x)
)
r(x′, y′ | x, y). (10.19)

If we think of s(x) and 1− s(x) as two fixed numbers in [0, 1] whose sum is 1, then the
right-hand side of Equation 10.19 can be viewed as a mixture of two Mtds, d(x′, y′) and
r(x′, y′ | x, y). Since d(x′, y′) does not depend on (x, y), the Markov chain defined by d is
actually an i.i.d. sequence, and this is the key to introducing regenerations. Technically
speaking, the regenerations do not occur in the Gibbs chain itself, but in an augmented
Markov chain that we now describe.
For (x, y) ∈ X× Y, let f1

(
δ | (x, y)) denote a Bernoulli(s(x)) probability mass function; that

is, f1
(
1 | (x, y)) = s(x)and f1

(
0 | (x, y)) = 1− s(x).Also, for (x′, y′), (x, y) ∈ X× Yand δ ∈ {0, 1},

define
f2
(
(x′, y′) | δ, (x, y)) = d(x′, y′) I(δ = 1)+ r(x′, y′ | x, y) I(δ = 0). (10.20)

Note that f2 is a pdf in (x′, y′). Finally, define

ks
(
(x′, y′), δ′ | (x, y), δ) = f1

(
δ′ | (x, y)) f2((x′, y′) | δ′, (x, y)). (10.21)

Now, ks is nonnegative and

∑
δ′∈{0,1}

∫
Y

∫
X
ks
(
(x′, y′), δ′ | (x, y), δ) dx′ dy′ = ∑

δ′∈{0,1}
f1
(
δ′ | (x, y)) = 1.

Therefore, ks is an Mtd and the corresponding Markov chain, which we denote
by

(
(X,Y), δ

) = {(Xn,Yn), δn}∞n=0, lives on (X× Y)× {0, 1}. This is called the split chain
(Nummelin, 1984, Section 4.4).
Beforewe elucidate the regenerationproperties of the split chain,wedescribe the relation-

ship between the split chain and the Gibbs chain. Note that ks does not actually depend on
δ. Thus, arguments similar to those used in Section 10.3.2 show that the marginal sequence
{(Xn,Yn)}∞n=0 from the split chain is itself a Markov chain with Mtd given by

ks
(
(x′, y′), 1 | (x, y), δ)+ ks

(
(x′, y′), 0 | (x, y), δ)

= f1
(
1 | (x, y))f2((x′, y′) | 1, (x, y))+ f1

(
0 | (x, y))f2((x′, y′) | 0, (x, y))

= s(x)d(x′, y′)+ (1− s(x)
)
r(x′, y′ | x, y)

= k̃(x′, y′ | x, y).

We conclude that the marginal sequence {(Xn,Yn)}∞n=0 from the split chain is (distribution-
ally) equivalent to theGibbs chain.Moreover, the split chain inherits Harris ergodicity from
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the Gibbs chain (Nummelin, 1984, Section 4.4). As before, we can view the estimator gn as
being based on the split chain.
The split chain experiences a regeneration every time the binary component visits the set

{1}. To see this, suppose that we start the split chain with δ0 = 1 and (X0,Y0) ∼ d(·, ·). It is
clear from Equations 10.21 and 10.20 that, no matter what the value of the current state,(
(Xn,Yn), δn

)
, if δn+1 = 1 then (Xn+1,Yn+1) ∼ d(·, ·) and the process stochastically restarts

itself; that is, the Markov chain regenerates. We now use the regenerative structure of the
split chain to recast our estimator of EfX g in such a way that i.i.d. theory can be used to
analyze it. This leads to an alternative CLT whose asymptotic variance is very easy to
estimate.
Let τ0, τ1, τ2, . . . denote the regeneration times; that is, the random times at which the split

chain regenerates. Then τ0 = 0 and, for t = 1, 2, 3, . . ., we have

τt = min
{
i > τt−1 : δi = 1

}
.

This notation allows us to identify the “tours” that the split chain takes in between
regenerations:

{((
Xτt−1 ,Yτt−1

)
, δτt−1

)
, . . .,

((
Xτt−1,Yτt−1

)
, δτt−1

)
: t = 1, 2, 3, . . .

}
.

These tours are independent stochastic copies of each other, and hence standard techniques
from i.i.d. theory (such as the SLLN and the CLT) can be used in the asymptotic analysis of
the resulting ergodic averages. In otherwords, the regenerative structure thatwehave intro-
ducedallowsus to circumvent (to someextent) the complications causedby thedependence
among the random vectors in the Markov chain.
Consider running the split chain for R tours; that is, the chain is started with δ0 = 1 and

(X0,Y0) ∼ d(·, ·)and is rununtil theRth time that a δn = 1. (Somepractical advice concerning
simulation of the split chain will be given later.) For t = 1, 2, . . .,R, define Nt = τt − τt−1,
which is the length of the tth tour, andSt =∑τt−1

i=τt−1 g(Xi). Because the tours are independent
stochastic copies of each other, the pairs (N1, S1), . . ., (NR, SR) are i.i.d. The total length of
the simulation is

∑R
t=1Nt = τR, which is, of course, random. Our estimator of EfXg will be

gR =
1
τR

τR−1∑
i=0

g(Xi) =
∑R

t=1 St∑R
t=1Nt

.

Clearly, the only difference between gR and the usual ergodic average, gn, is that here,
the sample size is random. However, τR →∞ almost surely as R→∞ and it follows
that gR is also strongly consistent for EfX g as R→∞. The advantage of gR over the usual
ergodic average is that it can be expressed in terms of the i.i.d. pairs {(Nt, St)}Rt=1. Results in
Hobert et al. (2002) show that, if the Gibbs chain (or, equivalently, the DAMarkov chain) is
geometrically ergodic and EfX | g | 2+α < ∞ for some α > 0, then as R→∞,

√
R
(
gR − EfX g

) d→ N
(
0, γ2

)
, (10.22)

where

γ2 = E
[
(S1 −N1EfX g)2

]
[
EN1

]2 .
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Note that this asymptotic variance is written in terms of a single tour, (N1, S1). Results in
Hobert et al. (2002) show that the geometric ergodicity of the Gibbs chain and the “2+ α”
moment conditionong together imply thatEN2

1 andES
2
1 arebothfinite.Once thesemoments

are known to be finite, routine asymptotics can be used to show that

γ̂2R =
R
∑R

t=1
(
St − gRNt

)2
τ2R

is a strongly consistent estimator of γ2 as R→∞. Note the simple form of this estimator.
A couple of comments are in order concerning the two different CLTs (10.22 and 10.15).

First, both CLTs are based on the assumption that the DAMarkov chain,X, is geometrically
ergodic. However, while Equation 10.15 requires only the usual secondmoment condition,
EfX g2 < ∞, Equation 10.22 requires the slightly stronger condition that EfX | g | 2+α < ∞ for
some α > 0. Second, the two asymptotic variances are related via the formula κ2 = γ2/EfX s
(Hobert et al., 2002). This makes sense intuitively because EfX s is the average probability
of regeneration (under stationarity) and hence 1/EfX s seems like a reasonable guess at the
average tour length.
We conclude that, if X is geometrically ergodic and the “2+ α” moment condition on g is

satisfied, then we can employ the DAalgorithm in the sameway that classical Monte Carlo
is used. Indeed, we can simulate R′ tours of the split chain, where R′ is some initial sample
size. (Hopefully, R′ is large enough that γ̂2R′ is a reasonable estimate of γ

2.) If 2γ̂2R′/
√
R′ ≤ Δ,

then the current estimate of EfX g is good enough and we stop. Otherwise, if 2γ̂2R′/
√
R′ > Δ,

then additional tours must be simulated.

10.3.4 Simulating the Split Chain

Exploiting the techniques described in the previous subsection in practice requires the
ability to simulate the split chain. The form of ks actually lends itself to the sequential sim-
ulation technique described in Section 10.1. If the current state is

(
(Xn,Yn), δn

) = ((x, y), δ),
then the future state,

(
(Xn+1,Yn+1), δn+1

)
, can be simulated as follows. First, draw δn+1 ∼

Bernoulli(s(x)) and then, conditional on δn+1 = δ′, draw (Xn+1,Yn+1) from

f2
(
(·, ·) | δ′, (x, y))

that is, if δ′ = 1, draw (Xn+1,Yn+1) ∼ d(·, ·), and if δ′ = 0, draw (Xn+1,Yn+1) ∼ r(·, · | x, y).
Here is an example where this method is viable.

Example 10.2 (cont.)

Recall that we developed a minorization condition of the form (10.18) for this example earlier in
this section. We now verify that it is straightforward to simulate from d (·, ·) and from r(·, · | x , y).
First, it is easy to show that if (U,V ) ∼ d (·, ·), then marginally, V is U(0, 0.5), and the conditional
density of U given V = v is fX |Y (u | v) = 2u

1−v2
I(v < u < 1). Hence, simulating from d is easy.

Now consider r . Since, s(x) = 0 when x ∈ (0, 0.5), we must have r(x ′, y ′ | x , y) = k̃(x ′, y ′ | x , y)

when x ∈ (0, 0.5). On the other hand, when x ∈ (0.5, 1), then routine calculations show that

r(x ′, y ′ | x , y) = 2x ′
(1− y ′2)(x − 0.5)

I(y ′ < x ′ < 1) I(0.5 < y ′ < x) ,
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and, in this case, it is easy to show that if (U,V ) ∼ r(·, · | x , y), then marginally, V is U(0.5, x),
and the conditional density of U given V = v is fX |Y (u | v), so it is also easy to draw from r . Note
that the supports of d (·, ·) and r(·, · | x , y) are mutually exclusive.We conclude that the sequential
method outlined above can be used to simulate the split chain in this example.

In the toy example just considered, it is straightforward to simulate from r(·, · | x, y).
However, this will typically not be the case in real examples where k̃(x′, y′ | x, y) is a
high-dimensional, complex Mtd. Fortunately, Mykland et al. (1995) noticed a clever way
of circumventing the need to draw from r. Their idea amounts to using the sequen-
tial simulation technique, but in the opposite order. Indeed, one way to draw from
(Xn+1,Yn+1), δn+1 | (Xn,Yn) is to draw first from (Xn+1,Yn+1) | (Xn,Yn) and then from
δn+1 | (Xn+1,Yn+1), (Xn,Yn). A little thought reveals that these two steps are simple and
do not involve drawing from r. First, we established above that (Xn+1,Yn+1) | (Xn,Yn) =
(x, y) ∼ k̃(·, · | x, y), so this step can be accomplished by simulating a single iteration of the
Gibbs chain (by drawing from fY|X and then from fX|Y). Furthermore, given (Xn,Yn) and
(Xn+1,Yn+1), δn+1 has a Bernoulli distribution with success probability given by

Pr
(
δn+1 = 1 |Xn = x,Yn = y,Xn+1 = x′,Yn+1 = y′

) = s(x) d(x′, y′)
k̃(x′, y′ | x, y) . (10.23)

Here is a summary of how Mykland et al.’s (1995) method is used to simulate the split
chain. If the current state is (Xn,Yn) = (x, y), thenwe simply draw (Xn+1,Yn+1) in the usual
way, and then we go back and “fill in” the value of δn+1 by simulating a Bernoulli with
success probability (10.23). Even though we only draw from d once (at the start) and we
never actually draw from r at all, there is a regeneration in the chain each time δn = 1. In
fact, we can even avoid the single draw from d (although, even in real problems, it is usually
pretty easy to draw from d). Starting the chain from an arbitrary point, but then throwing
away everything from the beginning up to and including the first Bernoulli that equals
1, is equivalent to drawing (X0,Y0) ∼ d(·, ·). Finally, note the rather striking fact that the
only difference between simulating the split chain and the Gibbs chain is a single Bernoulli
draw per iteration! In fact, if computer code is available that runs the DAalgorithm, then a
few minor modifications will yield a program that runs the split chain instead. Here is an
example illustrating the use of Equation 10.23.

Example 10.2 (cont.)

If the nth and (n + 1)th states of the Gibbs chain are (Xn,Yn) = (x , y) and (Xn+1,Yn+1) = (x ′, y ′),
then it must be the case that x , x ′ ∈ (0, 1) and y ′ ∈ (0,min{x , x ′}). Now, applying Equation 10.23,
the probability that a regeneration occurred is

Pr
(
δn+1 = 1 |Xn = x ,Yn = y ,Xn+1 = x ′,Yn+1 = y ′

) = I(0.5 < x < 1) I(0 < y ′ < 0.5).

In hindsight, this formula is actually “obvious.” First, if x /∈ (0.5, 1), then s(x) = 0, and regeneration
could not have occurred. Likewise, if y ′ /∈ (0, 0.5), then d could not have been used to draw
(Xn+1,Yn+1) so, again, regeneration could not have occurred. On the other hand, if x ∈ (0.5, 1)

and y ′ ∈ (0, 0.5), then there must have been a regeneration because r(·, · | x , y) could not have
been used to draw (Xn+1,Yn+1).

In the next section, we give a general method of developing the minorization condi-
tion (Equation 10.18).
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10.3.5 A General Method for Constructing the Minorization Condition

Theminorization condition for Example 10.1was derived in a somewhat ad hocmanner.We
now describe a general recipe, due toMykland et al. (1995), for constructing aminorization
condition. This technique is most effective when f (x, y) is strictly positive on X× Y. Fix a
“distinguished point” x∗ ∈ X and a set D ⊂ Y. Then we can write

k̃(x′, y′ | x, y) = fX|Y(x′ | y′)fY|X(y′ | x)

= fY|X(y′ | x)
fY|X(y′ | x∗) fX|Y(x′ | y′)fY|X(y′ | x∗)

≥
[
inf
y∈D

fY|X(y | x)
fY|X(y | x∗)

]
fX|Y(x′ | y′)fY|X(y′ | x∗)ID(y′)

= c
[
inf
y∈D

fY|X(y | x)
fY|X(y | x∗)

]
1
c
fX|Y(x′ | y′)fY|X(y′ | x∗)ID(y′),

where

c =
∫
Y

∫
X
fX|Y(x | y)fY|X(y | x∗)ID(y) dx dy =

∫
D
fY|X(y | x∗) dy.

Thus, we have a minorization condition k̃(x′, y′ | x, y) ≥ s(x)d(x′, y′) with

s(x) = c inf
y∈D

fY|X(y | x)
fY|X(y | x∗) and d(x′, y′) = 1

c
fX|Y(x′ | y′)fY|X(y′ | x∗)ID(y′).

Fortunately, the value of c is not required in practice. The success probability in
Equation 10.23 involves s(x) and d(x′, y′) only through their product, so c cancels out. Fur-
thermore, it is possible to make draws from d(x′, y′) without knowing the value of c. We
first draw Y′ from its marginal density, c−1fY|X(y′ | x∗)ID(y′), by repeatedly drawing from
fY|X(· | x∗) until the result is in the set D. Then, given Y′ = y′, we draw X′ from fX|Y(· | y′).
Since the asymptotics described in Section 10.3.3 are for large R, the more frequently

the split chain regenerates, the better. Thus, in practice, one should choose the point x∗
and the set D so that regenerations occur frequently. This can be done by trial and error.
In applications, we have found it useful fix x∗ (at a preliminary estimate of the mean of
fX) and then vary the set D. Note that, according to Equation 10.23, a regeneration could
only have occurred if y′ ∈ D, so it is tempting to make D large. However, as D gets larger,
s(x) becomes smaller, which means that the probability of regeneration becomes smaller.
Hence, a balance must be struck. For examples, seeMykland et al. (1995), Jones andHobert
(2001), Roy and Hobert (2007), and Tan and Hobert (2009). We now provide two examples
illustrating Mykland et al.’s (1995) method.

Example 10.3 (cont.)

Recall that X |Y = y ∼ N(0, y−1) and Y |X = x ∼ Γ(52 , x2
2 + 2

)
. Thus,

fY |X (y | x)

fY |X (y | x∗) =
[
Γ
(5
2
)]−1( x2

2 + 2
)5/2y3/2 exp

{
− y

(
x2
2 + 2

)}
[
Γ
(5
2
)]−1( x2∗

2 + 2
)5/2y3/2 exp

{
− y

(
x2∗
2 + 2

)}
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=
(

x2 + 4

x2∗ + 4

)5/2
exp

{
− y

2

(
x2 − x2∗

)}
.

So if we take D = [d1, d2], where 0 < d1 < d2 < ∞, we have

inf
y∈D

fY |X (y | x)

fY |X (y | x∗) =
(

x2 + 4

x2∗ + 4

)5/2
exp

{
− d2

2

(
x2 − x2∗

)
I
(
x2 > x2∗

)− d1
2

(
x2 − x2∗

)
I
(
x2 ≤ x2∗

)}
.

Thus,

Pr
(
δn+1 = 1 |Xn = x ,Yn = y ,Xn+1 = x ′,Yn+1 = y ′

)
= s(x) d (x ′, y ′)

k̃(x ′, y ′ | x , y)

=
[

inf
y∈[d1,d2]

fY |X (y | x)

fY |X (y | x∗)
]

fY |X (y ′ | x∗)
fY |X (y ′ | x)

I[d1,d2](y
′)

= exp
{(

x2 − x2∗
)[y ′

2
− d2

2
I
(
x2 > x2∗

)− d1
2

I
(
x2 ≤ x2∗

)]}
I[d1,d2](y

′).

A draw from d (x ′, y ′) can be made by drawing a truncated gamma and then a normal.

Here is a more realistic example.

Example 10.4 (cont.)

The variable of interest is (μ, σ2), which lives in X = R× R+, and the augmented data, y , live in
Y = R

m+ . In order to keep the notation under control, we use the symbol η in place of σ2. In this

example, it turns out to be more convenient to use ˜̃k , which is given by

˜̃k(y ′, (μ′,η′) | y , (μ,η)) = π(y ′ |μ′,η′, z)π(μ′,η′ | y , z),

where the conditional densities on the right-hand side are defined in Equation 10.6 through 10.8.
Fix a distinguished point y∗ ∈ Y and let D = [d1, d2] × [d3, d4] where −∞ < d1 < d2 < ∞ and
0 < d3 < d4 < ∞. Now, letting ys denote the sum of the components of y∗, we have

π(μ,η | y , z)

π(μ,η | y∗, z)

=

√
y·√
η2π

exp
{
− y·

2η
(
μ− μ̂(y)

)2}( y·σ̂2(y)
2

)m+1
2
Γ−1

(
m+1
2

)
η−m+1

2 −1 exp
{
− y·σ̂2(y)

2η

}
√

ys√
η2π

exp
{
− ys

2η
(
μ− μ̂(y∗)

)2}( ys σ̂2(y∗)
2

)m+1
2
Γ−1

(
m+1
2

)
η−m+1

2 −1 exp
{
− ys σ̂2(y∗)

2η

}

=
√

y·√
ys

(
y·σ̂2(y)

ys σ̂2(y∗)

)m+1
2

exp
{
− 1

2η

[
y·
(
μ− μ̂(y)

)2 + y·σ̂2(y)− ys
(
μ− μ̂(y∗)

)2 − ys σ̂
2(y∗)

]}

=
√

y·√
ys

(
y·σ̂2(y)

ys σ̂2(y∗)

)m+1
2

exp
{
− 1

2η
Q(μ; y , y∗)

}
,
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whereQ(μ; y , y∗) is a quadratic function ofμwhose coefficients are determined by y and y∗. Now
consider minimizing the exponential over (μ,η) ∈ [d1, d2] × [d3, d4]. Let μ̃ denote the maximizer
of Q(μ; y , y∗) over μ ∈ [d1, d2], which is easy to compute once y and y∗ are specified. Clearly,
if Q(μ̃; y , y∗) ≥ 0, then the exponential is minimized at (μ,η) = (μ̃, d3). On the other hand, if
Q(μ̃; y , y∗) < 0, then the minimizer is (μ,η) = (μ̃, d4). Let η = d3 if Q(μ̃; y , y∗) ≥ 0 and d4 if
Q(μ̃; y , y∗) < 0. Then we can write

s(y) = c inf
(μ,η)∈[d1,d2]×[d3,d4]

π(μ,η | y , z)

π(μ,η | y∗, z)
= c

√
y·√
ys

(
y·σ̂2(y)

ys σ̂2(y∗)

)m+1
2

exp
{
− 1

2η
Q(μ̃; y , y∗)

}
,

and

d
(
y ′, (μ′,η′)

) = 1
c
π(y ′ |μ′,η′, z)π(μ′,η′ | y∗, z)ID(μ′,η′).

Putting all of this together, if the nth and (n + 1)th states of the Gibbs chain are (Xn,Yn) =(
(μ,η), y

)
and (Xn+1,Yn+1) =

(
(μ′,η′), y ′

)
, then the probability that a regeneration occurred

(i.e. that δn+1 = 1) is given by

s(y) d
(
y ′, (μ′,η′)

)
˜̃k(y ′, (μ′,η′) | y , (μ,η)) =

[
inf

(μ,η)∈[d1,d2]×[d3,d4]
π(μ,η | y , z)

π(μ,η | y∗, z)

]
π(μ′,η′ | y∗, z)

π(μ′,η′ | y , z)
ID(μ′,η′)

= exp
{
− 1

2η
Q(μ̃; y , y∗)+ 1

2η′Q(μ′; y∗, y)

}
ID(μ′,η′).

In the final section of this chapter, we describe a simple method of improving the DA
algorithm.

10.4 Improving the DA Algorithm
Suppose that the current state of the DA algorithm is Xn = x. As we know, the move to
Xn+1 involves two steps: draw Y ∼ fY|X(· | x) and then, conditional on Y = y, draw Xn+1 ∼
fX|Y(· | y). Consider adding an extra step in between these two. Suppose that, after having
drawn Y = y but before drawing Xn+1, a random move is made from y to a new point
in Y; call it Y′. Then, conditional on Y′ = y′, draw Xn+1 ∼ fX|Y(· | y′). Graphically, we are
changing the algorithm from X→ Y→ X′ to X→ Y→ Y′ → X′. Of course, this must all
be done subject to the restriction that fX remains invariant. Intuitively, this extra random
move within Y should reduce the correlation between Xn and Xn+1, thereby improving the
mixing properties of the DAMarkov chain. On the other hand, the new algorithm requires
more computational effort per iteration, which must be weighed against any improvement
in mixing. In this section, we describe techniques for constructing relatively inexpensive
extramoves that often result indramatic improvements inmixing.Here is abriefdescription
of one of these techniques.
Suppose that G ⊂ R

d and that we have a class of functions tg : Y→ Y indexed by g ∈ G.
In Section 10.4.4 we show that, if this class possesses a certain group structure, then there
exists a parametric family of densities on G, indexed by y ∈ Y—call it ξ(g; y)—that can be
used tomake the extramoveY→ Y′. It proceeds as follows. GivenY = y, drawG ∼ ξ(· ; y),
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call the result g, and set Y′ = tg(y). In other words, the extra move takes y to the random
point Y′ = tG(y) where G is drawn from a distribution that is constructed to ensure that fX
remains invariant. Typically, d is small, say 1 or 2, so drawing from ξ(· ; y) is inexpensive. A
potential downside of small d is that, for fixed y, the set {tg(y) : g ∈ G} is a low-dimensional
subset of Y (that includes the point y). Thus, the potential “shakeup” resulting from the
move to Y′ = tG(y) may not be significant. However, it turns out that, even when d = 1,
this shakeup often results in huge improvements. We now begin a careful development of
these ideas.

10.4.1 The PX-DA and Marginal Augmentation Algorithms

Recall that ourDAalgorithm is based on the pdf f (x, y)whose x-marginal is fX .As above, let
G ⊂ R

d and suppose that we have a class of functions tg : Y→ Y indexed by g ∈ G. Assume
that, for each fixed g, tg(y) is one-to-one and differentiable in y. Let Jg(z) denote the Jacobian
of the transformation z = t−1g (y), so, for example, in the univariate case, Jg(z) = ∂

∂z tg(z). Note
that ∫

Y
f
(
x, tg(y)

) | Jg(y) | dy =
∫
Y
f (x, z) dz = fX(x). (10.24)

Now suppose that w : G→ [0,∞) is a pdf and define f (w) : X× Y×G→ [0,∞) as follows:

f (w)(x, y, g) = f
(
x, tg(y)

) | Jg(y) | w(g). (10.25)

It is clear from Equation 10.24 that f (w)(x, y, g) is a pdf whose x-marginal is fX(x), and hence
the pdf defined by

f (w)(x, y) =
∫
G
f (w)(x, y, g) dg

also has fX as its x-marginal. Thus, if straightforward sampling from f (w)
X|Y(x | y) and f (w)

Y|X(y | x)
is possible, then we have a new DA algorithm that can be compared with the one based
on f (x, y). (For the rest of this chapter, we assume that all Markov chains on X are Harris
ergodic.)Aswewill see, it is often possible to choose tg andw in such away that there is little
difference between these two DAalgorithms in terms of computational effort per iteration.
However, under mild regularity conditions that are described below, the new algorithm
beats the original in terms of both convergence rate and ARE. The idea of introducing the
extra parameter, g, to formanewDAalgorithmwasdeveloped independently byMeng and
van Dyk (1999), who called it marginal augmentation, and Liu and Wu (1999), who called it
parameter expanded-data augmentation (or PX-DA). We find Liu andWu’s (1999) terminology
a little more convenient, so we call the new DA algorithm based on f (w)(x, y) a PX-DA
algorithm. Here is a simple example.

Example 10.3 (cont.)

Set G = R+ and let tg (y) = gy . If we take w(g) to be a Γ(α, β) pdf, then we have

f (w)(x , y , g) = f
(
x , tg (y)

) | Jg (y) | w(g)

=
[

4√
2π

(gy)3/2 exp
{
− gy

(x2

2
+ 2
)}

IR+ (y)

](
g
)[ βα
Γ(α)

gα−1 exp{−gβ}IR+(g)

]
.
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It follows that

f (w)(x , y) =
∫
R+

f (w)(x , y , g) dg = 4βα Γ
(5
2 + α

)
Γ(α)

√
2π

y3/2
[
y
(x2

4
+ 1
)
+ β
]−(5/2+α)

.

According to the theory above, every (α, β) ∈ R+ × R+ yields a different version of f (w)(x , y) and
every one of them has the Student’s t density with 4 degrees of freedom as its x-marginal.
Now consider the conditional densities under f (w)(x , y). It is easy to show that f (w)

X |Y (· | y) is a

scaled Student’s t density and that f (w)
Y |X (· | x) is a scaled F density. In fact, if the current state of

the PX-DA Markov chain is Xn = x , then the next state, Xn+1, can be simulated by performing
the following two steps:

1. Draw U from the F distribution with 5 numerator degrees of freedom and 2α denominator
degrees of freedom, and call the realized value u. Then set y = 10β

α(x2+4)
u.

2. Draw V from the Student’s t distribution with 2(α+ 2) degrees of freedom, and set Xn+1 =√
2(y+β)
y(α+2)

V .

(Note that Step 2 is as difficult as drawing directly from the target pdf, fX , which is a Student’s t
density, but keep in mind that this is just a toy example that we are using for illustration.) We now
have infinitely many viable PX-DA algorithms—one for each (α, β) pair. This raises an obvious
question. Are any of these PX-DA algorithms better than the original DA algorithm, and if so, is
there a best one? These questions are answered below.

In the toy example just considered, the conditional densities f (w)
X|Y and f

(w)
Y|X have standard

forms. Unfortunately, in real examples, it will typically be impossible to sample directly
from(or evencompute) these conditionals.However, byexploiting the relationshipbetween
f (w)(x, y) and f (w)(x, y, g), it is possible to develop indirect methods of drawing from f (w)

X|Y
and f (w)

Y|X that use only draws from fX|Y , fY|X , w(g) and one other density. (Recall that we
have been operating since Section 10.1 under the assumption that it is easy to sample from
fX|Y and fY|X .) We begin with f (w)

Y|X(y | x). Note that

f (w)
Y|X(y | x) =

∫
G f

(w)(x, y, g) dg
fX(x)

=
∫
G

f
(
x, tg(y)

)
fX(x)

| Jg(y) | w(g) dg

=
∫
G
fY|X

(
tg(y) | x

) | Jg(y) | w(g) dg.

(10.26)

Now suppose that Y′ ∼ fY|X(· | x), G ∼ w(·), and Y′ and G are independent. Then the inte-
grand in Equation 10.26 is the joint density of (G,Y) where Y = t−1G (Y′). Consequently,
Y = t−1G (Y′)has density f (w)

Y|X(· | x). This provides a simplemethod of drawing from f (w)
Y|X(· | x).

Indeed, we draw Y′ and G independently from fY|X(· | x) and w(·) respectively, and then
take Y = t−1G (Y′).
Sampling from f (w)

X|Y is a little trickier. Clearly,

f (w)
X|Y(x | y) =

∫
G
f (w)
X,G |Y(x, g | y) dg =

∫
G
f (w)
X |Y,G(x | y, g) f (w)

G |Y(g | y) dg.
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Thus, we can use the sequential simulation technique from Section 10.1 to draw from
f (w)
X|Y(x | y) as follows. First, draw G ∼ f (w)

G |Y(· | y) and then, conditional on G = g, draw
X ∼ f (w)

X |Y,G(· | y, g). But now the question is whether we can draw from f (w)
G |Y and f (w)

X |Y,G.
It is actually simple to draw from f (w)

X |Y,G because

f (w)
X |Y,G(x | y, g) = f (w)(x, y, g)∫

X f (w)(x, y, g) dx
= f

(
x, tg(y)

) | Jg(y) | w(g)
fY
(
tg(y)

) | Jg(y) | w(g)
= fX|Y

(
x | tg(y)

)
.

In other words, drawing from f (w)
X |Y,G(· | y, g) is equivalent to drawing from fX|Y

( · | tg(y)).
Now,

f (w)
G |Y(g | y) =

∫
X f

(w)(x, y, g) dx∫
G

∫
X f (w)(x, y, g) dx dg

∝
∫
X
f (w)(x, y, g) dx = fY

(
tg(y)

) | Jg(y) | w(g).

There is no simple trick for drawing from f (w)
G |Y . Moreover, at first glance, sampling from

the normalized version of fY
(
tg(y)

) | Jg(y) | w(g) appears challenging because this function
involves fY , from which it is impossible to sample. (Indeed, if we could draw directly from
fY , thenwe could use the sequential simulation technique to get exact draws from the target,
fX , and we would not need MCMC!) Fortunately, g typically has much lower dimension
than y and in such cases it is often possible to draw from f (w)

G |Y(g | y) despite the intractability
of fY . Hence, our method of drawing from f (w)

X|Y(· | y) is as follows. Draw G ∼ f (w)
G |Y(· | y) and

then, conditional on G = g, draw X ∼ fX|Y
( · | tg(y)).

As we know from previous sections, performing one iteration of the PX-DA algorithm
entails drawing from f (w)

Y|X(· | x) and then from f (w)
X|Y(· | y). Liu and Wu (1999) noticed that

making these two draws using the indirect techniques described above can be represented
as a three-step procedure in which the first and third steps are the same as the original DA
algorithm. Indeed, if the current state of the PX-DAMarkov chain is Xn = x, then we can
simulate Xn+1 as follows.

ONE ITERATION OF THE PX-DA ALGORITHM

1. Draw Y ∼ fY|X(· | x), and call the observed value y.
2. Draw G ∼ w(·), call the result g, then draw G′ ∼ f (w)

G |Y
( · | t−1g (y)

)
, call the result g′,

and finally set y′ = tg′
(
t−1g (y)

)
.

3. Draw Xn+1 ∼ fX|Y(· | y′).

Here is a recapitulation of what has been done so far in this subsection. We started with
a DA algorithm for fX based on a joint density f (x, y). The density f (x, y) was used to
create an entire family of joint densities, f (w)(x, y), one for each density w(·). Each mem-
ber of this family has fX as its x-marginal and can therefore be used to create a new
DA algorithm. We call these PX-DA algorithms. Running a PX-DA algorithm requires
drawing from f (w)

X|Y and f (w)
Y|X , and simple, indirect methods of making these draws were

developed. Finally, we provided a representation of the PX-DA algorithm as a three-step
algorithm in which the first and third steps are the same as the two steps of the original DA
algorithm.
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From a computational standpoint, the only difference between the original DA algo-
rithm and the PX-DA algorithm is that one extra step (Step 2) must be performed at each
iteration of the PX-DA algorithm. However, when g has relatively low dimension, as is
usually the case in practice, the computational cost of the extra step is inconsequential
compared to the cost of Steps 1 and 3. In such cases, the DA and PX-DA algorithms are
(essentially) equivalent in terms of cost per iteration. What is amazing is the extent to
which the mixing properties of the DA algorithm can be improved without really altering
the computational complexity of the algorithm (see, e.g. Liu and Wu, 1999; Meng and van
Dyk, 1999; van Dyk and Meng, 2001). Moreover, there is empirical evidence that the rel-
ative improvement of PX-DA over DA actually increases as the dimension of X increases
(Meng and van Dyk, 1999). Section 10.4.3 contains a rigorous theoretical comparison of the
DA and PX-DA algorithms. We end this subsection with a real example that was devel-
oped and studied in Liu and Wu (1999), van Dyk and Meng (2001), and Roy and Hobert
(2007).

Example 10.5 (cont.)

In this example,π(β, y | z) plays the role of f (x , y).TakeG = R+ and tg (y) = gy = (gy1, . . ., gym),
and take w as follows:

w(g ; α, δ) = 2δα

Γ(α)
g2α−1e−g2δIR+ (g), (10.27)

where α, δ ∈ R+.This is just the density of the square root of a gamma variate; that is, ifU ∼ Γ(α, δ),
then G = √U has density (10.27). Substituting Equation 10.10 into Equation 10.9 and integrating
with respect to β shows that

π(y | z) =
exp

{
− 1

2yT (I −H)y
}

|V T V | 1/2c(z)(2π)(m−p)/2

m∏
i=1

{
IR+(yi )I{1}(zi)+ IR−(yi )I{0}(zi)

}
.

Thus,

f (w)
G |Y (g | y) ∝ π(tg (y) | z) | Jg (y) | w(g)

∝
[
exp

{
− 1

2
(gy)T (I −H)(gy)

}](
gm)[g2α−1 exp{−g2δ}IR+(g)

]

= exp
{
− g2

[
yT (I −H)y

2
+ δ
]}

gm+2α−1 IR+ (g).

Note that f (w)
G |Y (g | y) has the same form as w(g ; α, δ), which means that a draw from f (w)

G |Y (g | y)

can be made be simulating a gamma and taking its square root. Putting all of this together, if
the current state of the PX-DA algorithm is Xn = β, then we simulate the next state, Xn+1, by
performing the following three steps:

1. Draw Y1, . . .,Ym independently such that Yi ∼ TN(vT
i β, 1, zi ), and call the result y =

(y1, . . ., ym)T .
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2. Draw U ∼ Γ(α, δ), call the result u, and set ỹ = y/
√

u. Draw

V ∼ Γ
(

m
2
+ α, ỹT (I −H)ỹ

2
+ δ
)
,

call the result v , and set y ′ = √vỹ .

3. Draw Xn+1 ∼ N
(
β̂(y ′), (V T V )−1

)
.

Sampling from the truncated normal distribution is typically done using an accept–reject algorithm,
and Step 1 of the above procedure involves the simulation of m truncated normals. Obviously,
the computational burden of Step 2, which requires only two univariate draws from the gamma
distribution, is relatively minor. On the other hand, as the examples in Liu and Wu (1999) and
van Dyk and Meng (2001) demonstrate, the PX-DA algorithm mixes much faster than the DA
algorithm.

As a prelude to our theoretical comparison of DA and PX-DA, we introduce a bit of
operator theory.

10.4.2 The Operator Associated with a Reversible Markov Chain

It is well known that techniques from spectral theory (see, e.g. Rudin, 1991, Part III) can
be used to analyze reversible Markov chains. The reason for this is that every reversible
Markov chain defines a self-adjoint operator on the space of functions that are square
integrable with respect to the invariant density. Examples of the use of spectral theory in
the analysis of reversibleMarkov chains can be found in Diaconis and Stroock (1991), Chan
and Geyer (1994), Liu et al. (1994, 1995), Roberts and Rosenthal (1997), andMira and Geyer
(1999). Our theoretical comparison of PX-DA and DA involves ideas from this theory.
Define

L20( fX) =
{
h ∈ L2( fX) :

∫
X
h(x) fX(x) dx = 0

}
,

and, for g, h ∈ L20( fX), define the inner product as 〈g, h〉 = ∫
X g(x) h(x) fX(x) dx. The corre-

sponding norm is given by ‖g‖ = √〈g, g〉. Let a : X× X→ [0,∞) denote a generic Mtd
that is reversible with respect to fX ; that is, a(x′ | x)fX(x) = a(x | x′)fX(x′) for all x, x′ ∈ X. Let
Ψ = {Ψn}∞n=0 denote the corresponding Markov chain and assume thatΨ is Harris ergodic.
TheMtd a defines an operator,A, that maps g ∈ L20( fX) to a new function in L20( fX) given by

(Ag)(x) =
∫
X
g(x′) a(x′ | x) dx′.

Note that (Ag)(x) = E
[
g(Ψn+1) |Ψn = x

]
. To verify thatAg is square integrable with respect

to fX , use Jensen’s inequality, Fubini’s theorem, the invariance of fX , and the fact that g ∈
L20( fX) as follows:

∫
X

[
(Ag)(x)

]2fX(x) dx =
∫
X

[ ∫
X
g(x′) a(x′ | x) dx′

]2
fX(x) dx

≤
∫
X

[ ∫
X
g2(x′) a(x′ | x) dx′

]
fX(x) dx
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=
∫
X
g2(x′)

[ ∫
X
a(x′ | x) fX(x) dx

]
dx′

=
∫
X
g2(x′) fX(x′) dx′ < ∞.

That Ag has mean zero follows from Fubini, the invariance of fX , and the fact that g has
mean zero:

∫
X
(Ag)(x)fX(x) dx =

∫
X

[ ∫
X
g(x′) a(x′ | x) dx′

]
fX(x) dx

=
∫
X
g(x′)

[ ∫
X
a(x′ | x) fX(x) dx

]
dx′

=
∫
X
g(x′) fX(x′) dx′ = 0.

We now demonstrate that the operator A is indeed self-adjoint (Rudin, 1991, Section 12).
Using Fubini and the fact that a(x′ | x)fX(x) is symmetric in (x, x′), we have, for g, h ∈ L20(fX),

〈Ag, h〉 =
∫
X
(Ag)(x) h(x) fX(x) dx

=
∫
X

[ ∫
X
g(x′) a(x′ | x) dx′

]
h(x) fX(x) dx

=
∫
X

∫
X
g(x′) h(x) a(x′ | x) fX(x) dx dx′

=
∫
X
g(x′)

[ ∫
X
h(x) a(x | x′) dx

]
fX(x′) dx′

=
∫
X
g(x′)(Ah)(x′) fX(x′) dx′

= 〈g,Ah〉.

The norm of the operator A is defined as

‖A‖ = sup
g∈L20(fX), ‖g‖=1

‖Ag‖.

Obviously, ‖A‖ ≥ 0. In fact, ‖A‖ ∈ [0, 1]. Indeed, ‖Ag‖2 = ∫
X

[
(Ag)(x)

]2 fX(x) dx and the
calculations above imply that ‖Ag‖2 ≤ ‖g‖2. The quantity ‖A‖ is closely related to the
convergence properties of the Markov chain Ψ. For example, Ψ is geometrically ergodic
if and only if ‖A‖ < 1 (Roberts and Rosenthal, 1997; Roberts and Tweedie, 2001). The closer
‖A‖ is to 0, the faster Ψ converges to its stationary distribution (see, e.g. Rosenthal, 2003).
Because of this,Monte CarloMarkov chains are sometimes ordered according to their oper-
ator norms. In particular, if there are two different chains available that are both reversible
with respect to fX , we prefer the one with the smaller operator norm (see, e.g. Liu and Wu,
1999; Liu et al., 1994; Meng and van Dyk, 1999). In the next subsection, we compare DA
and PX-DA in terms of operator norms as well as performance in the CLT.
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10.4.3 A Theoretical Comparison of the DA and PX-DA Algorithms

The Mtd of the PX-DA algorithm is given by

kw(x′ | x) =
∫
Y
f (w)
X|Y(x′ | y)f (w)

Y|X( y | x) dy.

However, there is an alternative representation of kw that is based on the general three-
step procedure for simulating the PX-DA algorithm that was given in Section 10.4.1. This
representation turns out to be muchmore useful for comparing DAand PX-DA. Recall that
Step 2 of the three-step procedure entails making the transition y→ y′ by drawing Y′ from
a distribution that depends on y. Hence, this step can be viewed as performing a single
iteration of a Markov chain whose state space is Y. If we denote the corresponding Mtd as
lw(y′ | y), then we can reexpress the Mtd of the PX-DA algorithm as

kw(x′ | x) =
∫
Y

∫
Y
fX|Y(x′ | y′) lw(y′ | y) fY|X(y | x) dy dy′. (10.28)

Liu and Wu’s (1999) Theorem 1 implies that fY is an invariant density for lw; that is,
∫
Y
lw(y′ | y)fY(y) dy = fY(y′).

This invariance implies that fX is an invariant density for kw(x′ | x):
∫
X
kw(x′ | x)fX(x) dx =

∫
X

[ ∫
Y

∫
Y
fX|Y(x′ | y′) lw(y′ | y) fY|X(y | x) dy dy′

]
fX(x) dx

=
∫
Y
fX|Y(x′ | y′)

[ ∫
Y
lw(y′ | y) fY(y) dy

]
dy′

=
∫
Y
fX|Y(x′ | y′) fY(y′) dy′

= fX(x′).

Of course, we did not need Equation 10.28 to conclude that fX is invariant for kw(x′ | x).
Indeed, the fact that kw(x′ | x) is the Mtd of a DA algorithm implies that kw is reversible
with respect to fX , and hence that fX is invariant for kw. Note, however, that the previous
calculation still goes through if lw is replaced by anyMtd having fY as an invariant density.
This suggests a generalization of Equation 10.28.
Let l : Y× Y→ [0,∞) be any Mtd that has fY( y) as an invariant density. Define the

function kl : X× X→ [0,∞) as follows:

kl(x′ | x) =
∫
Y

∫
Y
fX|Y(x′ | y′) l( y′ | y) fY|X( y | x) dy dy′. (10.29)

The reader can easily verify that, for each fixed x ∈ X,
∫
X kl(x

′ | x) dx′ = 1. Hence, kl is anMtd
that defines a Markov chain on X, and the arguments above show that fX is an invariant
density for kl. This is a generalization of Equation 10.28 in the sense that the set of Mtds
having fY as an invariant density is much larger than the set of Mtds of the form lw. Hobert
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and Marchev (2008) studied kl and established that (under weak regularity conditions) the
MCMC algorithm based on kl is better (in terms of convergence rate andARE) than the DA
algorithm. This leads to the conclusion that every PX-DA algorithm is better than the DA
algorithm upon which it is based. In order to state the results precisely, we need a couple
of definitions.
If there exists a joint pdf f ∗(x, y) with

∫
Y f
∗(x, y) dy = fX(x) such that

kl(x′ | x) =
∫
Y
f ∗X|Y(x′ | y) f ∗Y|X(y | x) dy,

then we say that kl is representable. Clearly, if kl is representable, then it is also reversible
with respect to fX(x). (Note that, by definition, kw is representable with f (w)(x, y) playing
the role of f ∗(x, y).)
The second definition involves the CLT discussed in Section 10.2.4. Let X = {Xn}∞n=0

denote the Markov chain underlying the original DA algorithm based on f (x, y). Suppose
that g ∈ L2(fX) and, as before, let gn = 1

n
∑n−1

n=0 g(Xi). If gn satisfies a CLT, then let κ2g denote
the corresponding asymptotic variance. If there is no CLT for gn, then set κ2g equal to ∞.
(Since we have not assumed that X is geometrically ergodic, a CLT for gn may or may not
exist.) Now let X∗ = {X∗n}∞n=0 denote the Markov chain associated with kl(x′ | x), and define
κ∗2g analogously using g∗n = 1

n
∑n−1

n=0 g(X∗i ) in place of gn. If κ∗2g ≤ κ2g for every g ∈ L2(fX),
then we say that kl is more efficient than k.
Hobert and Marchev (2008) established two general results that facilitate comparison of

the DA algorithm and the MCMC algorithm based on kl: (i) if kl is reversible with respect
to fX , then kl is more efficient than k; and (ii) if kl is representable, then ‖Kl‖ ≤ ‖K‖, where
Kl and K are the operators on L20( fX) associated with kl and k, respectively. (Hobert and
Rosenthal (2007) show that, in (ii), representability can be replaced by a weaker condition
at no expense.) Now, consider the implications of these results with regard to the PX-DA
algorithm. Since kw is representable, both of Hobert andMarchev’s (2008) results are appli-
cable and we may conclude that every PX-DA algorithm is better than the corresponding
DA algorithm in terms of both convergence rate and ARE. (The norm comparison result
was actually established in Liu andWu (1999) andMeng and vanDyk (1999) using different
techniques.)
In addition to providing information about the relative convergence rates ofX andX∗, the

inequality ‖Kl‖ ≤ ‖K‖ also has a nice practical application. We know from Section 10.4.2
that a reversible Markov chain is geometrically ergodic if and only if the norm of the
corresponding operator is strictly less than 1. Therefore, ifwe can prove that theDAMarkov
chain, X, is geometrically ergodic (by, say, establishing a geometric drift condition), then
it follows that ‖Kl‖ ≤ ‖K‖ < 1, which implies that X∗ is also geometrically ergodic. This
allows one to prove that X∗ is geometric without having to work directly with kl, which,
from an analytical standpoint, is much more cumbersome than k.
It is important to keep in mind that the comparison results described above are really

only useful in situations where at least one of the two chains being compared is known
to be geometrically ergodic. For example, if all we know is that ‖Kl‖ ≤ ‖K‖, then it may
be the case that X and X∗ are both bad chains with norm 1 and neither should be used in
practice. Similarly, if there are no CLTs, then the fact that kl is more efficient than k is not
very useful.
Finally, there is one very simple sufficient condition for kl to be reversible with respect

to fX , and that is the reversibility of l(y′ | y) with respect to fY(y). Indeed, suppose that
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l( y′ | y) fY( y) is symmetric in ( y, y′). Then

kl(x′ | x)fX(x) = fX(x)
∫
Y

∫
Y
fX|Y(x′ | y′) l(y′ | y) fY|X(y | x) dy dy′

=
∫
Y

∫
Y
fX|Y(x′ | y′) l(y′ | y) f (x, y) dy dy′

=
∫
Y

∫
Y
fX|Y(x′ | y′) l(y′ | y)fY(y) fX|Y(x | y) dy dy′

=
∫
Y

∫
Y
fX|Y(x′ | y′) l(y | y′)fY(y′) fX|Y(x | y) dy dy′

=
∫
Y

∫
Y
f (x′, y′) l(y | y′) fX|Y(x | y) dy dy′

= fX(x′)
∫
Y

∫
Y
fX|Y(x | y) l(y | y′) fY|X(y′ | x′) dy dy′

= kl(x | x′)fX(x′).

There is also a simple sufficient condition on l(y′ | y) for representability of kl (see Hobert
and Marchev, 2008).
We know that each pdf w(g) yields its own PX-DA algorithm. In the next subsection, we

show that, under certain conditions, there is a limiting version of the PX-DAalgorithm that
beats all the others.

10.4.4 Is There a Best PX-DA Algorithm?

The results in the previous subsection show that every PX-DA algorithm is better than the
original DA algorithm based on f (x, y). This raises the question of whether there exists a
particular PX-DA algorithm that beats all the others. There are actually theoretical argu-
ments as well as empirical evidence suggesting that the PX-DA algorithm will perform
better as the pdfw(·) becomes more “diffuse” (Liu andWu, 1999; Meng and van Dyk, 1999;
van Dyk andMeng, 2001). On the other hand, it is clear that our development of the PX-DA
algorithm breaks down ifw is improper. In particular, ifw is improper, then Equation 10.25
is no longer a pdf. Moreover, Step 2 of the PX-DAalgorithm requires a draw fromw, which
is obviously not possible when w is improper. However, Liu and Wu (1999) showed that,
if there is a certain group structure present in the problem, then it is possible to construct
a valid PX-DA-like algorithm using an improper Haar density in place of w. Moreover, the
results from the previous subsection can be used to show that this Haar PX-DA algorithm is
better than any PX-DA algorithm based on a proper w.
Suppose that the set G is a topological group; that is, a group such that the functions

( g1, g2) �→ g1g2 and g �→ g−1 are continuous. (An example of such a group is themultiplica-
tive group,R+, where the binary operation defining the group is multiplication, the identity
element is 1, and g−1 = 1/g.) Let e denote the group’s identity element and assume that
te(y) = y for all y ∈ Y and that tg1g2( y) = tg1

(
tg2( y)

)
for all g1, g2 ∈ G and all y ∈ Y. In other

words, we are assuming that tg(y) representsG acting topologically on the left of Y (Eaton,
1989, Chapter 2).
A function χ : G→ R+ is called a multiplier if χ is continuous and χ(g1g2) = χ(g1)χ(g2)

for all g1, g2 ∈ G. Assume that Lebesgue measure on Y is relatively (left) invariant with
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multiplier χ; that is, assume that, for any g ∈ G and any integrable function h : Y→ R,
we have

χ( g)
∫
Y
h
(
tg( y)

)
dy =

∫
Y
h( y) dy.

Here is a simple example.

Example 10.5 (cont.)

Again, take G = R+ and tg (y) = gy = (gy1, . . ., gym). Now think of G = R+ as the multiplicative
group and note that, for any y ∈ R

m+ and any g1, g2 ∈ G, we have te(y) = y and

tg1g2(y) = g1g2y = g1(g2y) = tg1
(
tg2 (y)

)
.

Hence, the compatibility conditions are satisfied. Now, for any g ∈ G, we have
∫
Y

h
(
tg (y)

)
dy =

∫
R

m+
h(gy) dy = g−m

∫
R

m+
h(y) dy ,

which shows that Lebesgue measure on Y = R
m+ is relatively invariant with multiplier χ(g) = gm.

Suppose that the group G has a left-Haar measure of the form νl(g) dg, where dg denotes
Lebesgue measure on G. Left-Haar measure satisfies

∫
G
h
(
g̃g
)
νl( g) dg =

∫
G
h( g) νl(g) dg, (10.30)

for all g̃ ∈ G and all integrable functions h : G→ R. In most applications, this measure will
be improper; that is,

∫
G νl( g) dg = ∞. (When the left-Haar measure is the same as the right-

Haar measure, which satisfies the obvious analog of Equation 10.30, the group is called
unimodular.) Finally, assume that

q( y) :=
∫
G
fY
(
tg( y)

)
χ( g) νl( g) dg

is strictly positive for all y ∈ Y and finite for (almost) all y ∈ Y.
We now state (a generalized version of) Liu and Wu’s (1999) Haar PX-DA algorithm. If

the current state is X∗n = x, we simulate X∗n+1 as follows.

ONE ITERATION OF THE HAAR PX-DA ALGORITHM

1. Draw Y ∼ fY|X(· | x), and call the observed value y.
2. Draw G from the density proportional to fY

(
tg(y)

)
χ(g) νl(g), call the result g, and

set y′ = tg(y).
3. Draw X∗n+1 ∼ fX|Y(· | y′).

This algorithm is not a PX-DA algorithm, but its Mtd does take the form (10.29). Indeed, if
we let lH(y′ | y) denote the Mtd of the Markov chain on Y that is simulated at Step 2, then
we can write the Mtd of the Haar PX-DA algorithm as

kH(x′ | x) =
∫
Y

∫
Y
fX|Y(x′ | y′) lH(y′ | y) fY|X(y | x) dy dy′.
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Hobert and Marchev (2008) show that lH(y′ | y) is reversible with respect to fY , which, of
course, implies that fY is an invariant density for lH(y′ | y). Moreover, these authors also
prove that kH is representable. Hence, the comparison results from the previous subsection
are applicable and imply that the Haar PX-DA algorithm is better than the DA algorithm
in terms of both convergence rate and ARE. However, what we really want to compare is
Haar PX-DA and PX-DA, and this is the subject of the rest of this section.
Hobert and Marchev (2008) show that, for any fixed proper pdf w(·), kH can be

reexpressed as

kH(x′ | x) =
∫
Y

∫
Y
f (w)
X|Y(x′ | y′) l(w)(y′ | y) f (w)

Y|X(y | x) dy dy′, (10.31)

where f (w)
X|Y and f (w)

Y|X are as defined in Section 10.4.1, and l(w)(y′ | y) is an Mtd on Y that
is reversible with respect to f (w)

Y (y) := ∫
Y f

(w)(x, y) dx. Now consider the significance of
Equation 10.31 in the context of the results of Section 10.4.3. In particular, we know that the
PX-DA algorithm driven by f (w)(x, y) is itself a DA algorithm, and Equation 10.31 shows
that kH is related to kw in exactly the same way that kl is related to k. Therefore, since kH
is representable, we may appeal to the comparison results once more to conclude that the
Haar PX-DA is better than every PX-DA algorithm in terms of both convergence rate and
ARE.
Finally, note that Step 2 of the Haar PX-DA algorithm involves only one draw from a

density on G, whereas the regular PX-DA algorithm calls for two such draws in its Step 2.
Thus, from a computational standpoint, the Haar PX-DAalgorithm is actually simpler than
the PX-DA algorithm. We conclude with an application to the probit example.

Example 10.5 (cont.)

Recall that G is the multiplicative group, R+, and tg (y) = gy = (gy1, . . ., gym). Note that, for any
g̃ ∈ G, we have ∫∞

0
h
(
g̃g
) 1

g
dg =

∫∞
0

h(g)
1
g

dg ,

which shows that dg
g is a left-Haar measure for the multiplicative group. (This group is actually

abelian and hence unimodular.) Thus,

π(tg (y) | z)χ(g) νl (g) ∝ gm−1 exp
{
− g2

[
yT (I −H)y

2

]}
IR+ (g),

and it follows that

q(y) ∝
∫∞
0

gm−1 exp
{
− g2

[
yT (I −H)y

2

]}
dg = 2m/2Γ

(m
2
)

[
yT (I −H)y

]m/2 ,

which is clearly positive for all y ∈ Y and finite for (almost) all y ∈ Y. We can now write down
the Haar PX-DA algorithm. Given the current state, X∗n = β, we simulate the next state, X∗n+1, by
performing the following three steps:

1. Draw Y1, . . .,Ym independently such that Yi ∼ TN(vT
i β, 1, zi), and call the result y =

(y1, . . ., ym)T .
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2. Draw

V ∼ Γ
(

m
2
,

yT (I −H)y
2

)
,

call the result v , and set y ′ = √vy .

3. Draw X∗n+1 ∼ N
(
β̂(y ′), (V T V )−1

)
.

In Section 10.4.1, we developed a family of PX-DA algorithms for this problem, one for each
(α, δ) ∈ R+ × R+. The results in Section 10.4.3 imply that every member of that family is better
than the original DA algorithm based on f (x , y). Moreover, the results described in this subsection
show that the Haar PX-DA algorithm above is better than every member of that family of PX-DA
algorithms.
Roy and Hobert (2007) proved that this Haar PX-DA algorithm is geometrically ergodic by

establishing that themuch simplerDAalgorithmofAlbert andChib (1993) is geometrically ergodic,
and then appealing to the fact that ‖KH‖ ≤ ‖K‖. These authors also provided substantial empirical
evidence suggesting that the ARE of the Haar PX-DA estimator with respect to the DA estimator is
often much larger than 1.
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11
Importance Sampling, Simulated Tempering, and
Umbrella Sampling

Charles J. Geyer

11.1 Importance Sampling
The importance of so-called importance sampling inMarkov chainMonteCarlo (MCMC) is
not what gives it that name. It is the idea that “any sample can come from any distribution”
(Trotter and Tukey, 1956). Suppose that we have aMarkov chainX1,X2, . . . having properly
normalized density f for its equilibrium distribution. Let fθ denote a parametric family of
densities each absolutely continuous with respect to f . Then

μ̂n(θ) = 1
n

n∑
i=1

g(Xi)
fθ(Xi)
f (Xi)

(11.1)

is a sensible estimator of
μ(θ) = Eθ{g(X)} (11.2)

for all θ, because by the Markov chain law of large numbers (Meyn and Tweedie, 1993,
Theorem 17.1.7),

μ̂n(θ)
a.s.−−→ Ef

{
g(X)

fθ(X)

f (X)

}
=

∫
g(x)

fθ(x)
f (x)

f (x) dx =
∫
g(x)fθ(x) dx

(the requirement that fθ is absolutely continuous with respect to f is required so that we
divide by zero in the middle expressions with probability zero, so the value of the integral
is not affected). With one sample from one distribution f (x) we learn about μ(θ) for all θ.
Monte Carlo standard errors (MCSEs) for importance sampling are straightforward: we

just calculate the MCSE for the functional of the Markov chain (Equation 11.1) that gives
our importance sampling estimator. This means we replace g in Equation 1.6 in Chapter 1
(this volume) by g fθ/f .
We are using here both the principle of “importance sampling” (in using the distribution

with density f to learn about the distributionwith density fθ) and the principle of “common
random numbers” (in using the same sample to learn about fθ for all θ). The principle of
common random numbers is very important. It means, for example, that

∇μ̃n(θ) = 1
n

n∑
i=1

g(Xi)
∇fθ(Xi)
f (Xi)

295
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is a sensible estimator of

∇μ(θ) = Eθ{∇g(X)},

which relies on the same sample being used for all θ. Clearly, using different samples for
different θwould not work at all.
The argument above relies on f and fθ being properly normalized densities. If we replace

themwith unnormalized densities h and hθ, we need a slightly different estimator (Geweke,
1989). Now we suppose that we have a Markov chain X1, X2, . . . having unnormalized
density h for its equilibrium distribution, and we let hθ denote a parametric family of
unnormalized densities, each absolutely continuous with respect to h. Define the so-called
“normalized importance weights”

wθ(x) =
hθ(x)
h(x)

n∑
i=1

hθ(xi)
h(xi)

(11.3)

so

μ̃n(θ) =
n∑
i=1

g(Xi)wθ(Xi) (11.4)

is sensible estimator of Equation 11.2 for all θ, because of the following. Define

d(θ) =
∫
hθ(x) dx,

d =
∫
h dx,

so hθ/d(θ) and h/d are properly normalized probability densities. Then by the law of large
numbers,

μ̃n(θ)
a.s.−−→

Eh
{
g(x)

hθ(x)
h(x)

}

Eh
{
hθ(x)
h(x)

} =

∫
g(x)

hθ(x)
h(x)

· h(x)
d

dx
∫ hθ(x)
h(x)

· h(x)
d

dx
=

d(θ)
d

∫
g(x)

hθ(x)
d(θ)

dx

d(θ)
d

∫ hθ(x)
d(θ)

dx
= Eθ{g(X)}

(the requirement that hθ is absolutely continuous with respect to h is required so that we
divide by zero in the middle expressions with probability zero, so the value of the integral
is not affected).
MCSEs for importance sampling are now a little more complicated. The estimator

(Equation 11.4) is a ratio of two functionals of the Markov chain

μ̃n(θ) =
1
n

n∑
i=1

g(Xi)
hθ(Xi)
h(Xi)

1
n

n∑
i=1

hθ(Xi)
h(Xi)

.
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We calculate the joint asymptotic distribution for the vector functional of the Markov
chain having two components ghθ/h and hθ/h and then use the delta method to derive
the asymptotic variance of their ratio; Geyer and Thompson (1995) give details.
The normalized importance weights trick, which uses Equation 11.3 and Equation 11.4

instead of Equation 11.1, is essential when using unnormalized densities to specify distri-
butions. It is nice to use even when using properly normalized densities, because it makes
the complement rule hold exactly rather than approximately for ourMonte Carlo estimates
of probabilities. If we use Equation 11.1 to estimate Pr(A) and Pr(Ac), the estimateswill sum
to approximately one for large n. If we use Equation 11.3 and Equation 11.4, the estimates
will sum to exactly one for all n.
Even when there is only one target distribution with unnormalized density hθ, one may

do better using a different unnormalized density h as the importance sampling distribution.
When there are many hθ of interest, importance sampling is usually better than running a
different sampler for every θ of interest.

When importance sampling is allowed, it is never obvious what the equilibrium
distribution of your MCMC sampler should be.

Why would one ever be interested in more than one distribution? Isn’t MCMC just for
Bayesian inference, and aren’t Bayesians only interested in the posterior? The answers are,
of course, no and no. As mentioned at the end of Section 1.1 in this volume, MCMC is also
used for likelihood inference for models with complicated dependence (Geyer, 1994, 1999;
Geyer and Thompson, 1992, 1995), and there one is interested in calculating the likelihood
at each parameter value θ. Bayesians are often interested in inference under multiple priors
(Insua and Ruggeri, 2000).
Onewarning is required about importance sampling. If the target distribution is not close

to the importance sampling distribution, then importance sampling does not work well.
Of course, it works for sufficiently large Monte Carlo sample size, but the sample sizes
required may be impractical. A method for getting an importance sampling distribution
close enough to target distributions of interest is umbrella sampling (Section 11.2.5 below).

11.2 Simulated Tempering
If a random-walk Metropolis sampler, as illustrated in Section 1.13, does not converge in a
reasonable amount of time, the best way to detect this (other than perfect sampling, which
usually onedoes not knowhow todo for one’s problem) is to run a better sampler. Themcmc
package provides two such sampling schemes, called parallel and serial tempering, both
done by the temper function. Either can produce rapidly mixing samplers for problems in
which no other knownmethod works. Parallel tempering is easier to use. Serial tempering
works better. Geyer and Thompson (1995) give an example inwhich serial tempering seems
to work for a very hard problem but parallel tempering failed.
Serial tempering (Geyer and Thompson, 1995; Marinari and Parisi, 1992) runs a Markov

chain whose state is (i, x), where i is a positive integer between 1 andm and x is an element
of R

p. The unnormalized density of the equilibrium distribution is h(i, x). The integer i is
called the index of the component of the mixture, and the integer m is called the number of
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components of the mixture. The reason for this terminology is that

h(x) =
m∑
i=1

h(i, x), (11.5)

which is the unnormalizedmarginal density of x derived from the unnormalized joint den-
sity h(i, x) of the equilibrium distribution of theMarkov chain, is a mixture ofm component
distributions having unnormalized density h(i, · ) for different i.
Parallel tempering (Geyer, 1991) runs a Markov chain whose state is (x1, . . . , xm) where

each xi is an element of R
p. Thus the state is a vector whose elements are vectors, which

may be thought of as an m× p matrix. The unnormalized density of the equilibrium
distribution is

h(x1, . . . , xm) =
m∏
i=1

h(i, xi). (11.6)

Since Equation 11.6 is the product of the unnormalized marginals h(i, · ) for different i, this
makes the xi asymptotically independent in parallel tempering.
Parallel tempering was not so named by Geyer (1991). That name was later coined by

others (Earl and Deem, 2005) to make an analogy with simulated tempering, the name
Marinari and Parisi (1992) coined for their algorithm because they thought it had an anal-
ogy with simulated annealing (Kirkpatrick et al., 1983), even though the latter is a method
of adaptive random search optimization rather than anMCMCmethod. The temper func-
tion in the mcmc package coins the name “serial tempering” for what has formerly been
called “simulated tempering” on the linguistic grounds that both methods are forms of
“tempering” (so say their names) and both methods “simulate” Markov chains, thus both
must be forms of “simulated tempering.” Fortunately, “simulated tempering” and “serial
tempering” can both use the same abbreviation (ST), so there is no confusion there. The
parallel–serial distinction is taken from the terminology for electrical circuits: parallel tem-
pering (PT) simulates all the component distributions h(i, · ) simultaneously, whereas ST
simulates the component distributions h(i, · ) one at a time.
The analogywith simulated annealing is the following. Suppose one has a function q that

one wants to minimize, but the problem is hard with many local maxima, so no algorithm
for finding local minima is worth trying. Define

hτ(x) = e−q(x)/kτ, (11.7)

where k is an arbitrary positive constant and τ is an adjustable parameter. Consider the
probability distribution with unnormalized density hτ. Nothing in our setup guarantees
that hτ is actually integrable if the state space is infinite, sowe assume this.As τ goes to zero,
thedistributionwithunnormalizeddensityhτ converges to thedistribution concentratedon
the set of global minima of the function q. Conversely, as τ goes to infinity, the distribution
with unnormalized density hτ becomes more and more dispersed. Simulated annealing
runs a Metropolis sampler for the distribution with unnormalized density hτ and slowly
decreases τ over the course of the run in hopes that the simulations will converge to the
global minimum of the function q.
This chapter not being about optimization, we would not have bothered with the pre-

ceding point except for its relevance to simulated tempering. The physics and chemistry
literature (Earl and Deem, 2005; Marinari and Parisi, 1992) seems quite taken with the
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annealing analogy using unnormalized densities for serial or parallel tempering of the
form

hi(x) = e−q(x)/kτi , i = 1, . . . ,m, (11.8)

by analogy with Equation 11.7. In PT we simply let h(i, x) = hi(x) so the joint distribution
Equation 11.6 is the product of the distributions (Equation 11.8). In ST the definition h(i, x) =
hi(x) usually does not work, and we need

h(i, x) = hi(x)ci, (11.9)

where the ci are constants adjusted by trial and error to make the ST chain mix well (Geyer
and Thompson, 1995, call the ci the pseudo-prior). This adjustment by trial and error is what
makes ST harder to do than PT.As we shall see (Section 11.3 below) this adjustment by trial
and error also makes ST much more useful than PT in some applications.
Geyer andThompson (1995) point out that there is no reason to choose distributions of the

formEquation 11.8 andmany reasons not to. They allow the hi to be arbitrary unnormalized
densities. For example, in Bayesian problems,where sampling from the prior distribution is
often easy (perhaps doable byOMCordinaryMonteCarlo) and sampling from the posterior
is much harder, it seems more natural to replace Equation 11.8 by

hi(x) = eλi l(x)+p(x), i = 1, . . . ,m, (11.10)

where l is the log likelihood, p is the log prior, and

0 = λ1 < λ2 < · · · < λm = 1,

so the sequence of tempering distributions interpolates prior and posterior. Many other
schemes are possible. It is not at all clear that anyone with good insight into a particular
simulation problem cannot easily invent a tempering sequence that will work better on that
particular problem than any general suggestion such as Equation 11.8 or Equation 11.10.
We shall see another form of tempering sequence in Section 11.3. Geyer and Thompson
(1995) illustrate still other forms and also discuss the choice of m.

11.2.1 Parallel Tempering Update

Parallel tempering is a combined update. One kind of elementary update simulates a new
xi preserving the distribution with unnormalized density hi. Since xj, for j = i, are left fixed
by such an update, this also preserves the joint distribution (Equation 11.6).
In addition, there are updates that swap states xi and xj of two components of the state

while preserving the joint distribution (Equation 11.6). This is a Metropolis update, since a
swap is its own inverse. The odds ratio is

r(i, j) = hi(xj)hj(xi)
hi(xi)hj(xj)

.

The swap is accepted with probability min(1, r(i, j)), as in any Metropolis update, and the
new state is the old state with xi and xj swapped. Otherwise, the state is unchanged.
The combined update used by the function temper in the mcmc package is as follows.

Each iteration of the Markov chain does either a within-component update or a swap
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update, each chosen with probability 1
2 . Having chosen to do a within-component update,

it then chooses an i uniformly at random from {1, . . . ,m}, and then updates xi preserving
hi using a normal-random-walk Metropolis update. Having chosen to do a swap update,
it then chooses an i uniformly at random from {1, . . . ,m}, chooses a j uniformly at random
from the subset of {1, . . . ,m} that are neighbors of i, where neighborness is a user-specified
symmetric irreflexive relation on {1, . . . ,m}, and then updates xi and xj by doing the swap
update described above. This combined update is reversible.
There is no reason for this division into within-component updates and swap updates

except convenience. Usually, before trying tempering, one has tried a more conventional
MCMC sampler and hence already has code available for the within-component updates.

11.2.2 Serial Tempering Update

Serial tempering is a combined update. One kind of elementary update simulates a new
x preserving the distribution with unnormalized density hi. Since i is left fixed by such an
update, this also preserves the joint distribution h.
In addition, there are updates that jump from one component of the mixture to another

while preserving h. This is a Metropolis–Hastings update. The Hastings ratio is

r(i, j) = hj(x)cjq(j, i)
hi(x)ciq(i, j)

, (11.11)

where q(i, j) is the probability of proposing a jump to jwhen the current state is i. The jump
is accepted with probability min(1, r(i, j)), as in any Metropolis–Hastings update, and the
new state is ( j, x). Otherwise, the state is unchanged.
The combined update used by the function temper in the mcmc package is as follows.

Each iterationof theMarkovchaindoeseitherawithin-componentupdateora jumpupdate,
each chosenwithprobability 1

2 .Having chosen todo awithin-component update, it updates
x preserving hi using a normal-random-walk Metropolis update. Having chosen to do a
jump update, it then chooses a j uniformly at random from the subset of {1, . . . ,m} that are
neighbors of i, where neighborness is a user-specified relation as in the parallel tempering
case, so

q(i, j) =
{
1/n(i), j and i are neighbors,
0, otherwise,

where n(i) is the number of neighbors of i. This combined update is reversible.
As with PT, there is no reason for this division into within-component updates and jump

updates except convenience.

11.2.3 Effectiveness of Tempering

Whether tempering works or not depends on the choice of the sequence of component
distributions h1, . . . , hm. The Gibbs distributions (Equation 11.8) are a “default” choice, but,
as argued above, careful thought about one’s particular problem may suggest a better
choice.
Suppose hm is the distribution we actually want to sample. The other distributions hi

in the sequence are “helpers.” They should become progressively easier to sample as i
decreases and neighboring distributions (however neighborness is defined) should be close
enough together so that the swap (PT) or jump (ST) steps are acceptedwith reasonable prob-
ability (Geyer and Thompson, 1995, give recommendations for adjusting the “closeness”
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of these distributions). If h1 is easy to sample, h2 is easy to sample with help from h1, h3 is
easy to sample with help from h1 and h2, and so forth, then the whole scheme will work
and hm will be (relatively) easy to sample, much easier than if one had tried to sample it
directly, just repeating the mth within-component elementary update.
Your humble author has failed to invent a simple example of tempering. The stumbling

block is that any toyproblem is easilydoable byothermeans, that any trulydifficult problem
takes a long time to explain, and—what is worse—that it is not obvious that the tempering
sampler produces correct results. In a problem so difficult that nothing but tempering could
possibly work, there is no way to check whether tempering actually works. In the genetics
example in Geyer and Thompson (1995), we think the ST sampler worked, but cannot be
sure. Thus we can do no better than the examples in the literature (Earl and Deem, 2005;
Geyer and Thompson, 1995; Marinari and Parisi, 1992).
This issue applies more generally. The fact that MCMC works for toy problems which

can be done by methods simpler than MCMC provides no evidence that MCMCworks for
problems so hard that no method other than MCMC could possibly work.

11.2.4 Tuning Serial Tempering

ST, unlike PT, has the additional issue that the user-specified constants c1, . . . , cm in
Equation 11.9 must be correctly specified in order for the sampler to work. Define

di =
∫
hi(x) dx

to be the normalizing constant for the ith component distribution (the integral replaced by
a sum if the state space is discrete). Then the marginal equilibrium distribution for i in an
ST sampler is given by ∫

h(i, x) dx = cidi, i = 1, . . . ,m.

In order that this marginal distribution be approximately uniform, we must somehow
adjust the ci so that ci ≈ 1/di, but the di are unknown.
Let (It,Xt), t = 1, 2, . . . , be the output of an ST sampler. Define

d̂k = 1
nck

n∑
t=1

1(It = k), k = 1, . . . ,m, (11.12)

where 1(It = k) is equal to one if It = k and zero otherwise. Also define

d =
m∑
i=1

cidi,

which is the normalizing constant for h. Then, by the law of large numbers,

d̂k
a.s.−−→ dk

d

so the d̂k estimate the unknown normalizing constants dk up to an overall unknown con-
stant of proportionality (which does not matter, since it does not affect the equilibrium
distribution of the ST sampler).
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Hence, assuming that the ST sampler already works, we can improve our choice of the
ck by setting them to 1/d̂k. But this clearly will not work when d̂k = 0, which happens
whenever the ci are so badly adjusted that we have ckdk/d� 1. Geyer and Thompson
(1995) recommend using stochastic approximation to deal with this situation, but the R
function temper does not implement that. Instead we use a simple update of the tuning
constants

ck ← min
(
a,
1
d̂k

)
,

where a is an arbitrarily chosen constant that keeps the new values of ck finite (e10 was used
in the vignette temper.pdf in the mcmc package) and← denotes redefinition.
A few iterations of this scheme usually suffice to adjust the ci well enough so that the

ST sampler will work well. Note that this does not require that we have cidi exactly the
same for all i. We only need cidi approximately the same for all i, which is shown by having
cid̂i ≈ 1/m for all i. Section 11.3 below gives an example of this trial-and-error adjustment.

11.2.5 Umbrella Sampling

The idea of sampling amixture of distributions was not newwhen tempering was devised.
Torrie and Valleau (1977) proposed a procedure they called umbrella sampling (US), which
is exactly the same as ST but done with a different purpose. In ST one is only interested in
one component of the mixture, and the rest are just helpers. In US one is interested in all
the components, and wants to sample them simultaneously and efficiently.
US is very useful for importance sampling. Suppose that one is interested in target distri-

butions with unnormalized densities hθ for all θ in some regionΘ. We need an importance
sampling distribution that is “close” to all of the targets. Choose a finite set {θ1, . . . , θm} and
let hi = hθi be the components of the US mixture. If the θi are spread out so that each θ ∈ Θ
is close to some θi and if the parameterization θ �→ hθ is continuous enough so that closeness
in θ implies closeness in hθ, then US will be an effective importance sampling scheme. No
other general method of constructing good importance sampling distributions for multiple
targets is known.
Two somewhat different importance sampling schemes have been proposed. Let (It,Xt),

t = 1, 2, . . . , be the output of an ST sampler with unnormalized equilibrium density h(i, x),
and let hθ(x) be a parametric family of unnormalized densities. Geyer and Thompson (1995)
proposed the following scheme, which thinks of hθ(x) as a function of i and x, giving

μ̃n(θ) =

n∑
t=1

g(Xt)hθ(Xt)
h(It,Xt)

n∑
t=1

hθ(Xt)
h(It,Xt)

(11.13)

as a sensible estimator of Equation 11.2, a special case of Equation 11.4.
Alternatively, one can think of hθ(x) as a function of x only, in which case the importance

sampling distribution must also be a function of x only, in which case

hmix(x) =
m∑
i=1

h(i, x) =
m∑
i=1

cihi(x),
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the marginal distribution of X derived from the ST/US equilibrium distribution (Equa-
tion 11.9). Then one obtains

μ̃n(θ) =

n∑
t=1

g(Xt)hθ(Xt)
hmix(Xt)

n∑
t=1

hθ(Xt)
hmix(Xt)

=

n∑
t=1

g(Xt)hθ(Xt)∑m
i=1 cihi(Xt)

n∑
t=1

hθ(Xt)∑m
i=1 cihi(Xt)

(11.14)

as a sensible estimator of Equation 11.2, a different special case of Equation 11.4. This latter
scheme was suggested at a meeting by someone your humble author has now forgotten
as an application of the idea of “Rao-Blackwellization” (Gelfand and Smith, 1990) to Equa-
tion 11.13. It is not known whether Equation 11.14 is enough better than Equation 11.13
to justify the extra computing required, evaluating hi(Xt) for each i and t rather than just
evaluating hIt(Xt).

11.3 Bayes Factors and Normalizing Constants
Umbrella sampling is very useful in calculating Bayes factors and other unknownnormaliz-
ing constants. Here we just illustrate Bayes factor calculation. Other unknown normalizing
constant calculations are similar.We follow the exampleworked out in detail in the vignette
bfst.pdf that comes with each installation of the mcmc package (Geyer, 2010).

11.3.1 Theory

Suppose we havem Bayesian models with data distributions f (y | θ, i), where i indexes the
model and θ anywithin-model parameters, within-model priors g(θ | i), and prior onmod-
els pri(i). For each model i the within-model prior g( · | i) must be a properly normalized
density. It does not matter if the prior on models pri( · ) is unnormalized. Each model may
have a different within-model parameter. LetΘi denote the within-model parameter space
for the ith model.
Likelihood times unnormalized prior is

h(i, θ) = f (y | θ, i)g(θ | i)pri(i).
The unknown normalizing constant for the ith model is

∫
Θi
h(i, θ) dθ = pri(i)

∫
Θi
f (y | θ, i)g(θ | i) dθ,

and the part of this that does not involve the prior on models is called the unnormalized
Bayes factor,

b(i | y) =
∫
Θi
f (y | θ, i)g(θ | i) dθ. (11.15)

The properly normalized posterior on models is

post(i) = pri(i)b(i | y)
m∑
j=1

pri(j)b(j | y)
.
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But frequently the prior on models is ignored (or left for users to decide for themselves)
and one reports only the ratio of prior odds to posterior odds, the (normalized) Bayes factor

post(i)
post(j)

· pri(j)
pri(i)

= b(i | y)
b(j | y) , (11.16)

Clearly, it is enough to report the unnormalized Bayes factors (Equation 11.15) from which
(Equation 11.16) are trivially calculated. Bayes factors and other unknown normalizing
constants are notoriously difficult to calculate. Despite many proposals, no really effec-
tive scheme has been described in the literature. Here we show how ST/US makes the
calculation easy.
In using ST/US for Bayes factors, we identify the index i on components of the umbrella

distribution (Equation 11.5) with the index on Bayesian models. ST/US requires that all
components have the same state space Θ but, as the problem is presented, the Bayesian
models have different (within-model) state spaces Θi. Thus we have to do something a
little more complicated. We “pad” the state vector θ so that it always has the same dimen-
sion, doing so in a way that does not interfere with the Bayes factor calculation. Write
θ = (θactual, θpad), the dimension of both parts depending on the model i. Then we insist on
the conditions

f (y | θ, i) = f (y | θactual, i),

so the data distribution does not depend on the “padding” and

g(θ | i) = gactual(θactual | i) · gpad(θpad | i),

so the two parts are a priori independent and both parts of the prior are normalized proper
priors. This ensures that

b(i | y) =
∫
Θi
f (y | θ, i)g(θ | i) dθ

=
∫∫
f (y | θactual, i)gactual(θactual | i)gpad(θpad | i) dθactual dθpad

=
∫
Θi
f (y | θactual, i)gactual(θactual | i) dθactual, (11.17)

so the calculation of the unnormalized Bayes factors is the same whether or not we “pad”
θ, and we may then take

hi(θ) = f (y | θ, i)g(θ | i)
= f (y | θactual, i)gactual(θactual | i)gpad(θpad | i)

to be the unnormalized densities for the component distributions of the ST/US chain. It is
clear that the normalizing constants for these distributions are just the unnormalized Bayes
factors (Equation 11.17).
Thus these unknown normalizing constants are estimated the same way we estimate all

unknown normalizing constants in ST/US. If preliminary trial and error has adjusted the
pseudo-prior so that the ST/US chain frequently visits all components, then the unknown
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normalizing constants are approximately di ≈ 1/ci (Section 11.2.4 above). Improved esti-
mates with MCSEs of the unknown normalizing constants can be found by another run
of the ST/US sampler. The normalizing constants (Equation 11.12), being simple averages
over the run, have MCSEs straightforwardly estimated by the method of batch means.
One might say this method is “cheating” because it does not completely specify how the

trial and error is done, and it is clear that the trial and error is crucial because ST/US does
not “work” (by definition) until trial and error has successfully adjusted the pseudo-prior.
Moreover, most of the work of estimation is done by the trial and error, which must adjust
ci ≈ 1/di to within a factor of 2–3. The final run only provides a little polishing and MCSE.
Since Bayes factors may vary by 1010 or more, it is clear that trial and error does most of
the work. It is now clear why any method that proposes to compute Bayes factors or other
unknown normalizing constants from one run of one Markov chain cannot compete with
this “cheating.”

11.3.2 Practice

However, as shown by an example below, the trial and error can be simple and straightfor-
ward.Moreover, the trial and errordoesnot complicateMCSE. In the context of thefinal run,
the components ci of the pseudo-prior are known constants and are treated as such in the
computation of MCSE for the unknown normalizing constant estimates (Equation 11.12).
Let us see how this works. As stated above, we follow the example in the vignette

bfst.pdf of the mcmc package. Simulated data for the problem are the same logistic
regression data in the data frame logit in the mcmc package analyzed in Section 1.13.
There are five variables in the data set, the response y and four predictors, x1, x2, x3,
and x4. Here we assume the same Bayesian model as in Section 1.13, but now we wish to
calculate Bayes factors for the 16 = 24 possible submodels that include or exclude each of
the predictors, x1, x2, x3, and x4.

11.3.2.1 Setup

We set up amatrix that indicates thesemodels. In the R code shown below, out is the result
of the frequentist analysis done by the glm function shown in Section 1.13:

varnam <- names(coefficients(out))
varnam <- varnam[varnam != "(Intercept)"]
nvar <- length(varnam)

models <- NULL
foo <- seq(0, 2ˆnvar - 1)
for (i in 1:nvar) {

bar <- foo %/% 2ˆ(i - 1)
bar <- bar %% 2
models <- cbind(bar, models, deparse.level = 0)

}
colnames(models) <- varnam

The slightly tricky code above essentially counts from 0 to 15 in binary, the ith row of the
matrix models is i − 1 in binary. In each row, 1 indicates that the predictor is in the model
and 0 indicates that it is out.
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The function temper in the mcmc package that does tempering requires a notion of
neighbors among models. It attempts jumps only between neighboring models. Here we
choose models to be neighbors if they differ only by one predictor.

neighbors <- matrix(FALSE, nrow(models), nrow(models))
for (i in 1:nrow(neighbors)) {

for (j in 1:ncol(neighbors)) {
foo <- models[i, ]
bar <- models[j, ]
if (sum(foo != bar) == 1) neighbors[i, j] <- TRUE

}
}

Now we specify the equilibrium distribution of the ST/US chain. Its state vector is (i, θ),
where i is an integer between 1 and 16 and θ is the parameter vector “padded” to always
be the same length, so we take it to be the length of the parameter vector of the full model
which is length(out$coefficients), or ncol(models) + 1, which makes the length
of the state of the ST chain ncol(models) + 2. We take the within model priors for the
“padded” components of the parameter vector to be the same as those for the “actual”
components, normal with mean 0 and standard deviation 2 for all cases. As is seen in
Equation 11.17, the priors for the “padded” components (parameters not in the model for
the current state) do not matter because they drop out of the Bayes factor calculation. The
choice does not matter much for this toy example; see the discussion below for more on
this issue. It is important that we use normalized log priors, the term dnorm(beta,0,2,
log = TRUE) in the function ludfun defined below. This is unlike whenwe are simulating
only onemodel as in the function lupost defined in Section 1.13, where unnormalized log
priors - betaˆ2 / 8were used.
The temper function wants the log unnormalized density of the equilibrium distribu-

tion. We include an additional argument, log.pseudo.prior, which is log(ci) in our
mathematical development, because this changes from run to run as we adjust it by trial
and error. Other “arguments” are the model matrix of the full model modmat, the matrix
models relating integer indices (the first component of the state vector of the ST chain) to
which predictors are in or out of the model, and the data vector y, but these are not passed
as arguments to our function and instead are found in the R global environment.

modmat <- out$x
y <- logit$y

ludfun <- function(state, log.pseudo.prior) {
stopifnot(is.numeric(state))
stopifnot(length(state) == ncol(models) + 2)
icomp <- state[1]
stopifnot(icomp == as.integer(icomp))
stopifnot(1 <= icomp && icomp <= nrow(models))
stopifnot(is.numeric(log.pseudo.prior))
stopifnot(length(log.pseudo.prior) == nrow(models))
beta <- state[-1]
inies <- c(TRUE, as.logical(models[icomp, ]))
beta.logl <- beta
beta.logl[! inies] <- 0
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eta <- as.numeric(modmat %*% beta.logl)
logp <- ifelse(eta < 0, eta - log1p(exp(eta)),
- log1p(exp(- eta)))
logq <- ifelse(eta < 0, - log1p(exp(eta)),
- eta - log1p(exp(- eta)))
logl <- sum(logp[y == 1]) + sum(logq[y == 0])
logl + sum(dnorm(beta, 0, 2, log = TRUE))
+ log.pseudo.prior[icomp]

}

11.3.2.2 Trial and Error

With this setup we are ready for the trial-and-error process. We start with a flat log pseudo-
prior (having no idea what it should be).

state.initial <- c(nrow(models), out$coefficients)
qux <- rep(0, nrow(models))
out <- temper(ludfun, initial = state.initial,
neighbors = neighbors,

nbatch = 1000, blen = 100, log.pseudo.prior = qux)

So what happens?

> ibar <- colMeans(out$ibatch)
> ibar
[1] 0.00000 0.00000 0.00000 0.00000 0.00524 0.06489 0.00754
[8] 0.06021 0.00033 0.00202 0.00008 0.00054 0.28473 0.31487
[15] 0.12478 0.13477

The ST/US chain did notmixwell, severalmodels not being visited even once. Sowe adjust
the pseudo-priors to get uniform distribution.

> qux <- qux + pmin(log(max(ibar) / ibar), 10)
> qux <- qux - min(qux)
> qux
[1] 10.0000000 10.0000000 10.0000000 10.0000000 4.0958384
[6] 1.5794663 3.7319377 1.6543214 6.8608225 5.0490623
[11] 8.2778885 6.3683460 0.1006185 0.0000000 0.9256077
[16] 0.8485902

When a component of ibar is zero, the corresponding component of ibar is Inf, but the
pmin function limits the increase to 10 (an arbitrarily chosen constant). The statement

qux <- qux - min(qux)

is unnecessary. An overall arbitrary constant can be added to the log pseudo-prior without
changing the equilibrium distribution of the ST chain. We do this only to make qux more
comparable from run to run.
Now we repeat this until the log pseudo-prior “converges” roughly.
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qux.save <- qux
repeat {

out <- temper(out, log.pseudo.prior = qux)
ibar <- colMeans(out$ibatch)
qux <- qux + pmin(log(max(ibar) / ibar), 10)
qux <- qux - min(qux)
qux.save <- rbind(qux.save, qux, deparse.level = 0)
if (max(ibar) / min(ibar) < 2)

break
}

The entire matrix qux.save is shown in the vignette. Here we just show a few columns:

> qux.save[ , 1:5]
[,1] [,2] [,3] [,4] [,5]

[1,] 10.00000 10.000000 10.00000 10.000000 4.095838
[2,] 17.70751 9.999775 14.43037 9.714906 4.049512
[3,] 18.76818 9.325494 14.43382 9.014132 3.972982
[4,] 18.94703 9.733071 14.71371 9.478451 4.276229

We see we get fairly rapid (albeit sloppy) convergence to the log reciprocal normalizing
constants.
Now that the pseudo-prior is adjusted well enough, we need to perhaps make other

adjustments to get acceptance rates near 20%. The acceptance rates for jump updates and
for within-component updates are shown in the vignette. Those for jump updates seemed
OK, but those for within-component updates were too small (as low as 0.02) for some
components. Hence the scaling for within-component updates was changed,

out <- temper(out, scale = 0.5, log.pseudo.prior = qux)

and this produces within-component acceptance rates that are acceptable (at least 0.15 for
all components).
Inspection of autocorrelation functions for components of out$ibatch (not shown in

the vignette or here) says that batch length needs to be at least 4 times longer. We make it
10 times longer for safety.

out <- temper(out, blen = 10 * out$blen, log.pseudo.prior = qux)

The total time for all runs of the temper function was 70 minutes on a slow old laptop and
less than 7 minutes on a fast workstation.

11.3.2.3 Monte Carlo Approximation

Nowwe calculate log 10 Bayes factors relative to the model with the highest unnormalized
Bayes factor:

> log.10.unnorm.bayes
<- (qux - log(colMeans(out$ibatch)))/
log(10)
> k <- seq(along = log.10.unnorm.bayes)[log.10.unnorm.bayes ==
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+ min(log.10.unnorm.bayes)]
> models[k, ]
x1 x2 x3 x4
1 1 0 1
> log.10.bayes <- log.10.unnorm.bayes - log.10.unnorm.bayes[k]
> log.10.bayes
[1] 8.17814103 4.17098637 6.33069128 4.05292216 1.80254545
[6] 0.67203156 1.40468558 0.70498671 2.58875400 1.93202268
[11] 2.82341431 2.37170521 0.08004553 0.00000000 0.37357715
[16] 0.35242443

These are the Monte Carlo approximations of the negatives of the base 10 logarithms of
the unnormalized Bayes factors. Higher numbers mean lower posterior probability. The
model with the highest Bayes factor (0.00000 in the vector shown above) is the model with
predictors x1, x2, and x4 and intercept. The model with the lowest Bayes factor (8.17814
in the vector shown above) is the model with no predictors except the intercept. Thus there
is a difference of more than eight orders of magnitude among the unnormalized Bayes
factors.
Note that the trial-and-error process did most of the work. The log pseudo-prior for the

model with the lowest Bayes factor was 18.94703 (shown above). Converted to base 10
logs, this is 8.22859, which is nearly the same as our final estimate 8.17814 (shown just
above). The final run contributes only a final polishing to the work done by trial and error.
However, it does do all the work forMCSE. TheMCSE calculation is shown in the vignette.
The MCSEs are about 0.02, so 95% nonsimultaneous confidence intervals have a margin
of error of about 0.04. These are all relative to the model with highest estimated negative
log 10 Bayes factor (0.00000 in the vector shown just above). Hence, we have only weak
evidence (if we assume uniform prior on models) of the superiority of the model with the
highest Monte Carlo Bayes factor to the model with the next closest (0.08005 in the vector
shown just above). All of the other models have clearly lower posterior probability if we
assume a uniform prior onmodels. Of course, the whole point of Bayes factors is that users
are allowed to adopt a nonuniform prior on models, and would just subtract the base 10
logs of their prior on models from these numbers. The MCSE would stay the same.

11.3.3 Discussion

We hope that readers are impressed with the power of this method. We calculated the most
extreme log 10 Bayes factor to be 8.17 ± 0.04. If we had simply sampled with uniform prior
on models, we would have visited the no-intercept model with approximate probability
10−8.17—that is, never in any practical computer run. The key to themethod is pseudo-prior
adjustment by trial and error. The method could have been invented by any Bayesian who
realized that the priors on models, pri(m) in our notation, do not affect the Bayes factors
and hence are irrelevant to calculating Bayes factors. Thus the priors (or pseudo-priors in
our terminology) should be chosen for reasons of computational convenience, as we have
done, rather than to incorporate prior information.
The rest of the details of the method are unimportant. The temper function in R is

convenient to use for this purpose, but there is no reason to believe that it provides optimal
sampling. Samplers carefully designed for each particular application would undoubtedly
do better. Our notion of “padding” so that the within-model parameters have the same
dimension for all models follows Carlin and Chib (1995), but “reversible jump” samplers
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(Green, 1995) would undoubtedly do better (see the Bayesian model selection example in
Section 1.17.3). Unfortunately, there seems to be no way to code up a function like temper
that uses “reversible jump” and requires no theoretical work from users that, if messed
up, destroys the algorithm. The temper function is foolproof in the sense that if the log
unnormalized density functionwritten by the user (like our ludfun) is correct, then the ST
Markov chain has the equilibrium distribution it is supposed to have. There is nothing the
user can mess up except this user-written function. No analog of this for “reversible jump”
chains is apparent (to your humble author).
Two issues remain, the first being about within-model priors for the “padding” compo-

nents of within-model parameter vectors gpad(θpad | m) in the notation in Equation 11.17.
Rather than choose these so that they do not depend on the data (as we did), it would be
better (ifmore trouble) to choose themdifferently for each “padding” component, centering
gpad(θpad | m) so the distribution of a component of θpad is near to themarginal distribution
of the same component in neighboring models (according to the neighbors argument of
the temper function).
The other remaining issue is adjusting acceptance rates for jumps. There is no way to

adjust this other than by changing the number of models and their definitions. But the
models we have cannot be changed; if we are to calculate Bayes factors for them, then we
must sample them as they are. But we can insert new models between old models. For
example, if the acceptance for swaps between model i and model j is too low, then we can
insert distribution k between them that has unnormalized density

hk(x) =
√
hi(x)hj(x).

This idea is inherited from simulated tempering; Geyer and Thompson (1995) have much
discussion of how to insert additional distributions into a tempering network. It is another
key issue in using tempering to speed up sampling. It is less obvious in the Bayes factor
context, but still an available technique if needed.
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12
Likelihood-Free MCMC

Scott A. Sisson and Yanan Fan

12.1 Introduction
In Bayesian inference, the posterior distribution for parameters θ ∈ Θ is given by π(θ | y) ∝
π(y | θ)π(θ), where one’s prior beliefs about the unknownparameters, as expressed through
the prior distribution π(θ), are updated by the observed data y ∈ Y via the likelihood
function π(y | θ). Inference for the parameters θ is then based on the posterior distribu-
tion. Except in simple cases, numerical simulation methods, such as Markov chain Monte
Carlo (MCMC), are required to approximate the integrations needed to summarize fea-
tures of the posterior distribution. Inevitably, increasing demands on statistical modeling
and computation have resulted in the development of progressively more sophisticated
algorithms.
Most recently there has been interest in performing Bayesian analyses for models which

are sufficiently complex that the likelihood function π(y | θ) is either analytically unavail-
able or computationally prohibitive to evaluate. The classes of algorithms and methods
developed to perform Bayesian inference in this setting have become known as likelihood-
free computation or approximate Bayesian computation (Beaumont et al., 2002; Marjoram et al.,
2003; Ratmann et al., 2009; Sisson et al., 2007; Tavaré et al., 1997). This name refers to the
circumventingof explicit evaluationof the likelihoodbya simulation-based approximation.
Likelihood-free methods are rapidly gaining popularity as a practical approach to fitting

models under the Bayesian paradigm that would otherwise have been computationally
impractical. To date they have found widespread usage in a diverse range of applications.
These include wireless communications engineering (Nevat et al., 2008), quantile distribu-
tions (Drovandi and Pettitt, 2009), HIV contact tracing (Blum and Tran, 2010), the evolution
of drug resistance in tuberculosis (Luciani et al., 2009), population genetics (Beaumont
et al., 2002), protein networks (Ratmann et al., 2009, 2007), archeology (Wilkinson and
Tavaré, 2009); ecology (Jabot and Chave, 2009), operational risk (Peters and Sisson, 2006),
species migration (Hamilton et al., 2005), chain-ladder claims reserving (Peters et al., 2008),
coalescent models (Tavaré et al., 1997), α-stable models (Peters et al., in press), models
for extremes (Bortot et al., 2007), susceptible–infected–removed models (Toni et al., 2009),
pathogen transmission (Tanaka et al., 2006), and human evolution (Fagundes et al., 2007).

ALGORITHM 12.1 LIKELIHOOD-FREE REJECTION SAMPLING ALGORITHM

1. Generate θ′ ∼ π(θ) from the prior.
2. Generate data set x from the model π(x | θ′).
3. Accept θ′ if x ≈ y.

313
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Theunderlying concept of likelihood-freemethodsmaybe simply encapsulated as shown
inAlgorithm 12.1, the likelihood-free rejection sampling algorithm (Tavaré et al., 1997). For
a candidate parameter vector θ′, a data set is generated from the model (i.e. the likelihood
function) x ∼ π(x | θ′). If the simulated and observed data sets are similar (in somemanner),
so that x ≈ y, then θ′ is a good candidate to have generated the observed data from the given
model, and so θ′ is retainedand formsas apart of the samples from theposteriordistribution
π(θ | y). Conversely, if x and y are dissimilar, then θ′ is unlikely to have generated the
observed data for this model, and so θ′ is discarded. The parameter vectors accepted under
this approach offer support for y under the model, and so may be considered to be drawn
approximately from the posterior distribution π(θ | y). In this manner, the evaluation of the
likelihood π(y | θ′), essential to most Bayesian posterior simulation methods, is replaced by
an estimate of the proximity of a simulated data set x ∼ π(x | θ′) to the observed data set y.
While available in various forms, all likelihood-free methods and models apply this basic
principle.
In this chapter, we aim to provide a tutorial-style exposition of likelihood-free model-

ing and computation using MCMC simulation. In Section 12.2 we provide an overview of
the models underlying likelihood-free inference, and illustrate the conditions under which
thesemodels form an acceptable approximation to the true but intractable posteriorπ(θ | y).
In Section 12.3 we examine how MCMC-based samplers are able to circumvent evalua-
tion of the intractable likelihood function, while still targeting this approximate posterior
model. We also discuss different forms of samplers that have been proposed in order to
improve algorithm and inferential performance. Finally, in Section 12.4 we present a step-
by-step examination of the various practical issues involved in performing an analysis
using likelihood-free methods, before concluding with a discussion.
Throughout we assume a basic familiarity with Bayesian inference and the Metropolis–

Hastings algorithm. For this relevant background information, the reader is referred to the
many useful chapters in this volume.

12.2 Review of Likelihood-Free Theory and Methods
In this section we discuss the modeling principles underlying likelihood-free computation.

12.2.1 Likelihood-Free Basics

A common procedure to improve sampler efficiency in challenging settings is to embed
the target posterior within an augmented model. In this setting, auxiliary parameters are
introduced into the model whose sole purpose is to facilitate computations—see, for exam-
ple, simulated tempering or annealing methods (Geyer and Thompson, 1995; Neal, 2003).
Likelihood-free inference adopts a similar approach by augmenting the target posterior
from π(θ | y) ∝ π(y | θ)π(θ) to

πLF(θ, x | y) ∝ π(y | x, θ)π(x | θ)π(θ) (12.1)

where the auxiliary parameter x is a (simulated) data set from π(x | θ) (see Algorithm 12.1),
on the same space as y ∈ Y (Reeves and Pettitt, 2005;Wilkinson, 2008).As discussed inmore
detail below (Section 12.2.2), the distribution π(y | x, θ) is chosen to weight the posterior
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π(θ | x) with high density in regions where x and y are similar. The density π(y | x, θ) is
assumed to be constant with respect to θ at the point x = y, so that π(y | y, θ) = c, for some
constant c > 0, with the result that the target posterior is recovered exactly at x = y. That
is, πLF(θ, y | y) ∝ π(y | θ)π(θ).
Ultimately interest is typically in the marginal posterior

πLF(θ | y) ∝ π(θ)

∫
Y
π(y | x, θ)π(x | θ) dx, (12.2)

integrating out the auxiliarydata set x. ThedistributionπLF(θ | y) then acts as an approxima-
tion to π(θ | y). In practice this integration is performed numerically by simply discarding
the realizations of the auxiliary data sets from the output of any sampler targeting the joint
posterior πLF(θ, x | y). Other samplers can target πLF(θ | y) directly (see Section 12.3.1).

12.2.2 The Nature of the Posterior Approximation

The likelihood-free posterior distribution πLF(θ | y) will only recover the target posterior
π(θ | y) exactly when the density π(y | x, θ) is precisely a point mass at y = x and zero
elsewhere (Reeves and Pettitt, 2005). In this case

πLF(θ | y) ∝ π(θ)

∫
Y
π(y | x, θ)π(x | θ) dx = π(y | θ)π(θ).

However, as observed from Algorithm 12.1, this choice for π(y | x, θ) will result in a rejec-
tion sampler with an acceptance probability of zero unless the proposed auxiliary data set
exactly equals the observed data x = y. This event will occur with probability zero for all
but the simplest applications (involving very low-dimensional discrete data). In a similar
manner, MCMC-based likelihood-free samplers (Section 12.3) will also suffer acceptance
rates of zero.
In practice, two concessions are made on the form of π(y | x, θ), and each of these can

induce some form of approximation into πLF(θ | y) (Marjoram et al., 2003). The first allows
the density to be a standard kernel density function, K, centered at the point x = y andwith
scale determined by a parameter vector ε, usually taken as a scalar. In this manner

πε(y | x, θ) = 1
ε
K
( | x − y |

ε

)

weights the intractable likelihoodwithhighdensity in regions x ≈ ywhere the auxiliary and
observed data sets are similar, and with low density in regions where they are not similar
(Beaumont et al., 2002; Blum, 2010; Peters et al., 2008). The interpretation of likelihood-free
models in the nonparametric framework is of current research interest (Blum, 2010).
The second concession on the form of πε(y | x, θ) permits the comparison of the data

sets, x and y, to occur through a low-dimensional vector of summary statistics T(·), where
dim(T(·)) ≥ dim(θ). Accordingly, given the improbability of generating an auxiliary data
set such that x ≈ y, the density

πε(y | x, θ) = 1
ε
K
( |T(x)− T(y) |

ε

)
(12.3)

will provide regions of high density when T(x) ≈ T(y) and low density otherwise. If the
vector of summary statistics is also sufficient for the parameters θ, then comparing the
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summary statistics of two data sets will be equivalent to comparing the data sets them-
selves. Hence there will be no loss of information in model fitting, and accordingly no
further approximation will be introduced into πLF(θ | y). However, the event T(x) ≈ T(y)
will be substantially more likely than x ≈ y, and so likelihood-free samplers based on sum-
mary statistics T(·) will in general be considerably more efficient in terms of acceptance
rates than those based on full data sets (Pritchard et al., 1999; Tavaré et al., 1997). As noted
by McKinley et al. (2009), the procedure of model fitting via summary statistics T(·) per-
mits the application of likelihood-free inference in situations where the observed data y are
incomplete.
Note that under the form (Equation 12.3), limε→0 πε(y | x, θ) is a point mass on T(x) =

T(y). Hence, if T(·) are also sufficient statistics for θ, then limε→0 πLF(θ | y) = π(θ | y) exactly
recovers the intractable posterior (Reeves and Pettitt, 2005). Otherwise, if ε > 0 or if T(·)
are not sufficient statistics, then the likelihood-free approximation to π(θ | y) is given by
πLF(θ | y) in Equation 12.2.
Afrequently utilizedweighting kernelπε(y | x, θ) is the uniformkernel density (Marjoram

et al., 2003; Tavaré et al., 1997),wherebyT(y) is uniformlydistributed on the sphere centered
at T(x) with radius ε. This is commonly written as

πε(y | x, θ) ∝
{
1, if ρ(T(x),T(y)) ≤ ε,
0, otherwise, (12.4)

where ρ denotes a distance measure (e.g. Euclidean) between T(x) and T(y). In the form
of Equation 12.3 this is expressed as πε(y | x, θ) = ε−1Ku(ρ(T(x),T(y))/ε), where Ku is the
uniformkerneldensity.Alternativekerneldensities thathavebeen implemented include the
Epanechnikov kernel (Beaumont et al., 2002), a nonparametric density estimate (Ratmann
et al., 2009) (see Section 12.3.2 below), and the Gaussian kernel density (Peters et al., 2008),
whereby πε(y | x, θ) is centered at T(x) and scaled by ε, so that T(y) ∼ N(T(x),Σε2) for some
covariance matrix Σ.

12.2.3 A Simple Example

As an illustration, we examine the deviation of the likelihood-free approximation from
the target posterior in a simple example. Consider the case where π(θ | y) is the univari-
ate N(0, 1) density. To realize this posterior in the likelihood-free setting, we specify the
likelihood as x ∼ N(θ, 1), define T(x) = x as a sufficient statistic for θ (the sample mean),
and set the observed data y = 0. With the prior π(θ) ∝ 1 for convenience, if the weighting
kernel πε(y | x, θ) is given by Equation 12.4, with ρ(T(x),T(y)) = | x − y | , or if πε(y | x, θ) is
a Gaussian density with y ∼ N(x, ε2/3), then

πLF(θ | y) ∝ Φ(ε− θ)−Φ(−ε− θ)
2ε

and πLF(θ | y) = N
(
0, 1+ ε

2

3

)
,

respectively, where Φ(·) denotes the standard Gaussian cumulative distribution function.
The factor of 3 in the Gaussian kernel density ensures that both uniform and Gaussian
kernels have the same standard deviation. In both cases πLF(θ | y) → N(0, 1) as ε→ 0.
The two likelihood-free approximations are illustrated in Figure 12.1 which compares the

target π(θ | y) to both forms of πLF(θ | y) for different values of ε. Clearly, as ε gets smaller,
πLF(θ | y) ≈ π(θ | y) becomes a better approximation. Conversely, as ε increases, so does the
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FIGURE 12.1
Comparison of likelihood-free approximations to the N(0, 1) target posterior (solid line) for ε values of (a)

√
3,

(b)
√
3/2, (c)

√
3/10. Likelihood-free posteriors are constructed using uniform (dotted line) and Gaussian (dashed

line) kernel weighting densities πε(y | x, θ).

posterior variance in the likelihood-free approximation. There is only a small difference
between using uniform and Gaussian weighting functions in this case.
Suppose now that an alternative vector of summary statistics T̃(·) also permits unbiased

estimates of θ, but is less efficient than T(·), with a relative efficiency of e ≤ 1. As noted by
A. N. Pettitt (personal communication), for the above example with the Gaussian kernel
density for πε(y | x, θ), the likelihood-free approximation using T̃(·) becomes πLF(θ | y) =
N(0, 1/e + ε2/3). The 1/e term can easily be greater than the ε2/3 term, especially as practical
interest is in small ε. This example illustrates that inefficient statistics can often determine
the quality of the posterior approximation, and that this approximation can remain poor
even for ε = 0.
Accordingly, it is common in practice to aim to reduce ε as low as is computationally

feasible. However, in certain circumstances, it is not clear that doing so will result in a
better approximation to π(θ | y) than for a larger ε. This point is illustrated in Section 12.4.4.

12.3 Likelihood-Free MCMC Samplers
A Metropolis–Hastings sampler may be constructed to target the augmented likelihood-
free posterior πLF(θ, x | y) (given by Equation 12.1) without directly evaluating the
intractable likelihood (Marjoram et al., 2003). Consider a proposal distribution for this
sampler with the factorization

q[(θ, x), (θ′, x′)] = q(θ, θ′)π(x′ | θ′).

That is, when at a current algorithm state (θ, x), a new parameter vector θ′ is drawn from
a proposal distribution q(θ, θ′) and, conditionally on θ′, a proposed data set x′ is generated
from the model x′ ∼ π(x | θ′). Following standard arguments, to achieve a Markov chain
with stationarydistributionπLF(θ, x | y),we enforce thedetailed-balance (time-reversibility)
condition

πLF(θ, x | y)P[(θ, x), (θ′, x′)] = πLF(θ′, x′ | y)P[(θ′, x′), (θ, x)], (12.5)
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where the Metropolis–Hastings transition probability is given by

P[(θ, x), (θ′, x′)] = q[(θ, x), (θ′, x′)]α[(θ, x), (θ′, x′)].

The probability of accepting a move from (θ, x) to (θ′, x′) within the Metropolis–Hastings
framework is then given by min{1, α[(θ, x), (θ′, x′)]}, where

α[(θ, x), (θ′, x′)] = πLF(θ
′, x′ | y)q[(θ′, x′), (θ, x)]

πLF(θ, x | y)q[(θ, x), (θ′, x′)]

= πε(y | x
′, θ′)π(x′ | θ′)π(θ′)

πε(y | x, θ)π(x | θ)π(θ)

q(θ′, θ)π(x | θ)
q(θ, θ′)π(x′ | θ′)

= πε(y | x
′, θ′)π(θ′)q(θ′, θ)

πε(y | x, θ)π(θ)q(θ, θ′)
. (12.6)

Note that the intractable likelihoods do not need to be evaluated in the acceptance
probability calculation (Equation 12.6), leaving a computationally tractable expres-
sion which can now be evaluated. Without loss of generality we may assume that
min{1, α[(θ′, x′), (θ, x)]} = 1, and hence the detailed-balance condition (Equation 12.5), is
satisfied since

πLF(θ, x | y)P[(θ, x), (θ′, x′)] = πLF(θ, x | y)q[(θ, x), (θ′, x′)]α[(θ, x), (θ′, x′)]

= πLF(θ, x | y)q(θ, θ
′)π(x′ | θ′)πε(y | x′, θ′)π(θ′)q(θ′, θ)

πε(y | x, θ)π(θ)q(θ, θ′)

= πε(y | x, θ)π(x | θ)π(θ)q(θ, θ′)π(x′ | θ′)πε(y | x′, θ′)π(θ′)q(θ′, θ)
πε(y | x, θ)π(θ)q(θ, θ′)

= πε(y | x′, θ′)π(x′ | θ′)π(θ′)q(θ′, θ)π(x | θ)
= πLF(θ′, x′ | y)P[(θ′, x′), (θ, x)].

ALGORITHM 12.2 LIKELIHOOD-FREE (LF)-MCMC ALGORITHM

1. Initialize (θ0, x0) and ε. Set t = 0.

At step t:
2. Generate θ′ ∼ q(θt, θ) from a proposal distribution.
3. Generate x′ ∼ π(x | θ′) from the model given θ′.

4. With probability min{1, πε(y | x
′, θ′)π(θ′)q(θ′, θt)

πε(y | xt, θt)π(θt)q(θt, θ′)
} set (θt+1, xt+1) = (θ′, x′),

otherwise set (θt+1, xt+1) = (θt, xt).
5. Increment t = t+ 1 and go to 2.

TheMCMCalgorithm targetingπLF(θ, x | y), adapted fromMarjoram et al. (2003), is listed
in Algorithm 12.2. The sampler generates the Markov chain sequence (θt, xt) for t ≥ 0,
although in practice it is only necessary to store the vectors of summary statistics T(xt) and
T(x′) at any stage in the algorithm. This is particularly useful when the auxiliary data sets
xt are large and complex.
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An interesting feature of this sampler is that its acceptance rate is directly related to
the value of the true likelihood function π(y | θ′) at the proposed vector θ′ (Sisson et al.,
2007). This is most obviously seen when using the uniform kernel weighting density
(Equation 12.4), as proposed moves to (θ′, x′) can only be accepted if ρ(T(x′),T(y)) ≤ ε,
and this occurs with a probability in proportion to the likelihood. For low ε values this
can result in very low acceptance rates, particularly in the tails of the distribution, thereby
affecting chain mixing in regions of low posterior density (see Section 12.4.5 for an illustra-
tion). However, the LF-MCMC algorithm offers improved acceptance rates over rejection
sampling-based likelihood-free algorithms (Marjoram et al., 2003).
We now examine a number of variations on the basic LF-MCMC algorithm which have

been proposed either to improve sampler performance or to examinemodel goodness of fit.

12.3.1 Marginal Space Samplers

Given the definition of πLF(θ | y) in Equation 12.2, an unbiased pointwise estimate of the
marginal posterior distribution is available through Monte Carlo integration as

πLF(θ | y) ≈ π(θ)

S

S∑
s=1
πε(y | xs, θ), (12.7)

where x1, . . . , xS are independent draws from the model π(x | θ) (Marjoram et al., 2003;
Peters et al., 2008; Ratmann et al., 2009; Reeves andPettitt, 2005; Sisson et al., 2007; Toni et al.,
2009;Wegmann et al., 2009). This then permits anMCMCsampler to be constructed directly
targeting the likelihood-free marginal posterior πLF(θ | y). In this setting, the probability of
accepting a proposed move from θ to θ′ ∼ q(θ, θ′) is given by min{1, α(θ, θ′)}, where

α(θ, θ′) = πLF(θ
′ | y)q(θ′, θ)

πLF(θ | y)q(θ, θ′) ≈
1
S
∑
s
πε(y | x′s, θ′)π(θ′)q(θ′, θ)

1
S
∑
s
πε(y | xs, θ)π(θ)q(θ, θ′)

(12.8)

andx′1, . . . , x′S ∼ π(x | θ′).As theMonteCarlo approximation (Equation12.7) becomesmore
accurate as S increases, the performance and acceptance rate of themarginal likelihood-free
sampler will gradually approach that of the equivalent standard MCMC sampler.
However, the above ratioof twounbiased likelihoodestimates is onlyunbiasedasS→∞.

Hence, the above samplerwill only approximately targetπLF(θ | y) for large S, whichmakes
it highly inefficient.However, note that estimatingα(θ, θ′)withS = 1 exactly recovers (Equa-
tion 12.6), the acceptance probability of the MCMC algorithm targeting πLF(θ, x | y). That
is, the marginal space likelihood-free sampler with S = 1 is precisely the likelihood-free
MCMC sampler inAlgorithm 12.2.As the sampler targetingπLF(θ, x | y) also provides unbi-
ased estimates of themarginalπLF(θ | y), it follows that the likelihood-free sampler targeting
πLF(θ | y) directly is also unbiased in practice (Sisson et al., 2010). A similar argument for
S > 1 can also be made, as outlined below.
An alternative augmented likelihood-free posterior distribution is given by

πLF(θ, x1:S | y) ∝ πε(y | x1:S, θ)π(x1:S | θ)π(θ)

:=
[
1
S

S∑
s=1
πε(y | xs, θ)

][ S∏
s=1
π(xs | θ)]

]
π(θ),
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where x1:S = (x1, . . . , xS) represents s = 1, . . . , S replicate auxiliary data sets xs ∼ π(x | θ).
This posterior, generalized from Del Moral et al. (2008), is based on the more general
expected auxiliary variable approach of Andrieu et al. (2008), where the summation form
of πε(y | x1:S, θ) describes this expectation. The resulting marginal posterior πSLF(θ | y) =∫
YS πLF(θ, x1:S, θ | y)dx1:S is the same for all S, namely πSLF(θ | y) = πLF(θ | y).
The motivation for this form of posterior is that that a sampler targeting πLF(θ, x1:S | y),

for S > 1, will possess improved sampler performance compared to an equivalent sampler
targeting πLF(θ, x | y), through a reduction in the variability of the Metropolis–Hastings
acceptance probability. With the natural choice of proposal density given by

q[(θ, x1:S), (θ′, x′1:S)] = q(θ, θ′)
S∏
s=1
π(x′s | θ′),

where x′1:S = (x′1, . . . , x′S), the acceptance probability of a Metropolis–Hastings algorithm
targeting πLF(θ, x1:S | y) reduces to

α[(θ, x1:S), (θ′, x′1:S)] =
1
S
∑
s
πε(y | x′s, θ′)π(θ′)q(θ′, θ)

1
S
∑
s
πε(y | xs, θ),π(θ)q(θ, θ′)

. (12.9)

This is the sameacceptanceprobability (Equation12.8) as amarginal likelihood-free sampler
targeting πLF(θ | y) directly, using SMonte Carlo draws to estimate πLF(θ | y) pointwise, via
Equation 12.7.Hence, bothmarginal and augmented likelihood-free samplers possess iden-
tical mixing and efficiency properties. The difference between the two is that the marginal
sampler acceptance probability (Equation 12.8) is approximate for finite S, whereas the
augmented sampler acceptance probability (Equation 12.9) is exact. However, clearly the
marginal likelihood-free sampler is, in practice, unbiased for all S ≥ 1. See Sisson et al.
(2010) for a more detailed analysis.

12.3.2 Error-Distribution Augmented Samplers

In all likelihood-free MCMC algorithms, low values of ε result in slowly mixing chains
through low acceptance rates. However, this also provides a potentially more accurate
posterior approximation πLF(θ | y) ≈ π(θ | y). Conversely, MCMC samplers with larger ε
values may possess improved chain mixing and efficiency, although at the expense of a
poorer posterior approximation (e.g. Figure 12.1). Motivated by a desire for improved sam-
pler efficiency while realizing low ε values, Bortot et al. (2007) proposed augmenting the
likelihood-free posterior approximation to include ε, so that

πLF(θ, x, ε | y) ∝ πε(y | x, θ)π(x | θ)π(θ)π(ε).

Accordingly, ε is treated as a tempering parameter in the manner of simulated tempering
(Geyer and Thompson, 1995), with larger and smaller values respectively corresponding to
“hot”and“cold” temperedposteriordistributions.Thedensityπ(ε) is apseudo-prior,which
serves only to influence the mixing of the sampler through the tempered distributions.
Bortot et al. (2007) suggested using a distribution which favors small ε values for accuracy,
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while permitting large values to improve chain acceptance rates. The approximation to the
true posterior π(θ | y) is then given by

πE
LF(θ | y) =

∫
E

∫
Y
πLF(θ, x, ε | y) dx dε

where ε ∈ E ⊆ R
+. Sampler performance aside, this approach permits an a posteriori evalua-

tionof anappropriatevalue ε = ε∗ such thatπE
LF(θ | y)withE = [0, ε∗]providesanacceptable

approximation to π(θ | y).
An alternative error-distribution augmented model was proposed by Ratmann et al.

(2009) with the aim of diagnosing model misspecification for the observed data y. For the
vector of summary statistics T(x) = (T1(x), . . . ,TR(x)), the discrepancy between the model
π(x | θ) and the observed data is given by τ = (τ1, . . . , τR), where τr = Tr(x)− Tr(y), for
r = 1, . . . ,R, is the error under the model in reproducing the rth element of T(·). The joint
distribution of model parameters and model errors is defined as

πLF(θ, x1:S, τ | y) ∝ πε(y | τ, x1:S, θ)π(x1:S | θ)π(θ)π(τ)

:= min
r
ξ̂r(τr | y, x1:S, θ)π(x1:S | θ)π(θ)π(τ), (12.10)

where the univariate error distributions

ξ̂r(τr | y, x1:S, θ) = 1
Sεr

S∑
s=1

K
(
τr −

[
Tr(xs)− Tr(y)

]
εr

)
(12.11)

are constructed from smoothed kernel density estimates of model errors, estimated from S
auxiliary data sets x1, . . . , xS, and where π(τ) =∏r π(τr), the joint prior distribution for the
model errors, is centered on zero, reflecting that themodel is assumed plausible a priori. The
terms minr ξ̂r(τr | y, x, θ) and π(τ) take the place of the weighting density πε(y | τ, x1:S, θ).
The minimum of the univariate densities ξ̂r(τr | y, x, θ) is taken over the R model errors
to reflect the most conservative estimate of model adequacy, while also reducing the
computation on the multivariate τ to its univariate component margins. The smoothing
bandwidths εr of each summary statistic Tr(·) are dynamically estimated during sampler
implementation as twice the interquartile range of Tr(xs)− Tr(y), given x1, . . . , xS.
Assessment of model adequacy can then be based on

πLF(τ | y) =
∫
Θ

∫
YS
πLF(θ, x1:S, τ | y) dx1:S dθ,

the posterior distribution of the model errors. If the model is adequately specified then
πLF(τ | y) should be centered on the zero vector. If this is not the case then the model is
misspecified. The nature of the departure of πLF(τ | y) from the origin, for example via one
or more summary statistics Tr(·), may indicate the manner in which the model is deficient.
See, for example,Wilkinson (2008) for further assessment of model errors in likelihood-free
models.

12.3.3 Potential Alternative MCMC Samplers

Given the variety ofMCMC techniques available for standard Bayesian inference, there are
a number of currently unexplored ways in which these might be adapted to improve the
performance of likelihood-free MCMC samplers.
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For example, within the class of marginal space samplers (Section 12.3.1), the number
of Monte Carlo draws S determines the quality of the estimate of πLF(θ | y) (cf. Equa-
tion 12.7).Astandard implementation of the delayed-rejection algorithm (Tierney andMira,
1999) would permit rejected proposals based on poor but computationally cheap posterior
estimates (i.e. using low to moderate S), to generate more accurate but computationally
expensive second-stage proposals (using large S), thereby adapting the computational
overheads of the sampler to the required performance.
Alternatively, coupling two ormoreMarkov chains targetingπLF(θ, x | y), each utilizing a

different ε value, would achieve improved mixing in the “cold” distribution (i.e. the chain
with the lowest ε) through the switching of states between neighboring (in an ε sense)
chains (Pettitt, 2006). This could be particularly useful in multimodal posteriors. While
this flexibility is already available with continuously varying ε in the augmented sampler
targeting πLF(θ, x, ε | y) (Bortot et al., 2007; see also Section 12.3.2 above), there are benefits
to constructing samplers from multiple chain sample-paths.
Finally, likelihood-freeMCMC samplers have to date focused on tempering distributions

based on varying ε. While not possible in all applications, there is clear scope for a class
of algorithms based on tempering on the number of observed data points from which the
summary statistics T(·) are calculated. Lower numbers of data points will produce greater
variability in the summary statistics, in turn generatingwider posteriors for the parameters
θ, but with lower computational overheads required to generate the auxiliary data x.

12.4 A Practical Guide to Likelihood-Free MCMC
In this section we examine various practical aspects of likelihood-free computation under a
simpleworked analysis. For observeddata y = (y1, . . . , y20) consider two candidatemodels:
yi ∼ Exponential(λ) and yi ∼ Gamma(k,ψ), where model equivalence is obtained under
k = 1,ψ = 1/λ. Suppose that the sample mean and standard deviation of y are available as
summary statistics T(y) = (ȳ, sy) = (4, 1), and that interest is in fitting each model and in
establishing model adequacy. Note that the summary statistics T(·) are sufficient for λ but
not for (k,ψ), where they form moment-based estimators. For the following we consider
flat priors π(λ) ∝ 1, π(k,ψ) ∝ 1 for convenience. The true posterior distribution under the
Exponential(λ) model is λ | y ∼ Gamma(21, 80).

12.4.1 An Exploratory Analysis

An initial exploratory investigation of model adequacy is illustrated in Figure 12.2, which
presents scatterplots of summary statistics versus summary statistics, and summary statis-
tics versus parameter values under each model. Images are based on 2000 parameter
realizations λ, k,ψ ∼ U(0, 20) followed by summary statistic generation under each model
parameter. Horizontal and vertical lines denote the values of the observed summary
statistics T(y).
From the plots of sample means against standard deviations, T(y) is clearly better rep-

resented by the gamma than the exponential model. The observed summary statistics (i.e.
the intersection of horizontal and vertical lines) lie in regions of relatively lower prior pre-
dictive density under the exponential model, compared to the gamma. That is, a priori, the
statistics T(y) appear more probable under the more complex model.
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Consider the plots of λ−1 versus T(x) under the exponential model. The observed statis-
tics T(y) individually impose competing requirements on the exponential parameter. An
observed sample mean of ȳ = 4 indicates that λ−1 is most likely in the approximate range
[3, 5] (indicated by those λ−1 values where the horizontal line intersects with the density).
However, the sample standard deviation sy = 1 independently suggests that λ−1 is most
likely in the approximate range [0.5, 1.5]. If either x̄ or sx were the only summary statistic,
then only one of these ranges is appropriate, and the observed data would be considerably
more likely under the exponential model. However, the relative model fits and model ade-
quacies of the exponential and gamma can only be evaluated by using the same summary
statistics on eachmodel. (Otherwise, themodelwith the smaller number of summary statis-
tics will be considered the most likely model, simply because it is more probable to match
fewer statistics.) As a result, the competing constraints on λ through the statistics x̄ and sy
are so jointly improbable under the exponential model that simulated and observed data
will rarely coincide, making T(y) very unlikely under this model. This is a strong indicator
of model inadequacy.
In contrast, the plots of k andψ against T(x) under the gammamodel indicate no obvious

restrictions on the parameters based on T(y), suggesting that this model is flexible enough
to have generated the observed data with relatively high probability. Note that from these
marginal scatterplots it is not clear that these statistics are at all informative for the model
parameters. This indicates the importance of parameterization for visualization, as alter-
natively considering method of moments estimators as summary statistics (k̂, ψ̂), where
k̂ = x̄2/s2x and ψ̂ = s2x/x̄, will result in strong linear relationships between (k,ψ) and (k̂, ψ̂).
Of course, in practice direct unbiased estimators are rarely known.

12.4.2 The Effect of ε

Wenow implement the LF-MCMCalgorithm (Algorithm12.2) targeting the Exponential(λ)
model, with an interest in evaluating sampler performance for different ε values. Recall
that small ε is required to obtain a good likelihood-free approximation to the intractable
posterior πLF(θ | y) ≈ π(θ | y) (see Figure 12.1), where now θ = λ. However, implementing
the samplerwith low ε can be problematic in terms of initializing the chain and in achieving
convergence to the stationary distribution.
An initialization problemmay occur when using weighting kernels πε(y | x, θ)with com-

pact support, such as the uniform kernel (Equation 12.4) defined on [−ε, ε]. Here, initial
chain values (θ0, x0) are required such that πε(y | x0, θ0) = 0 in the denominator of the
acceptance probability at time t = 1 (Algorithm 12.2). ε, this is unlikely to be the case
for the first such parameter vector tried. Two naive strategies are to either repeatedly
generate x0 ∼ π(x | θ0), or similarly repeatedly generate θ0 ∼ π(θ) and x0 ∼ π(x | θ0), until
πε(y | x0, θ0) = 0 is achieved. However, the former strategy may never terminate unless θ0
is located within a region of high posterior density. The latter strategymay never terminate
if the prior is diffuse with respect to the posterior. Relatedly, Markov chain convergence
can be very slow for small ε when moving through regions of very low density, for which
generating x′ ∼ π(x | θ′) with T(x′) ≈ T(y) is highly improbable.
One strategy to avoid these problems is to augment the target distribution from

πLF(θ, x | y) to πLF(θ, x, ε | y) (Bortot et al., 2007), permitting a time-variable ε to improve
chain mixing (see Section 12.3 for discussion on this and other strategies to improve chain
mixing). A simpler strategy is to implement a specified chain burn-in period, defined by a
monotonic decreasing sequence εt+1 ≤ εt, initialized with large ε0, for which εt = ε remains
constant at the desired level for t ≥ t∗, beyond some (possibly random) time t∗ (see Peters
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et al., 2010). For example, consider the linear sequence εt = max{ε0 − ct, ε} for some c > 0.
However, the issue here is in determining the rate at which the sequence approaches the
target ε: if c is too large, then εt = ε before (θt, xt) has reached a region of high density; if
c is too small, then the chain mixes well but is computationally expensive through a slow
burn-in.
One self-scaling option for the uniform weighting density (Equation 12.4) would be to

define ε0 = ρ(T(x0),T(y)) and, given the proposed pair (θ′, x′) at time t, propose a new
ε value as

ε′′ = max{ε,min{ε′, εt−1}}, (12.12)

where ε′ = ρ(T(x′),T(y)) > 0 is the distance between observed and simulated summary
statistics. If the proposed pair (θ′, x′) are accepted then set εt = ε′′, else set εt = εt−1. That
is, the proposed ε′′ is dynamically defined as the smallest possible value that results in
a nonzero weighting function πεt(y | x′, θ′) in the numerator of the acceptance probability,
without going below the target ε, and while decreasing monotonically. If the proposed
move to (θ′, x′) is accepted, the value ε′′ is accepted as the new state, else the previous value
εt−1 is retained. Similar approaches could be taken with nonuniform weighting densities
πε(y | x, θ).
Four trace plots of λt and εt for the Exponential(λ)model are illustrated in Figure 12.3a,b,

using the above procedure. All Markov chains were initialized at λ0 = 10 with target ε = 3,
proposals were generated via λ′ ∼ N(λt−1, 1), and the distance measure

ρ(T(x),T(y)) =
{
[T(x)− T(y)]�Σ−1[T(x)− T(y)]

}1/2
(12.13)

0
2
4
6
8

10
12

(a)

Tr
ac

e o
f λ

0 100 200 300 400 500
3.0

4.0

5.0

6.0
(b)

(c) (d)
Iteration

0 100 200 300 400 500
Iteration

Tr
ac

e o
f 

∋

0 2000 4000 6000 8000 10,000
0.0

1.0

2.0

3.0

Iteration

Tr
ac

e o
f λ

0.0 0.5 1.0

0

1

2

3

4

5

λ

D
en

sit
y

FIGURE 12.3
Performance of the LF-MCMC sampler for the Exponential(λ)model. Trace plots of (a) λt and (b) εt for four chains
using the self-scaling {εt} sequence given by Equation 12.12. The maximum likelihood estimate of λ is 0.25 and
the target ε is 3. (c) Jittered trace plots of λt with different target ε = 4.5 (bottom), 4, 3.5, and 3 (top). (d) Posterior
density estimates of λ for the same chains based on a chain length of 100,000 iterations.
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is given byMahalanobis distance. The covariance matrixΣ = cov(T(y)) is estimated by the
sample covariance of 1000 summary vectors T(x) generated from π(x | λ̂) conditional on
λ̂ = 0.25, the maximum likelihood estimate. All four chains converge to the high-density
region at λ = 0.25 quickly, although at different speeds as the sampler takes different routes
throughparameter space.Mixingduring burn-in is variable between chains, althoughover-
all convergence to εt = 3 is rapid. The requirement of tuning the rate of convergence, beyond
specifying the final tolerance ε, is clearly circumvented.
Figure 12.3c,d also illustrates the performance of the LF-MCMC sampler, post conver-

gence, based on four chains of length 100,000, each with different target ε. As expected (see
the discussion in Section 12.3), smaller ε results in lower acceptance rates. In Figure 12.3c,
ε = 4.5 (bottom trace), 4, 3.5, and 3 (top) result in post-convergence (of εt) mean acceptance
rates of 12.2%, 6.1%, 2.9%, and 1.1%, respectively. Conversely, precision (and accuracy) of
the posteriormarginal distribution forλ increaseswith decreasing ε, as seen in Figure 12.3d.
In practice, a robust procedure to identify a suitable target ε for the likelihood-free

MCMC sampler is not yet available. Wegmann et al. (2009) implement the LF-MCMC
algorithm with a large ε value to enhance chain mixing, and then perform a regression-
based adjustment (Beaumont et al., 2002; Blum and François, 2010) to improve the final
posterior approximation. Bortot et al. (2007) implement the LF-MCMC algorithm target-
ing the augmented posterior πLF(θ, x, ε | y) (see Section 12.3.2), and examine the changes
in πE

LF(θ | y) =
∫
E

∫
Y πLF(θ, x, ε | y) dx dε, with E = [0, ε∗], for varying ε∗. The final choice

of ε∗ is the largest value for which reducing ε∗ further produces no obvious improve-
ment in the posterior approximation. This procedure may be repeated manually through
repeated LF-MCMC sampler implementations at different fixed ε values (Tanaka et al.,
2006). Nevertheless, in practice ε is often reduced as low as possible such that computation
remains within acceptable limits.

12.4.3 The Effect of the Weighting Density

The optimal form of kernel weighting density πε(y | x, θ) for a given analysis is unclear
at present. While the uniform weighting kernel (Equation 12.4) is the most common in
practice—indeed, many likelihood-free methods have this kernel written directly into
the algorithm (sometimes implicitly)—it seems credible that alternative forms may offer
improved posterior approximations for given computational overheads. Some support
for this is available through recently observed links between the likelihood-free posterior
approximation πLF(θ | y) and nonparametric smoothing (Blum, 2010).
Here we evaluate the effect of the weighting density πε(y | x, θ) on posterior accuracy

under the Exponential (λ) model, as measured by the one-sample Kolmogorov–Smirnov
distancebetween the likelihood-freeposterior sampleand the trueGamma(21, 80)posterior.
To provide fair comparisons, we evaluate posterior accuracy as a function of computational
overheads,measured by themean post-convergence acceptance rate of the LF-MCMC sam-
pler. The following results are based on posterior samples consisting of 1000 posterior
realizations obtained by recording every 1000th chain state, following a burn-in period of
10,000 iterations. Figures are constructed by averaging the results of 25 sampler replications
under identical conditions, for a range of ε values.
Figure 12.4a shows the effect of varying the form of the kernel weighting function based

on theMahalanobis distance (Equation 12.13). There appears little obvious difference in the
accuracy of the posterior approximations in this example. However, it is credible to suspect
that nonuniform weighting functions may be superior in general (Blum, 2010; Peters et al.,
2008). This ismore clearly demonstrated in Section 12.4.5 below. The slightworsening in the
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accuracy of the posterior approximation, indicated by the upturn for low ε in Figure 12.4a,
will be examined in more detail in Section 12.4.4.
Regardless of its actual form, theweightingdensityπε(y | x, θ) should take thedistribution

of the summary statisticsT(·) into consideration. Fan et al. (2010) note that using aEuclidean
distance measure (given by Equation 12.13 withΣ = I, the identity matrix) within (say) the
uniform weighting kernel (Equation 12.4), ignores the scale and dependence (correlation)
structure of T(·), accepting sampler moves if T(y) is within a circle of size ε centered on
T(x), rather than within an ellipse defined by Σ = cov(T(y)). In theory, the form of the
distance measure does not matter as in the limit ε→ 0 any effect of the distance measure ρ
is removed from the posterior πLF(θ | y), that is, T(x) = T(y) regardless of the form of Σ. In
practice, however, with ε > 0, the distance measure can have a strong effect on the quality
of the likelihood-free posterior approximation πLF(θ | y) ≈ π(θ | y).
Using the uniformweighting density, Figure 12.4b demonstrates the effect of usingMaha-

lanobis distance (Equation 12.13), with Σ given by estimates of cov(T(y)), diag(cov(T(y)))
(scaled Euclidean distance) and the identity matrix I (Euclidean distance). Clearly, for a
fixed computational overhead (x-axis), greater accuracy is attainable by standardizing and
orthogonalizing the summary statistics. In this sense, Mahalanobis distance represents an
approximate standardization of the distribution of T(y) | θ̃ at an appropriate point θ̃ follow-
ing indirect inference arguments (Jiang and Turnbull, 2004). As cov(T(y))may vary with θ,
Fan et al. (2010) suggest using an approximate maximum a posteriori estimate of θ, so that θ̃
resides in a region of high posterior density. The assumption is then that cov(T(y)) varies
little over the region of high posterior density.

12.4.4 The Choice of Summary Statistics

Likelihood-free computation is based on the reproduction of observed statistics T(y) under
the model. If the T(y) are sufficient for θ, then the true posterior π(θ | y) can be recovered
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exactly as ε→ 0. If dim(T(y)) is large (Bortot et al., 2007), then likelihood-free algo-
rithms become computationally inefficient through the need to reproduce large numbers of
summary statistics (Blum, 2010). However, low-dimensional, nonsufficient summary vec-
tors produce less efficient estimators of θ, and so generate wider posterior distributions
πLF(θ | y) than using sufficient statistics (see Section 12.2.3). Ideally, low-dimensional and
near-sufficient T(y) are the preferred option.
Unfortunately, it is usually difficult to know which statistics are near-sufficient in prac-

tice. A brute-force strategy to address this issue is to repeat the analysis while sequentially
increasing the number of summary statistics each time (in order of their perceived impor-
tance), until no further changes to πLF(θ | y) are observed (Marjoram et al., 2003; see also
Joyce and Marjoram, 2008). If the extra statistics are uninformative, the quality of approx-
imation will remain the same, but the sampler will be less efficient. However, simply
enlarging the number of informative summary statistics is not necessarily the best way
to improve the likelihood-free approximation πLF(θ | y) ≈ π(θ | y), and in fact may worsen
the approximation in some cases.
An example of this is provided by the present Exponential(λ) model, where either of the

two summary statisticsT(y) = (ȳ, sy) = (4, 1) alone is informative forλ (and indeed, ȳ is suf-
ficient), as we expect that λ ≈ 1/ȳ ≈ 1/sy under any data generated from this model. In this
respect, however, theobservedvaluesof the summarystatisticsprovide conflicting informa-
tion for the model parameter (see Section 12.4.1). Figure 12.5 examines the effect of this, by
evaluating the accuracy of the likelihood-free posterior approximation πLF(θ | y) ≈ π(θ | y)
as a function of ε under different summary statistic combinations.As before, posterior accu-
racy is measured via the one-sample Kolmogorov–Smirnov test statistic with respect to the
true Gamma(21, 80) posterior.
With T(y) = ȳ, Figure 12.5a demonstrates that accuracy improves as ε decreases, as

expected. For Figure 12.5b, with T(y) = sy (dots), the resulting πLF(θ | y) posterior is clearly
different from the true posterior for all ε. Of course, the limiting posterior as ε→ 0 is (very)
approximately Gamma(21, 20), resulting from an exponential model with λ = 1/sy = 1,
rather than Gamma(21, 80) resulting from an exponential model with λ = 1/ȳ = 1/4. The
crosses in Figure 12.5b denote the Kolmogorov–Smirnov test statistic with respect to the
Gamma(21, 20) distribution, which indicates that πLF(θ | y) is roughly consistent with this

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
(c)

∋

KS
 st

at
ist

ic

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
(a)

∋

KS
 st

at
ist

ic

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
(b)

∋

KS
 st

at
ist

ic

FIGURE 12.5
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distribution as ε decreases. That the Gamma(21, 20) is not the exact limiting density (i.e.
the KS statistic does not tend to zero as ε→ 0) stems from the fact that sy is not a sufficient
statistic for λ, and is less than fully efficient.
In Figure 12.5c with T(y) = (ȳ, sy), which contains an exactly sufficient statistic (ȳ), the

accuracy of πLF(θ | y) appears to improve with decreasing ε, and then actually worsens
before improving again. This would appear to go against the generally accepted principle
that, for sufficient statistics, decreasing εwill always improve theapproximationπLF(θ | y) ≈
π(θ | y). Of course, the reality here is that both of these competing statistics are pulling
the likelihood-free posterior in different directions, with the consequence that the limiting
posterior as ε→ 0 will be some combination of both gamma distributions, rather than the
presumed (and desired) Gamma(21, 80).
This observation leads to the uncomfortable conclusion that model comparison through

likelihood-free posteriors with a fixed vector of summary statistics T(y), will ultimately
compare distortions of those models which are overly simplified with respect to the true
data-generation process. This remains true even when using sufficient statistics and for
ε→ 0.

12.4.5 Improving Mixing

Recall that the acceptance rate of the LF-MCMC algorithm (Algorithm 12.2) is directly
related to the value of the true likelihood π(y | θ′) at the proposed vector θ′ (Section 12.3).
While this is a necessary consequence of likelihood-free computation, it does imply poor
sampler performance in regions of low probability, as the Markov chain sample-path may
persist in distributional tails for long periods of time due to low acceptance probabilities
(Sisson et al., 2007). This is illustrated in Figure 12.6(a, b: lowest light gray lines), which
displays the marginal sample paths of k and ψ under the Gamma(k,ψ) model, based on
5000 iterations of a sampler targeting π(θ, x | y) with ε = 2 and using the uniform kernel
density πε(y | x, θ). At around 1400 iterations the sampler becomes stuck in the tail of the
posterior for the following 700 iterations, with very little meaningful movement.
A simple strategy to improve sampler performance in this respect is to increase the

number of auxiliary data sets S generated under the model, by targeting either the joint
posterior πLF(θ, x1:S | y) or the marginal posterior πLF(θ | y) with S ≥ 1 Monte Carlo draws
(see Section 12.3.1). This approach will reduce the variability of the acceptance probability
(Equation 12.8), and allow the Markov chain acceptance rate to approach that of a sam-
pler targeting the true posterior π(θ | y). The trace plots in Figure 12.6a,b (bottom to top)
correspond to chains implementing S = 1, 10, 20, and 50 auxiliary data set generations
per likelihood evaluation. Visually, there is some suggestion that mixing is improved as
S increases. Note, however, that for any fixed S, the LF-MCMC sampler may still become
stuck if the sampler explores sufficiently far into the distributional tail.
Figure 12.6c,d investigates this idea from an alternative perspective. Based on 2 million

sampler iterations, the lengths of sojourns that the k parameter spent above afixed threshold
κwere recorded.Asojourn length isdefinedas the consecutivenumberof iterations inwhich
the parameter k remains above κ. Intuitively, if likelihood-free samplers tend to persist in
distributional tails, the length of the sojourns will be much larger for the worse-performing
samplers. Figure 12.6c,d shows the distributions of sojourn lengths for samplerswith S = 1,
10, 25, and 50 auxiliary data sets, with κ = 45 (c) and κ = 50 (d). Boxplot shading indicates
use of the uniform (white) or Gaussian (gray) weighting kernel πε(y | x, θ).
A number of points are immediately apparent. Firstly, chain mixing is poorer the further

into the tails the sampler explores. This is illustrated by the increased scale of the sojourn
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√
3 to ensure a comparable standard deviation with
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lengths for κ = 50 compared to κ = 45. Secondly, increasing S by a small amount substan-
tially reduces chain tail persistence. As S increases further, the Markov chain performance
approaches that of a sampler directly targeting the true posterior π(θ | y), and so less per-
formance gains are observed by increasing S beyond a certain point. Finally, there is strong
evidence to suggest that LF-MCMC algorithms using weighting kernel densities πε(y | x, θ)
that do not generate large numbers of zero-valued likelihoods will possess superior perfor-
mance to those that do. Here use of the Gaussian weighting kernel clearly outperforms the
uniform kernel in all cases. In summary, it would appear that the choice of kernelweighting
function πε(θ | y) has a larger impact on sampler performance than the number of auxiliary
data sets S.

12.4.6 Evaluating Model Misspecification

In order to evaluate the adequacy of both exponential and gammamodels in terms of their
support for the observed data T(y) = (ȳ, sy), we fit the error-distribution augmentedmodel
(Equation 12.10) given by

πLF(θ, x1:S, τ | y) := min
r
ξ̂r(τr | y, x1:S, θ)π(x1:S | θ)π(θ)π(τ),

asdescribed inSection12.3.2 (Ratmannet al., 2009). Thevectorτ = (τ1, τ2),withτr = Tr(x)−
Tr(y) for r = 1, 2, describes the error under themodel in reproducing the observed summary
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statistics T(y). The marginal likelihood-free posterior πLF(τ | y) should be centered on the
zero vector for models which can adequately account for the observed data.
We follow Ratmann et al. (2009) in specifying K in Equation 12.11 as a biweight (quar-

tic) kernel with an adaptive bandwidth εr determined by twice the interquartile range of
Tr(xs)− Tr(y) given x1:S = (x1, . . . , xS). The prior on the error τ is determined as π(τ) =∏

r π(τr), where π(τr) = exp(− | τr | /δr)/(2δr) with δ1 = δ2 = 0.75 for both exponential and
gamma models.
Based on 50,000 sampler iterations using S = 50 auxiliary data sets, the resulting bivariate

posteriorπLF(τ | y) is illustrated in Figure 12.7 for bothmodels. From these plots, the errors τ
under thegammamodel (bottomplots) are clearly centeredon theorigin,with50%marginal
high-density regions given by τ1 | y ∼ [−0.51, 0.53] and τ2 | y ∼ [−0.44, 0.22] (Ratmann et al.,
2009). However for the exponential model (top plots), while the marginal 50% high density
regions τ1 | y ∼ [−0.32, 1.35] and τ2 | y ∼ [−0.55, 0.27] also both contain zero, there is some
indication of model misspecification as the joint posterior error distribution τ | y is not fully
centered on the zero vector. Based on this assessment, and recalling the discussion on the
exploratory analysis in Section 12.4.1, the gammamodel would appear to provide a better
overall fit to the observed data.

12.5 Discussion
In the early 1990s, the introduction of accessible MCMC samplers provided the catalyst
for a rapid adoption of Bayesian methods and inference as credible tools in model-based
research. Twenty years later, the demand for computational techniques capable of han-
dling the types of models inspired by complex hypotheses has resulted in new classes of
simulation-based inference, which are again expanding the applicability and relevance of
the Bayesian paradigm to new levels.
While the focus of the present chapter is on Markov chain-based, likelihood-free simula-

tion, alternative methods to obtain samples from πLF(θ | y) have been developed, each with
their own benefits and drawbacks. While MCMC-based samplers can be more efficient
than rejection sampling algorithms, the tendency of sampler performance to degrade in
regions of low posterior density (see Section 12.4.5 above; see also Sisson et al., 2007) can be
detrimental to sampler efficiency. One class of methods, based on the output of a rejection
sampler with a high ε value (for efficiency), uses standard multivariate regression methods
to estimate the relationship between the summary statistics T(x) and parameter vectors
θ (Beaumont et al., 2002; Blum and François, 2010; Marjoram and Tavaré, 2006). The idea
is then to approximately transform the sampled observations from (θ,T(x)) to (θ∗,T(y))
so that the adjusted likelihood-free posterior πLF(θ, x | y) → πLF(θ∗, y | y) ≈ π(θ | y) is an
improved approximation. Further attempts to improve sampler efficiency over MCMC-
based methods have resulted in the development of likelihood-free sequential Monte
Carlo and sequential importance sampling algorithms (Beaumont et al., 2009; Del Moral
et al., 2008; Peters et al., 2008; Sisson et al., 2007; Toni et al., 2009). Several authors have
reported that likelihood-free sequential Monte Carlo approaches can outperform their
MCMC counterparts (McKinley et al., 2009; Sisson et al., 2007).
There remain many open research questions in likelihood-free Bayesian inference. These

include how to select and incorporate the vectors of summary statisticsT(·), how to perform
posterior simulation in the most efficient manner, and which joint likelihood-free posterior
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models and kernel weighting densities admit themost effectivemarginal approximation to
the true posterior πLF(θ | y) ≈ π(θ | y). Additionally, the links to existing bodies of research,
including nonparametrics (Blum, 2010) and indirect inference (Jiang and Turnbull, 2004),
are at best poorly understood.
Finally, there is an increasing trend toward using likelihood-free inference for model

selection purposes (Grelaud et al., 2009; Toni et al., 2009). While this is a natural extension
of inference for individual models, the analysis in Section 12.4.4 urges caution and suggests
that further research is needed into the effect of the likelihood-free approximation both
withinmodels and on themarginal likelihoodsπLF(y) =

∫
Y πLF(θ | y) dθuponwhichmodel

comparison is based.
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13
MCMC in the Analysis of Genetic Data
on Related Individuals

Elizabeth Thompson

13.1 Introduction
This chapter provides an overview of the use of Markov chain Monte Carlo (MCMC)
methods in the analysis of data observed for multiple genetic loci on members of extended
pedigrees in which there are many missing data. Rather than on the details of the MCMC
samplingmethods, our focus is first on the complex structure of these data that necessitates
MCMC methods, and second on the use of Monte Carlo realizations of latent variables in
statistical inference in this area.
MCMC should be a weapon of last resort, when exact computation and other Monte

Carlo methods fail. WhenMCMC is needed, there are two prerequisites for its efficient use
in complex stochastic systems. The first is a consideration of the conditional independence
structure of the data observations and latent variables, and a choice of latent variable struc-
ture that will facilitate computation and sampling. While unnecessary augmentation of the
latent variable space is clearly disadvantageous, there are classic caseswhere augmentation
of the space greatly improves efficiency (Besag and Green, 1993). Second, and related, it is
important to consider what parts of a computationmay be performed exactly.Where a par-
tial exact computation is feasible, this may be used to resample jointly subsets of the latent
variables, and hence improveMCMCperformance.Additionally, partial exact computation
may permit the use of Rao-Blackwellized estimators (Gelfand and Smith, 1990), improving
efficiency in the use of sampled realizations. Thus, in Section 13.3we consider the structures
and exact computational algorithms that will complement MCMC approaches.
As geneticmarker data on observable individuals increase, and the traits requiring analy-

sis becomegeneticallymore complex, the challengesboth for exact computationandMCMC
methods increase also. In Section 13.4, we describe MCMC samplers of genetic latent vari-
ables that have evolved from the single-site genotypic updating samplers of Sheehan (2000)
to the most recent multiple-meoisis and locus sampling of inheritance patterns of Tong and
Thompson (2008). The separation of the analysis of trait data from the MCMC sampling of
latent variables conditional on genetic marker data was first proposed by Lange and Sobel
(1991). With the increasing complexity of models for trait data, this becomes the approach
of choice, and in Section 13.5 we discuss the sampling of latent inheritance patterns condi-
tional only on dense marker data. In some cases, the model on which sampling is based is
too simple to even approximate reality. Then, importance sampling reweighting becomes
a key tool in improving the usefulness of this approach. Also in the arena of marker data
based analyses is the question of genetic map estimation (Section 13.5.2).
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Having developed the exact and Monte Carlo computational methods in Sections 13.3
and13.4, in Section 13.6wedescribe their use in the analysis of genetic data. In Section 13.6.1,
we showhow realizations of inheritance patterns can be used in theMonteCarlo estimation
of multilocus linkage log-odds (lod) scores and other test statistics. In Section 13.6.2, we
show how the variation in Monte Carlo realizations of latent variables can be used to
measure uncertainty in inferences and test linkage detection, using the latent p-value or
fuzzy p-value approach of Geyer and Meeden (2005). Finally, in Section 13.6.3 we discuss
twoapproaches to localizationofgenes for complex traits, using the latentp-valueapproach.
Overall, our thesis again is that a single set of realizations of latent genetic variables, made
conditional on joint marker data on all individuals and over an entire genomic region, can
be used in a broad variety of ways to analyze the genetic basis of complex traits.
While this chapter contains new material, particularly in relation to methods for

approaching modern dense single nucleotide polymorphism (SNP) data using MCMC
methods, much of the background information is based on earlier papers. These include a
tutorial chapter onMCMC for genetic data (Thompson, 2005) and a chapter in theHandbook
of Statistical Genetics on linkage analysis (Thompson, 2007).Many additional referencesmay
be found in these two previous papers.

13.2 Pedigrees, Genetic Variants, and the Inheritance of Genome
In this section,we introduce the specification of pedigrees and inheritance, and then discuss
structure of genetic models. A pedigree is a specification of the genealogical relationships
among a set of individuals. Each individual is given a unique identifier, and the two parents
of each individual are specified. Individualswithunspecifiedparents are founders: theothers
are nonfounders. Graphically, males are traditionally represented by squares and females by
circles. In the graphical representation of a pedigree known as amarriage node graph, a male
and a female individual having shared offspring are connected to a marriage node, and the
marriage node is connected to each offspring.An example pedigreewewill use throughout
this chapter is shown in Figure 13.1. For clarity, the marriage nodes are shown as bullets.
Each marriage node is connected upward to two parent individuals, and downward to

at least one (and possibly many) offspring individual(s). Each nonfounder is connected
upward to precisely one marriage node. Aparent individual may be connected to multiple
marriage nodes. In the example 28-member pedigree (Figure 13.1), the letters are the iden-
tifiers of the individuals (some not shown). There are 9 founders and 19 nonfounders, 12
males and 16 females, and 11 marriage nodes. One individual (H) has two marriages. One
individual (C) is inbred, having related parents E and H. Note that it is not only inbreeding
that causes loops in pedigrees. EvenwithoutC, the fact thatE andH are double-first cousins
creates a loop in the pedigree structure. Another loop is created by the fact that sibs D and
F are double-first cousins to A, B, and J.
Human individuals are diploid: every cell nucleus contains two haploid copies of the

DNA of the human genome, each of approximately 3× 109 base pairs (bp). One of these
copies derives from the DNA in the individual’s mother (the maternal genome), and the
other from the DNA in the individual’s father (the paternal genome). Note that all DNA is
double-stranded. The double-stranded nature of DNA has nothing to do with the haploid
(single genome copy) or diploid (two-copy) genome content of a cell or organism. The
biological process throughwhichDNAin parent cells is copied and transmitted to offspring
is known as meiosis, and Mendel’s first law (1866) specifies this transmission marginally, at
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FIGURE 13.1
An example 28-member pedigree.

any location in the genome. A genome location is known as a locus (plural loci). In modern
terminology, Mendel’s first law states that the copy transmitted from parent to offspring is
a randomly chosen one of the two parental copies, and that all meioses, whether to different
offspring of a single parent or in different parental individuals, are independent.
At many loci of our genomes there is genetic variation. At a given locus, the possible

variants are known as the alleles of that locus. The two (possibly identical) alleles at a locus
carriedbyadiploid individual are the individual’sgenotypeat that locus.TheDNAofour cell
nuclei is divided into 46 chromosomes (22 pairs and 2 sex chromosomes). The allelic types
along a chromosome are known as the haplotype. In a given genomic region, the two haplo-
types carried by an individual determine the individual’s genotype at all loci in the region.
The converse is not true; a set of single-locus genotypes of an individual may correspond to
many different haplotype pairs. This is is problem of phase (Browning and Browning, 2007).
Inheritance is dependent among loci on the same chromosome pair. Specifically, DNA

at nearby loci has a very high probability of being copied to an offspring from the same
parental chromosome, and in fact chromosomes are inherited in chunks with length of
order 108 bp. Mendel’s first law implies only that, at each locus, an offspring will share
an allele with each parent. The chromosomal dependence in inheritance resulting from the
process of meiosis implies that, at least locally and with high probability, an offspring will
share a haplotype with each parent.

13.3 Conditional Independence Structures of Genetic Data
The descent of DNA in a pedigree is not directly observable, and, even where individuals
are available for observation, the DNA variants of their separate chromosomes (i.e. their
haplotypes) are not normally observable. Thus, the framework for analyses of genetic data
can be described through several complementary latent variable specifications. In a genetic
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FIGURE 13.2
The structure of genetic models.

analysis the primary objective is often the computation of a likelihood, or the probability of
observed data Y. The latent variables are the targets of MCMC approaches to Monte Carlo
estimates of this likelihood.

13.3.1 Genotypic Structure of Pedigree Data

While the genetic data have become ever more complex, the basic structure outlined by
Elston and Stewart (1971) remains. Figure 13.2 shows this structure, and in these and similar
figures,modelswill be represented by boxes, latent variables by circles, and observable data
by diamonds. For the founder members of the pedigree, the population model specifies the
probabilities of the allelic types of DNA and hence also their genotypes. The transmission
model specifies the probabilities ofmeiotic events, and hence the descent of DNAand thence
the genotypes of all members of the pedigree. The penetrance model specifies the probability
of data observations given the genotype. The data observation here may be qualitative or
quantitative, and the penetrance probability may depend on other covariate information
on the individual, such as age, sex, or geographic location. Given this classic structure of
genetic models, it is natural to consider first the genotypes of individuals as defining the
latent structure of genetic data.
The probability of data, Y, or likelihood of any model parameters Γ is given by

L(Γ) = P(Y;Γ) =
∑
G
P(Y | G)P(G)

=
∑
G

(∏
fou

P(Gi)
)( ∏

nonfou
P(Gi | GM(i),GF(i))

)(∏
obs

P(Yi | Gi)
)
. (13.1)

The probability structure here implies that data on offspring are conditionally independent
given the genotypes of parents, ormore generally that data on disjoint parts of the pedigree
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FIGURE 13.3
Genotypic peeling on pedigree structures. The two dark-shaded individuals are a cutset dividing the left- and
right-hand parts of the pedigree.

are conditionally independent given the genotypes of individuals in a cutset dividing these
parts (Figure 13.3). This led to the computational method of pedigree peeling proposed by
Elston and Stewart (1971), and soon generalized to arbitrary pedigrees (Cannings et al.,
1978) and more complex models (Cannings et al., 1980).
We will not labor the details here, since the approach is now well known through the

generalization to other graphical models (Lauritzen, 1992; Lauritzen and Spiegelhalter,
1988). One point worth noting is that pedigrees are intrinsically directed, with DNAbeing
copied from parents to offspring (Equation 13.1). Thus when the accumulated probability
relates to individuals connected to a cutset member i via his offspring (“below i”), the
natural probability to consider is

R†(g) = P(data | Gi = g).

However, if the accumulatedprobability is for data on individuals connectedvia theparents
of i (“above i”), the natural probability is

R∗(g) = P(data,Gi = g).

On a complex pedigree, the accumulated probability may relate to a pedigree subset above
some individuals but below others. For example, in Figure 13.3 the probability of the data
in the right half of the pedigree could be expressed as

R(r)
�,r(g1, g2) = P(right data,G� = g1 | Gr = g2),

where � and r denote the left and right member of the cutset pair in the middle of the
pedigree. Equivalently, the data in the left half could be considered as

R(�)
�,r (g1, g2) = P(left data,Gr = g2 | G� = g1).
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Since individuals � and r are unrelated, multiplying these two functions and summing over
(g1, g2) provides the overall likelihood P(Y). Then also, the product of the two functions
normalized by P(Y) provides the conditional probability P(G� = g1,Gr = g2 | Y).
The methods of this section can be applied to data at several genetic loci along a chromo-

some, with the latent genotype being phased. That is, it is a specification of the collection of
alleles on each of the two chromosomes of the individual: the two haplotypes. The model is
then completely general, with the population model permitting any specified population
haplotype frequencies, the meiosis model permitting any specified transmission of DNA
fromparents to offspring, anddata observations beingdetermined arbitrarily by the phased
genotypes of individuals jointly over the loci. However, the number of potential phased
genotypes of an individual increases exponentially with the number of genetic loci, and for
more than a very few genetic loci computation becomes infeasible. An alternate structure
of latent variables is then required.

13.3.2 Inheritance Structure of Genetic Data

One alternate structure of latent variables consists of a specification in all the meioses i
(parent–offspring transmissions) of the pedigree of the inheritance of genome at any set of
discrete loci j:

Si,j = 0, if DNA at meiosis i locus j is parent’s maternal DNA,

= 1, if DNA at meiosis i locus j is parent’s paternal DNA.

For convenience, we define the two sets of vectors each of which makes up the array
S = {Si,j}:

S•,j = {Si,j; i = 1, . . . ,m}, j = 1, . . . , l,

Si,• = {Si,j; j = 1, . . . , l}, i = 1, . . . ,m,

where m is the number of meioses in the pedigree (twice the number of nonfounders) and
l the number of loci under consideration. In the literature, the vector S•,j is known as the
inheritance vector at locus j (Lander and Green, 1987).
According to Mendel’s first law, the components of S•,j are independent, and hence so

also are the vectors Si,•. However, the components of Si,• are dependent among loci j on the
same chromosome pair. For any pair of loci j and j′,

P(Si,j = 0) = P(Si,j = 1) = P(Si,j′ = 0) = P(Si,j′ = 1) = 1/2

by Mendel’s first law. One additional parameter, ρ( j, j′) = P(Si,j = Si,j′), suffices to specify
the joint distribution. In reality, the value of the recombination parameter ρ depends on
the meiosis i, most importantly on the sex of the parent in which the meiosis occurs (Kong
et al., 2002). Sex-specific recombination parameters impose no computational burden, but
for notational convenience we will ignore the dependence of ρ on i. For loci j and j′ that
are close in the genome, ρ( j, j′) is small and approximately equal to the genetic distance
between the loci in morgans (Haldane, 1919). The relationship between genetic (meiotic)
distance and physical (base-pair) distance is complex and variable across the genome, but
a useful overall average is that 1 centimorgan (cM) corresponds to ρ ≈ 0.01, and to 106 bp.
The value ρ( j, j′) = 1

2 corresponds to independence of Si,j and Si,j′ , and under most models
of meiosis 0 ≤ ρ ≤ 1

2 .
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Formore than two loci, suppose that loci j = 1, 2, . . . , l are ordered along the chromosome.
A convenient and adequately accurate assumption is that Si,j are Markov in j:

P(Si,j+1 = s | Si,1, . . . , Si,j) = P(Si,j+1 = s | Si,j) ∝ ρ|s−Si,j|)j (1− ρj)(1−|s−Si,j|), (13.2)

where ρj now denotes the recombination parameter between successive loci j and j + 1.
Then

P(S•,j | S•,j−1) =
m∏
i=1

P(Si,j | Si,j−1)

and P(S) = P(S•,1)

⎛
⎝ l∏
j=2

P(S•,j | S•,j−1)
⎞
⎠ .

We now assume further that the data can be separated into components Y•,j determined
separately by genotypes at each locus j. These genotypes are a deterministic function of the
allelic types at this locus of founder members of the pedigree, and of S•,j. Then

P(Y | S) =
l∏

j=1
P(Y•,j | S•,j)

P(Y) =
∑
S
P(Y | S)P(S) (13.3)

=
∑
S

⎛
⎝ l∏
j=1

P(Y•,j | S•,j)
⎞
⎠P(S•,1)

⎛
⎝ l∏
j=2

P(S•,j | S•,j−1)
⎞
⎠ .

The data then have hiddenMarkov (HMM) structure as shown in Figure 13.4. The meio-
sis model provides the hidden layer of inheritance vectors S•,j while population models
determine the allelic types A(F)

j of founders (F) at locus j. These latent variables deter-
mine the genotypes of all individuals at each locus j, and we shall find that computation
of probabilities of data Y•,j is straightforward for loci at which genotypes are observed
(typically “marker loci”), but is more complex if single-locus genotypes are not observable
(Section 13.3.3).
Given a method for computation of P(Y•,j | S•,j) (Section 13.3.3), standard HMM compu-

tational algorithms can be applied (Baum et al., 1970). Following standard notation, let

Y∗(j) = {Y•,1, . . . ,Y•,j} and Y†(j) = {Y•,j, . . . ,Y•,l},
R∗j (s) = P(Y∗(j), S•,j = s) and R†j (s) = P(Y†(j+1) | S•,j = s).

Given S•,j, Y∗(j−1), Y•,j, and S•,j+1 are mutually independent. Alternately, given S•,j, Y†(j+1),
Y•,j, andS•,j−1 aremutually independent.Unlike apedigree, a chromosomehasnodirection,
but we retain the conditional (†) and joint (∗) forms for analogy with Section 13.3.1. As in
that case, the likelihood P(Y) = P(Y∗(l))may be computed by successive elimination of each
S•,j (Baum, 1972), while

P(S•,j | Y) = R∗(j)(s)R†(j)(s)/P(Y). (13.4)
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FIGURE 13.4
The HMM dependence structure of pedigree data. For details, see text.
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FIGURE 13.5
The dependence structure of pedigree data.

While the HMM approach permits the computation of likelihoods on pedigree data sets
with data at multiple loci on a chromosome, it has limitations. First, not only is the meiosis
model more restrictive than in the Elston–Stewart framework, but so also are the trait and
marker penetrance models, with the data separating into components determined only by
the inheritance vector at that locus. Second, we have replaced an algorithm exponential
in the number of loci by one that is exponential in the size of the pedigree. If there are m
meioses in the pedigree, each S•,j can take 2m values, and the basic HMM algorithm is of
order 2m × 2m × l = l4m (Lander and Green, 1987).
In fact, the situation is not so severe, due again to Mendel’s first law. The (unconditional)

independence ofmeioses provides a dependence structure of the form shown in Figure 13.5,
which is a factored hiddenMarkov structure (Fishelson and Geiger, 2004). Although S•,j still
takes 2m values, the forward computation of R∗j+1 from R∗j may be accomplished for each
of the m meioses in turn, providing an algorithm of order l m2m. However, the approach
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remains exponential inm, so that exact computationofprobabilities of geneticdataobserved
at multiple dependent loci is limited to small pedigrees.

13.3.3 Identical by Descent Structure of Genetic Data

Segments of DNA in different genomes that are copies of the same genomic material in a
recent common ancestor are said to be identical by descent (ibd). In the analysis of data on
a fixed set of pedigree structures, ibd is defined relative to the founders of the pedigrees.
By definition, the genomes of founders are nowhere ibd. An accurate model is that ibd
segments of DNA carry the same allelic types; mutation has low probability and can be
ignored. By definition, non-ibd segments carry independent allelic types. Thus, identity by
descent underlies all similarity among relatives that results from the effects of their DNA.
At any given locus j, the pattern of ibd among pedigreemembers is a function of the inher-

itance vector S•,j. Consequently, given S•,j, we may define the ibd-graph among observed
pedigree members as shown in Figure 13.6. In the pedigree on the left the individuals
labeled A–L are assumed observed at the locus in question. In the ibd-graph on the right,
the edges are the (data on) these observed individuals, and the nodes can be considered as
(the allelic type of) the DNA shared ibd by the individuals. Edges join the nodes represent-
ing the two DNA segments carried by the individual at this locus. Thus, in this example,
sibs A, B, and J all share DNA ibd from one of their parents, while B and J share also the
DNA from their other parent, but A does not. An individual such as C connected to only
one node is assumed to carry two ibd segments of DNA at the locus, one copied to him
from each of his parents, who must necessarily then have a common ancestor within the
pedigree.
For clarity the founder genomes are labeled in Figure 13.6, but it is important to recognize

that the founder origins are irrelevant. Only ibd among the current observed individuals
impacts the probabilities of data.

1,2 3,49,1513,14(a)

(b)
5,6 11,12

G
7,16

8,10
K VA B JD F

E H U W

C L

17,18

B,J A

C

FH

13 2 9

6 4 8

17 15 1 7 10

E D G

L K W

VU

FIGURE 13.6
The ibd-graph as a function of inheritance. (a) Pedigree with observed individuals A–L and labeled founder
genomes 1–18. (b) A possible ibd-graph resulting from descent of founder genomes in this pedigree. For details
see text.
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13.3.4 ibd -Graph Computations for Markers and Traits

Since ibd underlies all similarity among relatives that results from the effects of their DNA,
at any locus j the ibd-graph on observed individuals is an equivalence class of all the
inheritance vectors S•,j that must give identical data probabilities P(Y•,j | S•,j).
For marker loci, at which, for observed individuals, it is assumed genotypes can be

observed without error, Sobel and Lange (1996) and Kruglyak et al. (1996) indepen-
dently provided efficient algorithms for computation of P(Y•,j | S•,j) using the ibd-graph.
By assumption, the allelic types of ibd-nodes are independent, since each represents a
non-ibd piece of genome. Suppose that each node g has allelic type ak independently with
probability qk . Then

P(A) =
∏
g
q(A(g)) =

∏
k
qn(k)k , (13.5)

where n(k) is number of nodes g with type ak , and

P(Y•,j | S) =
∑

P(Aj),

where the sum is over allAj consistent with Y•,j. There are always 2, 1, or 0 possibleAj, and
probabilities multiply over unconnected components of the ibd-graph.
As an example, consider the larger component of the ibd-graph in Figure 13.6. Suppose

thatA,B, J are all a1a4,G is a1a6,D is a4a6, E is a4a2, C is a2a2, F is a3a6,H is a2a3, and L is a1a3.
It immediately follows that node 2 is a1, nodes 9, 13 are a4, 4 is a6, 6 is a2, 15 is a3, and 17 is
a1. This is the only possible assignment, and results in two nodes of type a1, two of type a4,
and one each of a2, a3, and a6. The probability is q21q2q3q

2
4q6.

Computation on the ibd-graph is not limited to error-free genotypic data. In 1997, S.Heath
proposed and implemented computation for arbitrary two-allele single-locus penetrance
models (Thompson and Heath, 1999). Again, the distinct nodes gi have independent allelic
types, (say) typeA(gi)with probabilities q(A(gi)). The allelic types,An,1 andAn,2, of the two
genome labels of an observed individual n determine his genotype, and hence probabilities
of his observed data Yn, P(Yn | An,1,An,2), independently for each n:

P(Y | ibd) =
∑
A(g)

(∏
n
P(Yn | An,1,An,2)

)(∏
i
q(A(gi))

)
. (13.6)

The parallel between Equation 13.6 and Equations 13.1 and 13.3 is clear, and computation
proceeds through the graph as for any graphical model. Since components of the distinct
genome label graph are generally small, this computation is much easier than computing
on the pedigree structure, where summation over unobserved types is required. Details are
given by Thompson (2005).
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13.4 MCMC Sampling of Latent Variables
13.4.1 Genotypes and Meioses

As inmanyareasof applicationofMCMCtheearliest samplers involved single-siteupdates,
either of the genotype of one individual (Sheehan, 2000), or of a single meiosis indica-
tor (Thompson, 1994). However, many genotypic configurations on a pedigree have zero
probability, since individuals must receive an allele from each parent. Likewise, given dis-
crete data observations on individuals, inheritance vectors may be tightly constrained, and
changes to a single component alone impossible. Thus, a single-site Gibbs update does
not lead to an MCMC sampling process that is irreducible over the space of feasible latent
variable configurations.

13.4.2 Some Block Gibbs Samplers

Anatural extension is thus to consider block Gibbs samplers (Roberts and Sahu, 1997), and
these have provenmuchmore successful. The HMM structure of the data (Figures 13.4 and
13.5) suggests updating the latent genotypes or the inheritance vector S•,j at a given locus,
conditional on other latent variables and on the data observations (Heath, 1997). Note that

P(S•,j | Y, {S•,k, k = j}) = P(S•,j | Y•,j, S•,j−1, S•,j+1)
∝ P(Y•,j | S•,j)P(S•,j | S•,j−1, S•,j+1). (13.7)

That is, the update involves only the data at locus j, and the inheritance vectors at the two
neighboring loci. At a single locus, sampling from P(S•,j | Y•,j) is accomplished by reverse
peeling (Ploughman and Boehnke, 1989). Only the transmission probabilities are changed
by conditioning also on inheritance vectors at neighboring loci; these depend now on the
recombination parameters. Analogously to Equation 13.2,

P(Si,j = s | Si,j−1, Si,j+1) ∝ ρ|s−Si,j−1|)j−1 (1− ρj−1)(1−|s−Si,j−1|)ρ|s−Si,j+1|)j (1− ρj)(1−|s−Si,j+1|).

Reverse peeling samples directly from P(S•,j | Y•,j). Hence, any S•,j consistent with data Y•,j
can be sampled. Provided recombination parameters ρj−1 and ρj between locus j and its
neighbors are strictly positive, conditioning on S•,j−1 and S•,j+1 does not affect the space of
feasible realizations. Thus the full-locusGibbs sampler (or L-sampler) is irreducible (Heath,
1997), although mixing may be poor if recombination parameters are small. Typically, an
L-sampler scan is performed, resampling in a random order each S•,j for each j ∈ 1, 2, . . . , l
from its full conditional given {S•,k, k = j} and Y.
In contrast, the meoisis sampler (or M-sampler) updates jointly all components of the

meiosis vectorSi,•,which is easily accomplishedbyapplying theBaumalgorithm to the two-
state HMM of Si,j, j = 1, . . . , l, keeping the remainder of S (Sk,•, k = i) fixed (Thompson and
Heath, 1999). Typically, anM-sampler scan is performed, resampling in a randomorder each
Si,• for each i ∈ 1, 2, . . . ,m from its full conditional given {Sk,•, k = i} andY. Since resampling
is jointly overall all loci, the M-sampler is not directly affected by small recombination
parameters. However, the feasible space of meioses is often tightly constrained by data,
and the M-sampler is often not irreducible.
The LM-sampler (Thompson and Heath, 1999) is a combination of L-sampler and

M-sampler that performs markedly better than either. At each stage, a random choice is
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made to perform either an L-sampler update or an M-sampler update (see Figure 13.5).
Again, typically updates are by scan, so the choice is of L-sampler updates for every locus
in a random order, or of M-sampler updates of every meiosis in a random order. Since
the L-sampler is irreducible, so is the LM-sampler, while incorporatingM-sampler updates
greatly improves mixing performance.

13.4.3 Gibbs Updates and Restricted Updates on Larger Blocks

In principle there is no reason why a block Gibbs MCMC update should be restricted to a
single locus or to a single meiosis. When each locus has only two alleles (e.g. SNPmarkers),
joint updating of the inheritance vectors S•,j over several such loci j is feasible, although the
practical benefits are unclear. More useful is the joint updating of several meiosis vectors
Si,•. Here again the algorithm is a direct application of the forwards–backwards Baum
algorithm (Baum et al., 1970) to some subset of meioses i ∈ I. As in Section 13.3.2, forward
computation provides

R∗j (s(I)) = P(Y∗(j), S•,j(I) = s(I))

for each j = 1, 2, . . . , l. Reversing the procedure, we have

P(S•,j(I) = s | Y, S•,k, k = j + 1, . . . , l) = P(S•,j(I) = s | Y∗j, S•,j+1(I))
∝ R∗j (s(I))

∏
i∈I
ρ
|si−Si,j+1|
j (1− ρj)1−|si−Si,j+1|.

Hence, forward computation and backward resampling is feasible provided only the set
of meioses in I is small enough for the HMM computations to be feasible in an MCMC
framework. Tong andThompson (2008) have implemented and tested a variety ofmultiple-
meiosisGibbsproposals.Updating jointly themeioses fromagiven individual, fromagiven
parent couple, or within a small three-generation subset of a pedigree, can greatly improve
mixing.
In some cases, the number of meioses in a nuclear family or three-generation subset of a

pedigree can exceed practical bounds for a full Gibbs update. In this case, sampling within
a restricted set of updates provides an alternative approach. For example, some updates
considered by Thomas et al. (2000) include proposals to switch the binary indicators of
all the maternal and/or paternal meioses of all offspring in a nuclear family. In this case,
at a given locus, there are just four alternatives to be considered, including the current
state. Formally, this is most easily considered as an auxiliary variable problem (Tong and
Thompson, 2008).Given a current stateS = {S•,j, j = 1, . . . , l}, defineXj = 0, 1, 2, 3 to indicate
each of the possible alternative states at locus j. Since, given S, Xj is a one-to-one function
of S•,j, it retains the Markov structure of the inheritance vectors S•,j over loci j. Since Xj
has only four states, a full Gibbs update of X = (X1, . . . ,Xl) is easily accomplished via the
forwards–backwards Baumalgorithm, and translates to an update ofSwithin the restricted
space of alternatives. Other restricted updates designed to improve mixing particularly in
pedigrees with large sibships may be considered similarly (Tong and Thompson, 2008).
While these proposals greatly improve mixing, it is important to recognize that only the
L-sampler ensures irreducibility; all samplers must include some proportion of L-sampler
steps.
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13.5 MCMC Sampling of Inheritance Given Marker Data
13.5.1 Sampling Inheritance Conditional on Marker Data

Wehave seen in Section 13.3.4 that computation of data probabilities, andhence alsoMCMC
sampling, is more straightforward for genetic markers than the analogous computations
for trait data. As informative marker data become increasingly available, and trait models
increasingly complex, basingMCMC realizations of latent inheritance only onmarker data,
and then using these realizations inmultiple trait analyses and/or formultiple trait models
becomes the approach of choice. In this section we therefore focus on this marker-based
MCMC, and return to trait data analyses in Section 13.6.

13.5.2 Monte Carlo EM and Likelihood Ratio Estimation

While models for genetic marker data are generally more straightforward than are trait
models, there are still unknown parameters of the meiosis and population marker models.
Although MCMC-based EM algorithms have been more widely used in genetic analyses
(Guo and Thompson, 1994), wewill focus here on the estimation of genetic maps, or, equiv-
alently, the recombination parameters ρj betweenmarker j and j + 1, j = 1, . . . , l− 1.Again,
estimation for sex-specific recombination parameters is nomore complex, but for notational
convenience we restrict here to a single vector of recombination parameters.
In theEM framework, the complete data consist of latent variablesSM andobservedmarker

data YM, and (see Equation 13.3) the complete-data log likelihood is

log Pρ(YM,SM) = log P(YM | SM)+ log Pρ(SM)

=
l∑

j=1
log P(Y•,j | S•,j)+ log P(S•,1)+

l∑
j=2

log P(S•,j | S•,j−1).

Note that the recombination parameter ρj appears only in the term

log P(S•,j+1 | S•,j) =
m∑
i=1

log P(Si,j+1 | Si,j)

=
( m∑
i=1
|Si,j+1 − Si,j|

)
log ρj +

(
m−

( m∑
i=1
|Si,j+1 − Si,j|

))
log(1− ρj)

(see Equation 13.2). In themmeioses, for eachmarker interval j = 1, . . . ,m, the E-step of the
EM algorithm thus requires only computation of the expected number of recombinants, at
the current recombination frequency vector ρ and conditionally on YM:

Eρ
(| Si,j+1 − Si,j |

∣∣YM) = Pρ(Si,j+1 = Si,j | YM).

The M-step then updates each ρj to
∑

i Pρ(Si,j+1 = Si,j | YM)/m.
On very small pedigrees the E-step may be performed exactly. A slight generalization of

Equation 13.4 gives

P(S•,j, S•,j+1 | Y) = R∗(j)(s)P(Y•,j+1 | S•,j+1)P(S•,j+1 | S•,j)R†(j+1)(s)/P(Y)
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However, unless the number of meiosesm is very small, use of this bivariate distribution of
inheritance vectors at two loci is impractical.On the other hand,MCMCprocedures provide
realizations of S conditional onYM and hence straightforwardMonte Carlo estimates of the
conditional expected recombination counts. This Monte Carlo EM (MCEM) is very easily
implemented, but a disadvantage is that MCMC sampling is repeated with each update
of the vector of recombination parameters ρ. This can be very slow, particularly close to
the maximum likelihood estimate, where very large sample sizes are required for accurate
estimation of the recombination counts. Stewart and Thompson (2006) therefore propose
a more general estimation and testing framework for genetic maps using MCEM only for
the earlier iterates and stochastic approximation (Gu and Kong, 1998; Robbins and Monro,
1951) in the later stages.
In estimation of genetic maps, or more generally any genetic model Γ, it is important

to be able to explore the local likelihood surface around a final estimate, or the variation
of that local surface with changing values of nuisance parameters. The use of MCMC-
based local likelihood ratio estimates (Thompson and Guo, 1991) provides a practical
approach:

L(Γ∗)
L(Γ)

= P(Y;Γ∗)
P(Y;Γ)

= E
(
P(Y,S;Γ∗)
P(Y,S;Γ)

∣∣∣∣Y;Γ
)

= E
(
P(Y | S;Γ∗)P(S;Γ∗)
P(Y | S;Γ)P(S;Γ)

∣∣∣∣Y,Γ
)
,

(13.8)

where the expectation is over the distribution of latent variables S conditional on data Y
under model Γ. That is, this single MCMC sample of S provides an estimate of the entire
local likelihood surface L(Γ∗) normalized by L(Γ).
Again, for simplicity,we consider only the example of geneticmarker dataYM , the related

inheritance at marker loci SM and genetic marker models ΓM . For example, we might first
wish to explore the likelihood surface for recombination frequencies in the neighborhood
of an estimated map. In this case Γ and Γ∗ differ only in these recombination frequen-
cies and P(Y | S;Γ∗) = P(Y | S;Γ). Furthermore, the ratio P(S;Γ∗)/P(S;Γ) takes the simple
form

P(S;Γ∗)
P(S;Γ)

=
l∏

j=2

P(S•,j | S•,j−1;Γ∗)
P(S•,j | S•,j−1;Γ)

=
m∏
i=1

l−1∏
j=1

(
ρ∗j
ρj

)|Si,j+1−Si,j| (1− ρ∗j
1− ρj

)1−|Si,j+1−Si,j|
.

(13.9)

Thus computation of the likelihood ratio L(Γ∗)/L(Γ) is very easily and efficiently accom-
plished.
Alternatively,wemightwish to explore the sensitivity of the estimated likelihood to alter-

nate assumptions about marker allele frequencies. In this case P(S;Γ∗) = P(S;Γ), and the
ratio P(Y | S;Γ∗)/P(Y | S;Γ) is very easily computed, since the ibd-graph is the determined
by S (Section 13.3.4). In fact, in many cases the ratio is simply a product of the ratio of
allele frequencies under Γ∗ and Γ (Equation 13.5), but can be slightly more complex where
different allelic assignments are possible under a particular sampled S.
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13.5.3 Importance Sampling Reweighting

Importance sampling reweighting is a key tool in investigating the effect of alternative
models onMCMC realizations, and for using these realizations under a variety of alternate
model assumptions. Suppose that we have realizations of SM conditional on marker data
YM under a model ΓM, but wish to consider an alternate model Γ∗M :

E(g(SM) | YM;Γ∗M) =
∑
SM

g(SM)P(SM | YM ;Γ∗M)

=
∑
SM

g(SM)
P(SM | YM ;Γ∗M)

P(SM | YM ;ΓM)
P(SM | YM;ΓM)

= E(g(SM)
P(SM | YM;Γ∗M)

P(SM | YM;ΓM)
| YM ;ΓM).

That is, realizations SM sampled conditional on YM under model ΓM must be reweighted
by a factor

P(SM | YM ;Γ∗M)

P(SM | YM ;ΓM)
= P(YM | SM;Γ∗M)

P(YM | SM;ΓM)

P(SM;Γ∗M)

P(SM;ΓM)

P(YM ;ΓM)

P(YM ;Γ∗M)
.

Note also, from Equation 13.8, that

P(YM ;Γ∗M)

P(YM ;ΓM)
= E

( P(YM | SM;Γ∗M)

P(YM | SM;ΓM)

P(SM ;Γ∗M)

P(SM ;ΓM)

∣∣∣∣YM ;ΓM
)
.

That is, the relative weights

P(YM | SM ;Γ∗M)

P(YM | SM ;ΓM)

P(SM;Γ∗M)

P(SM;ΓM)

may be simply normalized by their sum.
As in Section 13.5.2, we will consider just two examples, one relating to parameters of

the distribution of SM and the other to parameters of P(Y | S). Both can provide substantial
computational savings ingenetic analyses involvingmultiple linkedmarker loci. In general,
reweighting is a powerful tool in analyzing data under more complex models for which
direct MCMC sampling is impractical, and Gibbs samplers infeasible.
For any model modification relating to the meiosis process,

P(YM | SM;Γ∗M) = P(YM | SM;ΓM).

Under Mendel’s first law, meioses are independent, and only

P(S;Γ∗M)

P(S;Γ)
=

m∏
i=1

P(Si,•;Γ∗M)

P(Si,•;Γ)

need be computed.As in Equation 13.9, clearlywe can reweight to alternative geneticmaps.
For example, we may do the initial MCMC assuming equal recombination frequencies in
male and female meioses, but then wish to investigate more carefully in a region of the
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genomewhere these recombination frequencies differ. Provided theprobabilities of realized
SM do not differ too greatly, the previous MCMC samples may be reweighted, avoiding
additional MCMC. As in any reweighting scheme, the distribution of the weights can be
used to assess the increase inMonte Carlo variance due to reweighting.More generally, this
approach may be used to assess deviations from the assumption of no genetic interference
(Thompson, 2000); that is, Si,j are no longer Markov over loci j. While the Markov structure
of the components of Si,• greatly facilitatesMCMC, reweighting permits analysis under any
model for which P(Si,•) is computable.
Likewise, analogous to the example in Section 13.5.2,wemay reweight to alternative allele

frequencies. Then P(YM | SM;Γ∗M) = P(YM | SM ;ΓM), but the ratio of these probabilities is
easily computed. However, as in the case of meiosis models, the approach is more general,
permitting, at least to a limited degree, the incorporation of allelic association or linkage
disequilibrium (LD) among loci. LD is normally the result of population history, and is
maintained by very tight linkage ρ ≈ 0. This results, at the population level, in association
of allelic types at different loci along a founder haplotype. Just as the Markov structure of
inheritance vectors S•,j over loci j is essential to effective block Gibbs samplers, so also is the
conditional independence of data Y•,j given S•,j (Equation 13.3). Thus LD cannot be directly
incorporated into MCMC. However, since LD requires ρ ≈ 0, realized S•,j and hence ibd-
graphs are almost always constant across loci in LD. Then reweighting is straightforward;
the product of allele frequencies across loci that is assumed in the MCMC is adjusted to
the haplotype frequencies that actually obtain in the population. Even where a realized
recombination event does change the ibd-graph for observed pedigree members within a
region of LD, reweighting is still possible, although it becomes less straightforward since
then the assignment of haplotypes across both ibd-graphs must be considered.

13.6 Using MCMC Realizations for Complex Trait Inference
13.6.1 Estimating a Likelihood Ratio or lod Score

The MCMC sampling methods of Section 13.4 may be applied to genetic loci of any
kind, whether genetic markers at which genotypes of individuals are available, or to trait
loci where there is a more complex penetrance relationship between trait data and latent
genotypes. Where the trait model and data together provide strong information on latent
inheritancepatterns, anMCMCsamplingprocedure that incorporates trait data canprovide
more accurate results with greater computational efficiency. One such set of procedures are
thosedevelopedbyGeorge andThompson (2003). Formuchmoderndata, however,marker
genotype information proliferates,while the traits of interest are complex, andhave no clear
inheritance pattern. In such cases, MCMC-based samples of latent inheritance conditioned
on marker data, with subsequent analyses of trait data conditional on these inheritances, is
more computationally efficient and practically feasible.
We consider first the classic statistics used to detect genetic linkage of a trait to a given

regionof thegenome inwhichdataongeneticmarkers are available. Thedata consist of both
marker data and trait data, Y = (YM,YT), and the full model is now indexed by parameter
ξ = (β, γ,ΓM). Here ΓM denotes all parameters relating to the markers, principally their
allele frequencies, their order along the chromosome, and the recombination frequencies
between adjacent marker loci. The parameter β denotes all parameters relating underlying
inheritance at a causal locus to observable trait data, principally penetrance parameters and
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allele frequencies at loci contributing to the trait. The trait locus location γ is the parameter
of interest: γ = ∞ implies absence of linkage of the trait to these markers. The statistical
approach taken is then to compute a likelihood and hence a location lod score:

lod(γ) = log10
(

P(Y;ΓM , β, γ)
P(Y;ΓM, β, γ = ∞)

)
. (13.10)

Note that the lod score is simply a log-likelihood difference, although traditionally in this
area logs to base 10 are used rather than natural logarithms. More importantly, note that
the models in numerator and denominator differ only in γ. The likelihood of a particular
location γ is compared to the likelihood of no linkage (γ = ∞), under the same trait model
(β) and marker model (ΓM).
Now

P(Y;ΓM , β, γ) = P(YT | YM;ΓM, β, γ)P(YM ;ΓM)

and, when γ = ∞, YT and YM are independent. Thus Equation 13.10 reduces to

lod(γ) = log10
(
P(YT | YM ;ΓM , β, γ)

P(YT ; β)

)
.

Finally,

P(YT | YM;ΓM, β, γ) =
∑
SM

P(YT | SM ; β, γ)P(SM | YM;ΓM)

= EΓM
(
Pβ,γ(YT | SM) | YM

)
, (13.11)

where SM denotes the inheritance vectors at all marker locations.
Equation 13.11 suggests the MCMC approach first proposed by Lange and Sobel (1991)

to first sample SM conditionally on marker data YM and then use exact computation to
compute Pβ,γ)(YT | SM) for choices of β and γ. As in Equation 13.7, this computation is
directly analogous to the pedigree-peeling computation of themarginal probability Pβ(YT),
with only the transmission probabilities beingmodified to condition on inheritance vectors
S•,j and S•,j′ at marker loci j and j′ flanking the position(s) γ of hypothesized causal loci. A
major advantage of this approach is that MCMC need be performed once only, to generate
a large sample of SM which can be used to estimate lod(γ) for a variety of γ and under a
variety of trait models β.
With increasing density of marker data over the genome, this approach becomes even

more effective. In part, this is because of the large amounts of marker data that must be
incorporated into theMCMC, and the longMCMCruns required for adequatemixing of the
MCMC with dense marker data. In addition, with inheritance sampled at locations dense
in the genome, normally only these locations need be considered as potential causal trait-
locus locations, and trait analyses may therefore be done directly on the MCMC sample of
ibd-graphs at these locations (Section 13.3.4).
Due to the conditional independence structure of inheritance patterns S = {Si,j}, MCMC

conditional on marker data can only be efficiently performed at the level of SM. Define an
individual to be “observed” (OM) if there are any marker or trait data for that individual.
Since the ibd-graph at any location j is a deterministic function of the inheritance vector
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FIGURE 13.7
The structure of genetic data with modern dense SNP data. For details, see text.

S•,j and the set of observed individuals, this MCMC sampling will provide a set of distinct
ibd-graphs DM and their sampling counts (Figure 13.7). This is a substantial reduction in
the relevant output, first since many different inheritance patterns give rise to the same
ibd-graph, but also since ibd-graphs remain constant across regions encompassing many
marker locations. At the location of any marker, the ibd-graph for trait analysis, DT , is a
subgraph of DM at that location, since now only individuals OT observed for the trait
need be considered. Since, provided γ is amarker location, Pβ,γ(YT | SM) = Pβ(YT | Dγ), lod
score estimation (Equation 13.11), can be carried out entirely in the ibd-graph framework
(Section 13.3.4).

13.6.2 Uncertainty in Inheritance and Tests for Linkage Detection

The lod score is estimated via the log of the average of contributions Wγ(SM) = Pβ,γ(YT |
SM), where SM are realized conditional on YM (Equation 13.11). Typically, the lod score is
plottedas a functionof thehypothesized trait locus locationγ.However, there is information
also in the distribution of the contributions,W(SM). They provide estimates of the Monte
Carlo standard error, for example by using batch means (Glynn and Whitt, 1991). More
simply, a plot of the 10th and 90th quantiles of the lod-score contributions, along with
the lod-score curve, provides a clear visualization of positions γ of high uncertainty. For
example, where the estimate is dominated by a few extreme values the estimate can lie well
above the 90th quantile.
This leads naturally to the assessment of uncertainty via latent p-values (Thompson and

Geyer, 2007), which is based on the earlier proposal of fuzzy p-values byGeyer andMeeden
(2005). Tests for detection and localization of causal trait loci typically condition on the trait
data YT . Since our tests will condition on trait data YT , we will drop explicit use of YT and
the marker subscript M on the latent variables. Then, given any test statistic W(S), and
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realizations S∞ under the null hypothesis γ = ∞,

π(S) = P(W(S∞) ≥W(S) | S) = P(W(S∞) ≥W(S) | S,YM)

is a latent p-value, having a uniform U(0, 1) distribution under the null hypothesis
(Thompson andGeyer, 2007). LetS(h)∞ , h= 1, . . . ,m ∼ P∞, andS(k), k = 1, . . . , n ∼ P(· | YM).
Then, for each k = 1, . . . , n,

η(S(k),YM) = P(W(S∞) ≥W(S(k)) | S(k),YM),

estimated by

m−1
m∑
h=1

I(W(S(h)∞ ) ≥W(S(k))),

is a realization from the latent p-value distribution. Strictly, this is only so if the random
variablesW(S) are continuous. Thompson and Geyer (2007) show how discreteness can be
simply dealt with to provide, under H∞, an exact U(0, 1) distribution over data sets YM.
The approach of the previous paragraph leads to tests for linkage detection using the

(latent) lod score log(Pβ,γ(YT | S)/Pβ(YT)), at any particular position γ. If γ is the position of
marker locus j, then this test statistic is a function only of S•,j. More importantly, the proce-
dure can be applied equally easily to any omnibus test statistics such as the maximum lod
score. While the maximum lod score has been used for over 50 years as a test statistic pro-
viding evidence of linkage (Smith, 1953), formal p-value evaluation is seldom performed,
due to the lack of distributional theory for general pedigrees and hence need for extensive
resimulation of marker data YM. The use of a latent p-value requires only realization of
latent S conditional on the observed YM .
The latent p-value approach can be equally applied to any linkage detection test statistic

that is a function of S. The null hypothesis is again γ = ∞, or independence of trait data
YT and inheritance S andmarker loci. There are a wide variety of such statistics,W(S); see,
for example, McPeek (1999). Typically the approach has been to compute E(W(S) | YM)

and to compare the value with the null distribution (Whittemore and Halpern, 1994). As
in the lod-score case, use of the latent p-value approach avoids the need for distributional
approximations or extensive simulation. Recently, Di and Thompson (2009) have used this
approach to provide “marginal” tests for linkage detection, testing the null hypothesis
γ = ∞ of no causal locus on a chromosome.

13.6.3 Localization of Causal Loci Using Latent p-Values

Although test statistics such as the lod score are formally tests of linkage detection, with
null hypothesis γ = ∞, they are often used as evidence for localization of trait loci, for
example by selecting the position γwhere the test statistic is most extreme. However, using
the latent p-value approach, confidence intervals and formal localization tests are possible.
We consider first the classical confidence interval approach. That is, a value γ0 is in a

(1− α)-level confidence set if a test size α fails to reject the hypothesis γ = γ0. The latent
p-value approach can be used to provide randomized confidence sets for the location of a
causal locus (Thompson, 2008). A lod-score-based latent test statistic W(S; γ0) for testing
γ = γ0 may be constructed for any γ0, and the resulting randomized p-value inverted to
provide a randomized confidence interval for γ (Geyer and Meeden, 2005). We obtain the
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latent p-value π∗γ∗(S) by realizing S under γ = γ∗ conditional on YT , and obtain realizations
from the conditional distribution of π∗γ∗(S) by MCMC realization of S under γ = γ∗ given
YM and YT . This procedure is also computationally intensive, since MCMC at each γ∗ is
required. Further, since sampling is conditional on trait data YT , the nuisance parameters
β enter into the procedure, and values must be assumed.
An alternative approach to localization has been taken by Di and Thompson (2009). The

null hypothesis considered is that there is no causal locus in an interval (γ�, γr). Rejection
of the null hypothesis localizes some causal gene(s) to the interval. Unlike the confidence
interval approach, the conditional test does not require specification of the number or effects
of causal genes, and the validity of the test does not rely on such model assumptions.
The test rests on the result that, if there no causal locus in (γ�, γr), then at any point j
within the interval the inheritance vector S•,j given S•,� and S•,r follows the conditional null
inheritance distribution regardless of data YT . As before, test statisticsW(S•,j) are functions
of the inheritance vector at j and the trait data, and the null Markov chain distribution
of S•,j given S•,� and S•,r provides the null distribution of W(S•,j). If these variables were
observable, a p-valueπ(S)would result. In fact, as before, S is latent, but can be sampled by
MCMC, conditionally on YM , providing a probability distribution for π(S) given YM. This
probability distribution is again a latent p-value, and a randomized test follows.Although a
single MCMC run can provide a sample of realizations of S and hence of all required pairs
(γ�, γr), the conditional testing procedure is computationally intensive, requiring Monte
Carlo realization of S•,j conditional on each MCMC realization.

13.7 Summary
In this chapter we have focused less on the mechanics of MCMC samplers, and more on
the need for MCMC in the analyses of genetic data on related individuals, and on the uses
that can be made of the realizations in making inferences from these data.
Wefirst explore the structureofgeneticdataonpedigrees, leading to three complementary

sets of latent variables at each genetic locus j. These are the genotypes of individuals, G•,j,
the inheritance vector at the locus, S•,j, and the allelic types of founder DNA, Aj, with G•,j
being a function of S•,j and Aj. We explore the limits of exact computation of likelihoods,
and then show how these latent variables are the useful targets of MCMC simulation when
exact computation is infeasible.
With modern genetic data, marker data are plentiful and informative, while the traits

requiring analysis are often complex. It has therefore become the paradigm of choice to
sample latent variables conditionally only on marker data, and then to use these real-
izations in multiple trait and/or trait-model analyses. In Section 13.5 we therefore focus
first on questions involving only marker-based sampling, such as the estimation of genetic
maps. This section emphasizes the key role of importance sampling reweighting of MCMC
realizations. This enables a variety of marker models to be explored based on a single set
of MCMC realizations, and to use marker models for which the full conditionals are not
available.
Finally, in Section 13.6, we turn to the use of MCMC realizations of latent variables in

the analysis of trait data, considering both linkage detection and linkage localization. We
describe recent work in this area, including the use of the probability distribution of latent
p-values to express both the significance of a result and the degree of uncertainty about that
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significance, due to uncertainty in the latent variables. This work is recent, and it remains
to be seen which methods will stand and which will be superseded.
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14
An MCMC-Based Analysis of a Multilevel Model
for Functional MRI Data

Brian Caffo, DuBois Bowman, Lynn Eberly, and Susan Spear Bassett

14.1 Introduction
Functional neuroimaging technologies have inspired a revolution in the study of brain
function and its correlation with behavior, disease, and environment. In these techniques,
temporal three-dimensional images of the brain are analyzed to produce a quantitative
description of brain function. Such techniques can, among other things, present evidence
of localization of brain function within and between subjects. For example, when subjects
perform motor tasks in a functional magnetic resonance imaging (fMRI) scanner, such as
finger tapping, the analysis typically will present increased regional cerebral blood flow
(activation) in the motor cortex. Moreover, these techniques can also provide some infor-
mation about how areas of the brain connect and communicate. In this chapter we further
investigate a novel Markov chain Monte Carlo (MCMC) based analysis of a model from
Bowman et al. (2008) that combines activation studies with the study of brain connectivity
in a single unified approach.
This idea of localization of brain function underlying fMRI activation studies has a long

history,with early attempts fromthedebunkedscienceofphrenology in the earlynineteenth
century and later breakthroughs by such luminaries as Broca, Wernicke, and Brodman (see
Gazzaniga et al., 2002, for an accessible brief history). Prior to newmeasurement techniques,
studies of brain function and localization were limited to animal studies, or post-mortem
evaluation of patients with stroke damage or injuries. However, new measurement tech-
niques, such as fMRI, positron emission tomography (PET), and electroencephalography,
allow modern researchers noninvasively to study brain function in human subjects.
In contrast with the study of functional localization, the companion idea of connectivity

has a shorter history. Functional connectivity is defined as correlation between remote neu-
rophysiological events (Friston et al., 2007). This idea is based on the principal of functional
integration of geographically separated areas of the brain. Such integration is supported by
the existence of anatomical connections between cortical areas aswell as oneswithin the cor-
tical sheet (see the discussion in Friston et al., 2007). This neuroanatomical model suggests
a hierarchical structure of connectivity that includes correlations within and between areas
of functional specialization. Therefore, we use this hierarchical biological model of brain
function to explore a multilevel statistical model that simultaneously considers potentially
long-range correlations as well as shorter-range ones.
We focus on analyzing fMRI data in particular, though the statistical and computational

techniques apply more broadly to other functional neuroimaging modalities. Functional

363
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MRI has its roots in the late nineteenth-century discovery that neuronal activitywas accom-
panied by a localized increase in blood flow (Roy and Sherrington, 1890). More specifically,
neuronal activity requires energy,which is supplied by chemical reactions fromoxygenated
hemoglobin. Therefore, provided a cognitive task is localized, a temporal comparison of
blood oxygenation levelswhen the task is being executed versuswhen it is notwould reveal
areas of the brain where neurons are active. This is the principle of blood oxygenation level
dependent (BOLD) fMRI (Ogawa et al., 1990). In this technique, a subject in anMRI scanner
is asked to perform a task at specific timings while images targeting the BOLD signal are
taken in rapid succession, usually one image every 2–3 seconds. Examples of tasks aremotor
tasks, pressing a button after a visual stimulus, mentally rotating figures and so on. The
development of a well-controlled task, or paradigm, that isolates the particular cognitive
function of interest is not covered in this chapter.
We focus on using Bayesian multilevel models via MCMC for the analysis of functional

neuroimaging studies. We emphasize the analysis of so-called group-level fMRI data. In
such studies one is interested in the commonality of activation and connectivity within
groups and differences between groups, such as comparing diseased and control subjects.
In the following two subsections, we provide an overview of existing related fMRI

research and introduce the data used to illustrate the methods. In Section 14.2, we give
details on the processing and first-stage analysis of the data. In Section 14.3, we introduce
the multilevel model used for analysis and outline the details of the MCMC procedure.
In Section 14.4, we propose novel methods for analyzing and visualizing the output from
the Markov chain, including the analysis of voxel means, regional means, and intra- and
inter-regional connectivity. We conclude with a discussion.

14.1.1 Literature Review

Traditional inter-group analyses of fMRI data employ a two-stage procedure, where a first
stage relates the paradigm to the images and a second stage compares contrast estimates
from the first stage across subjects groups. This two-stage process is motivated by classical
two-stage procedures for linear mixed effects models (see Verbeke andMolenberghs, 2000)
and has the benefit of greatly reducing the amount of data to be considered in the second
stage. Two-stage analysis of fMRI is proposed and considered in Beckmann et al. (2003),
Friston et al. (1999, 2005), and Holmes and Friston (1998), among others. See also Wors-
ley et al. (2002) for a more formal discussion of two-stage random effects approaches for
fMRI data.
Standard methods for analyzing two-stage data ignore spatial dependence and connec-

tivity at themodeling level and instead incorporate the spatial dependence into the analysis
of statistical maps created from the models. The map of statistics is assumed to possess a
conditionally independent neighborhood structure, typically a Markov random field. Fur-
ther descriptions of the use ofMarkov randomfields in neuroimaging analysis can be found
inWorsley (1994), Cao andWorsley (2001),Worsley and Friston (1995),Worsley et al. (1996),
and Friston et al. (2007). These approaches are notable for their speed and general applica-
bility. However, they are also characterized by several issues of concern. First, the random
field assumptions are somewhat restrictive, as they do not allow for long-range functional
correlations and impose a rigid distributional structure. Moreover, many desirable sum-
mary statistics haveunknowndistributionswhen the statisticalmap follows a randomfield.
Therefore, indirect inference is typically used by considering a fairly narrow class of statis-
tics with tractable distributions. Conceptually, this could be combated via simulation from
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the randomfieldunder the null hypothesis.However, amorepopular approachuses resam-
pling methods, mostly focused on permutation testing. At the expense of computational
complexity, thesemethods can flexibly handle any test statistic, andmake few assumptions
on the underlying distribution and correlation structure of the data. Permutation methods,
as applied to neuroimaging data, are reviewed in Nichols and Holmes (2002). An example
for factorial experiments is given in Suckling and Bullmore (2004). Comparisons between
cluster-size permutation tests and random-field intensity tests are given in Hayasaka and
Nichols (2003). Despite their numerous benefits, permutation methods are focused on test-
ing and do not offer generative models for the data. That is, unlike model-based methods,
permutation testing lacks a formal mechanism for connecting the data to a population.
Multilevel models for inter-group analysis of fMRI data have become increasingly pop-

ular. Bowman et al. (2008) gave a Bayesian approach and applied it to both Alzheimer’s
disease and substance abuse disorder data sets; the model from that article motivates the
analysis in this chapter. Bowman and Kilts (2003) give a multilevel model applied to the
related area of functional PET imaging. The theory and application of Bayesian models is
discussed inFriston et al. (2002a,b).Woolrich et al. (2004) use referencepriors for inter-group
Bayesian fMRI analysis.
Functional MRI connectivity studies have largely focused on the analysis of resting

state data, based on the hypothesis of a default-mode brain network (Biswal et al., 1995;
Greicius, 2003). These networks represent functional correlations in brain activity between
voxels while resting in the scanner. Xiong et al. (1999) considered such resting-state con-
nectivity between regions and compared results to those motivated by other techniques.
Greicius (2004) used independent component analysis to explore resting state connectivity
(seeCalhounet al., 2003).Arfanakis et al. (2000) considered connectivityvia regional correla-
tions and independent components analysis. However, unlike the previous references, they
considered active-state data collected along with an experimental fMRI paradigm, though
focused on connectivity results in areas unassociatedwith the paradigm. Our approach dif-
fers drastically from these references, both in terms of the methodology considered and the
goal.With regard tomethodology,we consider amodel-based approach to connectivity and
decompose connectivity into both short-range connections and longer-range connections.
Moreover, our focus is on connectivity associated with a paradigm, and how this connec-
tivity varies across experimental groups. That is, we consider areas of the brain that act in
concert to perform the paradigm, rather than considering a default-mode brain network.

14.1.2 Example Data

The data used in our examples come from a study of subjects at high familial risk for
Alzheimer’s disease and controls with little familial risk. Alzheimer’s disease is a degener-
ative memory disorder affecting millions of adults in the United States alone (Brookmeyer
et al., 1998). Typically, Alzheimer’s disease affects adults older than 65 years, though early
onset cases do occur. The disease causes dementia, with the most common early symptom
being short-term memory loss. Because precursors of the disease, such as mild cognitive
impairment, occur well before clinical diagnoses, the study of at-risk individuals yields
important information about early disease pathology (Bassett et al., 2006; Fox et al., 2001).
Because someof the at-risk subjectswill not become eventual cases, and someof the controls
may become cases, larger sample sizes are necessary for a prospective or cross-sectional
study of familiar risk. In this study, the at-risk subjects had at least one parentwith autopsy-
confirmed Alzheimer’s disease and at least one additional affected first-degree relative as
per a clinical diagnosis of probable Alzheimer’s disease. However, the subjects themselves
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FIGURE 14.1
Illustration of the paradigm.

had no clinical Alzheimer’s disease symptoms. Control subjects were also asymptomatic
and had no affected first-degree relatives. The study is impressive in its scope, with over
80 subjects in each group, which is atypically large for an fMRI study.
The fMRIparadigm, an auditoryword-pair-associate taskdevelopedbyBookheimer et al.

(2000), was chosen because its primary locus of activation is in the medial temporal lobe, a
site of early neuropathological changes associatedwithAlzheimer’s disease.Moreover, loss
of verbal memory is an important component of Alzheimer’s disease symptoms (Martin
et al., 1985). The task consisted of encoding and recall blocks, where subjects heard an
unrelated pair of words in the encoding phase and were asked to remember the second
word when prompted with the first in the recall phase. The paradigm included two six-
minute sessions, each consisting of seven unique word-pairs. A pictorial description of
the task is given in Figure 14.1, while further technical information is given in Bassett
et al. (2006). A sagital profile of the image acquisition area for a specific subject is given in
Figure 14.2.
Known anatomically-derived (Tzourio-Mazoyer et al., 2002) regions of interest (ROIs)

are overlaid onto the single-subject maps. This parcelation allows for the study of inter-
and intra-regional connectivity. Only those voxels in the image acquisition area with a
substantial (greater than 10 voxels) intersection with an ROI are retained. Specifically, let
v be a voxel, Im be the collection of voxels in the image acquisition area and ROIi be the
collection of voxels in region of interest i. Voxel v is retained if v ∈ ROIi for some i and
I ∩ ROIi contains more than 10 voxels. This drastically reduces the number of voxels under

FIGURE 14.2
Image acquisition area (darker gray region) overlaid on template brain. The image is displayed such that anterior
is to the right and posterior to the left. The superior portion has been cropped to display an axial slice. (See online
supplement for color figures.)
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FIGURE 14.3
Example region of interest definitions for three axial slices. Each shade of gray represents a different region. (See
online supplement for color figures.)

consideration and further limits the imaging area available for study. Figure 14.3 depicts
the ROI definitions for three axial slices.

14.2 Data Preprocessing and First-Level Analysis
Following Friston et al. (2005), Holmes and Friston (1998), and others, we approach our
analysis using a two-stage procedure. In the first stage, the data are preprocessed and con-
trast estimates obtained by linear regression over the time series, such as those comparing
active states to rest, are retained for a second-stage analysis. The results is an image of
contrast estimates, one per subject, that are then compared across subjects. This approach
approximates random effect modeling and has several notable benefits. A principal one,
however, is the issue of data reduction, as the contrast maps retained for the second stage
aremuch smaller than the raw fMRI time series of images.However,we emphasize that this
approach can have limiting assumptions, such as the inability to incorporatewithin-session
temporal effects into group-level analyses. Such criticisms can be addressed by retaining
some of thewithin-session temporal information for the second stage, such as by fitting sep-
arate effects for each block of the paradigm and analyzing them jointly in the second-stage
analysis (Bowman and Kilts, 2003). However, this strategy results in less data reduction for
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the second stage. Hence, in this chapter, we perform a second-stage analysis using only the
contrast maps from the first while stipulating this potential limiting assumption.
Our preprocessing strategy was similar to those discussed in Friston et al. (1995, 2007)

and Frackowiak et al. (2004). First, the within-subject images were spatially renormalized
to the first image via rigid-body transformations. Secondly, these images were transformed
intoMontrealNeurological Institute (MNI) template space, so that valid comparisons could
bemade across subjects. Contrary to standard practice, we did not then smooth the images,
as the second-stage model contains random effects that shrink voxel-level means within
regions.
Next, a canonical hemodynamic response function (HRF) was convolved with indicator

functions for the task sequence. This step is necessary as the BOLD signal is only a proxy
for neuronal activity. In fact, initially after the onset of the task, blood oxygenation levels
will be slightly decreased before being replenished. Therefore, task-related increases in the
BOLD signal are expected after a short lag subsequent to the onset of the task. The use of a
canonical HRF is another somewhat limiting assumption for this and many other studies,
as it varies both across subjects and spatiallywithin subjects due to, among other processes,
kinetics of the vasculature.
Let yi(v) = {yi1(v), . . . , yiT(v)}t be the temporal response vector for subject i = 1, . . . , I,

voxel v = 1, . . . ,V, and time index t = 1, . . . ,T. Let X be a T × p matrix of an intercept
and hemodynamically convolved indicator functions associated with the paradigm. Let
H be a T × q design matrix of slowly varying trend terms, such as a linear trend and low
frequency trigonometric terms, to serve as a high-pass filter. This can account for slowly
varying systematic effects, such as scanner drift, where the signal can steadily increase or
decrease over a session. Then the general linear model fit for subject i at voxel v is given by

yi(v) = Xβi(v)+Hγi(v)+ εi(v), (14.1)

where εi(v) = {εi1(v), . . . , εiT(v)}t are assumed to be anAR(1) process, corr{εit(v), εi,t−k(v)} =
ρ(v)k , with an innovation variance σ2(v). Our two-stage procedure retains a contrast esti-
mate from Equation 14.1 for the inter-subject model considered in the next section. For
example, we consider the comparison of encoding blocks versus rest, taking the contrast
estimate at each voxel, hence creating a contrast map for each subject.

14.3 A Multilevel Model for Incorporating Regional Connectivity
14.3.1 Model

We consider decomposing the template brain into G regions, as depicted in Figure 14.3
(Tzourio-Mazoyer et al., 2002). As in Bowman et al. (2008), let β̂igj(v) denote the contrast
estimate from model (Equation 14.1) for subject i = 1, . . . , Ij having condition j = 1, . . . , J,
in region g = 1 . . .G and voxel v = 1, . . . ,Vg, where Vg is the number of voxels contained
in region g. In our application J = 2, differentiating at-risk and control subjects, G = 46,
I1 = 71 and I2 = 83. Throughout we adopt the convention that omitting the voxel-level
parentheses refers to a vector over voxels, such as β̂igj = {β̂igj(1), . . . , β̂igj(Vg)}t.
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The multilevel model that we explore is the following:

β̂igj(v) | μgj(v), αigj, σ−2gj ∼ N{μgj(v)+ αigj, σ2gj}
μgj(v) | λ2gj ∼ N{μ0gj,λ2gj}

σ−2gj ∼ Γ(a0, b0) (14.2)

αij | Γj ∼MVN(0,Γj)

λ−2gj ∼ Γ(c0, d0)

Γ−1j ∼Wishart
{
(h0H0j)

−1, h0
}
,

where αij = (αi1j, . . . , αiGj)′. Here, μgj(v) is the mean contrast across subjects but within
groups. The term αigj represents subject- and region-specific deviations from themean. This
term forces a conditional exchangeable correlation structure within regions of ρgj = γgj

γgj+σ2gj
,

where γgj is diagonal element g from Γj. Thus, ρgj measures the correlation of contrast
estimates within a region and group.We refer to it as ameasure of intra-regional paradigm-
related connectivity. In contrast, Γj is the variance–covariance matrix of the random effect
terms between the G ROIs for condition j. Hence, we view the corresponding correlation
matrix, say Rj, as a measure of inter-regional paradigm-related connectivity.
The residual variance, σ2gj, is constant within regions, unlike many models for fMRI that

presume separate voxel-specific variances. That is, instead of smoothing voxel-specific vari-
ances with further hierarchies, ourmodel uses anatomical information to smooth variances
within regions. Note that separate variances are assumed for each of the groups. The other
variance term, λgj, measures variation in the voxel-levelmeans around the priormean,μ0gj.

14.3.2 Simulating the Markov Chain

The block full conditionals associated with model (Equation 14.2) (see Bowman et al., 2008,
for more discussion) are given below:

μgj ∼ N
[(
λ−2gj + Ijσ−2gj

) {
λ−2gj μ0gj + Ijσ−2gj

(
β̄gj − 1ᾱgj

)}
, Diag

(
λ−2gj + Ijσ−2gj

)]

σ−2gj ∼ Γ

⎧⎪⎨
⎪⎩a0 + IjVg/2,

⎛
⎝ 1
b0
+ 1
2

Ij∑
i=1
||β̂igj − μgj − 1αigj||2

⎞
⎠
−1⎫⎪⎬
⎪⎭

αij ∼ N
[(
Γ−1j +D−1j

)−1 {
D−1j

(
β̄ij − μ̄j

)}
,
(
Γ−1j +D−1j

)]
(14.3)

λ−2gj ∼ Γ
{
c0 + Vg/2,

(
1
d0
+ (μgj − μ0gj)′(μgj − μ0gj)

2

)−1}

Γ−1j ∼Wishart

⎧⎪⎨
⎪⎩
⎛
⎝h0H0 +

Ij∑
i=1
αijα

′
ij

⎞
⎠
−1

, h0 + Ij

⎫⎪⎬
⎪⎭ ,
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where μgj = {μgj(1), . . . ,μgj(VG)}t, β̄gj is 1
Ij
∑Ij

i=1{β̂igj(1), . . . , β̂igj(VG)}t, ᾱgj = 1
Ij
∑Ij

i=1 αigj,

Dj = Diag(V1σ−21j , . . . ,VGσ
−2
Gj ) and μ̄j =

{
1
V1
∑V1

v=1 μ1j(v), . . . ,
1
VG
∑VG

v=1 μGj(v)
}t
. The update

order proceeded with Γj first, then a loop over g for μgj, σgi, λgj, and then the update for αij.
The full conditionals display the benefit of the use of the linear mixed effects model

and “Gibbs-friendly” prior distributions. That is, the full conditionals are based on simple
matrix summaries that can be executed quickly. We discuss simple extensions with less
restrictive priors in Section 14.6. Also note that none of the block updates have dimension
larger than maxg Vg = 1784 and, more importantly, no matrix inversions are required for
matrices with dimension larger than maxg Vg ×maxg Vg. This is a primary strength of the
model, as any approach that requires matrix manipulations over all of the voxels would
not allow the fast block updates. The code was written in MATLAB® (Mathworks version
2006b) and is available from the first author’s website. Ten thousand iterations were run
for the results presented; however, later runs of 100,000 iterations confirm the conclusions.
Note that, with over 60,000 variables updated in each iteration (roughly 30,000 per group),
this resulted in over 100 million basic operations. Regardless, the sampler was run on a
standard laptop in under an hour (2.16GHz dual core Intel processor and 2GB of RAM).
With dimension in excess of 60,000, the posterior raises numerous issues regarding sim-

ulating the chain and analyzing the output. First, we note that storage of the output is itself
a challenge. Memory allocation limits were reached if the entire chain of voxelwise results
was stored for any reasonably long chain. We adopted the following strategy to combat
this issue. The complete chain was stored for all of the values that have only tens of mea-
surements per region. That is, the complete chain was stored for the σgj, αij, λgj, and Γj.
For the μgj, the complete posterior mean was updated each iteration and stored. In addi-
tion, a batch means estimate (Jones et al., 2006) of the variance of this posterior mean was
also stored. To utilize simple update rules, adaptive batch sizes were not employed and,
instead, fixed batch sizes of size 100 were used. Moreover, the complete chains for several
regional summaries, such as the mean and quantiles of the μgj within regions, were also
stored. Finally, the complete value ofμgj was stored for every 20th iteration, resulting in 500
total stored iterations. However, it should be noted that considerable loss of information
is incurred if the chain is subsampled (MacEachern and Berliner, 1994). We do not recom-
mend combining the values, subsampled or not, into amatrix or other single data structure.
Instead, we recommend that the value for each saved iteration be stored in a separate file,
with the filename indicating the iteration number.
For starting values, we used empirical moments and cumulants. Specifically, we let μgj

be the empirical vector mean over the Ij subjects within region g and group j. We let σ2gj
be the average (across voxels) of the inter-subject variances within region g and group
j. We let λgj be the between-region variance of the region- and group-specific means of
the β̂igj(v) (β̄gj from above). We further let αigj be the mean of the β̂igj(v) within subject,
region, and group. Then Γj was set to be the variance–covariance matrix of the start-
ing value for αij, calculated by taking variances and covariances over subjects. The least
accurate of these starting values are those for the αigj and Γj, as the starting value for αigj
has mean 1

Vg
∑Vg

v=1 μgj(v)+ αigj (see Equation 14.2). However, recall that the outcomes are
contrasts estimates and ideally the task should specialize to only a small portion of the
brain, and therefore the term 1

Vg
∑Vg

v=1 μgj(v) should be small in absolute value. Hence,
for starting values, ignoring the fixed effects contribution in the moment estimates is not
problematic.
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To empirically evaluate the results of the chain, posterior mean estimates were com-
pared with these starting values. In all cases they agreed well, though we stipulate that
this only adds to the face validity of the chain and is not a formal method of convergence
assessment. To further evaluate properties of the chain, trace plots of the parameters were
investigated.However, the volume of parameters precludes investigation of all plots for the
μgj(v). Instead, a random sample of voxels was selected and investigated in greater detail.
To investigate sensitivity to hyperparameter settings, several chainswere run, varying these
parameters.

14.4 Analyzing the Chain
14.4.1 Activation Results

Weconsider thedistributionofvoxel-level contrastmeans toanswer thequestionofwhether
theμgj are systematically larger than zero in any area andwhether they differ across groups.
The former question is of greater initial importance, as there is less interest in assessing inter-
group differences when there is little evidence of localized within-group activation.We use
a novel adaptation of a supra-threshold clustering technique widely used in the frequentist
analysis of statistical maps. To evaluate a unit-free statistic, consider the map of voxel-
level signal-to-noise statistics, {|μgj(v)|/σgj}v. Following traditional analysis, we consider
clusters of contiguous connected voxels above a threshold (Cao andWorsley, 2001; Friston
et al., 1993; Nichols and Holmes, 2002; Worsley, 1994; Worsley et al., 1996). Here, voxels
are connected if they share a face, edge or corner. Figure 14.4 illustrates with fictitious one-
dimensional data. We refer to the number of contiguous voxels in a cluster as the extent; in
Figure 14.4 this is the width of the cluster above the chosen threshold. We also considered
the center ofmass of the cluster, the area of the cluster, and the peak valuewithin the cluster.
Here the center of mass is simply the average of the X, Y, and Z coordinates of each cluster
surviving the threshold. The area of the cluster is proportional to taking the product of the
voxels in the cluster and the associated heights of the statistics, and summing the results.
Two cutoffs were considered for these supra-threshold statistics, 0.1 and 0.2. These were
obtained empirically, by considering the inter-voxel distribution of the posteriormeans and
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FIGURE 14.4
Illustration of supra-threshold cluster level statistics.
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FIGURE 14.5
Estimated posterior distributions for the maximum supra-threshold cluster extents. The top and bottom images
use an SNR cutoff of 0.1 and 0.2 respectively, and the left and right images correspond to at-risk and control groups
respectively.

inspection of related data sets. Finally, to reduce cluster results to single numbers, we took
themaximal statistic, such as considering themaximum cluster extent perMCMC iteration.
We considered thresholding the signal-to-noise statistic map generated at each MCMC

iteration.Aspreviouslymentioned, a complication arose in that it ismost convenient tohave
the chain of μgj(v) maps saved, as different thresholding values and statistics need to be
evaluated interactively.As the complete chain is generally too large to save,we subsampled
the chain and saved 500 equally spaced iterations. For each saved map, we determined the
cluster size with the largest supra-threshold extent. Histogram estimates of the posterior
distributions for the two groups and for the two cutoffs are given in Figure 14.5. Here the
maximal extents appear to be quite small, suggesting little voxel-level activation across
subjects within groups. Figure 14.6 displays the centroids for the clusters surviving the
threshold (of 0.1) for the control group for the 500 saved iterations. The color and width of
the points are related to the extent of the cluster. There is little evidence to suggest voxel-
level localization of the clusters. In addition to considering the maximal extents, we also
considered the areas under the clusters as well as the maximal peak value of the clusters.
In each case, there was little suggestion of interesting voxel-level results. These conclusions
are consistent with those of more standard analyses.
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FIGURE 14.6
Plot of supra-threshold (threshold of 0.1) cluster centroids across 500 saved iterations for the control (a) and at-risk
(b) groups. The shading and size of the points are proportional to the cluster extent. Transparent template brain
overlays are provided for reference. (See online supplement for color figures.)

We also considered regional mean level effects. That is, let θgj =∑Vg
v=1 μgj(v)/Vg, where

Vg is the number of voxels in region g. As with the voxel-level results, we consider both
within- and between-group effects.We first calculated theMCMCestimate of theminimum
of the posterior tail probabilities of θgj being larger or smaller than 0, for each g and j:

min{P(θgj < 0 | Data),P(θgj > 0 | Data)}.

This quantity combines the information from the two one-sided tail probabilities similar to
taking the smaller of two p-values from one-sided tests to perform a two-sided test. This is
useful to answer whether or not the regional mean appears either much larger or smaller
than zero.
In the control group, this quantity was the smallest in the right superior temporal lobe,

with a posterior mean for θgj of −0.0021 and minimum tail probability of 0.0057. This
was followed by the left supplementary motor area (0.0532) and the right mid frontal area
(0.0586). In the at-risk group, there were only modestly small minimum tail probabilities
in the left supplementary motor area (0.0560) and the right mid frontal area (0.0563).
To compare the two groups,we again evaluated aminimumof posterior tail probabilities.

Specifically, we considered the minimum posterior probability of one mean being smaller
or larger than the other. That is, for each g, we considered

min{P(θg1 < θg2 | Data),P(θg1 > θg2 | Data)},

where j = 2 refers to the at-risk group and j = 1 refers to the controls. This quantity was the
smallest in the right superior temporal pole, with a minimum tail probability of 0.032, and
in the right superior temporal lobe (0.0648). Histogram estimates of θg1 − θg2 for these two
regions are given in Figure 14.7, showing that activation related to this contrast is (largely
speaking) slightly higher in the at-risk group compared to the controls.
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FIGURE 14.7
Posterior distributions for θg1 − θg2 for the two regions with the smallest posterior tail probabilities. Projection
plots of the two regions overlaid on a template brain are given for reference. (See online supplement for color
figures.)

14.5 Connectivity Results
14.5.1 Intra-Regional Connectivity

We first consider results for intra-regional connectivity; that is, we consider the posterior
distributions for the {ρgj}. Figure 14.8 displays posterior credible intervals and posterior
medians for the {ρgj} for the control and at-risk subjects for the 46 regions of interest, based
on all 10,000 iterations. It is perhaps surprising that the correlations are as high as they
are, especially given that no spatial smoothing was performed. We note that some of the
variation in the intra-regional correlation arises from the size of the region in consideration,
with, as expected, the smaller regions tending to demonstrate greater connectivity.
Figure 14.9 shows 95% equi-tail posterior credible intervals and posterior medians for

the ratio ρ1/ρ2, with a gray vertical reference line drawn at one. The data exhibit regions
bothwith greater and lesser intra-regional connectivity. Figure 14.9 also displays projection
maps of the regions with higher intra-regional connectivity among the controls (shown in
the upper plots, as determined by a credible interval entirely above one) and lower intra-
regional connectivity among the at risk (shown in the lower plots). Lower intra-regional



Multilevel Model for Functional MRI Data 375

0.7

0.6

0.5

0.4

ρ 1
 an

d 
ρ 2

0.3

0.2

Control
At-risk

0.1

0

FIGURE 14.8
Posterior credible intervals and medians for ρ1 (controls, circles) and ρ2 (at-risk, squares). Intervals are ordered
by the average of the two groups’ medians.

connectivity among the control subjects was most apparent in the areas near the anterior
cingulum. Higher intra-regional connectivity among the controls was most apparent in
more frontal areas and was diffusely spread out.

14.5.2 Inter-Regional Connectivity

The proposed hierarchical model also allows for the study of inter-regional connectivity
associated with the paradigm. Figure 14.10 connects the centroids of regions whose pos-
terior mean correlation (from the off-diagonal entries of Rj) was above 0.6 for control (left)
and at-risk (right) subjects, with estimates obtained using all 10,000 iterations. Visually, the
picture suggests a denser network of connectivity for the at-risk subjects, perhaps suggest-
ing that this population has to attend to the taskmore rigorously to complete it or that more
regions are called upon to complete the task to compensate forweaknesses in a few regions.
Below we explore more formal methods for comparing the chain of variance and covari-
ance matrices. We consider the eigenvalue decomposition of the variance matrices, Γj, and
the correlation matrices, Rj. This is analogous to a principal component analysis of the αij.
In particular, we focus on the eigenvalue decomposition of the Rj, as the region-specific
variances are of less interest.
The posterior mean of the percentage of variation explained by each component was 29,

13, 10, 8, and 6 for the control group and 29, 12, 9, 7, and 6 for the at-risk group. Figure 14.11
displays the posterior distribution for the largest eigenvalues for the control (solid) and
at-risk subjects, respectively. We also looked at the distribution of the eigenvectors corre-
sponding to the maximum eigenvalue. The at-risk group had larger loadings (across the
board) for the first eigenvalue. The control group loaded most heavily (in absolute value)
on the left precentral gyrus, the right mid cingulum, the right supplementary motor area,
and the left postcentral gyrus. The at-risk group loaded more heavily on the left insula, the
left precentral gyrus, the left caudate and left mid cingulum.
Theequi-tail 95%posterior credible interval for the ratioof the largest eigenvalues (control

over at-risk)was [0.58, 0.89],with aposterior distribution shown in themiddleplot of Figure
14.11. To consider the variances, we considered the largest eigenvalue of (Γ1 + Γ2)−1Γ1, the
greatest root statistic (Mardia et al., 1979). The equi-tail 95% credible interval for the greatest
root statistic was [0.981, 0.989], with a posterior given in the rightmost plot of Figure 14.11.
Overall, the results suggest much greater connectivity in the at-risk group.We found this

particular result to be themost intriguing for this data set and believe that it is suggestive of
the idea that at-risk subjects have to engage more cognitive resources to attend to the task.
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FIGURE 14.9
Credible intervals and posterior medians for ratios of ρ1/ρ2 accompanied by projection maps of the regions with
credible intervals showing higher intra-regional connectivity among the at-risk (top plots, 11 regions) and higher
connectivity among the controls (bottom plots, seven regions), respectively. Note that one of the top 11 and one
of the bottom seven have credible intervals that overlap zero. (See online supplement for color figures.)

14.6 Discussion
In this chapter, we investigated a model from Bowman et al. (2008) and a data set from
Bassett et al. (2006) and introduced some novel methods for analyzing, interpreting, and
visualizing the output. The data are suggestive of some interesting findings on functional
differences between a group of subjects at high risk for the development of Alzheimer’s
disease and a group of controls. First, the voxel-level contrast map results suggest little
differencebetween thegroups in termsof activation,while the regionalmean results suggest
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FIGURE 14.10
Posterior mean connectivity estimates exceeding a threshold of 0.6 for control (a) and at-risk (b) subjects. Lines
connect the centers of regions with posterior mean connectivity estimates exceeding the threshold. (See online
supplement for color figures.)

a modest decrease in activation for the controls in two regions of the temporal lobe. These
results,whichhavebeenconfirmedwithmore traditionalparametricmodeling (not shown),
differ from those of Bassett et al. (2006), based on the same subjects at an earlier visit. The
discrepancy could be due to a variety of factors, such as a learning effect, differences in the
sample (as there was dropout for the subsequent visit), or actual physiological longitudinal
changes. We defer a full longitudinal analysis of this data to future research.
The connectivity results are perhaps more interesting in demonstrating greater differ-

ences between the two groups. The inter-regional results suggest greater connectivity
among the at-risk groups. This result potentially suggests that the at-risk group are call-
ing on greater cognitive reserves to perform the tasks. The intra-regional results suggest
important differences in areas of intrinsic connectivity for the two groups.
The at-riskAlzheimer’s disease data set is uniquely suited to thismodel. First, the smaller

imaging acquisition area limits the number of regions of interest to consider. Secondly, the
large number of subjects also allows for the estimation of a finer regional parcelation of the
connectivity matrix. For example, if the study had typical group sizes of 15 or 20 per group,
estimation of 46× 46 covariance matrix would not be feasible, and hence regions would
have to be aggregated to employ the model.
With regard to themodel, its weakest point is the reliance onGibbs-friendly priors for the

variance components. In particular, the use of inverted gamma priors (with small rates and
scales) and the inverse Wishart distribution for the variance components has been widely
discussed and criticized (Daniels, 1999; Daniels and Kass, 1999; Daniels and Pourahmadi,
2002;He andHodges, 2008;Yang andBerger, 1994). The previous references provide several
alternative priors and approaches, including placing the priors on the eigenspace rather
than the natural units. Such approaches are appealing in this setting, because principal
component analysis of the region-specific random effects is of interest. However, a very
practical solution would simply use a mixture of two or three gammas for the precisions
and amixture of two or threeWishart distributions for the inverse variancematrices. These
solutions may add enough hyperparameters to allow for needed flexibility for the prior
distributions, while still retaining a simple structure.
We discuss possible methods for further computational acceleration, though, as previ-

ously mentioned, the chain ran adequately fast for our application. However, for whole
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FIGURE 14.11
(a) Density estimates for the posterior distribution of the largest eigenvalue forRj for the control (solid) and at-risk
(dashed) groups. (b) Density estimates for the posterior distribution of the ratio of the largest eigenvalues for R1
divided by that of R2. (c) Density estimate for the posterior distribution for the greatest root statistic.

brain results and next generation scanners, the extent of the computations will increase
dramatically. A possible acceleration could be obtained with parallel processing. To be
specific, the region- and group-specific parameters, μgj, σgj and λgj, are all condition-
ally independent given the inter-regional parameters, αij and Γj. Hence, they could be
updated in parallel, hopefully speeding up calculations by an order of magnitude.We have
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successfully applied this approach in unrelated areas with good success, though it was not
applied here.
Perhaps the greatest challenge in this setting, andmost germane to the topic of this book,

is the question of the overall validity of the use of MCMC as a mechanism for analysis.
While our application possessed only tens of thousands of parameters, current MRI and
genomic technology puts the relevant number closer to millions. To our knowledge, con-
vergence, implementation, diagnostic, and inferential issues for such large chains have had
little discussion in the MCMC literature and represent a great challenge for future MCMC
research.
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15
Partially Collapsed Gibbs Sampling and
Path-Adaptive Metropolis–Hastings in
High-Energy Astrophysics

David A. van Dyk and Taeyoung Park

15.1 Introduction
As themany examples in this book illustrate,Markov chainMonte Carlo (MCMC)methods
have revolutionized Bayesian statistical analyses. Rather than using off-the-shelf models
and methods, we can use MCMC to fit application-specific models that are designed to
account for the particular complexities of a problem. These complex multilevel models are
becoming more prevalent throughout the natural, social, and engineering sciences largely
because of the ease of using standard MCMC methods such as the Gibbs and Metropolis–
Hastings (MH) samplers. Indeed, the ability to easily fit statistical models that directly
represent the complexity of a data-generationmechanismhas arguably lead to the increased
popularity of Bayesian methods in many scientific disciplines.
Although simple standard methods work surprisingly well in many problems, neither

the Gibbs nor theMH sampler can directly handle problemswith very high posterior corre-
lations among theparameters. Themarginal distribution of a givenparameter ismuchmore
variable than the corresponding full conditional distribution in this case, causing the Gibbs
sampler to take small steps. With MH a proposal distribution that does not account for the
posterior correlation either has far toomuchmass in regions of low posterior probability or
has such smallmarginal variances that only small steps are proposed, causing high rejection
rates and/or high autocorrelations in the resultingMarkov chains. Unfortunately, account-
ing for the posterior correlation requires more information about the posterior distribution
than is typically available when the proposal distribution is constructed.
Much work has been devoted to developing computational methods that extend the

usefulness of these standard tools in the presence of high correlations. For Gibbs sampling,
for example, it is nowwell known that blocking or grouping steps (Liu et al., 1994), nesting
steps (van Dyk, 2000), collapsing or marginalizing parameters (Liu et al., 1994; Meng and
vanDyk, 1999), incorporatingauxiliaryvariables (BesagandGreen, 1993), certainparameter
transformations (Gelfand et al., 1995; Yu and Meng, 2011), and parameter expansion (Liu
andWu,1999) canall beused to improve the convergenceof certain samplers.Byembedding
an MH sampler within the Gibbs sampler and updating one parameter at a time (i.e. the
well-known Metropolis-within-Gibbs sampler in the terminology of Gilks et al., 1995), the
same strategies can be used to improve MH samplers.

383
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In this chapter, we describe two newer methods that are designed to improve the per-
formance of Gibbs and Metropolis-within-Gibbs samplers. The partially collapsed Gibbs
(PCG) sampler (vanDykandPark, 2008; Park andvanDyk, 2009) takes advantage of the fact
that we expect reducing conditioning to increase the variance of the complete conditional
distributions of a Gibbs sampler. Thus, by replacing a subset of the complete conditional
distributions by distributions that condition on fewer of the unknown quantities, that is,
conditional distributions of some marginal distributions of the target posterior distribu-
tion, we expect the sampler to take larger steps and its overall convergence characteristics
to improve. This strategy must be used with care, however, since the resulting set of condi-
tional distributionsmaynot be functionally compatible and changing the order of thedraws
can alter the stationary distribution of the chain. The second strategy involves updating
the Metropolis proposal distribution to take account of what is known about the target
distribution given an initial set of draws.
Although these are both general strategies with many potential applications, they were

both motivated by a particular model fitting task in high-energy astrophysics. In recent
years, technological advances have dramatically increased the quality and quantity of data
available to astronomers. Multilevel statistical models are used to account for these com-
plex data-generation mechanisms, which can include both the physical data sources and
sophisticated instrumentation. Bayesianmethods andMCMC techniques both find numer-
ous applications among themany resulting statistical problemsandare becoming evermore
popular among astronomers. Examples include the search for planets orbiting distant stars
(Gregory, 2005), the analysis of stellar evolution using sophisticated physics-based com-
puter models (DeGennaro et al., 2008; van Dyk et al., 2009), the analysis of the composition
and temperature distribution of stellar coronae (Kashyap and Drake, 1998), and the search
for multi-scale structure in X-ray images (Esch et al., 2004; Connors and van Dyk, 2007), to
name just a few. In this chapter, we describe the PCG sampler and the path-adaptive MH
sampler and show how they can dramatically improve the computational performance of
MCMC samplers designed to search for narrow emission lines in high-energy astronomical
spectral analysis.

15.2 Partially Collapsed Gibbs Sampler
Collapsing in a Gibbs sampler involves integrating a joint posterior distribution over a
subset of unknown quantities to construct a marginal or collapsed posterior distribution
underwhich a new collapsedGibbs sampler is built (Liu et al., 1994). This strategy is similar
to the efficient data augmentation strategy used to improve the rate of convergence of the
EM algorithm (van Dyk andMeng, 1997). Efficient data augmentation aims to construct an
EM algorithm using as little missing data as possible. That is, a portion of the missing data
is collapsed out of the distribution of unknown quantities. Just as collapsing is known to
improve the convergence of a Gibbs sampler, it is known that reducing the missing data in
thisway can only improve the rate of convergence of the EMalgorithm (Meng and vanDyk,
1997). Generally speaking, there is a strong relationship between the rate of convergence
of EM-type algorithms and Gibbs samplers constructed with the same set of conditional
distributions (see Tanner andWong, 1987; Liu, 1994; Liu andWu, 1999; van Dyk andMeng,
2001). Strong correlations slow both types of algorithms.
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Although these collapsing or marginalizing strategies typically improve convergence,
they may not be easy to implement. For example, the complete conditional distributions of
the collapsed posterior distributionmay be harder to workwith than the conditional distri-
butions of the original posterior distribution. The PCG sampler aims to take partial compu-
tational advantage of the collapsing strategy while maintaining simple implementation by
mixing conditional distributions from the original posterior distribution with those of one
ormore collapsed posterior distributions. Thus, we use collapsing only in those conditional
distributions where it does not complicate parameter updating. This strategy is analogous
to the ECME andAECM algorithmswhich generalize EM by allowing different amounts of
missing data when updating different model parameters (Liu and Rubin, 1994; Meng and
van Dyk, 1997); see Park and van Dyk (2009) and van Dyk andMeng (2010) for discussion.
To see both the potential advantages and the potential pitfalls of partially collapsing a

Gibbs sampler, consider a simple example where a three-step Gibbs sampler is constructed
to simulate the trivariate Gaussian distribution, (X,Y,Z) ∼ N3(0,Σ) with

Σ =
⎛
⎝ 1 ρ 0.5
ρ 1 0.5
0.5 0.5 1

⎞
⎠ ,

where ρ is a known constant that controls the convergence rate of the Gibbs sampler. The
three-step Gibbs sampler iterates among the following steps:

Step 1. Draw X from p(X |Y,Z). (Sampler 1)
Step 2. Draw Y from p(Y |X,Z).
Step 3. Draw Z from p(Z |X,Y).

The convergence rate of the Gibbs sampler is equal to the spectral radius of the correspond-
ing forward operator (Liu, 2001). LettingQ = Σ−1 withQ = {qij}, Amit (1991) showed that
the spectral radius of the forward operator for Sampler 1 is the largest norm of the eigen-
values of

∏3
i=1(I−DiQ), where I is the 3× 3 identity matrix and Di is the 3× 3 matrix

of zeros except that the ith diagonal entry is q−1ii . For example, with ρ = 0.99, the spectral
radius is 0.98, indicating slow convergence. The convergence characteristics of the Gibbs
sampler and the sampled correlation structure between X and Y are shown in the first row
of Figure 15.1, which illustrates slow convergence and strong correlation. In this simple
example, we can easily reduce the conditioning in any of the steps in the hope of improv-
ing convergence. In particular, the marginal distribution of (Y,Z) is a bivariate Gaussian
distribution and we can eliminate the conditioning on X in Step 2:

Step 1. Draw X from p(X |Y,Z). (Sampler 2)
Step 2. Draw Y from p(Y |Z).
Step 3. Draw Z from p(Z |X,Y).

This is advantageousbecause thedrawsofY are independent of thedrawsofX in Sampler 2,
eliminating a high correlation in Sampler 1. Unfortunately, however, the three conditional
distributions in Sampler 2, p(X |Y,Z), p(Y |Z), and p(Z |X,Y), are functionally incompatible
and imply inconsistent dependence structure. SamplingY from p(Y |Z) suggests thatX and
Y are conditionally independent given Z, whereas sampling X from p(X |Y,Z) suggests
conditional dependence. The result is that the stationary distribution of Sampler 2 does not
correspond to the target distribution p(X,Y,Z); information on the correlation between X
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FIGURE 15.1
Comparing three MCMC samplers for a simple Gaussian example. The three rows correspond to the Gibbs
sampler (Sampler 1), the Gibbs sampler with the conditioning on X eliminated in Step 2 (Sampler 2), and the
partially collapsed Gibbs sampler (Sampler 3). The first two columns show the mixing and autocorrelation of X,
and the last column presents the sampled correlation structure between X and Y, based on 1000 iterations. The
PCG sampler dramatically improves convergence while maintaining the target stationary distribution. In this
simple case, the PCG sampler is simply a blocked Gibbs sampler.

and Y is lost (see the second row of Figure 15.1). Of course, there is an obvious solution.
If we simply change the order of the draws in Sampler 2, that is, first sample Y from its
conditional distribution given Z and then X from its conditional distribution given (Y,Z),
we obtain a correct joint draw from p(X,Y |Z). This results in the following sampler:

Step 1. Draw Y from p(Y |Z). (Sampler 3)
Step 2. Draw X from p(X |Y,Z).
Step 3. Draw Z from p(Z |X,Y).

Although the conditional distributions remain incompatible, the third row of Figure 15.1
shows the fast convergence of the subchain for X and the correctly sampled correlation
between X and Y. In this case, Sampler 3 is simply a blocked version of Sampler 1: sam-
pling p(Y |Z) and then p(X |Y,Z) combines into a single draw from p(X,Y |Z). As we shall
illustrate, however, partial collapse is a more general technique than blocking. Liu et al.
(1994) showed that the spectral radius of the forward operator for the blocked Gibbs sam-
pler iterating between p(X,Y |Z) and p(Z |X,Y) is the square of the maximal correlation
between (X,Y) and Z, that is, 1/{2(1+ ρ)}. Thus, with ρ = 0.99, the spectral radius is 0.25,
confirming the faster convergence of Sampler 3 than Sampler 1.
This simple three-step sampler illustrates an important point: care must be taken if we

are to maintain the target stationary distribution when reducing the conditioning in some
but not all of the steps of a Gibbs sampler. Van Dyk and Park (2008) describe three basic
tools that can be used to transform a Gibbs sampler into a PCG sampler that maintains
the target stationary distribution. The first tool ismarginalization, which involves moving a
group of unknowns from being conditioned upon to being sampled in one or more steps
of a Gibbs sampler; the marginalized group can differ among the steps. In Sampler 1 this
involves replacing the sampling of p(Y |X,Z) with the sampling of p(X,Y |Z) in Step 2;
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Parent sampler Marginalize
(a) (b)

Permute
(c)

Trim
(d)

Block
(e)

p(X | Y, Z)
p(Y | X, Z)
p(Z | X, Y)

p(X∗ | Y, Z)
p(X, Y | Z)
p(Z | X, Y)

p(X, Y|Z)
p(X∗|Y, Z)
p(Z|X, Y)

p(Z|X, Y)

p(Y|Z)
p(X|Y, Z)
p(Z|X, Y)

p(X, Y|Z)
p(Z|X, Y)

FIGURE 15.2
Transforming the Gibbs sampler (Sampler 1) into the partially collapsed Gibbs sampler (Sampler 3) sequentially
using marginalization, permutation, and trimming. The sampler in (e) is a blocked version of Sampler 1.

see Figure 15.2a,b. Notice that rather than simply reducing the conditioning by eliminating
X, we are moving X from being conditioned upon to being sampled. This can be done by
combining a distribution that conditions on less with a conditional distribution available
from the parent sampler, that is, p(X,Y |Z) can be sampled by first sampling the reduced
conditional distribution, p(Y |Z), and then sampling the conditional distribution from the
original sampler, p(X |Y,Z). This preserves the stationary distribution of theMarkov chain.
The second tool is permutation of the steps. We may need to permute steps in order to use
the third tool, which is to trim sampled components from steps if the components can be
removed from the sampler without altering its Markov transition kernel. In Figure 15.2c
we permute the steps so that we can trim X� from the sampler in (d). Here and elsewhere
we use a superscript “�” to designate an intermediate quantity that is sampled but is not part
of the output of an iteration. Finally, we block the first two steps in (e).
Both marginalization and permutation clearly maintain the stationary distribution of

the chain and both can affect its convergence properties; marginalization can dramatically
improve convergence, while the effect of permutation is typically small. Reducing condi-
tioning (i.e. marginalization) increases variance and hence the sizes of the sampling jumps;
see van Dyk and Park (2008) for a technical treatment. Trimming is explicitly designed to
maintain the kernel of the chain. The primary advantage of trimming is to reduce the com-
plexity of the individual steps. In doing so, trimming may introduce incompatibility into a
sampler.
To illustrate how the three tools are used in a more realistic setting we use the sim-

ple four-step example given in Figure 15.3a, where the target distribution is p(W,X,Y,Z).
Suppose it is possible to directly sample from p(Y |X,Z) and p(Z |X,Y), which are
both conditional distributions of

∫
p(W,X,Y,Z)dW, with p(Y |X,Z) = p(Y |W,X,Z) and

p(Z |X,Y) = p(Z |W,X,Y). If we were to simply replace the third and fourth draws in

Parent sampler Marginalize
(a) (b)

Permute
(c)

Trim
(d)

Block
(e)

p(W|X, Y, Z)
p(X|W, Y, Z)
p(Y|W, X, Z)
p(Z|W, X, Y )

p(W∗|X, Y, Z)
p(X|W, Y, Z)
p(W∗, Y|X, Z)
p(W, Z|X, Y )

p(W∗, Y|X, Z)
p(W∗, Z|X, Y )
p(W|X, Y, Z)
p(X|W, Y, Z)

p(Y|X, Z)
p(Z|X, Y )
p(W|X, Y, Z)
p(X|W, Y, Z)

p(Y|X, Z)
p(W, Z|X, Y )
p(X|W, Y, Z)

FIGURE 15.3
Transforming a four-step Gibbs sampler into a partially collapsed Gibbs sampler. The sampler in (e) is composed
of incompatible conditional distributions, is not a blocked version of the sampler in (a), and is therefore not a
Gibbs sampler per se.
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Figure 15.3awith draws from p(Y |X,Z) and p(Z |X,Y), wewould have nodirectway of ver-
ifying that the stationary distribution of the resulting chain is the target joint distribution.
Instead,weuse the three basic tools toderive aPCGsampler. This allowsus to reap thebene-
fits of partial collapsewhile ensuring that the stationarydistributionof the chain is the target
distribution.
In Figure 15.3b, we usemarginalization tomoveW from being conditioned upon to being

sampled in the last two steps. In each stepwe condition on themost recently sampled value
of each quantity that is not sampled in that step. The output of the iteration consists of the
most recently sampled value of each quantity at the end of the iteration: X sampled in the
second step, Y sampled in the third step, and (W,Z) sampled in the last step. Although
samplingW three times in each iteration may be inefficient, removing any two of the three
draws affects the transition kernel of the chain: the draw in the first step is conditioned
upon in the second step and the draw in the last step is part of the output of the iteration. In
order topreserve the stationarydistribution,weonly remove intermediate quantitieswhose
values are not conditioned upon subsequently. Permuting the steps of a Gibbs sampler
does not alter its stationary distribution but can enable certain intermediate quantities to
meet the criterion for removal. In Figure 15.3c we permute the steps so that two of the
draws ofW can be trimmed in (d). The intermediate draws ofW sampled in the first and
second steps of Figure 15.3c are not used subsequently and both can be removed from the
sampler. Finally, the middle two steps of Figure 15.3d can be combined to derive the final
sampler given in (e). After blocking, the set of conditional distributions in Figure 15.3e
remains incompatible, illustrating that partial collapse is a more general technique than
blocking.
The samplers in Figure 15.3c, d have the same stationary distribution because removing

the intermediate quantities does not affect the transition kernel. Thus, we know the station-
ary distribution of Figure 15.3d is the target joint distribution. This illustrates how careful
use of the three basic tools can lead to PCG samplers with the target stationary distribution.
Notice that the samplers in Figure 15.3d,e are not Gibbs samplers per se. The conditional
distributions that are sampled in each are incompatible and permuting their order may
alter the stationary distribution of the chain.

15.3 Path-Adaptive Metropolis–Hastings Sampler
The second computational method aims to improve the convergence of theMH sampler by
updating the proposal distribution using information about the target distribution obtained
from an initial run of the chain. Suppose a target distribution of interest has density π(X).
Given a current state X(t), theMH sampler proposes a stateX′ using a proposal distribution
p1(X′ |X(t)); we use a one in the subscript because we update this proposal distribution
below. The move from X(t) to X′ is accepted with probability

q1(X′ |X(t)) = min
{
1,
π(X′)/p1(X′ |X(t))

π(X(t))/p1(X(t) |X′)
}
.

That is, X(t+1) is set to X′ with probability q1(X′ |X(t)) and to X(t) otherwise. Thus, for any
X(t+1) = X(t), the transition kernel of the MH sampler is

K1(X(t+1) |X(t)) = p1(X(t+1) |X(t))q1(X(t+1) |X(t)).
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The path-adaptive Metropolis–Hastings (PAMH) sampler is an efficient MH sampler
that uses an empirical distribution generated from an initial run of the chain (i.e. the path
samples of the chain) as a second proposal distribution. This is used to construct a second
transition kernel that is mixed with the original transition kernel in subsequent draws. In
thisway,we use the sample generated byMH to construct a proposal distribution thatmore
closely resembles the target distribution. This can dramatically improve performance if the
original MH sampler is either slow mixing or computationally demanding.
The strategy of mixing transition kernels for MCMC methods had been suggested in

the literature as one of the basic forms of hybrid strategies (Tierney, 1994). When different
Markov transition kernels with a common stationary distribution are available, we can
combine them in a mixture by specifying positive probabilities to the kernels and selecting
one of the kernels according to the probabilities in each iteration. The random-scan Gibbs
sampler is a common example of such a hybrid sampler (Roberts and Rosenthal, 1997). The
PAMH sampler is a mixture of two MH samplers: with probability α, a proposal state X′ is
generated from p1(X′ |X(t)) and accepted with probability q1(X′ |X(t)); and with probability
1− α, a proposal state X′ is generated from an empirical distribution π̂(X) and accepted
with probability

q2(X′ |X(t)) = min
{
1,

π(X′)/π̂(X′)
π(X(t))/π̂(X(t))

}
.

Thus, for any X(t+1) = X(t), the transition kernel of the PAMH sampler is given by

K+(X(t+1) |X(t)) = αK1(X(t+1) |X(t))+ (1− α)K2(X(t+1) |X(t)), (15.1)

where K2(X(t+1) |X(t)) = π̂(X(t+1))q2(X(t+1) |X(t)).
An adaptive MCMC sampler (Roberts and Rosenthal, 2009) attempts to learn about a

target distribution using information available from MCMC draws while they run. Thus,
the PAMH sampler can be viewed as an adaptive MCMC sampler in that it mixes the
original transition kernel with a transition kernel learned from an initial run of an MCMC
sampler. It doesnot, however, continually adapt the empirical transitionkernel. Themixture
proportion α in Equation 15.1 is a tuning parameter that is set in advance. In effect the value
of α is set to one during the initial run that uses only the original proposal distribution to
generate samples from π(X), and the path samples from the initial run are then used to
compute an approximation to the target distribution, π̂(X). After the initial run, α is fixed at
somevalue between 0 and 1, and themixture kernel in Equation 15.1 is used. In otherwords,
the originalMH sampler is run for the firstN1 iterations, and the PAMH sampler thatmixes
the original proposal distribution with an approximation to the target distribution is run
for an additional N2 iterations. The number of iterations for the initial run, N1, is usually
set to a reasonably small number.
If the dimension of X is small, the empirical distribution π̂(X) can be computed by dis-

cretizing the space into sufficiently small pixels and calculating the proportion of the initial
N1 draws that fall into each pixel. In some cases the approximation can be improved by
discarding an initial burn-in from the N1 draws. In this way, we approximate π̂(X) with
a step function that is sampled by first selecting a pixel according to the empirical pixel
probabilities and then sampling uniformly within the pixel. To get a more precise approx-
imation to the target distribution, we can use a more sophisticated nonparametric density
estimation method, such as kernel density estimation. This strategy is more efficient in
higherdimensions andcan improve the empirical approximationeven in lowerdimensions.
Of course, if the target distribution is discrete, no pixeling or smoothing is necessary.
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Detailed balance is satisfied by the mixture transition kernel in Equation 15.1 because

π(X(t))K+(X(t+1) |X(t)) = αmin
{
π(X(t))p1(X(t+1) |X(t)),π(X(t+1))p1(X(t) |X(t+1))

}
+ (1− α)min

{
π(X(t))π̂(X(t+1)),π(X(t+1))π̂(X(t))

}

is a symmetric function ofX(t) andX(t+1). Thus the resultingMarkov chain is reversiblewith
respect toπ(X). The PAMHsampler uses amixture of twoMHsamplers rather than a single
MH sampler with the mixture of two proposal distributions because the mixture of two
MH samplers requires only the computation of one proposal distribution at each iteration.
Thus, the PAMH sampler reduces the number of evaluations of π(X). This significantly
improves the overall computation in the example of Section 15.4 where this evaluation is
computationally costly. See Tierney (1998) for a comparison of the asymptotic efficiency of
these two strategies.
To illustrate the advantage of the PAMH sampling strategy, we introduce a simple exam-

ple where both the Gibbs sampler and theMH sampler exhibit slow convergence. Consider
the following bivariate distributionwhich has Gaussian conditional distributions but is not
a bivariate Gaussian distribution:

p(X,Y) ∝ exp
{
−1
2

(
8X2Y2 + X2 + Y2 − 8X − 8Y

)}
. (15.2)

This is a bimodal special case of a parameterized family of distributions derived byGelman
and Meng (1991).
AGibbs sampler can easily be constructed to simulate from Equation 15.2:

Step 1. Draw X from p(X |Y), where X |Y ∼ N(4/(8Y2 + 1), 1/(8Y2 + 1)).
Step 2. Draw Y from p(Y |X), where Y |X ∼ N(4/(8X2 + 1), 1/(8X2 + 1)).

An MH sampler can also be used to simulate the target distribution in Equation 15.2.
We use an independent bivariate Gaussian distribution for the proposal distribution.
That is, given the current state (X(t),Y(t)), we generate a proposal state (X′,Y′) = (X(t) +
ε1,Y(t) + ε2), where εi i.i.d.∼ N(0, τ2) for i = 1, 2, and accept the proposal state with probabil-
ity p(X′,Y′)/p(X(t),Y(t)). In this case, τ is a tuning parameter that is chosen in advance and
affects the convergence of the resulting sampler (Roberts and Rosenthal, 2001). A value of
τ that is too small produces small jumps which are often accepted but lead to a Markov
chain that moves slowly. On the other hand, when τ is too large, the sampler will propose
large jumps that are too often rejected. Thus, it is important to find a reasonable choice of τ
between these two extremes. For illustration, we use three MH samplers, run with τ = 0.5,
1, and 2.
We ran the Gibbs sampler and the MH sampler with three different values of τ for 20,000

iterations each. Convergence of the four samplers is described in the first four rows of
Figure 15.4. The first two columns of Figure 15.4 show the trace plot of the last 5000
iterations and autocorrelations computed using the last 10,000 iterations of each subchain
of X. The last column compares each simulated marginal distribution of X based on the
last 10,000 draws (histogram) with the target distribution (solid line). The first four rows
of Figure 15.4 illustrate the slow mixing and high autocorrelations of all four samplers; the
simulated marginal distributions do not approximate the target distribution as well as we
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FIGURE 15.4
Comparing six MCMC samplers constructed for simulating a bivariate distribution that has Gaussian conditional
distributions but is not a bivariate Gaussian distribution. The rows correspond to the Gibbs sampler, the MH
sampler with τ = 0.5, the MH sampler with τ = 1, the MH sampler with τ = 2, the MH-within-PCG sampler run
with τ = 1, and the PAMH-within-PCG sampler run with τ = 1 and α = 0.5. The first column shows trace plots
of the last 5000 iterations of each chain; the second column contains autocorrelations of the last 10,000 draws; and
the last column compares each simulated marginal distribution of X based on the last 10,000 draws (histogram)
with the true marginal distribution (solid line).

might hope. Among the three MH samplers, the choice of τ = 1 (row 3) results in the best
convergence.
We can use a PCG sampler to improve convergence as described in Section 15.2. In par-

ticular, if we could eliminate the conditioning on Y in Step 1 of the Gibbs sampler, we could
generate independent draws by iterating between the following steps:
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Step 1. Draw X from p(X), where

p(X) ∝ 1√
8X2 + 1

exp
{
− 1
2

(
X2 − 8X − 16

8X2 + 1

)}
.

Step 2. Draw Y from p(Y |X).

This PCG sampler would be a blocked one-step sampler if we could simulate p(X) directly.
Because we cannot, we consider indirect sampling in Step 1 using MH with a Gaussian
proposal distribution, X′ |X(t) ∼ N(X(t), τ2). This results in an MH-within-PCG sampler
that we implement with τ = 1.∗ To further improve convergence, we use PAMH sam-
pling in Step 1. This results in a PAMH-within-PCG sampler, that we also implement with
τ = 1 and with α = 1 for the first 1000 iterations and α = 1

2 for the next 19,000 iterations.
We discretize the space into 200 bins equally spaced between −1 and 8, and approxi-
mate π̂(X) using the bin proportions from the first 1000 iterations. The last two rows of
Figure 15.4 illustrate the convergence of theMH and PAMH-within-PCG samplers, respec-
tively. The PAMH-within-PCG sampler exhibits a clear improvement over the other five
MCMC samplers.

15.4 Spectral Analysis in High-Energy Astrophysics
We now turn to the illustration of PCG and PAMH in spectral analysis in high-energy
astrophysics. In recent years technological advanceshavedramatically increased thequality
and quantity of data available to astronomers. Instrumentation is tailored to data-collection
challenges associatedwith specific scientific goals. These instruments providemassive new
surveys resulting in new catalogs containing terabytes of data, high resolution spectrog-
raphy and imaging across the electromagnetic spectrum, and incredibly detailed movies
of dynamic and explosive processes in the solar atmosphere. The spectrum of new instru-
ments is helping make impressive strides in our understanding of the universe, but at the
same time generating massive data-analytic and data-mining challenges for scientists who
study the data.
High-energy astrophysics is concerned with ultraviolet rays, X-rays, and γ-rays, that is,

photons with energies of a few electron-volts (eV), a few kiloelectron-volts (keV), or more
than a megaelectron-volt, respectively. Roughly speaking, the production of high-energy
electromagnetic waves requires temperatures of millions of degrees and signals the release
of deepwells of stored energy such as those in very strongmagnetic fields, extreme gravity,
explosive nuclear forces, and shockwaves in hot plasmas. Thus, X-ray and γ-ray telescopes
can map nearby stars with active magnetic fields, the remnants of exploding stars, areas
of star formation, regions near the event horizon of a black hole, very distant turbulent
galaxies, or even the glowing gas embedding a cosmic cluster of galaxies. The distribution
of the energy of the electromagnetic emissions is called the spectrum and gives insight into
these deep energy wells: the composition, density, and temperature/energy distribution
of the emitting material; any chaotic or turbulent flows; and the strengths of the magnetic,
electrical, or gravitational fields.

∗ Verifying the stationary distribution of a MH-within PCG sampler or a PHMH-within-PCG sampler considers
somewhat subtle considerations that we do not discuss here. See van Dyk and Park (2011) for details.
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In this chapter we focus on X-ray spectral analysis. A typical spectrum can be formulated
as a finite mixture distribution composed of one or more continuum terms, which are
smooth functions across a wide range of energies, and one or more emission lines, which
are local features highly focused on a narrow band of energies. For simplicity we focus on
a case where there is one continuum term and one emission line. Because of instrumental
constraints, photons are counted in a number of energy bins. These photon counts are
modeled as an inhomogeneous Poisson processwith expectation in energy bin jmodeled as

Λj(θ) = fj
(
θC
)
+ λπj

(
μ, σ2

)
, (15.3)

where θ is the set of model parameters, fj
(
θC) is the expected continuum count in bin j,

θC is the set of free parameters in the continuum model, λ is the total expected line count,
and πj

(
μ, σ2

)
is the proportion of an emission line with location μ and width σ2 falling

into bin j. Various emission line profiles such as Gaussian distributions, t distributions, and
delta functions can be used to derive the emission line bin proportions as a function of μ
and σ2. We focus on the use of a delta function which is parameterized only in terms of μ.
Due to instrumental constraints, the photon counts are subject to blurring of the individ-

ual photon energies, stochastic censoring with energy dependent rates, and background
contamination. To account for these processes, we embed the scientific model in Equa-
tion 15.3 within a more complex observed-data model. In particular, the observed photon
counts in detector channel l are modeled with a Poisson distribution,

Yobs l ∼ Poisson
(∑

j
MljΛj(θ)uj(θA)+ θBl

)
, (15.4)

whereMlj is the probability that a photon that arrives with energy corresponding to bin j
is recorded in channel l, uj(θA) is the probability that a photon with energy corresponding
to bin j is observed, and θBl is the expected background counts in channel l. A multilevel
model can be constructed to incorporate both the finite mixture distribution of the spectral
model and the complexity of the data-generationmechanism. Using amissing-data/latent-
variable setup, a standardGibbs sampler can be constructed to fit themodel (vanDyk et al.,
2001; van Dyk and Kang, 2004).

15.5 Efficient MCMC in Spectral Analysis
As a specific example, we consider data collected using the Chandra X-ray Observatory in
an observation of the quasar PG1634+706 (Park et al., 2008). Quasars are extremely distant
astronomical objects that are believed to contain supermassive black holes with masses
exceeding that of our Sun by a factor of a million. Because quasars are very distant, the
universe was a fraction of its current age when the light we now see as a quasar was
emitted. They are also very luminous and therefore give us a way to study the “young”
universe. Thus, the study of quasars is important for cosmological theory and their spectra
can give insight into their composition, temperature, distance, and velocity.
We are particularly interested in an emission feature of the quasar’s spectrum, which is

a narrow Fe-K-alpha emission line whose location indicates the ionization state of iron in
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the emitting plasma. To fit the location of a narrow emission line, we model the emission
line with a delta function, so that the entire line falls within one data bin.
Unfortunately, the standardGibbs sampler described in vanDyk et al. (2001) breaks down

when delta functions are used to model emission lines. Using the method of data augmen-
tation, the standard Gibbs sampler is constructed in terms of missing data that include
unobservedPoissonphoton countswith expectationgiven inEquation15.3 andunobserved
mixture indicator variables for the mixture given in Equation 15.3. To see why the standard
Gibbs sampler fails, we examine how the mixture indicator variables and line location are
updated. The components of the mixture indicator variable are updated for each photon
within each bin as a Bernoulli variable with probability of being from an emission line,

λπj(μ)

fj
(
θC)+ λπj(μ)

(15.5)

in energy bin j. (We suppress the width, σ2, of the emission line πj(μ, σ2), because a delta
function has no width.) Because the delta function is contained in a single bin, πj(μ) = 1
if μ is within bin j, and 0 otherwise. This means that the probability in Equation 15.5 is
zero for all energy bins except the one containing the current line location, μ. Thus, in each
iteration of the standard Gibbs sampler, the only bin that can have photons attributed to
the emission line is the bin that contains the current iterate of the line location. When the
line location is updated using the photons attributed to the emission line, it is necessarily
set to the same value as the current iterate. Thus, unless there are no photons attributed to
the line, its location is fixed. As a result, unless the line is very weak, the standard Gibbs
sampler is in effect not positive recurrent and does not converge to the target distribution.
Although this sampler works fine with emission lines of appreciable width, it fails for delta
functions (Park and van Dyk, 2009; van Dyk and Park, 2004).
To understand the computational challenges of fitting this model, we must go into some

of the technical details of the Gibbs sampler. Let Y = {Yobs l} be the observed data modeled
in Equation 15.4, Ymis = (Ymis 1,Ymis 2) be a collection of missing data, where Ymis 1 denotes
the unobserved Poisson photon counts with expectation given in Equation 15.3 and Ymis 2
the unobserved mixture indicator variable for each photon under the finite mixture model
given in Equation 15.3,μ be the delta function line location, andψ be themodel parameters
other than μ. To sample from the target distribution p(Ymis,ψ,μ |Yobs), the parent Gibbs
sampler is constructed by iteratively sampling from its conditional distributions, as shown
in Figure 15.5a. This is a special case of the “standard” Gibbs sampler discussed above and
derived by van Dyk et al. (2001). We devise a PCG sampler to improve the convergence of
the parent Gibbs sampler. To construct a PCG sampler, we eliminate the conditioning on
all or some of Ymis in the step that updates μ. In combination with PAMH, this results in
three new efficient samplers.

Parent sampler Marginalize 
(a) (b)

Permute 
(c)

Trim 
(d)

Block 
(e)

p(Ymis, μ | ψ, Y)
p(ψ | Ymis, μ, Y)

p(μ | ψ, Y)
p(Ymis | ψ, μ, Y)
p(ψ | Ymis, μ, Y)

p(Y*mis, μ | ψ, Y)
p(Ymis | ψ, μ, Y)
p(ψ | Ymis, μ, Y)

p(Y*mis | ψ, Y)
p(ψ | Ymis, μ, Y)
p(Ymis, μ | ψ, Y)

p(Ymis | ψ, Y)
p(ψ | Ymis, μ, Y)
p(μ | Ymis, | ψ, Y)

FIGURE 15.5
Transforming the parent Gibbs sampler into PCG I. The PCG I sampler in (e) is constructed by partially collapsing
out the missing data and corresponds to a blocked version of its parent sampler in (a).
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First, PCG I is constructed by eliminating the conditioning on all of Ymis in the step that
updatesμ. Figure 15.5 showshow theparentGibbs sampler shown in (a) is transformed into
PCG I shown in (e) by partially collapsing Ymis out of the sampler. In Figure 15.5b, Ymis is
moved from being conditioned upon to being sampled in the step that updatesμ. The steps
are thenpermuted inFigure 15.5c inorder tomakeoneof the twoupdates ofYmis redundant.
This allows us to trim the unused sample of Y�

mis from the first step in Figure 15.5d. Finally,
we can combine the first two steps into a single sampling of p(Ymis,μ |ψ,Y). The resulting
PCG sampler in Figure 15.5e is a blocked version of the parent Gibbs sampler.
Because the likelihood function is flat within each bin as a function of μ, we can treat

μ as a discrete parameter. Its distribution given ψ and Yobs is multinomial with values
corresponding to the midpoints of data bins and probability vector proportional to the
product of the Poisson distributions given in Equation 15.4. (We use a flat prior distribution
on μ.) This probability vector must be computed at each iteration of the sampler, which
is computationally expensive owing to the large blurring matrixM = {Mlj} and the large
number of energy bins. Because sampling from p(μ |ψ,Yobs) is so expensive, we consider a
secondPCG sampler that avoids this update. In particular,we consider eliminating only the
mixture indicator variables, Ymis 2, from the step that updates μ in the derivation of PCG II.
Because the resulting update for μ conditions on Ymis 1, ψ, and Yobs, its distribution is
multinomialwithprobability vector proportional to theproduct of thePoissondistributions
given inEquation15.3. Thisdistributiondoesnot involve the largedimensionof theblurring
matrix and is much quicker to compute.
Figure 15.6 illustrates the construction of PCG II which is identical to that of PCG I except

that only Ymis 2 is moved from being conditioned upon to being sampled in the step that
updates μ. Unlike PCG I, however, PCG II consists of a set of incompatible conditional
distributions and does not correspond to a blocked version of the parent Gibbs sampler;
see Figure 15.6d. Due to the greater degree of collapsing, PCG I is expected to have bet-
ter convergence characteristics than PCG II (see van Dyk and Park, 2008). The tradeoff
is, however, that an iteration of PCG II is much faster to compute than one of PCG I. A
numerical comparison of the two samplers appears below.
Inorder to further improve computational speed,we considerusing anMHstep toupdate

μ in an effort to avoid the expense of computing a lengthy probability vector at each iter-
ation. This requires us to evaluate only two components of the multinomial probability
vector, the components corresponding to the current value and the proposed value of the
line location. Although this can significantly reduce computation time per iteration, it is
difficult to find a good proposal distribution because the posterior distribution of the line
location can be highly multimodal. Aproposal distribution with relatively high variance is
required to allow jumping among the modes, but this leads to many rejected proposals in

Parent sampler Marginalize
(a) (b)

Permute
(c)

Trim
(d)

p(Ymis 1, Y*mis 2 | ψ, μ, Y)
p(ψ | Ymis, μ, Y)
p(Ymis 2, μ | Ymis 1, ψ, Y)

p(Y*mis 2, μ | Ymis 1, ψ, Y)
p(Ymis | ψ, μ, Y)
p(ψ | Ymis, μ, Y)

p(Ymis | ψ, μ, Y)
p(ψ | Ymis, μ, Y)
p(μ | Ymis, ψ, Y)

p(μ | Ymis 1, ψ, Y)
p(Ymis | ψ, μ, Y)
p(ψ | Ymis, μ, Y)

FIGURE 15.6
Transforming the parent Gibbs sampler into PCG II. This PCG sampler is constructed by partially collapsing out
part of the missing data, is composed of a set of incompatible conditional distributions, and is not a blocked
version of the sampler in (a).
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FIGURE 15.7
Comparing three efficient MCMC samplers constructed for spectral analysis. The rows correspond to the PCG I,
PCG II, and the PAMH-within-PCG I samplers, respectively. The PAMH sampler was run with τ = 2 and α =
0.5. The first column shows trace plots of the last 10,000 iterations of each chain; the second column contains
autocorrelation plots of the last 10,000 draws; and the last column presents a simulated marginal distributions of
the line location μ based on the last 10,000 draws. Although PCG I mixes more quickly than PAMH-within-PCG
I, it requires about 50 times more computing time for the 20,000 draws.

regionsbetween themodes.To improve the convergenceof theMHsampler,weconsider the
PAMH sampling strategy to update μ. We use a Gaussian proposal distribution with stan-
darddeviation τ = 2 for the initialMHwithinGibbs sampler,which allows jumps across the
range of energies (5.5 keV).After 1000 iterationswe use an estimate of the discretemarginal
posterior distribution of μ in a second MH transition kernel that we mix with the original
kernel in a fifty–fifty mixture for the remaining draws of the PAMH-within-PCG I sampler.
The convergence characteristics of the three samplers are compared in Figure 15.7. Each

of the three samplers is run for 20,000 iterations. The rows correspond to the PCG I, PCG II,
and PAMH-within-PCG I samplers, respectively; the columns correspond to the trace and
autocorrelation plots of the last 10,000 iterations, and the simulated marginal posterior dis-
tribution of the line location based on the last 10,000 iterations, respectively. Comparing the
first two columns of Figure 15.7 illustrates that PCG I has the quickest convergence among
the three PCG samplers, but the other two PCG samplers also have fairly fast convergence.
When sampling μ from its multinomial conditional distribution, however, PCG I requires
significantlymore computing time than PCG II, which in turn takes significantlymore time
than PAMH-within-PCG I. The total computing time for 20,000 iterations of the PCG I,
PCG II, and PAMH-within-PCG I samplers on a UNIX machine was 15 hours 35 minutes,
1 hour 55 minutes, and 19 minutes, respectively.
To further compare the three PCG samplers, we compute their effective sample sizes

(ESS), defined by

ESS = n
1+ 2

∑∞
k=1 ρk(θ)

,

where n is the total sample size and ρk(θ) is the lag-k autocorrelation for θ; see Kass et al.
(1998) and Liu (2001). The infinite sum in effective sample size is truncated at lag k when
ρk(θ) < 0.05. For n equal to 10,000, the effective sample sizes of the PCG I, PCG II, and
PAMH-within-PCG I samplers are 2436, 304, and 894, respectively. When computation
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time is accounted for, the PCG I and PCG II samplers have similar ESS per second: 0.087
and 0.088, respectively. The PAMH-within-PCG I sampler, on the other hand, has ESS per
second of 1.568,which is about 18 times larger. Thus, PAMH-within-PCG I offers a dramatic
improvement in computation time with very good mixing.

15.6 Conclusion
In this chapter we illustrate the use of two computational techniques to improve the perfor-
mance of MCMC samplers in a particular example from high-energy astrophysics. These
techniques are of course useful in other settings as well. For example, PCG samplers are
generally useful when eliminating conditioning on some unobserved quantities in a step
of a Gibbs sampler does not complicate the draw. Reducing the conditioning in this way
can only improve convergence, butmust be implemented carefully to be sure the target sta-
tionary distribution is maintained (see Section 15.2). Even when the resulting draw is more
complicated, PCG samplers may be worth pursuing if the conditional variance is increased
substantially by reducing the conditioning. In this case, the extra effort in obtaining the
draw may be offset by an improvement in the overall convergence of the chain. PAMH,
on the other hand, is most useful when the initial MH sampler mixes poorly but visits all
important areas of the parameter space. In this case, the initial draws can easily be used
to construct an improved proposal distribution. Even if mixing is acceptable, PAMH may
be useful if the MH proposal distribution is expensive to evaluate. In this case, the initial
draws can be used to construct a proposal distribution that provides similar mixing, but
with faster evaluation.
There are many other computational techniques and variants on MCMC samplers that

can be applied to the myriad of complex model fitting challenges in astronomy. Puzzling
together the appropriate computational and statisticalmethods for the numerous outstand-
ing data-analytic problems offers a gold mine for methodological researchers. We invite all
interested readers to join us in this seemingly endless but ever enjoyable endeavor!
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Posterior Exploration for Computationally Intensive
Forward Models

David Higdon, C. Shane Reese, J. David Moulton, Jasper A. Vrugt, and Colin Fox

16.1 Introduction
In a common inverse problem, we wish to infer about an unknown spatial field x =
(x1, . . . , xm)T , given indirect observations y = (y1, . . . , yn)T . The observations, or data, are
linked to the unknown field x through some physical system

y = ζ(x)+ ε,

where ζ(x) denotes the physical system and ε is an n-vector of observation errors. Examples
of such problems include medical imaging (Kaipio and Somersalo, 2004), geologic and
hydrologic inversion (Stenerud et al., 2008), and cosmology ( Jimenez et al. 2004). When a
forward model, or simulator, of the physical process η(x) is available, one can model the
data using the simulator

y = η(x)+ e,

where e includes observation error as well as error due to the fact that the simulator η(x)
may be systematically different from reality ζ(x) for input condition x. Our goal is to use
the observed data y to make inference about the spatial input parameters x—predict x and
characterize the uncertainty in the prediction for x.
The likelihood L(y|x) is then specified to account for both mismatch and sampling error.

We will assume zero-mean Gaussian errors so that

L(y|x) ∝ exp
{
−1
2
(y − η(x))TΣ−1e (y − η(x))

}
, (16.1)

with Σe known. It is worth noting that the data often come from only a single experiment.
So while it is possible to quantify numerical errors, such as those due to discretization (see
Kaipio and Somersalo, 2004; Nissinen et al., 2008), there is no opportunity to obtain data
from additional experiments for which some controllable inputs have been varied. Because
of this limitation, there is little hope of determining the sources of error in e due to model
inadequacy. Therefore, the likelihood specification will often need to be done with some
care, incorporating the modeler’s judgment about the appropriate size and nature of the
mismatch term.
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In many inverse problems we wish to reconstruct x, an unknown process over a regular
two-dimensional lattice. We consider systems for which the model input parameters x
denote a spatial field or image. The spatial prior is specified for x, π(x), which typically
takes into account modeling, and possibly computational considerations.
The resulting posterior is then given by

π(x|y) ∝ L(y|η(x))× π(x).

This posterior can, in principle, be explored viaMarkov chainMonte Carlo (MCMC). How-
ever the combined effects of the high dimensionality of x and the computational demands
of the simulator make implementation difficult, and often impossible, in practice. By itself,
the high dimensionality of x is not necessarily a problem.MCMC has been carried out with
relative ease in large image applications (Rue, 2001; Weir, 1997). However, in these exam-
ples, the forward model was either trivial or non-existent. Unfortunately, even a mildly
demanding forward simulation model can greatly affect the feasibility of doing MCMC to
solve the inverse problem.
In this chapter we apply a standard single-site updating scheme that dates back to

Metropolis et al. (1953) to sample from this posterior. While this approach has proven
effective in a variety of applications, it has the drawback of requiring hundreds of thou-
sands of calls to the simulation model. In Section 16.3 we consider two MCMC schemes
that use highly multivariate updates to sample from π(x|y): the multivariate random-walk
Metropolis algorithm (Gelman et al., 1996) and the differential evolutionMCMC (DE-MCMC)
sampler of ter Braak (2006). Such multivariate updating schemes are alluring for computa-
tionally demanding inverse problems since they have the potential to update many (or all)
components of x at once, while requiring only a single evaluation of the simulator. Next, in
Section 16.4, we consider augmenting the basic posterior formulation with additional for-
mulations based on faster, approximate simulators. The faster, approximate simulators are
created by altering the multigrid solver used to compute η(x). These approximate simula-
tors can be used in a delayed acceptance scheme (Christen and Fox, 2005; Fox andNicholls,
1997), as well as in an augmented formulation (Higdon et al., 2002). Both of these recipes
can be utilizedwith any of the aboveMCMCschemes, often leading to substantial improve-
ments in efficiency. In each section we illustrate the updating schemes with an electrical
impedance tomography (EIT) application described in the next section, where the values
of x denote electrical conductivity of a two-dimensional object. The chapter concludes with
a discussion and some general recommendations.

16.2 An Inverse Problem in Electrical Impedance Tomography
Bayesian methods for EIT applications have been described in Fox and Nicholls (1997),
Kaipio et al. (2000), and Andersen et al. (2003). A notional inverse problem is depicted in
Figure 16.1; this setupwasgivenpreviously inMoultonet al. (2008).Here a two-dimensional
object composed of regions with differing electrical conductivity is interrogated by 16 elec-
trodes. From each electrode, in turn, a current I is injected into the object and taken out at a
rate of I/(16− 1) at the remaining 15 electrodes. The voltage is thenmeasured at each of the
16 electrodes. These 16 experimental configurations result in n = 16× 16 voltage observa-
tions which are denoted by the n-vector y. The measurement error is simulated by adding
independent and identically distributed mean-zero Gaussian noise to each of the voltage
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FIGURE 16.1
A synthetic EIT application. A two-dimensional object is surrounded by electrodes at 16 evenly spaced locations
around its edge. The conductivity of the object is 3 in the white regions, and 4 in the black regions (the units are
arbitrary since the data are invariant to scalings of the conductivity). First, a current of I is injected at electrode 1,
and extracted evenly at the other 15 electrodes. The voltage is measured at each electrode. This data is shown in
the plot labeled 1 on the right. Similar experiments are carried out with each electrode taking a turn as the injector.
The resulting voltages are shown in the remaining 15 plots. In each plot, the voltage corresponding to the injector
electrode is given by a black plotting symbol.

measurements. The standard deviation σ of this noise is chosen so that the signal to noise
ratio is about 1000 : 3, which is typical of actual EITmeasurements. The resulting simulated
data is shown on the right in Figure 16.1—one plot for each of the 16 circuit configurations.
In each of those plots, the injector electrode is denoted by the black plotting symbol.
We take s to denote spatial locations within the object Ω = [0, 1] × [0, 1], and take x(s)

to denote the electrical conductivity at site s. We also take v(s) to be the potential at loca-
tion s, and j(s) to be the current at boundary location s. A mathematical model for the
measurements is then the Neumann boundary-value problem

−∇ · x(s)∇v(s) = 0, s ∈ Ω,

x(s)
∂v(s)
∂n(s)

= j(s), s ∈ ∂Ω,

where ∂Ω denotes the boundary of the object Ω and n(s) is the unit normal vector at the
boundary location s ∈ ∂Ω. The conservation of current requires that the sum of the currents
at each of the 16 electrodes be 0.
In order to numerically solve this problem for a given set of currents at the electrodes

and a given conductivity field, x(s), the conductivity field is discretized into anm = 24× 24
lattice. We use a robust multigrid solver called Black Box MG (Dendy, 1987). In addition to
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being rather general and fast, we can also exploit the multigrid nature of the algorithm to
develop fast approximations using the MCMC scheme described in Section 16.4.
Now, for any specified conductivity configuration x and current configuration, themulti-

grid solver produces 16 voltages. For all 16 current configurations, 16 forward solves
produces an n = 256-vector of resulting voltages η(x). Hence, the sampling model for the
data y given the conductivity field x is given by Equation 16.1, where Σe = σ2In.
For the conductivity image prior, we adapt a Markov random field (MRF) prior from

Geman and McClure (1987). This prior has the form

π(x) ∝ exp

⎧⎨
⎩β
∑
i∼j

u(xi − xj)

⎫⎬
⎭ , x ∈ [2.5, 4.5]m, (16.2)

where β and s control the regularity of the field, and u(·) is the tricube function of Cleveland
(1979):

u(d) =
⎧⎨
⎩
1
s
(1− [d/s]3)3, if − s < d < s,

0, if |d| ≥ s.

The sum is over all horizontal and vertical nearest neighbors, denoted by i ∼ j, and given
by the edges in theMarkov random field graph in Figure 16.2. Hence, this prior encourages
neighboring xi to have similar values, but once xi and xj are more than s apart, the penalty
does not grow. This allows occasional large shifts between neighboring xi. For this chapter,
we fix (β, s) = (0.5, 0.3). A realization from this prior is shown on the right in Figure 16.2. A
typical prior realization shows patches of homogeneous values, alongwith abrupt changes
in intensity at patch boundaries. This prior also allows an occasional, isolated, extreme
single pixel value.

FIGURE 16.2
(Left) First-order neighborhood MRF graph corresponding to the prior in Equation 16.2; each term in the sum
corresponds to an edge in the MRF graph. (Right) A realization from this gray level prior.
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The resulting posterior density has the form

π(x|y) ∝ exp
{
− 1
2σ2

(y − η(x))T(y − η(x))
}
× exp

⎧⎨
⎩β
∑
i∼j

u(xi − xj)

⎫⎬
⎭ , x ∈ [2.5, 4.5]m.

(16.3)

The patchiness and speckle allowed by this prior, and the rather global nature of the like-
lihood, make posterior exploration for this inverse problem rather challenging, and a good
test case for variousMCMC schemes that have been developed over the years.We note that
the nature of the posterior can be dramatically altered by changing the prior specification
for x. This is discussed later in this section.
This chapter considers a number of MCMC approaches for sampling from this posterior

distribution. We start at the beginning.

16.2.1 Posterior Exploration via Single-Site Metropolis Updates

A robust and straightforward method for computing samples from the posterior π(x|y) is
the single-site Metropolis scheme, originally carried out in Metropolis et al. (1953) on the
world’s first computer with addressable memory, theMANIAC.Acommon formulation of
this scheme is summarized inAlgorithm 1 using pseudocode. This scheme is engineered to
maintain detailed balance—so that the relative movement between any two states x and x∗
is done in proportion to the posterior density at these two points. Thewidth of the proposal
distribution σz should be adjusted so that inequality in line 5 is satisfied roughly half the
time (Gelman et al., 1996), but an acceptance rate between 70% and 30% does nearly as well
for single-site updates. After scanning through each of the parameter elements (for loop,
steps 3–7), one typically records the current value of x. We do so every 10 scans through the
parameter vector.

ALGORITHM 1 SINGLE-SITE METROPOLIS

1: initialize x
2: for k = 1 : niter do
3: for i = 1 : m do
4: x ′i = xi + z, where z ∼ N (0, σz)

5: if u <
π(x ′|y )
π(x|y )

, where u ∼ U (0,1) then

6: set xi = x ′i
7: end if
8: end for
9: end for

This single-site scheme was originally intended for distributions with very local depen-
dencieswithin the elements of x so that the ratio in line 5 simplifies dramatically. In general,
this simplification depends on the full conditional density of xi,

π(xi|x−i, y), where x−i = (x1, . . . , xi−1, xi+1, . . . , xn)T .
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This density is determined by keeping all of the product terms in π(x|y) that contain xi, and
ignoring the terms that do not. Hence the ratio in line 5 can be rewritten as

π(x′|y)
π(x|y) =

π(x′i|x−i, y)
π(xi|x−i, y) .

In many cases this ratio becomes trivial to compute. However, in the case of this particular
inverse problem, we must still evaluate the simulator to compute this ratio. This is exactly
what makes the MCMC computation costly for this problem.
Nonetheless, this straightforward sampling approach does adequately sample the poste-

rior, given sufficient computational effort. Figure 16.3 shows realizations produced by the
single-siteMetropolis algorithm, separated by 1000 scans through each element of x. Inspec-
tion of these realizations makes it clear that posterior realizations yield a crisp distinction
between the high- and low-conductivity regions, as was intended by the MRF prior for x.
Around the boundary of the high conductivity region, there is a fair amount of uncertainty
as to whether or not a given pixel has high or low conductivity.
Figure 16.4 shows the resulting posterior mean for x and the history of three pixel values

over the course of the single-site updating scheme. The sampler was run until 40,000 ×m
forward simulations were carried out. An evenly spaced sample of 6000 values for three of
the m pixels is shown on the left in Figure 16.4. Note that for the middle pixel (blue circle),
the marginal posterior distribution is bimodal—some realizations have the conductivity
value near 3, others near 4. Being able to move between these modes is crucial for a well-
mixing chain. Getting this pixel to move between modes is not simply a matter of getting
that one pixel to move by itself; the movement of that pixel is accomplished by getting the
entire image x to move between local modes of the posterior.
This local multimodality is largely induced by our choice of prior. For example, if we

alter the prior model in Equation 16.2 so that

u(d) = −d2, (16.4)

we have a standard Gaussian Markov random field (GMRF) prior for x. If, in addition,
the simulator is a linear mapping from inputs x to ouputs η(x), the resulting posterior is
necessarily Gaussian, and hence unimodal. While this is not true for nonlinear forward
models/simulators, the GMRF prior still has substantial influence on the nature of the
posterior. Figure 16.5 shows two realizations and the posterior mean resulting from such
a prior with β = 2. Here posterior realizations are locally more variable—the difference
between neighboring pixels is generally larger. However, the global nature of the posterior
realizations is farmore controlled than those in Figure 16.3 since theGMRFprior suppresses

FIGURE 16.3
Five realizations from the single-site Metropolis scheme. Realizations are separated by 1000 scans through the
m-dimensional image parameter x.
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run carries out 40,000 ×m forward simulator evaluations. The value of xi is given every 10th iteration (i.e. every
10×m single-site updates).

local modes that appear under the previous formulation. This resulting formulation is also
far easier to sample, requiring about one tenth of the effort needed for formulation in
Equation 16.3. An alternate, controlling prior formulation uses a process convolution prior
for x is given in theAppendix to this chapter. In addition to yielding a more easily sampled
posterior, the prior also represents the image x with far fewer parameters than the m used
in the MRF specifications.
While these alternative specifications lead to simpler posterior distributions, they do so

while giving overly smooth posterior realizations. Still, such realizations may be useful for
exploratory purposes, and for initializing other samplers; we do not further pursue such
formulations here. Instead, we focus on comparison of various MCMC schemes to sample
the original gray level posterior in Equation 16.3. We use the sample traces from the three
pixels circled in Figure 16.4 to make comparisons between a variety of samplers which are
discussed in the next sections—the movement of these three pixels is representative of all
the image pixels. In particular, we focus on the frequency of movement between high and
low conductivity at these sites.

FIGURE 16.5
Two realizations and the posterior mean from the single-site Metropolis scheme run on the posterior resulting
from the GMRF prior. Realizations are separated by 1000 scans through the m-dimensional image x.
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16.3 Multivariate Updating Schemes
Schemes that propose to update more than just a single component of x at a time have the
potential to reduce the computational burden of producing anMCMC sample from π(x|y).
The single-site scheme above is also applicablewhen the proposal for x′ changes some or all
of the components of x. However, producing a multivariate candidate x′ that has an appre-
ciable chance of being accepted (i.e. satisfying the inequality in line 5 ofAlgorithm 1) while
allowing appreciablemovement, is very difficult. This highlights a very appealing aspect of
the single-site Metropolis scheme: even fairly thoughtless one-dimentional proposals have
an appreciable chance of being accepted while adequately exploring the posterior.
There are clusteringMCMCalgorithms from statistical physics that allow formany pixels

in x to be updated at once (Edwards and Sokal, 1988). Such methods can be adapted to this
particular problem as in Higdon (1998); however, such methods typically show decreased
efficiency relative to single-site updating when the likelihood is strong relative to the prior.
This is certainly the case with our attempts on this application whose results are not worth
discussing here. Instead, we look to multivariate random-walk Metropolis updating and
theDE-MCMCscheme of ter Braak (2006) as competitors to the costly single-siteMetropolis
updating for our EIT application.

16.3.1 Random-Walk Metropolis

The multivariate random-walk Metropolis scheme (RWM) has been the focus of a number
of theoretical investigations (Gelman et al., 1996; Tierney, 1994). But to date this scheme
has not been widely used in applications, and has proven advantageous only in simple,
unimodal settings. The preference for single-site, or limitedmultivariate updates in practice
may be attributed to how the full conditionals often simplify computation, ormay be due to
the difficulty in tuning highlymultivariate proposals. In our EIT application, the univariate
full conditionals donot lead to any computational advantages. If there is ever an application
for which RWM may be preferable, this is it. Single-site updating is very costly, and may
be inefficient relative to multivariate updating schemes for this multimodal posterior.
Amultivariate Gaussian RMW scheme for the m-vector x is summarized in Algorithm 2

using pseudocode.

ALGORITHM 2 RANDOM-WALKMETROPOLIS

1: initialize x
2: for k = 1 : niter do
3: x ′ = x + z, where z ∼ Nm(0,Σz)

4: if u <
π(x ′|y )
π(x|y )

, where u ∼ U (0,1) then

5: set x = x ′
6: end if
7: end for

We consider three different proposals for this scheme:

Σz ∝ Σ1 = Im,
Σz ∝ Σ2 = diag(s21, . . . , s

2
m),

Σz ∝ Σ3 = S2,
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FIGURE 16.6
MCMC traces of three pixels circled in Figure 16.4 under three multivariate random-walk Metropolis schemes,
and single-site Metropolis. For each run, 40,000×m forward simulator evaluations are carried out. While the
RWM scheme with Σz ∝ S2 results in good movement for the central pixel, the movement of the top and bottom
pixels is clearly inferior to that of single-site Metropolis.

where s2i is the posterior marginal sample variance for the conductivity xi, and S2 is the
m×m sample covariance matrix—both estimated from the previously obtained single-site
MCMCrun. In each casewe setΣz = αiΣi, where the scalar αi is chosen so that the candidate
x′ is accepted 30% of the time, which is close to optimal in a Gaussian setting.
MCMC traces for these three implementations of RWM are shown in Figure 16.6. The

traces from the single-site Metropolis scheme are also given for comparison. Interestingly,
the behavior of the traces varies with the choice of Σz. The scheme with Σz ∝ S2 shows
the most movement for the central pixel, which moves between high and low conductivity
over the run. However, its performance for the top, low-conductivity pixel is noticeably
worse. None of the RWM schemes do as well as single-site Metropolis when looking at
the bottom, high conductivity pixel. These results suggest that a scheme that utilizes both
single-site and RWMupdates withΣz ∝ S2 might give slightly better posterior exploration
than single-site Metropolis alone.

16.3.2 Differential Evolution and Variants

In ter Braak’s DE-MCMC algorithm, a collection of independent chains {x1, . . . , xP} are con-
structed, each sampling from the posterior. Chain xp is updated according to amultivariate
Metropolis stepwhere the candidate is a perturbation of xp based on the difference between
two randomly chosen chains in the collection. ThisDE-MCMC scheme is described inAlgo-
rithm 3. In the original implementation, σ2 is chosen to be quite small so that a proposal
of the form x′ = x + e would nearly always be accepted; γ is chosen so that the proposal is
accepted about 30% of the time. Hence, it is the γ(xq − xr) part of the proposal that accounts
for nearly all of the movement from the current location x.
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ALGORITHM 3 DIFFERENTIAL EVOLUTION
1: initialize P copies {x1, . . .,xP}
2: for k = 1 : niter do
3: for p = 1 : P do
4: chose indices q and r without replacement from {1, . . .,

p − 1,p + 1, . . .,P}
5: xp ′ = xp + γ(xq − xr)+ e, where e ∼ N (0, σ2In)

6: if u <
π(xp ′|y )
π(xp |y )

, where u ∼ U (0,1) then

7: xp = xp ′
8: end if
9: end for
10: end for

One interpretation of the DE-MCMC algorithm is as an empirical version of the RWM
algorithm. The proposal distribution is a scaled difference between random draws from
π(x|y); the dependence between the parallel chains means that these draws are not inde-
pendent. Theoretical considerations make 2.38/

√
m a useful starting choice for γ (Gelman

et al., 1996). However, some tuning of γ is usually appropriate. An obvious appeal of this
DE scheme is that it avoids the difficult task of determining the appropriate Σz used in
the Gaussian RWM implementation from earlier in this section. By carrying P copies of
the chain, fruitful multivariate candidates can be generated on the fly. Such schemes have
proven useful in difficult, low-dimensional posterior distributions, but the utility of such
an approach has yet to be demonstrated on highly multivariate posteriors resulting from
applications such as this.
As a first step in illustrating DE-MCMC on the EIT application, we initialized the P = 400

chains by taking equally spaced realizations from the first 6000×m iterations from the
single-site Metropolis scheme described earlier. Then each of the 400 chains were updated
in turn according to the DE-MCMC algorithm. The sampler continued until 40,000 ×m
simulator evaluations were carried out. Thus each chain was updated 100×m times. The
resulting MCMC traces for the three representative pixels are shown in Figure 16.7 for
three of the 400 chains used in our implementation. For comparison, the trace from 100×m
single-site Metropolis is also given on the bottom right of the figure. Also, the mean and
(marginal) standard deviation for the central pixel (marked by the blue circle in Figure 16.4)
are shown in Figure 16.8 for each of the 400 chains. Within a given chain, the pixels show
very little movement; the final value of the 400 chains is not far from the starting point, as
is clear from Figure 16.8.
We also consider an alteration to the basic formulation of ter Braak in which the scalar

γ is drawn from a U(−a, a) distribution. We set a = 0.02 so that the proposal is accepted
about 30% of the time. For this alteration, we set e = 0 since these small steps had very little
impact on the sampler. While this alteration leads to noticeably better movement than our
standard DE-MCMC implementation, the movement of this chain is still clearly inferior
to single-site Metropolis. Given the less than stellar performance of the multivariate RWM
scheme, the lack of success here is not a big surprise since both schemes make use of highly
multivariate updates based on π(x|y). The larger surprise is that the general failure of these
multivariate updating schemes to provide any improvement over single-site Metropolis
updating, even when there are no computational savings to be had by considering uni-
variate full conditionals. We note that the poor performance of these multivariate updating
schemes does not preclude the existence of some modification that will eventually prove
beneficial for this application; we simply did not find one.
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FIGURE 16.7
MCMC traces of the same three pixels shown in Figure 16.4 for three of the 400 chains used in the DE-MCMC
scheme. The algorithm ranuntil 40,000×m forward simulator evaluations so that the computational effortmatches
the otherMCMCschemes. For each of the 400 chains, 100×mupdates are carried out. The bottom right plot shows
movement from 100×m single-site Metropolis iterations for comparison. The resulting movement is clearly
inferior to that of the standard single-site scheme when normalized by computational effort.

16.4 Augmenting with Fast, Approximate Simulators
Inmany applications, a faster, approximate simulator is available for improving theMCMC
sampling. There are a limited number of rigorous approaches for utilizing fast, approximate
simulators: delayed acceptance schemes that limit the number of calls to the expensive,
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FIGURE 16.8
The marginal posterior mean and lines extending ±1 standard deviation for the central pixel circled in Figure
16.4. The mean and standard deviation is estimated separately from each of the 400 copies in the DE-MCMC
scheme. The chains were initialized from evenly spaced realizations taken from the single-siteMetropolis scheme.
The spread of the means relative to the estimated standard deviation indicates a very poor mixing, or posterior
movement for the DE-MCMC scheme. For comparison, the marginal mean ±1 standard deviation of single-site
Metropolis is shown at the rightmost edge of the plot.
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exact simulator (Christen and Fox, 2005; Efendiev et al., 2006; Fox and Nicholls, 1997); and
augmented or tempering schemes (Higdon et al., 2002, 2003). For this chapter, we consider
simple implementations of both of these approaches and discuss their implementation in
context of the EIT application.
For themultigrid EIT simulator η(x), an approximate simulator can be created by altering

how the multigrid steps are carried out during the solve. Specifically, multigrid algorithms
achieve their efficiency through the recursive use of a local smoothing iteration and suc-
cessively coarser discrete problems; see (Briggs et al., 2000) for an overview of multigrid
principles. The most common multigrid cycle, the V-cycle, is shown in Figure 16.9. Here
a local smoothing iteration, such as a Gauss–Seidel relaxation, smooths the error of the
current iterate. In turn, the smoothed error is represented on a coarser grid through the
restriction (weighting) of the current residual. The coarser grid provides a means to find an
inexpensive correction to the current iterate; however, this grid may still be too large for a
direct solve. In this case the process is repeated until the coarsest grid is reached and a direct
solvemaybeperformed. The correction is then interpolated and smoothed, repeatedly, until
the finest grid is reached. If a single smoothing iteration is applied at each grid level of the
coarsening and refining phases, then the multigrid cycle is denoted as V(1, 1).
The complementarity of the smoothing and coarse-grid correction processes leads to

multigrid’s optimal algorithmic scaling (i.e. solution cost grows only linearly with number
of unknowns), and to a uniform reduction in the error with each cycle. It is this latter prop-
erty that creates the opportunity to develop efficient approximate solvers using elements
of robust variational multigrid algorithms. For example, MacLachlan and Moulton (2006)
developed the Multilevel Upscaling (MLUPS) algorithm to efficiently model flow through
highly heterogeneous porous media. MLUPS leveraged the hierarchy of discrete opera-
tors provided by the operator-induced variational coarsening of the Black Box Multigrid
(BoxMG) algorithm (see Dendy, 1982), and eliminated the smoothing iterations from the
finest few levels.
In this work, we produce approximate solvers by limiting the number of V(1, 1) cycles

carried out. Starting with a fixed initial solution, the approximate solvers will produce
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Schematic of the V-cycle multigrid iterative algorithm.
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ALGORITHM 4 DIFFERENTIAL ACCEPTANCEMETROPOLOIS

1: initialize x
2: for k = 1 : niter do
3: for i = 1 : m do
4: x ′i = xi + z, where z ∼ N (0, σz) )

5: if u1 <
π1(x ′|y )
π1(x|y )

, where u1 ∼ U (0,1) then

6: if u2 <
π0(x ′|y )π1(x|y )
π0(x|y )π1(x ′|y )

, where u2 ∼ U (0,1) then

7: set xi = x ′i
8: end if
9: end if

10: end for
11: end for

solutions of fitted voltages which depend on the conductivity field x. These approximate
solutionsareobtainedmorequickly, butdonotmatch thevoltagesobtained fromthe“exact”
solve. Here we consider two approximate solvers: one that stops after two V(1, 1) cycles;
and another that stops after a single V(1, 1) cycle. The resulting approximate simulators
η1(x) (two V cycles) and η2(x) (a single V cycle) are less accurate overall, but faster. In this
case, η1(x) typically takes a third of the computing time to evaluate relative to the exact
solver η0(x), while η2(x) typically takes a quarter of the time.

16.4.1 Delayed Acceptance Metropolis

The delayed acceptance approach of Fox and Nicholls (1997) and Christen and Fox (2005)
uses a fast, approximate simulator to “pretest” a proposal. This approach adapts ideas from
the surrogate transitionmethod of Liu (2001) for dealingwith complex forwardmodels. For
now, we define different posterior formulations, depending on which simulator is used:

πv(x|y) ∝ Lv(y|x)× π(x)

∝ exp
{
− 1
2σ2

(y − ηv(x))T(y − ηv(x))
}
× exp

⎧⎨
⎩β
∑
i∼j

u(xi − xj)

⎫⎬
⎭× I[x ∈ [2.5, 4.5]m].

We note that one could alter the samplingmodel for the approximate formulations, though
it is not done here.
A simple Metropolis-based formulation of this scheme is given in Algorithm 4, where

π0(x|y) and π1(x|y) denote the posteriors using the exact and approximate simulators,
respectively. Notice that the exact simulator need only be run if the pretest condition (u1 <
π1(x′|y)
π1(x|y) ) involving the faster, approximate simulator is satisfied.Hence, if the proposalwidth
is chosen so that the pretest condition is satisfied only a third of the time, the exact simulator
is only run for a third of the MCMC iterations. If we use the first approximate simulator
η1(x), then the 40,000×m iterations required for our original single-siteMetropolis scheme
take about 66% of the computational effort using this delayed acceptance approach.
If η1(x) is a very good approximation to the exact simulator η0(x), then this delayed

acceptance sampler is equally efficient if one normalizes by iteration. This is the case for the
first approximate simulator in this example–the difference in log likelihood is typically no
more than±0.2 over the range of posterior samples. However, if the approximate simulator
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poorly matches the exact one, any savings obtained by reducing the number of exact sim-
ulator evaluations will be more than offset by reduced efficiency in the delayed acceptance
sampler. In our application here, |η2(x)− η0(x)| can be as large as 2 for some realizations
x from the posterior. In using η2(x) in the delayed acceptance scheme, we detect a slight
increase in autocorrelation which is more than offset by gains in computational efficiency
from evaluating η2(x) in place of η0(x).
Apparently, this potential loss of efficiency is not present in this application since η2(x) is

still an adequate approximation to the exact simulator η0(x). This loss of efficiency due to
poor approximation is readily apparent if one takes a univariate example inwhichπ0(x|y) is
the standard normal density, andπ1(x|y) is the normal densitywithmean one and standard
deviation 0.5. In this case, the delayed acceptance sampler must take occasional, slow-
moving excursions in the negative numbers to offset the lack of support in π1(x|y) in that
region, reducing the efficiency of the sampler.
Finally, we note that Christen and Fox (2005) give a more general formulation for the

delayed acceptance sampler for which the approximate simulator can depend on the
current state x of the chain. While a bit more demanding computationally, the more
general algorithm can make use of local approximations which are available in some
applications.

16.4.2 An Augmented Sampler

By augmenting the posterior of interest with auxiliary distributions one can useMetropolis
coupling (Geyer, 1991), simulated tempering (Marinari andParisi, 1992), or related schemes
(Liu and Sabatti, 1999). Here we augment our posterior with additional posteriors based
on the two approximate simulators. We introduce the auxiliary variable v ∈ {0, 1, 2} to our
formulation, which indexes the simulator to be used, and treat v as an additional param-
eter in a larger formulation. We specify a uniform prior for v over {0, 1, 2} resulting in the
augmented formulation

π(x, v|y) ∝ L(y|x, v)× π(x)× π(v)

∝ exp
{
− 1
2σ2

(y − ηv(x))T(y − ηv(x))
}
× exp

⎧⎨
⎩β
∑
i∼j

u(xi − xj)

⎫⎬
⎭

× I[x ∈ [2.5, 4.5]m] × I[v ∈ {0, 1, 2}].

This augmented formulation can be sampled as before, except that after scanning through
the elements of x to carry out single-site Metropolis updates, a simple Metropolis update
is then carried out for v by making a uniform proposal over {0, 1, 2} \ v. Ideally, this chain
should move somewhat often between the states of v.
A small subsequence from this chain is shown in Figure 16.10. As this sampler runs, the

draws for which v = 0 are from the posterior of interest. While v = 1 or 2, the chain is
using one of the faster, approximate simulators. Hence, it can more quickly carry out the
single-site Metropolis updates, so that the chainmovesmore rapidly through this auxiliary
posterior. By the time the chain returns to v = 0, the realizations of x will generally show
more movement than a sampler based solely on the exact simulator η0(x).
Marginally, the augmented sampler spends about 20% of its iterations at v = 2, 42% at

v = 1, and 38% at v = 0. This augmented formulation allows about twice the number of
single-siteMetropolis updates as compared to the the standard single-siteMetropolis chain
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FIGURE 16.10
A sequence from the augmented sampler chain. A scan of m of single-site Metropolis updates is followed by a
Metropolis update of the formulation index variable v. Here the sequence of images x starts with v = 0, then
moves up to v = 2, and then back down to v = 0. While the chain is not using the exact simulator (v > 0), the
computational cost of carrying out the m single-site Metropolis updates for each xi is substantially reduced.

on the exact formulation alone. In all this nearly doubles the efficiency when normalized
by computing effort. The efficiency of the sampler could be improved slightly by altering
the prior for v so that the chain spends more time at v = 2 and less at v = 0.
A feature of both the delayed acceptance algorithm and the augmented formulation is

that they utilize themost efficientMCMC scheme available. Both of thesemethods could be
used with an alternative to single-site Metropolis if it is found to be more efficient. For the
augmented example above, we could improve the computational efficiency by employing
delayed acceptance, using η1(x)when carrying out them single-siteMetropolis updates for
xi when v = 0. There is no practical benefit in using delayed acceptance using η2(x) when
v = 1 since the relative speed of the two simulators is not that different.

16.5 Discussion
For the EIT example, single-site Metropolis requires about 2 million simulator evaluations
to effectively sample this posterior distribution. Multivariate updating schemes such as
random-walkMetropolis or DE-MCMC—as we implemented them here—do not offer any
real relief. Utilizing fast approximations through delayed acceptance and/or tempering
schemesmay reduce the computational burden by a factor of 4 or so, more if a very fast and
accurate approximation is available. This means that sampling this m = 576-dimensional
posterior is going to require at least a half amillion simulator evaluations. This numberwill
most certainly increase as the dimensionality m increases. Hence, a very fast simulator is
required if one hopes to use such an image-basedMCMC approach for a three-dimensional
inverse problem.
One challenging feature of this application is the multimodal nature of the posterior

which is largely induced by our choice of prior. By specifying a more regularizing prior,
such as the GMRF (Equation 16.4) or the process convolution (Equation A.1), the resulting
posterior will more likely be unimodal, so that standard MCMC schemes will be more
efficient. Of course, the sacrifice is that one is now less able to recover small-scale structure
that may be present in the inverse problem.
In some applications the simulator is sufficiently complicated that one can only hope to

run it a few hundred times. In such cases, there is no possibility of reconstructing an entire
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image of unknown pixel intensities. However, one can construct a very fast surrogate by
replacing the simulator by a response surface model built from the limited number of
simulations that have been carried out. Craig et al. (2001) and Kennedy and O’Hagan
(2001) are two examples of applicationswhich utilize a response surface to aid the resulting
simulation-based inference. Of course, this requires a low-dimensional representation of
the unknown parameters to be input to the simulator. It also requires that the simulation
output be amenable to a response surface model.
Finally, we note that the traditional way to speed up the computation required to solve an

inverseproblem is to speedup the simulatorη(x).Asubstantial amount of progress has been
made in creating simulators that run on highly distributed computing machines. Compar-
atively little progress has been made in utilizing modern computing architectures to speed
upMCMC-based posterior exploration in difficult inverse problems. Clearly schemes such
as Metropolis coupling chains and DE-MCMC are quite amenable to distributed imple-
mentations. The integration of modern computing architecture with MCMC methods will
certainly extend the reach of MCMC based solutions to inverse problems.

Appendix: Formulation Based on a Process Convolution Prior
An alternative to treating each pixel in the image as a parameter to be estimated is to use
a lower-dimensional representation for the prior. Here we describe a process convolution
(Higdon, 2002) prior for the underlying image x.
We define x(s), s ∈ Ω, to be a mean-zero Gaussian process. But rather than specify x(s)

through its covariance function, it is determined by a latent process u and a smoothing
kernel k(s). The latent process u = (u1, . . . , up)T is located at the spatial sites ω1, . . . ,ωp, also
inΩ (shown in Figure 16.11). The uj are thenmodeled as independent draws from aN(0, σ2u)
distribution. The resulting continuous Gaussian process model for x(s) is then

x(s) =
p∑
j=1

ujk(s− ωj), (A.1)

FIGURE 16.11
(Left) A 10× 10 lattice of locations ω1, . . . ,ωp, for the uj of the process convolution prior; the 24× 24 image pixels
are shown for reference. (Middle)A realization from the process convolution prior for x(s). (Right) Posterior mean
from the single-site Metropolis scheme run on the u vector that controls the image x.
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where k(· − ωj) is a kernel centered at ωj. For the EIT application, we define the smoothing
kernel k(·) to be a radially symmetric bivariate Gaussian density, with standard deviation
σu = 0.11. Figure 16.11 shows a prior draw from this model over the 24× 24 pixel sites in
Ω. Under this formulation, the image x is controlled by p = 100 parameters in u. Thus a
single-site Metropolis scan of u takes less than 20% of the computational effort required
to update each pixel in x. In addition, this prior enforces very smooth realizations for x.
This makes the posterior distribution better behaved, but may make posterior realizations
of x unreasonably smooth. The resulting posterior mean for x is shown in Figure 16.11.
For a more detailed look at process convolution models, see Higdon (2002); Paciorek and
Schervish (2004) give non-stationary extensions of these spatial models.
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17
Statistical Ecology

Ruth King

17.1 Introduction
In recent years there has been an explosion in the application of Bayesian methods within
the field of statistical ecology. This is evidenced by the huge increase in the number of
publications that use (and develop) Bayesianmethods for analyzing ecological data in both
statistical and ecological journals. In addition, in recent years there have been a number of
books published that focus solely on the use of Bayesianmethods within statistical ecology
(King et al., 2009; Link and Barker, 2009; McCarthy, 2007; Royle and Dorazio, 2008). One
reason why the Bayesian approach has enjoyed a significant increase in its application to
ecology is the particularly complex data that are collected on a typical population under
study. This can make standard frequentist analyses difficult to implement, often resulting
in simplifying assumptions being made. For example, typical issues that can arise relate to
complex distributional assumptions for the observed data; intractable likelihood expres-
sions; and large numbers of biologically plausible models. Within a Bayesian framework it
is possible to make use of standardMarkov chainMonte Carlo (MCMC) tools, such as data
augmentation techniques, so that these simplifications do not need to be made.
The analysis of ecological data is often motivated by the aim of understanding the

given system and/or of conservation management. This is of particular interest in recent
years with the potential impact of climate change. Identifying relationships between
demographic parameters (such as survival probabilities, productivity rates, and migra-
tional behavior) and environmental conditions may provide significant insight into the
potential impact of changing climate on agiven system. Inparticular, thedifferent biological
processes are often separated into individual components (Buckland et al., 2004), allowing
a direct interpretation of the processes and explicit relationships with different factors to
be expressed. An area of particular recent interest in statistical ecology relates to the use
of hidden Markov models (or state–space models) to separate the different underlying
processes. For example, Newman et al. (2006) describe how these models can be applied
to data relating to animal populations within a Bayesian framework. Royle (2008) uses a
state–space formulation to separate the life history of the individuals (i.e. survival process)
with the observation of the individuals (recapture process) in the presence of individual
heterogeneity. The appeal of this type of approach is its conceptual simplicity, along with
the readily available computational tools for fitting these models. The typical linear and
normal assumptions can also be relaxed within this framework, permitting more realistic
population models to be fitted. These methods have been applied to a number of areas,
including fisheries models (Millar andMeyer, 2000), species richness (Dorazio et al., 2006),

419
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abundance data (Reynolds et al., 2009), animal telemetry data (Jonsen et al., 2005), and
occupancy models (Royle and Kéry, 2007). It is anticipated that the use of these methods
will continue to increase within these, and additional, areas as a result of the more com-
plex statistical analyses that can be performed and an increase in the number of relatively
easy-to-use programs particularly using WinBUGS (or OpenBUGS). For example, Brooks
et al. (2000, 2002, 2004), Gimenez et al. (2009), King et al. (2009), O’Hara et al. (2009), Royle
(2008), and Royle et al. (2007) all provide WinBUGS code for different ecological examples.
Within this chapter we focus on two forms of common ecological data: ring-recovery data
and count data. We consider a number of issues related that typically arise when analysing
such data, including mixed effects models, model selection, efficient MCMC algorithms,
and integrated data analyses, extending themodels previously fitted to the data considered
by Besbeas et al. (2002), Brooks et al. (2004), and King et al. (2008b). The individual models
described canbefitted inWinBUGS; however, the lengthof the computer simulationsmakes
the analysis for the count data prohibitive in this case.

17.2 Analysis of Ring-Recovery Data
Weconsider in detail an application of Bayesian inference, usingMCMC, to a common form
of ecological data (particularly for avian populations), namely ring-recovery data. These
data are collectedbybiologists or volunteers over anumberof timeperiods (typicallyyears).
At the beginning of each time period, i = 1, . . . , I, individuals are marked (e.g. a ring or tag
applied) and released. The number of individuals recovered dead in each subsequent time
period is then recorded. For simplicitywe assume that individuals are ringed and recovered
onanannual basis. Furthermore,we assume that for an individual that dies, any subsequent
recovery is immediate.
The data are typically presented in the form of an array. The first column details the

number of ringed individuals in each year of release (denoted by Ri, i = 1, . . . , I); and each
following column provides the number of individuals recovered dead within each subse-
quent year (denoted by mi,j for i = 1, . . . , I and j = 1, . . . , J, where J ≥ I). Clearly mi,j = 0
for j < i, since an individual cannot be recovered dead before it is marked and released!
Table 17.1 provides sample ring-recovery data on lapwings ringed from 1963 to 1973; all
lapwings are ringed as chicks at the beginning of each year, and the year corresponds to a
“bird year” lasting from April to March. Note that we will consider the UK ring-recovery
data for lapwings released from 1963 to 1997 and recovered up to 1998 (so that I = J = 35).
Finally, we let mi,J+1 denote the number of individuals released in year i that are not seen
again (either because they survive to the end of the study, or die and are not recovered). In
other words,

mi,J+1 = Ri −
J∑
j=1

mi,j.

The arraym = {mi,j : i = 1, . . . , I, j = 1, . . . , J + 1} is typically referred to as an m-array, and
is a sufficient statistic for ring-recovery data.
The corresponding likelihood of the data is straightforward to calculate, and for this data

set is a function of three parameters:
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TABLE 17.1

Ring-Recovery Data for UK Lapwings for the Years 1963–1973
Year of Recovery

Year of Number
Ringing Ringed 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974

1963 1147 14 4 1 2 1 0 1 1 0 0 0
1964 1285 20 3 4 0 1 1 0 0 0 0
1965 1106 10 1 2 2 0 2 2 1 1
1966 1615 9 7 4 2 1 1 0 0
1967 1618 12 1 6 2 0 0 1
1968 2120 9 6 4 0 2 2
1969 2003 10 8 5 3 1
1970 1963 8 3 2 0
1971 2463 4 1 1
1972 3092 7 2
1973 3442 15

• φ1,j = P (an individual in their first year survives until year j + 1 | alive in year j);
• φa,j = P (an individual adult (i.e. age ≥ 1 year) survives until year j + 1 | alive in
year j);

• λj = P (an individual is recovereddead in the interval [j, j + 1) | dies in the interval
[j, j + 1)).

We use standard vector notation, φ1 = {φ1,j : j = 1, . . . , J}, and similarly for φa and λ.
For each row of the m-array, the data have a multinomial distribution,

mi ∼Multinomial(Ri,qi),

where mi = {mi,j : j = 1, . . . , J + 1} denotes the ith row of the m-array, and qi the corre-
sponding multinomial cell probabilities. In particular, we have for i = 1, . . . , I and j =
1, . . . , J,

qi,j =
⎧⎨
⎩
0, i > j,
(1− φ1,i)λi, i = j,
φ1,iλj(1− φa,j)∏j−1

k=i+1 φa,k , i < j,

where we use the standard notation that if j − 1 < i + 1, the product is the null product
and simply equal to one. Finally, to complete the specification, we need to calculate the
probability, qi,J+1, that an individual is not seen again. We do this by simply noting that the
multinomial cell probabilities must sum to unity, so that for i = 1, . . . , I,

qi,J+1 = 1−
J∑
j=1

qi,j.

The likelihood is the product over each rowof the correspondingmultinomial probabilities,

f (m | φ1,φa,λ) ∝
I∏
i=1

J+1∏
j=1

qmi,j
i,j .
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17.2.1 Covariate Analysis

The likelihood given above is a function of three demographic parameters: first-year sur-
vival probabilities, adult survival probabilities, and recovery probabilities. The number
of parameters is typically fairly large, when considering fully time-dependent models. In
addition, arbitrary time-dependent parameters do not provide any understanding as to
the potential factors of temporal variability. One approach that can reduce the number of
parameters to be estimated (typically providing a greater precision of the estimated param-
eters) and potentially provide a greater understanding of the factors driving the temporal
variability is the use of covariates. In particular, we begin by considering the model pro-
posed by Besbeas et al. (2002). This model specifies a relationship between the survival
probabilities and winter severity. To represent this environmental covariate we use the
number of days that the minimum temperature falls below freezing in Central England
over the winter months, which we denote by fdays, and regard as a surrogate for the harsh-
ness of the winter. We use a logit link function between the survival probabilities and the
environmental covariate, to ensure that the survival probabilities are constrained to the
interval [0, 1], so that

logit φ1,j = log
(

φ1,j

1− φ1,j
)
= α1 + β1fj,

logit φa,j = log
(

φa,j

1− φa,j
)
= αa + βafj,

where fj denotes the normalized value of fdays in year j (so that fj has mean 0 and variance
1 over values j = 1, . . . , J). Normalized covariate values are used in order to improve the
mixing of the Markov chain and for interpretability of the corresponding intercept and
slope parameters of the logistic regression. Alternatively, for recovery probabilities, there
is some evidence from other studies that recovery probabilities have been decreasing with
time (Baillie and Green, 1987). Thus, we specify a linear temporal dependence on the logit
scale (once more ensuring λj ∈ [0, 1]),

logit λj = log
(

λj

1− λj
)
= αλ + γλtj,

where tj denotes the normalized value for year j = 1, . . . , J. We note that Brooks et al. (2004)
fail to normalize the years in their logistic regression for the recovery probabilities.
The parameters in the model are α1, β1, αa, βa, αλ, and γλ (i.e. a total of six), sig-

nificantly reducing the number of parameters in the model compared to the arbitrary
time-dependence model (where there are a total of I × 2J parameters, although for the
lapwing data since only chicks are ringed we cannot estimate φa,1 i.e. adult survival prob-
ability in year 1, resulting in I × 2J − 1 parameters). In addition, when using covariates to
explain temporal heterogeneity, we note that increasing the length of the study (i.e. increas-
ing J) does not result in an increase in the number of parameters to be estimated (simply the
number of covariate values of which the demographic parameters are a function). We need
to specify priors on each of the parameters. In particular, without any prior information,
we specify an independent normal prior on each parameter with mean zero and variance
10, which can considered to be vague in this context. Note that this does not induce a flat
prior on the corresponding demographic parameter. See, for example, Newman (2003) and
King et al. (2009) for further discussion.



Statistical Ecology 423

17.2.1.1 Posterior Conditional Distributions

Using Bayes’ theorem, we combine the likelihood of the data with the priors specified on
eachof theparameters. To explore and summarize theposterior distributionweuseMCMC.
We begin by calculating the posterior conditional distribution for each of the parameters
in the model. For notational convenience, we let α = {α1, αa, αλ} and β = {β1, βa}. We let α(1)
(β(1)) denote the set of parameters, excluding α1 (β1). The posterior conditional distribution
for α1 is given by

π(α1 | m,α(1), β, γλ) ∝ p(α1)
I∏
i=1

J+1∏
j=1

qmi,j
i,j

∝ exp
(
−α

2
1
20

) I∏
i=1

⎡
⎣Δmi,J+1

i (1− φ1,i)mi,i

J∏
j=i+1

φ
mi,j
1,i

⎤
⎦

∝ exp
(
−α

2
1
20

) I∏
i=1

⎡
⎣Δmi,J+1

i exp

⎛
⎝α1 J∑

j=i+1
mi,j

⎞
⎠

×
J∏
j=i

(
1

1+ exp(α1 + β1fi)
)mi,j

⎤
⎦ ,

where Δi ≡ qi,J+1 corresponds to the probability of not being observed again within the
study, given by

Δi = 1− (1− φ1,i)λi −
J∑

j=i+1

⎡
⎣φ1,iλj(1− φa,j)

j−1∏
k=i+1

φa,k

⎤
⎦

= 1−
(

1
1+ exp(α1 + β1fi)

)
λi −

J∑
j=i+1

⎡
⎣( exp(α1 + β1fi)

1+ exp(α1 + β1fi)
)
λj(1− φa,j−1)

j−2∏
k=i
φa,k

⎤
⎦ .

This posterior conditional distribution is clearly a nonstandard distribution. Similar poste-
rior conditional distributions exist for all the other regression coefficient parameters—for
example,

π(β1 | m,α, β(1), γλ) ∝ exp
(
−β

2
1
20

) I∏
i=1

⎡
⎣Δmi,J+1

i exp

⎛
⎝β1fi J∑

j=i+1
mi,j

⎞
⎠

×
J∏
j=i

(
1

1+ exp(α1 + β1fi)
)mi,j

⎤
⎦ .

Thus we use a Metropolis–Hastings random-walk single-update algorithm for updating
each of the parameters α1, β1, αa, βa, αλ, and γλ within the Markov chain. For example,
suppose that we propose to update parameter α1. We propose the new candidate value,

α′1 ∼ U[α1 − δ, α1 + δ],
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where δ is chosen arbitrarily. We accept this proposed parameter value with probability

min
(
π(α′1 | m,α(1), β, γλ)
π(α1 | m,α(1), β, γλ)

)
,

since the proposal distribution is symmetric.
Note that δ is chosen via pilot tuning. For example, we calculate themean acceptance rate

over 1000 iterations of the Markov chain, and increase or decrease the proposal variance
if this is deemed to be too high or too low, respectively. Gelman et al. (1996) and Roberts
and Rosenthal (2001) suggest an optimal mean acceptance rate of (approximately) 0.234,
but more generally a mean acceptance rate of 20–40% for well-performing chains. For the
above example, Table 17.2 provides the value of δ used for each regression parameter for
the pilot tuning steps performed and the corresponding mean acceptance rate, all lying
in the interval 20–40% for the final proposal values. Note that there is clearly a tradeoff
between the length of time used for pilot tuning and the computation time in performing
the MCMC iterations. For this example, simulations are very quick to perform, so that
relatively minimal pilot tuning is required.

17.2.1.2 Results

Implementing the above MCMC algorithm, the convergence to the stationary distribu-
tion appears to be very fast (i.e. within 1000 iterations from reasonable starting points).
We run multiple chains starting from over-dispersed starting points for 100,000 iterations,
using a conservative burn-in of 10,000 iterations. Independent replications provided essen-
tially identical posterior results (to 3 decimal places for the summary statistics for each
parameter) so that we assume that convergence has been achieved. More formally, the
Brooks–Gelman–Rubin (BGR) statistic (Brooks and Gelman, 1998) also did not indicate any
lack of convergence. The corresponding posterior means and standard deviations for each
of the regression parameters are presented in column (a) of Table 17.3.
Clearly there is a negative relationship between both first-year and adult survival prob-

abilities with the covariate fdays. Note that within the Markov chain, only negative values
for the survival slope parameters (i.e. β1 and βa) are visited within the Markov chain fol-
lowing the burn-in period (even with initial positive starting values), demonstrating the

TABLE 17.2

The Values of the Proposal Parameter δ Used in the Iterative Pilot Tuning Procedure for Each
Regression Coefficient for the Random-Walk Single-Update Metropolis–Hastings Algorithm with
Uniform Proposal Distribution Within ±δ of the Current Value and Corresponding Mean
Acceptance Rate for 1000 Iterations (Ignoring the First 100 Iterations)

Initial Value Attempt 2 Attempt 3

Mean Acceptance Mean Acceptance Mean Acceptance
Parameter δ Probability (%) δ Probability (%) δ Probability (%)

α1 0.1 73.4 0.6 16.4 0.4 25.4
β1 0.1 67.4 0.5 19.3 0.3 33.0
αa 0.1 70.6 0.6 17.5 0.4 24.6
βa 0.1 60.9 0.5 13.4 0.3 24.5
αλ 0.1 48.0 0.2 26.9 0.2 25.5
βλ 0.1 54.2 0.2 27.6 0.2 30.5
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TABLE 17.3

The Posterior Mean and Standard Deviation (SD) of each Regression Parameter for the Lapwing
Data Set Using Different Independent Normal Priors Specified on the Regression Coefficients

(a) (b) (c)

Parameter Posterior Mean (SD) Posterior Mean (SD) Posterior Mean (SD)

α1 0.536 (0.069) 0.533 (0.069) 0.536 (0.069)
β1 −0.208 (0.062) −0.207 (0.062) −0.208 (0.062)
αa 1.531 (0.070) 1.526 (0.069) 1.532 (0.070)
βa −0.310 (0.044) −0.310 (0.044) −0.311 (0.044)
αλ −4.567 (0.035) −4.563 (0.035) −4.567 (0.035)
γλ −0.346 (0.039) −0.345 (0.039) −0.346 (0.039)
The priors used are: (a) N(0, 10); (b) N(0, 1); and (c) N(0, 100).

strength of the negative association. This result is unsurprising since fdays is a surrogate
for the harshness of the winter, when the majority of mortalities occur. In addition, there
appears to be a decrease in the recovery probabilities with time (this is not unusual for
ring-recovery studies).
Finally, we consider a prior sensitivity analysis. Columns (b) and (c) of Table 17.3

provide the corresponding posterior mean and standard deviations for the regression
parameters assuming independent N(0, 1) and N(0, 100) priors on the regression parame-
ters (i.e. changing the prior variances by a factor of 10). Clearly the posterior is data-driven
with very little sensitivity on the posterior distributions of the parameters with the dif-
ferent prior specifications. The results here differ slightly with respect to those obtained
by Brooks et al. (2004), (who use a N(0, 100) prior specification, independently on each
regression parameter) due to the fact that we normalize the time covariate for the recovery
probabilities, while they logistically regress the recovery probability on the (raw) times,
2, . . . ,T. Thus, the interpretation of the logistic regression parameters for the recovery
probabilities differs between analyses (and hence so do the posterior estimates for these
parameters). However, the posterior distributions for the other parameters are essentially
identical.

17.2.2 Mixed Effects Model

The covariate model above assumes a deterministic relationship between the demographic
parameters and covariates of interest. However, we now relax this assumption and allow
additional temporal dependence not explained by the covariates considered, extending the
models previously fitted to these data and considered by Besbeas et al. (2002), Brooks et al.
(2004), andKing et al. (2008b).We consider amixed effectsmodel (Pinheiro andBates, 2000),
with both fixed effects (covariate dependence) and additional random effects (on an annual
level). In particular, we specify the mixed model on the first-year survival probabilities to
be of the form

logit φ1,j = α1 + β1fj + ε1,j,

where ε1,j ∼ N(0, σ21). This essentially changes the deterministic relationship between the
survival probability and the covariate to be a stochastic relationship. An alternative
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specification of this model is

logit φ1,j ∼ N(α1 + β1fj, σ21).

We once more use the standard vector notation ε1 = {ε1,i : i = 1, . . . , I}. We consider analo-
gous models for φa (regressed on fdays) and λ (regressed on year), with additional random
effect terms εa and ελ and corresponding random effect variance terms, σ2a and σ2λ, respec-
tively. For notational convenience, we set ε = {ε1, εa, ελ} and σ2 = {σ21, σ2a , σ2λ}. Finally, note
that we consider the same priors for the regression coefficients as before, and for the ran-
dom effect variances specify σ2k ∼ Γ−1(ak, bk) for k ∈ {1, a,λ}. The parameters of interest in
the model are typically the hyperparameters α, β, γλ and σ2, as for standard mixedmodels,
although we can also estimate the ε terms and hence φ1, φa and λ. Note that, within the
Bayesian framework, we could consider the random effects components of the model as
simply specifying a hierarchical prior on the ε1, εa and ελ terms.

17.2.2.1 Obtaining Posterior Inference

We wish to calculate the posterior distribution π(α, β, γλ,σ2 | m). In order to do this, we
need to specify the corresponding likelihood for the data, given the parameters. For a
mixed model, the corresponding likelihood is expressed as an integral over the ε values. In
particular, we can express the likelihood in the form

f (m | α, β, γλ,σ2) =
∫
f (m | α, β, γλ, ε)p(ε | σ2) dε.

However, this integral is analytically intractable. Thus, we consider a computationally
intensive method for performing the integration, using MCMC. In particular, we regard
the ε as parameters (or auxiliary variables) to be estimated.We then form the joint posterior
distribution over both the auxiliary variables and model parameters,

π(α, β, γλ,σ2, ε | m) ∝ f (m | α, β, γλ,σ2, ε)p(α, β, γλ,σ2, ε)
= f (m | α, β, γλ, ε)p(α)p(β)p(γλ)p(ε | σ2)p(σ2),

taking into account the conditional independence of the different parameters, and where
f (m | α, β, γλ, ε) can once more be easily calculated using the standard likelihood for ring-
recovery data, since the demographic parameters φ1, φa and λ are a deterministic function
of the parameters α, β, γλ and ε. The required posterior distribution is simply the marginal
distribution,

π(α, β, γλ,σ2 | m) =
∫
π(α, β, γλ,σ2, ε | m) dε.

To obtain a sample from this marginal distribution, we use anMCMC algorithm to obtain a
sample from the full posterior distribution of all the model parameters and auxiliary vari-
ables and simply consider the sampled values of the parameters of interest (i.e. irrespective
of the values for the auxiliary variable (ε) terms). We note that the posterior distribution
over both themodel parameters and auxiliary variables is sampled fromwithin theMCMC
algorithm, so that we can also obtain posterior summary statistics of the auxiliary vari-
ables if they are of interest—see Section 17.3.1 for a particular example. In addition, since
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we impute the ε values, we also impute the demographic parameters φ1, φa and λ. Thus
we can once more easily obtain posterior estimates of these demographic rates from the
MCMC algorithm. Finally, we note that mixedmodels often take significantly longer to run
than fixed effects models, due to the increase in the number of parameters that need to be
updated at each iteration of the Markov chain. For example, for the lapwing data set, the
mixedmodel takes approximately 15 times longer to run than the fixed effects model (with
only six parameters), due to the large number of random effects terms (ε1, εa, and ελ) that
need to be imputed within the MCMC algorithm.

17.2.2.2 Posterior Conditional Distributions

Weimplement a single-updateMetropolis–Hastings algorithm. Inparticular,we implement
the same proposal distributions for the regression coefficients, α and β, as for the fixed
effects model above. In addition, for each random effect term, we again use a random-walk
Metropolis–Hastings step, using a uniform proposal distribution. Finally, for the random
effect variances, we use a Gibbs step, since the posterior conditional distributions are of
standard form. For example, for σ21, we have the posterior conditional distribution,

σ21 | α, β, γλ, ε,m ∼ Γ−1
(
a1 + I

2
, b1 + 1

2

I∑
i=1
ε21,i

)
.

With similar results for σ2a and σ2λ. Without any prior information we set ak = bk = 0.001
for k ∈ {1, a,λ}. Note that Gelman (2006) suggests an alternative prior specification for the
random effect variance terms, when there is no prior information, where the standard
deviation (rather than variance) is an (improper) uniform distribution on the positive real
line. This induces a prior on the variance of the form, p(σ21) ∝ σ−11 . The corresponding
posterior conditional distribution is again of standard form with

σ21 | α, β, γλ, ε,m ∼ Γ−1
(
I − 1
2

,
1
2

I∑
i=1
ε21,i

)
.

We initially retain the inverse gamma prior, but do consider a prior sensitivity analysis
using this alternative prior.

17.2.2.3 Results

The simulations are run for 100,000 iterations, with the first 10,000 simulations discarded
as burn-in. Note that, typically, for random effects models longer simulations are neces-
sary (since more parameter space needs to be explored). However, convergence appears to
be rather swift yet again. Column (a) of Table 17.4 provides the corresponding posterior
summary statistics for the regression coefficients and random effects variance terms. Inde-
pendent replications from over-dispersed starting points differed only slightly (typically in
the third decimal place), so that we assume that convergence has been achieved (with BGR
statistics approximately equal to one for all parameters). Comparing the posterior estimates
for the regression coefficients with Table 17.3 for the corresponding fixed effects model (i.e.
no random effects present), it is clear that these parameter estimates are very similar, as we
would typically expect. The effect of the additional random effects terms ismost easily seen
by considering the corresponding demographic parameter estimates, since the magnitude
of the random effect variance needs to be interpreted with respect to regression coefficient
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TABLE 17.4

The Posterior Mean and Standard Deviation (SD) of Each Parameter for the
Lapwing Data Set for the Mixed Effects Model for (a) Γ−1(0.001, 0.001)
Prior on the Random Effect Variance Terms; and (b) Gelman’s Prior (∝ σ−1)
on the Random Effect Variance Terms

(a) (b)

Parameter Posterior Mean (SD) Posterior Mean (SD)

α1 0.535 (0.081) 0.538 (0.086)
β1 −0.216 (0.079) −0.214 (0.082)
αa 1.525 (0.073) 1.533 (0.073)
βa −0.315 (0.050) −0.317 (0.052)
αλ −4.567 (0.039) −4.567 (0.040)
γλ −0.350 (0.044) −0.350 (0.044)
σ21 0.061 (0.059) 0.090 (0.071)
σ2a 0.009 (0.011) 0.012 (0.016)
σ2λ 0.008 (0.009) 0.010 (0.012)

parameters and link function. Figure 17.1 provides the posterior mean and 95% highest
posterior density interval (HPDI) for the survival and recovery probabilities for both the
fixed effects and mixed effects models for comparison. Note that producing posterior esti-
mates of the demographic parameters are straightforward, as they are calculated within
the MCMC algorithm at each iteration (since the ε terms are imputed).
The random effects variance terms appear to be very small for the adult survival proba-

bilities and recovery probabilities. This is demonstrated in Figure 17.1 with the very similar
posterior estimates for the fixed effects and mixed effects models. This would suggest that
the covariates largely explain the temporal variability within the demographic parame-
ters. However, for the first-year survival probabilities, the addition of a random effect in
the model appears to significantly increase the posterior uncertainty, suggesting that the
covariate fdaysmay not adequately model the temporal variability for the parameter. Thus,
this result could in itself prompt further investigation for the first-year survival probabili-
ties, for example, the consideration of further environmental covariates or the addition of
an individual heterogeneity component to the model.
We conduct a prior sensitivity analysis, using the prior suggested by Gelman (2006).

The corresponding posterior summary statistics of the regression parameters and random
effect variance terms are given in column (b) of Table 17.4. There is typically very little
difference between the posterior results obtained using the different priors. The largest
difference observed is in the posterior mean (and standard deviation) for σ21. This results in
a very slight increase in the posterior variance of the first-year survival probabilities, but
the difference is minimal.

17.2.3 Model Uncertainty

Previously, we have assumed a known covariate structure for each of the demographic
parameters—a dependence on fdays for the survival probabilities or time for the recovery
probabilities. Typically themodels are developed from biological understanding; however,
there will generally be a level of model uncertainty regarding the presence of absence
of the covariates within the model. For example, for the lapwing data, we assumed that
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FIGURE 17.1
The posterior mean (*) and 95% HPDI for the fixed effects model (in black) and mixed model (in gray) (a) φ1;
(b) φa; and (c) λ. In (a) and (b) the bottom line denotes the covariate fdays.

the survival probabilities were a function of only fdays and the recovery probabilities of
only time. However, more generally we may wish to consider additional models, allowing
for different combinations of fdays and time dependence on the demographic parameters.
Discriminating between these different competing models is often of particular biological
interest, in order to understand the underlying dynamics of the biological system.
Within the Bayesian framework model uncertainty is conceptually easy to introduce, by

simply considering the model itself to be an unknown parameter to be estimated. The joint
posterior distribution over both parameter and model space is given by

π(θn, n | m) ∝ f (m | θn, n)p(θn | n)p(n),

where f (m | θn, n) denotes the likelihood of the data given model n with corresponding
parameters θn. We quantitatively discriminate between competing models by calculating
the corresponding posterior model probability given by the marginal distribution,

π(n | m) ∝
∫
π(θn, n | m) dθn. (17.1)

To obtain a sample from the joint posterior distribution, π(θn, n | m), we use the reversible
jump (RJ)MCMC algorithm (Green, 1995), since the posterior distribution is multidimen-
sionalwith thenumber of parameters (i.e. regression coefficients) differingbetweenmodels.
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17.2.3.1 Model Specification

We need to define the set of models that we wish to consider and discriminate between. In
order to do this we define the saturated model of the form:

logit φ1,j = α1 + β1fj + γ1tj + ε1,j, ε1,j ∼ N(0, σ21),

logit φa,j = αa + βafj + γatj,
logit λj = αλ + βλfj + γλtj.

We adopt the standard notation α = {α1, αa, αλ}, and similarly for β and γ. We consider
a mixed effects model for the first-year survival probabilities and a fixed effects model
for the adult survival probabilities and recovery probabilities, motivated by the results in
Section 17.2.2.
Alternative (sub)models are then obtained by specifying restrictions on the regression

coefficients. For example, setting βa = 0 implies that the adult survival probabilities are
not related to fdays. We consider all four possible combinations of covariate dependence
for each demographic parameter, allowing for the inclusion or exclusion of each covariate.
Taking all possible combinations of covariate dependence for each demographic parameter
gives a total of 43 = 64 models. Within the Bayesian framework, we need to specify a prior
over the model space, that is, define the prior probability of each model. In this instance,
with no prior information, we specify an equal prior probability on each model, which
also corresponds to a marginal prior probability of 0.5 that a demographic parameter is
dependent on a given covariate. We note that, more generally, placing a flat prior over
the full model space may not be the most sensible course of action. See King et al. (2006)
who discuss this in further detail in the presence of additional age dependence on the
demographic parameters, and King and Brooks (2003) for the case of multi-site data.

17.2.3.2 Reversible Jump Algorithm

Within each iteration of the Markov chain we consider the following steps:

1. Update each parameter, conditional on it being present in the model; for each
(nonzero) parameter α, β, γ and ε1 we use a single-update uniform random-walk
Metropolis–Hastings update and for σ21 a Gibbs step.

2. Update the covariate dependence in the model using a reversible jump step.

We consider only Step 2 in detail, since the previous Metropolis–Hastings steps are imple-
mented in the sameway as before. For the reversible jump step of theMCMCalgorithm,we
cycle through each demographic parameter in turn and propose to add or remove a single
covariate dependence.Without loss of generality, suppose thatwe are considering the adult
survival probabilities. We randomly select one of the covariates ( fdays or time). Suppose
that we select fdays. If the covariate dependence is present (βa = 0), we propose to remove
the dependence; else if the covariate dependence is absent (βa = 0), we propose to add the
dependence. We initially consider the case where we propose to add the dependence.
We denote the current model by n, with parameters α, β, γ, ε1, and σ21 and with βa =

0. We propose to move to model n′ which has the additional covariate dependence on
fdays for adult survival probabilities. We propose a candidate value β′a from some proposal
distribution q. All other parameter values remain the same. Finally, we let β′ = {β1, β′a, βλ}
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denote the regression coefficients for fdays in the proposed model. We accept the proposed
move with probability min(1,A), where

A = π(α, β′, γ, ε1, σ21, n
′ | m)

π(α, β, γ, ε1, σ21, n | m)q(β′a)
.

Note that the Jacobian term in the standard reversible jumpacceptance probability is simply
equal to one in this case.
Now, to consider the reverse move, suppose that the chain is in model n′ with current

parameter values α, β′, γ, ε1, and σ21, such that β
′ = {β1, β′a, βλ}. We propose the newmodel n,

such that βa = 0, and set β = {β1, βa, βλ}. We accept this move with probability min(1,A−1)
for A given above.

17.2.3.3 Proposal Distribution

In order to improve the efficiency of the reversible jump updating step we consider the
proposal distribution, q, inmore detail. Without loss of generality, suppose that we propose
to add in theparameter δ to themodel, so that δ ∈ {β1, βa, βλ, γ1, γa, γλ}.We consider a normal
proposal distribution, namely,

δ ∼ N(μδ, σ2δ).

The values of μδ and σ2δ are chosen via a pilot tuning exercise. In particular, we run the
saturated model for 10,000 iterations (discarding the first 1000 iterations as burn-in). We
then set μδ and σ2δ to be the posterior mean and variance of the corresponding regression
coefficient from this pilot run. In other words,

μδ = Eπ(δ); σ2δ = varπ(δ),

where we take the expectation and variance with respect to the posterior distribution of the
parameters in the saturated model. See King and Brooks (2002) and King et al. (2009) for
further discussion of proposal distributions of this form.

17.2.3.4 Results

Werun the simulations for a total of 100,000 iterations,discarding thefirst 10,000 iterationsas
burn-in. Trace plots suggest that again the burn-in is very conservative. Independent repli-
cations from over-dispersed starting points obtain essentially identical results, so that we
assume the estimates have converged. Table 17.5a provides the corresponding (marginal)
posterior probability that each covariate is present in the model for each demographic
parameter. Clearly there is very strong evidence that the adult survival probability is
dependent on fdays, with a marginal posterior probability of the dependence equal to 0.959
(equivalent to a Bayes factor of 23). Similarly, the recoveryprobability appears to be strongly
dependent on time, with a posterior probability of 1.000 to three decimal places. There is
evidence that the survival probabilities are not dependent on time for this data (Bayes factor
of 33 for first-years and 10 for adults). Finally, there is uncertainty as to whether the first-
year survival probabilities are dependent on fdays, with a posterior probability of 0.567 of
no dependence (or a Bayes factor of 1.3).
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TABLE 17.5

The Marginal Posterior Probability of the Dependence of Each Demographic Parameter on the
Combination of Covariates fdays and Time, Assuming Fixed Effects Models for φa and λ and a Mixed
Effects Model for φ1, Specifying Independent Normal Distributions on the Regression Parameters
With Mean Zero and Variance of (a) 10, (b) 1, and (c) 100, and (d) Gelman’s Prior on the Random
Effect Variance Component With N(0, 10) Priors on the Regression Parameters

(a) N(0, 10) Priors (b) N(0, 1) Priors (c) N(0, 100) Priors (d) Gelman’s Prior
Covariate
Dependence φ1 φa λ φ1 φa λ φ1 φa λ φ1 φa λ

fdays and time 0.012 0.084 0.125 0.055 0.222 0.171 0.002 0.029 0.085 0.012 0.084 0.111
fdays only 0.420 0.875 0.000 0.578 0.751 0.000 0.227 0.922 0.000 0.368 0.880 0.000
time only 0.017 0.007 0.870 0.033 0.018 0.829 0.008 0.002 0.915 0.020 0.005 0.889
none 0.550 0.039 0.000 0.334 0.019 0.010 0.764 0.047 0.000 0.600 0.031 0.000

We oncemore consider a prior sensitivity analysis, changing the prior variance on each of
the parameters. In particular, we consider independentN(0, 1) andN(0, 100) priors on each
of the regression parameters (i.e. increasing and decreasing the variance by a factor of 10).
Alternatively, we consider Gelman’s prior on the random effect variance term (with inde-
pendentN(0, 10) priors on the regression coefficients). The corresponding posterior model
probabilities obtained are given in Table 17.5b–d. Recall that previously, when considering
only a single model, changing the prior specification had virtually no impact on the corre-
sponding posterior distributions of the parameters (see Section 17.2.1 and Tables 17.3 and
17.4). For the adult survival probabilities and recovery probabilities, the posterior model
probabilities (and corresponding interpretation of the results) are generally fairly insensi-
tive to the choice of prior. However, we can clearly see that the prior specification does
influence the posterior model probabilities for the first-year survival probabilities, where
there is the greatest uncertainty regarding the presence or absence of the covariates in the
model. Increasing (decreasing) the prior variance results in a decrease (increase) in the
corresponding posterior probability of the covariate being present in the model. This can
be explained by considering the form of the posterior model probability in equation 17.1,
which involves integrating out the parameters within the joint posterior distribution over
both parameter andmodel space. Specifying a larger prior variance increases the area being
integratedoverwith small posteriormass, decreasing the corresponding integral value (and
hence posterior probability), and is often referred to as Lindley’s paradox (Lindley, 1957).
This has a greater effect (as for first-year survival probabilities) when there is relatively little
information contained within the data relating to the dependence structure. Alternatively,
specifying Gelman’s prior on the random effect variance term for the first-year survival
probability has relatively little impact. The posterior mean of the random effect variance
term is slightly greater (0.123 for Gelman’s prior compared to 0.093 for the Γ−1(0.001, 0.001)
prior), which has the impact of slightly decreasing the posterior probability that the first-
year survival probability is dependent on fdays, with the random effect term essentially
explaining a greater amount of the temporal variability (compared to fdays).

17.2.3.5 Comments

RJMCMC algorithms typically require longer simulations than standard MCMC algo-
rithms, since the additional model space needs to be explored as well as parameter space.
However, tuning the reversible jump step is typicallymore difficult, and the corresponding
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mean acceptance probabilities are lower than for standard Metropolis–Hastings steps. For
example, in the reversible jump step above, we obtain a mean acceptance probability of
15.4% for changing the dependence of the first-year survival probability on fdays (with a
proposal mean of −0.377 and a proposal standard deviation of 0.165). However, if we had
considered a “plain vanilla” reversible jump step, and used the prior distribution as the
proposal distribution, we would have obtained a mean acceptance probability of 3.8%. In
this instance, the prior distribution is rather diffuse, so we could consider an alternative
pilot tuning exercise for the proposal variance (keeping the proposal mean equal to zero).
For example, setting the proposal variance to be equal to unity provided a mean accep-
tance rate of 8.0%. However, taking the posterior mean and variance of the parameters in
the saturated model as the proposal mean and variance involves only a single simulation,
and also updates the location of the proposal distribution, although it does assume that
the parameter values are generally similar across models. Note that additional pilot tuning
could also be performed here. In this instance, changing the proposal variance did notmake
any significant improvement in the acceptance probabilities.
We performed model selection on the covariates present in the model. However, we

could also consider the analogous model selection technique in relation to the random
effects, in terms of their presence or absence. This is generally more difficult since we need
to specify a “sensible” prior on the random effect variance term. As we have seen for the
covariate terms, posterior model probabilities are typically more sensitive to the priors
specified on the parameters than the posterior distribution of the parameter. This is as a
result of integrating out over the parameter space in the derivation of the posterior model
probability, as described above. Typically we specify a vague prior on the random effect
variance term. In order touse theRJMCMCalgorithm, theprior needs to be aproper prior so
that the acceptance probability can be calculated (since we need to evaluate the prior in the
acceptance probability, and the constant of proportionality is infinite for improper priors).
For proper vague priors (such as the Γ−1(0.001, 0.001) distribution), the prior distribution
is very diffuse, so that the simpler fixed effects model will often be chosen (i.e. Lindley’s
paradox occurs). Thus, for this data set, we consider the posterior distributions of the
random effects variances and corresponding demographic parameters (assuming a mixed
model for each demographic parameter) to see whether it appears that random effects are
important or not. In particular, we conclude that random effects are only present for the
first-year survival probabilities. Amore rigorous approach would be to consider the form
of the distribution of the random effect variance term in more detail, such that the induced
prior on the corresponding random effect terms (and hence demographic parameter) are
“sensible.”

17.3 Analysis of Count Data
For the UK lapwing population, there are additional, independent, count data.We consider
data from1965 to 1998. Thesedata correspond to estimates of thenumber of breeding female
lapwings at a number of sites throughout the United Kingdom and can be regarded as an
index for the total population. However, these counts are only an estimate of the index
(or population size). In order to account for this uncertainty regarding these estimates we
consider a state–space approach, following the ideas andmodel suggested by Besbeas et al.
(2002).
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17.3.1 State–Space Model

State–space models consider two separate processes: a system process, describing how the
population size changes over time; and the observation process, which takes into account
the uncertainty in the observed count data. We consider each of these processes in turn.

17.3.1.1 System Process

For the UK lapwing data, the individuals are described as either first-years or adults. Thus,
we consider these population sizes separately. Let N1,i and Na,i denote the true number of
first-year (female) birds and adult (breeding female) birds at time i.We assume that all adult
birds breed; and that no first-year birds breed. Anatural model for the number of first-year
birds at time i would be

N1,i ∼ Poisson(Na,i−1ρi−1φ1,i−1),

where ρi denotes the productivity rate of females per female in year i. In addition, for the
number of female adults we assume

Na,i ∼ Binomial(N1,i−1 +Na,i−1,φa,i−1).

For furtherdiscussionof thismodel, see, for example, Besbeas et al. (2002).Wenote thatρiφ1,i
are confounded in this model, since the terms only appear as a product. In order to separate
these two processes (first-year survival and productivity), additional data is necessary. For
example, specifying a logistic regression on the first-year survival probability on a given
covariate can remove this confounding.Alternatively, the use of additional data (such as the
ring-recovery data considered previously) can also remove this confounding issue, since
the parameter φ1 is estimable from the ring-recovery data.
The system process is defined for i = 1, . . . ,T (with i = 1 corresponding to the year 1965

and T = 34). However, for i = 1, N1,i and Na,i are a function of N1,0 and Na,0. To allow
for this (without truncating the likelihood), we consider N1,0 and Na,0 as parameters, and
place vague uniform priors on them. Note that this essentially induces a prior on all other
population sizes, N1,i and Na,i for i = 1, . . . ,T, by the relationship expressed above in the
system process.

17.3.1.2 Observation Process

Wedonot observe the truepopulation sizes,N1 = {N1,1, . . . ,N1,T} andNa = {Na,1, . . . ,Na,T},
but only an estimate of some of the population sizes. For the UK lapwings, we have an
estimate of only the number of breeding females, denoted by y = {y1, . . . , yT}, that is, y is
an estimate of Na. In order to model the observation uncertainty, we assume

yi ∼ N(Na,i, σ2y),

for i = 1, . . . ,T, where σ2y is to be estimated. Clearly many other models are possible, such
as a lognormal distribution (King et al., 2008b), or where the observation error variance is
proportional to the true population size. We retain the simplest normal observation model.
We place a conjugate inverse gamma prior on the observation variance, σ2y ∼ Γ−1(ay, by),
with ay = by = 0.001.
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17.3.1.3 Model

In addition to the survival and recovery parameters, there are the additional productivity
rates. We specify a logarithmic regression for the productivity rate of the form

log ρi = αρ + γρti,

where ti denotes the (normalized) variable corresponding to time (i.e. year). We extend our
vector notation, so that α = {α1, αa, αλ, αρ} and γ = {γλ, γρ}.
Theoverallmodelhas a randomeffects component for thefirst-year survivalprobabilities,

also dependent on fdays, a fixed effects model for adult survival probabilities dependent
on fdays, and fixed effects models for the recovery probabilities and productivity rate, both
dependent on time. Thus, this model considers additional random effects for the first-year
survival probabilities, not considered in the previous analyses by Besbeas et al. (2002),
Brooks et al. (2004), and King et al. (2008b). Notationally, we specify this model in the form

φ1( fdays, σ21)/φa( fdays)/λ(t)/ρ(t).

This model is motivated by the model identified from the ring-recovery data considered
previously with a logistic regression specified on φ1, φa and λ and the analysis by Besbeas
et al. (2002) (for the productivity rates).

17.3.1.4 Obtaining Inference

The likelihood of the count data is analytically intractable.We consider an auxiliary variable
approach (analogous to the approach used for the random effects model). We treat the true
population sizesN1 andNa as parameters (or auxiliary variables). The corresponding joint
likelihoodof the countdatay and truepopulation sizes (given thedemographicparameters)
can be written in the form

f (y,N1,Na | N1,0,Na,0,φ1,φa,λ,ρ, σ2y) = fobs(y | Na, σ2y)fsys(N1,Na | N1,0,Na,0,φ1,φa,λ,ρ),

where fobs and fsys denote the likelihood functions associated with the observation and
system processes. Thus fobs is a product over normal distributions, and fsys a product over
Poisson and binomial distributions. For notational simplicity, we specify the likelihood
as a function of the demographic parameters. Equivalently, we can express the likelihood
given the regression parameters (and random effect terms if present). This likelihood can
be combined with the priors to form the joint posterior distribution of the parameters and
auxiliary variables (true population sizes and random effects terms). However, note that
there is typically very little information relating to thefirst-year parameters (population size
andsurvivalprobabilities),withonlyestimatesof theadultpopulation sizes. Inaddition, the
posterior precision of the other parameters can also be poor (see, e.g. Brooks et al., 2004).
However, there is the additional, independent, ring-recovery data that can be combined
with the count data within a single integrated analysis, using all the available information.

17.3.2 Integrated Analysis

Following the approach of Besbeas et al. (2002), we combine the independent ring-recovery
data and count data within an integrated analysis, but consider a different underlying
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model (as we assume a mixed effects model for the first-year survival probabilities). Since
the data sources are independent of each other, we canwrite the joint likelihood of the ring-
recovery data and count data as the product of the individual likelihoods. Thus, we can
express the joint posterior distribution of the regression parameters and auxiliary variables
(population sizes and random effect terms) in the form

π(α, β, γ, σ21, ε1,N1,Na, σ2y | m, y) ∝ fobs(y | Na, σ2y)fsys(N1,Na | α, β, γ, ε,N1,0,Na,0)

× f (m | α, β, γ, ε)
× p(α)p(β)p(γ)p(ε1 | σ21)p(σ21)p(σ2y)p(N0,1)p(N0,a).

The first line corresponds to the likelihood for the count data, the second line to the likeli-
hood for the ring-recovery data, and the final terms to the priors for all the parameters in
the model.

17.3.2.1 MCMC Algorithm

We consider a single-update Metropolis–Hastings algorithm. We implement a uniform
random-walk algorithm for the demographic regression parameters, α, β, and γ, and the
population sizes, N1,0 and Na,0. Alternatively, for σ2y, we use a Gibbs update, since the
conditional distribution is of standard form,

σ2y | Na ∼ Γ−1
(
ay + T

2
, by + 1

2

T∑
i=1

(yi −Na,i)
2
)
.

Finally, we consider two different updating schemes for N1 and Na.

Algorithm 1. Uniform random-walk single-update Metropolis–Hastings algorithm
(as implemented by King et al., 2008b).

Algorithm 2. Single-updateMetropolis–Hastings algorithm using the system process
(i.e. binomial or Poisson distribution) as the proposal distribution for times i =
1, . . . ,T.

For algorithm 1, we initially performed a pilot tuning exercise to obtain the lower and
upper bound of the uniform proposal. We set the proposal distribution such that the can-
didate value is within ±75 of the current value, providing a mean acceptance probability
of 18–39% for first-years and adults over all years. Algorithm 2 does not typically require
any pilot tuning, and results in mean acceptance probabilities of 56–75% for first-years and
adults for years i = 1, . . . ,T − 1 (for year T the mean acceptance probabilities are 100% and
98% for first-years and adults). Figure 17.2 provides a trace plot of the number of first-years
and adults for a typical year, while Figure 17.3 provides the corresponding autocorrelation
function (ACF) plot, for both algorithms. The trace plots suggest that algorithm 2may have
better mixing properties (particularly for the adults). This is supported by the ACF plots,
with a reduction of approximately 20% in the autocorrelation (by lag 50) of algorithm 2
compared to algorithm 1 (for this particular year). Thus, we retain the use of algorithm 2.
One problem with the single-update approach is that population sizes are highly corre-

lated from one year to the next, due to the underlying system process. This means that the
algorithm can exhibit poormixing andhigh autocorrelation (as demonstrated above). Block
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FIGURE 17.2
Trace plots for the number of first-years (top left) and adults (top right) for algorithm 1 (uniform proposal); and
first-years (bottom left) and adults (bottom right) for algorithm 2 (using system process) in the year 1989.

updating can improve themixing, andwas considered for algorithm 2 (e.g. simultaneously
updating N1,i and Na,i within a single update), but did not appear to improve the mixing
in this case.

17.3.2.2 Results

The simulations are run for 1 million iterations, with the first 10% discarded as burn-in,
to be conservative. Table 17.6 provides the corresponding posterior mean and standard
deviation of each parameter in the model. Note that the posterior distributions for the
regression parameters are very similar to those obtained for the ring-recovery alone, given
in Table 17.3. This is a result of there being relatively little direct information in the count
data on these parameters, so that the ring-recovery data dominate with respect to these
parameters. For further discussion of similar issues and for a comparison of results for
ring-recovery data only, count data only, and integrated data for the analogous fixed effects
model, see Brooks et al. (2004) andKing et al. (2009). Recall thatwithin theMCMCalgorithm
we also impute the true population sizes. Thus, we can also draw inference on the true
population sizes, which is typically of particular interest. Figure 17.4 provides the posterior
mean and 95% HPDI of the estimates of the true population size for first-years and adults,
along with the corresponding observed count data, y.
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FIGURE 17.3
ACF plots for the number of first-years (top left) and adults (top right) for algorithm 1 (uniform proposal); and
first-years (bottom left) and adults (bottom right) for algorithm 2 (using system process) in the year 1989. Note
that the ACF at lag 50 is equal to 0.619 and 0.494 for the number of first-years and 0.820 and 0.677 for the number
of adults for algorithms 1 and 2, respectively.

TABLE 17.6

The Posterior Mean and Standard Deviation (SD) of Each
Parameter for the Integrated Analysis of Ring-Recovery
Data and Count Data
Parameter Posterior Mean (SD)

α1 0.545 (0.082)
β1 −0.202 (0.075)
αa 1.545 (0.071)
βa −0.245 (0.039)
αλ −4.563 (0.035)
γλ −0.351 (0.039)
αρ −1.142 (0.090)
γρ −0.253 (0.053)
σ21 0.063 (0.056)
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FIGURE 17.4
The posterior mean (*) and 95%HPDI for the population size relating to adults (in black) and first-years (in gray).
The solid dots give the corresponding data, y, relating to the estimates of the adult population size.

In addition, within the MCMC algorithm we can obtain a sample from the posterior
distribution of functions of the population sizes (and/or other parameters). For example,
one particular quantity of interest is the (log) adult population growth rate over time. For
generality, we let log ri,j denote the log change in adult growth to year i at lag j, defined
to be

log ri,j = logNa,i − logNa,i−j.

We can estimate additional quantities of interest, such as the posterior probability that the
log adult population growth rate at lag j is positive, corresponding to an increase in the
adult population between times i − j and i. Consider, for example, ri,25 (i.e. the change in
population size over 25 years), used in the determination of species of conservation concern
(Gregory et al., 2002). Theposterior distribution for ri,25 is plotted in Figure 17.5.An estimate
from the observed count data, ignoring the uncertainty in relation to these estimates, is
plotted for comparison (although no associated uncertainty intervals can be calculated).
Clearly, there appears to be a significant change in the adult lapwing population over the
25-year period 1973–1998. For example, in 1998 we obtain a 42% posterior probability that
the population has declined by more than 50%. See King et al. (2008b) and Brooks et al.
(2008) for further discussion of assessing changing population sizes and their relation to
conservation concern.

17.3.3 Model Selection

We once more consider the issue of the underlying covariate dependence for each of the
demographic parameters. Allowing each parameter (i.e. survival probabilities, recovery
probabilities, and productivity rates) to be dependent on fdays and/or time, there are a total
of 44 = 256 possiblemodels. Oncemore,we assume that the first-year survival probabilities
have a random effects component, whereas all other parameters are fixed effects models,
thus extending the set of models considered by King et al. (2008b). We assume an equal
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FIGURE 17.5
The posterior mean (*) and 95%HPDI for the 25-year adult growth rate, ri,25 (in black) and corresponding 25-year
adult growth rate from raw data, y (in gray).

prior probability on each of the possiblemodels and use the analogous RJMCMCalgorithm
as before, extending the method to updating the dependence of the productivity rate on
fdays and time, so we omit the details for brevity.

17.3.3.1 Results

The simulations are run for a total of 10 million iterations, discarding the first 10% as burn-
in. Independent replications did provide some mild variation with respect to the posterior
model probabilities (within the second decimal place), but the interpretation of the results
remained consistent between simulations. We note that the poor mixing over model space
appears to be a result of bimodality in the model space between nonneighboring models
(see further discussion below). Tables 17.7 and 17.8 provide the corresponding posterior
(model-averaged) mean and standard deviation of the model parameters and correspond-
ingmarginal posteriormodel probabilities for each of the demographic parameters in terms
of the dependence on fdays and time. It is interesting to compare Table 17.8 with Table 17.5a,
the analogous marginal posterior model probabilities for only the ring-recovery data. One
of the main differences is that in the integrated analysis, the adult survival probability has
a significantly higher probability of being dependent on time (0.679 compared to 0.091).
From Table 17.7 we see that if the time dependence is present, then the adult survival prob-
ability is declining with time (i.e. the posterior distribution for γa is clearly negative). This
is demonstrated in Figure 17.6, which provides the (model-averaged) estimates of all the
demographic parameters for both the integrated analysis and for the ring-recovery data
only, for comparison. Clearly, for the first-year survival probabilities and recovery proba-
bilities there is very little difference in the posterior estimates of these parameters for the
integrated and ring-recovery only analyses (although there are some differences in the pos-
terior model probabilities for these parameters). We note that the count data do not contain
any information on the recovery probabilities and there is no direct information on the
first-year survival probabilities (only indirect information contained in the estimates of the
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TABLE 17.7

The Marginal (Model-Averaged) Posterior Mean and Standard Deviation
(SD) of Each Regression Parameter (Conditional on Being Present in the
Model) and the Corresponding Posterior Probability that the Parameter is
Present in the Model for the Integrated Analysis of Ring-Recovery Data and
Count Data. Note that the Logistic Intercept Terms (α) and σ21 are Always
Assumed To Be Present
Parameter Posterior Mean (SD) Posterior Probability

α1 0.503 (0.087) 1.000
β1 −0.192 (0.086) 0.243
γ1 −0.045 (0.093) 0.033
σ21 0.078 (0.065) 1.000

αa 1.488 (0.076) 1.000
βa −0.209 (0.063) 0.835
γa −0.222 (0.049) 0.679

αλ −4.594 (0.040) 1.000
βλ 0.148 (0.054) 0.511
γλ −0.378 (0.045) 1.000

αρ −1.061 (0.098) 1.000
βρ −0.175 (0.122) 0.101
γρ −0.260 (0.086) 0.371

number of adults). There is a slight discrepancy between the estimates of the adult-survival
probabilities; this appears to be most likely a result of the differing posterior probabilities
of being dependent on time between the two analyses.
Finally, we note a couple of differences between these results and those obtained by King

et al. (2008b) who consider a similar approach, but using only fixed effects models with a
different observation process. In particular, the (marginal) posterior model probabilities for
the first-year survival probabilities differ substantially, with 0.644 posterior probability for
φ1( f ) and 0.323 posterior probability for φ1. This is compared to the posterior probabilities
of 0.234 for model φ( f ) and 0.732 for model φ1 within our analysis using a mixed effects
model for first-year survival probabilities. Thus, allowing for additional random effects
significantly reduces the posterior probability that the first-year survival probabilities are
dependent on fdays. This is often the case, since the additional random effects account for

TABLE 17.8

The Marginal Posterior Probability of the Dependence of
Each Demographic Parameter on the Combination of
Covariates fdays and Time
Covariates φ1 φa λ ρ

fdays and time 0.009 0.588 0.511 0.033
fdays only 0.234 0.247 0.000 0.068
time only 0.025 0.090 0.489 0.322
no dependence 0.732 0.074 0.000 0.577
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FIGURE 17.6
The posterior model-averaged mean (*) and 95% HPDI for each parameter for the integrated analysis (in black)
and for the ring-recovery data only (in gray), assuming a mixed effects model for φ1 and fixed effects models for
φa,λ and ρ, for (a) φ1; (b) φa; (c) λ; and (d) ρ. The bottom line in each plot denotes the values for the covariate fdays.

some of the temporal heterogeneity; whereas if we assume a fixed effects model, the covari-
ate ( fdays) may not explain the temporal variability very well, but is better than assuming
a constant survival probability. In addition, we note that in the analysis by King et al.
(2008b), although the same two (marginal) models for the recovery probabilities dominate
the posterior distribution, the corresponding posterior model probability for λ(t) is 0.748
and for λ( f , t) is 0.252. This corresponds to a Bayes factor of 2.97—bordering on “positive
evidence” (Kass and Raftery, 1995) for only time dependence for the recovery probabilities
compared to the additional dependence on fdays. This is in contrast to our results, with
posterior probabilities of 0.489 for λ(t) and 0.511 for λ( f , t) (and a Bayes factor of ≈ 1), so
that there is greater posterior uncertainty as to the presence/absence of the dependence of
fdays for the recovery probability.

17.3.3.2 Comments

Care needs to be taken when considering marginal posterior distributions, of parameters
and/ormodels. Intricate detail (and interesting interpretations) can bemissed if parameters
and/or models are highly correlated, and this detail can be difficult to identify, particu-
larly over large model spaces. For example, in this analysis the marginal posterior model
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TABLE 17.9

The Posterior Probabilities for the Models With Largest
Posterior Support
Model Posterior Probability

φ1(σ
2
1)/φa( fdays, t)/λ(t)/ρ 0.183

φ1(σ
2
1)/φa( fdays, t)/λ( fdays, t)/ρ 0.164

φ1( fdays, σ21)/φa( fdays, t)/λ(t)/ρ 0.144

φ1(σ21)/φa( fdays)/λ( fdays, t)/ρ(t) 0.109

φ1(σ
2
1)/φa( fdays)/λ(t)/ρ(t) 0.059

φ1(σ
2
1)/φa/λ( fdays, t)/ρ(t) 0.056

φ1( fdays, σ21)/φa( fdays)/λ(t)/ρ(t) 0.052

The terms in brackets correspond to the parameter dependence: fdays
for the covariate fdays; t for time; and σ21 corresponding to the random
effect component for first-year survival probabilities.

probabilities given in Table 17.8 cannot provide any information relating to the correlation
between themodels. Thus in Table 17.9we present the overallmodelswith largest posterior
support.
Careful consideration of thesemodels suggests that themarginalmodels for the adult sur-

vival probability and productivity rates may be correlated (when φa is dependent on time,
ρ is not, and vice versa). We investigate this further. In particular, we calculate the posterior
probability that productivity is dependent on time, given that adult survival probability
is not time-dependent, to be equal to 0.999; whereas the posterior probability that produc-
tivity is dependent on time, given that the adult survival probability is time-dependent, is
only 0.049. Conversely, the posterior probability that the adult survival probability is time-
dependent, given the productivity rate is time-dependent (not time-dependent), is 0.094
(0.999). Clearly there is a strongnegative posterior correlation between the timedependence
of the adult survival probability and productivity rate. Overall, the posterior probability
that either the adult survival probability or the productivity rate is time-dependent, but not
both, is equal to 0.966 (i.e. a Bayes factor of 28). This corresponds to strong evidence that
only the adult survival probabilities or productivity rates are time-dependent, but with
slightly larger posterior support that it is the adult survival probabilities (a Bayes factor
of 1.5 that it is the adult survival probability rather than productivity rate, conditional on
only one being time-dependent). Similar results were obtained by King et al. (2008b) when
considering only fixed effects models. Interestingly, additional (independent) studies have
identified declining chick numbers, which would support the model with time-dependent
productivity rates; see Besbeas et al. (2002) and Wilson et al. (2001) for further discussion.
Finally, we note that when parameter dependencies are highly correlated, moving between
the differentmodels can be difficult (essentially we have a bimodal distribution overmodel
space). This can result in poor mixing within the RJMCMC algorithm. To improve the mix-
ing between models, “block” updates can be performed with respect to model updates,
essentially proposing to update the model for the different parameters simultaneously. For
example, in this case, we could add an additional move type that proposes to update both
the covariate dependence on the adult survival probabilities and productivity rates within
a single model move.
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17.4 Discussion
TheuseofMCMCalgorithms cangreatly simplify analyses of complexdata that arise in eco-
logical problems, and allows more realistic models to be fitted to the data. The use of these
algorithms in statistical ecology is likely to continue due to an increased awareness of the
methods and freely available published codes. One area where Bayesian approaches have
had a significant impact in statistical ecology is in relation to the inclusion of heterogene-
ity within models. Individual heterogeneity is an example which has received particular
attention due not only to its perceived importance and relevance within ecological mod-
els but also to associated problems. The use of MCMC greatly aids the fitting of (even
nonnormal) random effects models, allowing more complex and realistic models to be fit-
ted to data (Barry et al., 2003; Brooks et al., 2002; King and Brooks, 2008; Royle and Link,
2002). Alternatively, covariate models are often used to describe the relationship between
demographic parameters and factors of interest (on an individual or temporal scale), and
so are often of particular interest to biologists. However, missing values often arise in these
circumstances, adding an additional level of complexity to an analysis. Once more, a data
augmentation approach can be implemented, with the missing values treated as auxiliary
variables and imputed within the MCMC algorithm (Bonner and Schwarz, 2006; Dupuis,
1995; King et al., 2006, 2008a). Discriminating between competing covariate models pro-
vides information relating to the underlying dynamics of the system and is typically of real
biological interest. Two issues often arise in such analyses: constructing efficient RJMCMC
algorithms; and the prior specification on the parameters. These continue to be active areas
of research. Additionally, within covariate analyses, a parametric relationship is typically
assumed between the covariate(s) and demographic parameters. However, this is generally
a very restrictive assumption, and often not testedwithin analyses.An alternative approach
has been presented by Gimenez et al. (2006) who consider the use of spline functions to
describe the relationship between the demographic parameter and the covariate of interest.
This flexible modeling approach is a real step in developing more complex and realistic
models, to link observed data with potential factors.
TheMCMCalgorithmtypicallyallowsmore complexmodels tobefitted to thedatawithin

a Bayesian framework. However, there is typically a tradeoff between fitting increasingly
complex models, using advanced techniques, and the corresponding computation time
needed to obtain posterior estimates of interest. Thus, one area of particular interest (and
more generally) is the development of efficient MCMC algorithms. For example, the gen-
eral implementation of the Metropolis–Hastings algorithm is typically straightforward;
however, problems can still arise, such as poor mixing, so that more “intelligent” algo-
rithms need to be developed. An example of this problem, as a result of high correlation
between parameters, is given in Section 17.3.1. Although the “plain vanilla” algorithm
was improved, the algorithm implemented still suffered from high autocorrelation. More
generally, Link and Barker (2008) have considered efficient Metropolis–Hastings updates
for the recapture and survival probabilities relating to capture–recapture data. The leap
from MCMC to RJMCMC, in the presence of model uncertainty, often brings additional
mixing problems, in terms of proposed moves between different models having very low
acceptance probabilities, so that the development of alternativemodel updating algorithms
would be of particular interest. The complexity of the likelihood expression in many eco-
logical applications can make it difficult to implement some efficient RJMCMC algorithms,
such as the method proposed by Brooks et al. (2003), so that alternative algorithms need
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to be developed. For example, Gramacy et al. (2010) apply the method of “importance
tempering” to mark–recapture–recovery data in the presence of model uncertainty.
The explosion in the application of Bayesian methods within statistical ecology shows

no sign of slowing. On the contrary, application of the methods continues to increase.
The publication of freely available computer codes (in WinBUGS/OpenBUGS and R) and
books devoted to the area will no doubt fuel the further expansion of the use of MCMC
within the field of statistical ecology. The complexity of data collected will help to drive
statistical advanceswithin thefield, andmoregenerally, suchas thedevelopment of efficient
(RJ)MCMC algorithms.
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18
Gaussian Random Field Models for Spatial Data

Murali Haran

18.1 Introduction
Spatial data contain information about both the attribute of interest and its location. Exam-
ples canbe found ina largenumberofdisciplines, includingecology, geology, epidemiology,
geography, image analysis, meteorology, forestry, and geosciences. The location may be a
set of coordinates, such as the latitude and longitude associatedwith an observed pollutant
level, or it may be a small region such as a county associated with an observed disease rate.
FollowingCressie (1993), we categorize spatial data into three distinct types: (i) geostatistical
or point-level data, as in the pollutant levels observed at several monitors across a region;
(ii) lattice or “areal” (regionally aggregated) data, for example, US disease rates provided by
county; and (iii) point process data, where the locations themselves are random variables
and of interest, as in the set of locations where a rare animal species was observed. Point
processes where random variables associatedwith the random locations are also of interest
are referred to as marked point processes. In this chapter, we only consider spatial data that
fall into categories (i) and (ii).
We will use the following notation throughout. Denote a real-valued spatial process in d

dimensions by {Z(s) : s ∈ D ⊂ R
d}, where s is the location of the process Z(s) and s varies

over the index set D, resulting in a multivariate random process. For point-level data D is
a continuous, fixed set, while for lattice or areal data D is discrete and fixed. For spatial
point processes, D is stochastic and usually continuous. The distinctions among the above
categories may not always be apparent in any given context, so determining a category is
part of the modeling process.
The purpose of this chapter is to discuss the use of Gaussian randomfields formodeling a

variety of point-level and areal spatial data, and to point out the flexibility inmodel choices
afforded byMarkov chain Monte Carlo (MCMC) algorithms. Details on theory, algorithms
and advanced spatial modeling can be found in Cressie (1993), Stein (1999), Banerjee et al.
(2004), and other standard texts. The reader is referred to the excellent monograph by
Møller and Waagepetersen (2004) for details on modeling and computation for spatial
point processes.

18.1.1 Some Motivation for Spatial Modeling

Spatial modeling can provide a statistically sound approach for performing interpolations
for point-level data, which is at the heart of “kriging”, a body of work originating from
mineral exploration (seeMatheron, 1971). Evenwhen interpolation is not the primary goal,
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accounting for spatial dependence can lead to better inference, superior predictions, and
moreaccurate estimates of thevariability of estimates.Wedescribe toy examples to illustrate
two general scenarios where modeling spatial dependence can be beneficial: when there
is dependence in the data, and when we need to adjust for an unknown spatially vary-
ing mean. Learning about spatial dependence from observed data may also be of interest
in its own right, for example, in research questions where detecting spatial clusters is of
interest.

Example 18.1 Accounting Appropriately for Dependence

Let Z (s) = 6s + ε(s) be a random variable indexed by its location s ∈ (0, 1), with dependent
errors ε(s) generated via a simple autoregressive model: ε(s1) = 7, ε(si) ∼ N(0.9ε(si−1), 0.1), i =
2, . . . , 100, for equally spaced locations x1, . . . , x100 in (0, 1). Figure 18.1a shows how a model
that assumes the errors are dependent, such as a linear Gaussian process (GP) model (solid curves)
described later in Section 18.2.1, provides a much better fit than a regression model with inde-
pendent errors (dotted lines). Note that for spatial data, s is usually in two- or three-dimensional
space; we are only considering one-dimensional space here in order to better illustrate the
ideas.

Example 18.2 Adjusting for an Unknown Spatially Varying Mean

Let Z (s) = sin(s)+ ε(s) where, for any set of locations s1, . . . , sk ∈ (0, 1), and ε(s1), . . . , ε(sk ) are
independent and identically distributed normal random variables with mean 0 and variance σ2.
Suppose that Z (s) is observed at ten locations. From Figure 18.1b the dependent error model
(solid curves) is superior to an independent error model (dotted lines), even though there was no
dependence in the generating process. Adding dependence can thus act as a form of protection
against a poorly specified model.
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FIGURE 18.1
Black dots: simulated data. Solid curves: Gaussian process with exponential covariance. Dashed curves: Gaussian
processwith gaussian covariance.Dotted lines: independent errormodel. In all cases, themean and 95%prediction
intervals are provided.
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Example 18.2 shows how accounting for spatial dependence can adjust for amisspecified
mean, thereby accounting for important missing spatially varying covariate information
(for instance, the sin(x) function above).As pointed out inCressie (1993, p. 25), “What is one
person’s (spatial) covariance structure may be another person’s mean structure.” In other
words, an interpolation based on assuming dependence (a certain covariance structure)
can be similar to an interpolation that utilizes a particular mean structure (sin(x) above).
Example 18.2 also shows the utility of GPs for modeling the relationship between “inputs”
(s1, . . . , sn) and “outputs” (Z(s1), . . . ,Z(sn)) when little is known about the parametric form
of the relationship. In fact, this flexibility of GPs has been exploited for modeling relation-
ships between inputs and outputs from complex computer experiments (see Currin et al.,
1991; Sacks et al., 1989). For more discussion on motivations for spatial modeling see, for
instance, Cressie (1993, p. 13) and Schabenberger and Gotway (2005, p. 31).

18.1.2 MCMC and Spatial Models: A Shared History

Most algorithms related to MCMC originated in statistical physics problems concerned
with lattice systems of particles, including the original Metropolis et al. (1953) paper.
The Hammersley–Clifford theorem (Besag, 1974; Clifford, 1990) provides an equivalence
between the local specification via the conditional distribution of each particle given its
neighboring particles, and the global specification of the joint distribution of all the par-
ticles. The specification of the joint distribution via local specification of the conditional
distributions of the individual variables is the Markov random field specification, which
has found extensive applications in spatial statistics and image analysis, as outlined in
a series of papers by Besag and co-authors (see Besag, 1974, 1989; Besag and Kempton,
1986; Besag et al., 1995), and several papers on Bayesian image analysis (Amit et al., 1991;
Geman and Geman, 1984; Grenander and Keenan, 1989). It is also the basis for variable-at-
a-timeMetropolis–Hastings andGibbs samplers for simulating these systems. Thus, spatial
statistics was among the earliest fields to recognize the power and generality of MCMC. A
historical perspective on the connection between spatial statistics and MCMC, along with
related references, can be found in Besag and Green (1993).
While these original connections between MCMC and spatial modeling are associated

with Markov random field models, this discussion of Gaussian random field models
includes both GP and Gaussian Markov random field (GMRF) models in Section 18.2. In
Section 18.3, we describe the generalized versions of both linear models, followed by a dis-
cussion of non-GaussianMarkov randomfieldmodels in Section 18.4 and a brief discussion
of more flexible models in Section 18.5.

18.2 Linear Spatial Models
In this section we discuss linear Gaussian random field models for both geostatistical and
areal (lattice) data.Although awide array of alternative approaches exist (seeCressie, 1993),
we model the spatial dependence via a parametric covariance function or, as is common
for lattice data, via a parameterized precision (inverse covariance) matrix, and consider
Bayesian inference and prediction.
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18.2.1 Linear Gaussian Process Models

We first consider geostatistical data. Let the spatial process at location s ∈ D be defined as

Z(s) = X(s)β+ w(s), for s ∈ D, (18.1)

where X(s) is a set of p covariates associated with each site s, and β is a p-dimensional
vector of coefficients. Spatial dependence can be imposed by modeling {w(s) : s ∈ D} as a
zero-mean stationary GP. Distributionally, this implies that for any s1, . . . , sn ∈ D, if we let
w = (w(s1), . . . ,w(sn))T and Θ be the parameters of the model, then

w | Θ ∼ N(0,Σ(Θ)), (18.2)

whereΣ(Θ) is the covariancematrix of the n-dimensional normal density.We needΣ(Θ) to
be symmetric and positive definite for this distribution to be proper. If we specify Σ(Θ) by
a positive definite parametric covariance function, we can ensure that these conditions are
satisfied. For example, consider the exponential covariance with parameters Θ = (ψ, κ,φ),
withψ, κ,φ > 0. The exponential covarianceΣ(Θ) has the formΣ(Θ) = ψI + κH(φ), where
I is the identity matrix, the (i, j)th element of H(φ) is exp(−‖si − sj‖/φ), and ‖si − sj‖ is the
Euclidean distance between locations si, sj ∈ D. Alternatives to Euclidean distance may be
useful—for instance, geodesic distances are often appropriate for spatial data over large
regions (Banerjee, 2005). This model is interpreted as follows: the “nugget” ψ is the vari-
ance of the nonspatial error, say from measurement error or from a micro-scale stochastic
source associated with each location, and κ and φ dictate the scale and range of the spatial
dependence, respectively. Clearly, this assumes that the covariance and hence dependence
between two locations decreases as the distance between them increases.
The exponential covariance function is important for applications, but is a special case

of the more flexible Matérn family (Handcock and Stein, 1993). The Matérn covariance
between Z(si) and Z(sj) with parameters ψ, κ,φ, ν > 0 is based only on the distance
x between si and sj,

cov(x;ψ, κ,φ, ν) =
⎧⎨
⎩

κ

2ν−1Γ(ν)
(2ν1/2x/φ)νKν(2ν1/2x/φ), if x > 0,

ψ+ κ, if x = 0,
(18.3)

where Kν(x) is a modified Bessel function of order ν (Abramowitz and Stegun, 1964), and ν
determines the smoothness of the process. As ν increases, the process becomes increasingly
smooth. As an illustration, Figure 18.1 compares prediction (interpolation) using GPs with
exponential (ν = 0.5) and gaussian (ν→∞) covariance functions (we use lower case for
“gaussian” as suggested in Schabenberger and Gotway, 2005, since the covariance is not
related to theGaussiandistribution).Noticehow thegaussian covariance functionproduces
a much smoother interpolator (dashed curves) than the more “wiggly” interpolation pro-
duced by the exponential covariance (solid curves). Stein (1999) recommends the Matérn
since it is flexible enough to allow the smoothness of the process to also be estimated. He
cautions against GPs with gaussian correlations since they are overly smooth (they are
infinitely differentiable). In general the smoothness ν may be hard to estimate from data;
hence, a popular default is to use the exponential covariance for spatial data where the
physical process producing the realizations is unlikely to be smooth, and a gaussian covari-
ance for modeling output from computer experiments or other data where the associated
smoothness assumption may be reasonable.
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Let Z = (Z(s1), . . . ,Z(sn))T . From Equations 18.1 and 18.2, once a covariance function
is chosen (say, according to Equation 18.3), Z has a multivariate normal distribution with
unknownparametersΘ, β.Maximum likelihood inference for the parameters is then simple
in principle, though strong dependence among the parameters and expensive matrix oper-
ations may sometimes make it more difficult. A Bayesian model specification is completed
with prior distributions placed on Θ, β. “Objective” priors (perhaps more appropriately
referred to as “default” priors) for the linearGPmodel have beenderived by several authors
(Berger et al., 2001; DeOliveira, 2007; Paulo, 2005). These default priors are very useful since
it is often challenging to quantify prior information about these parameters in a subjective
manner. However, they can be complicated and computationally expensive, and prov-
ing posterior propriety often necessitates analytical work. To avoid posterior impropriety
when building more complicated models, it is common to use proper priors and rely on
approaches based on exploratory data analysis to determine prior settings. For example,
one could use a uniform density that allows for a reasonable range of values for the range
parameter φ, and inverse gamma densities with an infinite variance and mean set to a rea-
sonable guess for κ andψ (see, e.g. Finley et al., 2007),where the guessmay again depend on
some rough exploratory data analysis such as looking at variograms. For a careful analysis,
it is critical to study sensitivity to prior settings.

18.2.1.1 MCMC for Linear GPs

Inference for the linear GP model is based on the posterior distribution π(Θ, β | Z) that
results from Equations 18.1 and 18.2 and a suitable prior for Θ, β. Although π is of fairly
low dimensions as long as the number of covariates is not too large, MCMC sampling
for this model can be complicated by two issues: (i) the strong dependence among the
covariance parameters, which leads to autocorrelations in the sampler; (ii) the fact that
matrix operations involved at each iteration of the algorithm are of order N3, where N is
the number of data points. Reparameterization-based MCMC approaches, such as those
proposed in Yan et al. (2007) and Cowles et al. (2009), or block updating schemes, where
multiple covariance parameters are updated at once in a single Metropolis–Hastings step
(cf. Tibbits et al., 2010), may help with the dependence. Also, there are existing software
implementations ofMCMCalgorithms for linear GPmodels (Finley et al., 2007; Smith et al.,
2008). A number of approaches can be used to speed up the matrix operations, including
changing the covariance function in order to induce sparseness or other special matrix
structures that are amenable to fastmatrix algorithms;wediscuss this further in Section18.5.
Predictions of the process, Z∗ = (Z(s∗1), . . . ,Z(s∗m))T , where s∗1, . . . , s∗m are new locations

in D, are obtained via the posterior predictive distribution,

π(Z∗ | Z) =
∫
π(Z∗ | Z,Θ, β)π(Θ, β | Z) dΘ dβ. (18.4)

Under the GP assumption the joint distribution of Z,Z∗ given Θ, β is
[
Z
Z∗
]
| Θ, β ∼ N

([
μ1
μ2

]
,
[
Σ11 Σ12
Σ21 Σ22

])
,

where μ1 and μ2 are the linear regression means of Z and Z∗ (functions of covariates
and β), and Σ11,Σ12,Σ21,Σ22 are block partitions of the covariance matrix Σ(Θ) (functions
of covariance parameters Θ). By basic normal theory (e.g. Anderson, 2003), Z∗ | Z, β,Θ,
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corresponding to thefirst termin the integrand in (18.4), isnormalwithmeanandcovariance

E(Z∗ | Z, β,Θ) = μ2 +Σ21Σ−111 (Z− μ1), var(Z∗ | Z, β,Θ) = Σ22 −Σ21Σ−111 Σ12. (18.5)

Note, in particular, that the prediction for Z∗ given Z has expectation obtained by adding
two components: (i) the mean μ2 which, in the simple linear case, is βX∗, where X∗ are
the covariates at the new locations; (ii) a product of the residual from the simple linear
regression on the observations (Z− μ1) weighted byΣ21Σ−111 . If there is no dependence, the
second term is close to 0, but if there is a strong dependence, the second term pulls the
expected value at a new location closer to the values at nearby locations. Draws from the
posterior predictive distribution (Equation 18.4) are obtained in two steps: (i) simulate
Θ′, β′ ∼ π(Θ, β | Z) by the Metropolis–Hastings algorithm; (ii) simulate Z∗ | Θ′, β′,Z from
a multivariate normal density with conditional mean and covariance from Equation 18.5
using the Θ′, β′ draws from step (i).

Example 18.3

Haran et al. (2010) interpolate flowering dates for wheat crops across North Dakota as part of a
model to estimate crop epidemic risks. The flowering dates are only available at a few locations
across the state, but using a linear GP model with a Matérn covariance, it is possible to obtain
distributions for interpolated flowering dates at sites where other information (weather predictors)
is available for the epidemic model, as shown in Figure 18.2. Although only point estimates are
displayed here, the full distribution of the interpolated flowering dates is used when estimating
crop epidemic risks.

18.2.2 Linear Gaussian Markov Random Field Models

Adirect specification of spatial dependence viaΣ(Θ), while intuitively appealing, relies on
measuring spatial proximity in terms of distances between the locations. When modeling
areal data, it is possible to use measures such as inter-centroid distances to serve this
purpose, but this can be awkward due to irregularities in the shape of the regions. Also,
since the data are aggregates, assuming a single location corresponding to multiple ran-
domvariablesmay be inappropriate.An alternative approach is a conditional specification,
by assuming that a random variable associated with a region depends primarily on its
neighbors. A simple neighborhood could consist of adjacent regions, but more complicated
neighborhood structures are possible depending on the specifics of the problem. Let the
spatial process at location s ∈ D be defined as in Equation 18.1 so Z(s) = X(s)β+ w(s),
but now assume that the spatial random variables (“random effects”) w are modeled
conditionally. Let w−i denote the vector w excluding w(si). For each si we model w(si)
in terms of its full conditional distribution, that is, its distribution given the remaining
random variables, w−i:

w(si) | w−i,Θ ∼ N

⎛
⎝ n∑
j=1

cijw(sj), κ−1i

⎞
⎠ , i = 1, . . . , n, (18.6)

where cij describes the neighborhood structure. cij is nonzero only if i and j are neighbors,
while the κi are the precision (inverse variance) parameters. To make the connection to the
linear GP model (Equation 18.2) apparent, we let Θ denote the precision parameters. Each
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Before July 6 July 6–July 12 July 13–July 19 After July 19

(a)

(b)

FIGURE 18.2
(a) Raw flowering date. (b) Interpolated flowering dates at desired grid locations, using means from posterior
predictive distribution from linear Gaussian process model.

w(si) is therefore a normal randomvariate withmean based on neighboring values ofw(si).
Just as we need to ensure that the covariance is positive definite for a valid GP, we need to
ensure that the set of conditional specifications result in a valid joint distribution. Let Q be
an n× nmatrix with ith diagonal element κi and (i, j)th off-diagonal element −κicij. Besag
(1974) proved that if Q is symmetric and positive definite (Equation 18.6) specifies a valid
joint distribution,

w | Θ ∼ N(0,Q−1), (18.7)

with Θ the set of precision parameters (note that the cij and κi depend on Θ). Usually
a common precision parameter, say τ, is assumed so κi = τ for all i, and hence Q(τ) =
τ(I + C) where C is a matrix which has 0 on its diagonals and (i, j)th off-diagonal element
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−cij, though a more attractive smoother may be obtained by using weights in a GMRF
model motivated by a connection to thin-plate splines (Yue and Speckman, 2009). To add
flexibility to the aboveGMRFmodel, some authors have included an extra parameter in the
matrixC (see Ferreira andDeOliveira, 2007). Inference for the linearGMRFmodel specified
by Equations 18.1 and 18.7 can therefore proceed after assuming a prior distribution for
τ, β, often an inverse gamma and flat prior respectively. An alternative formulation is an
improper version of the GMRF prior, the so-called “intrinsic Gaussian Markov random
field” (Besag and Kooperberg, 1995):

f (w | Θ) ∝ τ(N−1)/2 exp{−wTQ(τ)w}, (18.8)

where Q has −τcij on its off-diagonals (as above) and ith diagonal element τ
∑

j cij. The
notation j ∼ i implies that i and j are neighbors. In the special case where cij = 1 if j ∼ i and
0 otherwise, Equation 18.8 simplifies to the “pairwise-difference form,”

f (w | Θ) ∝ τ(N−1)/2 exp
⎛
⎝−1

2
∑
i∼j
{w(si)− w(sj)}2

⎞
⎠ ,

which is convenient for constructing MCMC algorithms with univariate updates since
the full conditionals are easy to evaluate. Q is rank deficient so the above density is
improper. This form is a very popular prior for the underlying spatial field of interest. For
instance, denote noisy observations by y = (y(s1), . . . , y(sn))T , so y(si) = w(si)+ εi where
εi ∼ N(0, σ2) is independent error. Then an estimate of the smoothed underlying spatial
process w can be obtained from the posterior distribution of w | y as specified by Equa-
tion 18.8. If the parameters, say τ and σ2, are also to be estimated and have priors placed on
them, inference is based on the posteriorw, τ, σ2 | y. The impropriety of the intrinsic GMRF
is not an issue as long as the posterior is proper. If cij = 1 when i and j are neighbors and
0 otherwise, this corresponds to an intuitive conditional specification:

f (wj | w−i, τ) ∼ N
(∑n

j∈N(i)w(sj)
n

,
1
niτ

)
,

where ni is the number of neighbors for the ith region, and N(i) is the set of neighbors of
the ith region. Hence, the distribution of w(si) is normal with mean given by the average
of its neighbors and its variance decreases as the number of neighbors increases. See Rue
and Held (2005) for a discussion of related theory for GMRF models, and Sun et al. (1999)
for conditions under which posterior propriety is guaranteed for various GMRF models.
Although GMRF-based models are very popular in statistics and numerous other fields,

particularly computer science and image analysis, there is some concern about whether
they are reasonable models even for areal or lattice data (McCullagh, 2002). The marginal
dependence inducedcanbe complicatedandcounterintuitive (BesagandKooperberg, 1995;
Wall, 2004). In addition, a GMRF model on a lattice is known to be inconsistent with the
corresponding GMRF model on a subset of the lattice, that is, the corresponding marginal
distributions are not the same. However, quoting Besag (2002), this is not a major issue if
“The main purpose of having the spatial dependence is to absorb spatial variation (depen-
dence) rather than produce a spatial model with scientifically interpretable parameters.”
GMRFmodels can help producemuch better individual estimates by “borrowing strength”
from the neighbors of each individual (region). This is of particular importance in small
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area estimationproblems (seeGhosh andRao, 1994),wheremanyobservations are based on
small populations, for instance disease rate estimates in sparsely populated counties. Spa-
tial dependence allows the model to borrow information from neighboring counties which
may collectively have larger populations, thereby reducing the variability of the estimates.
Similar considerations apply in diseasemappingmodels (Mollié, 1996)where small regions
and the rarity of diseases have led to the popularity of variants of theGMRF-basedBayesian
image restoration model due to Besag et al. (1991). More sophisticated extensions of such
models in the context of environmental science and public health are described in several
recent books (see, e.g. Lawson, 2008; Le and Zidek, 2006;Waller and Gotway, 2004). Several
of these models fall under the category of spatial generalized linear models, as discussed
in Section 18.3.

18.2.2.1 MCMC for Linear GMRFs

The conditional independence structure of a GMRF makes it natural to write and compute
the full conditional distributions of each w(si), without any matrix computations. Hence
MCMCalgorithmswhich update a single variable at a time are easy to construct.When this
algorithm is efficient, it is preferable due to its simplicity. Unfortunately, such univariate
algorithms may often result in slow mixing Markov chains. In the linear GMRF model
posterior distribution, it is possible to analytically integrate out all the spatial random
effects (w), that is, it is easy to integrate the posterior distributionπ(w,Θ, β | Z)with respect
to w to obtain the marginal π(Θ, β | Z) in closed form. This is a fairly low-dimensional
distribution, similar to the linear GP model posterior, and similar strategies as described
for sampling from the linear GP model posterior may be helpful here. However, unlike
the linear GP model posterior, all matrices involved in linear GMRF models are sparse. A
reordering of the nodes corresponding to the graph can exploit the sparsity of the precision
matrices of GMRFs, thereby reducing the matrix operations from O(n3) to O(nb2) where
b2 is the bandwidth of the sparse matrix; see Rue (2001) and Golub and Van Loan (1996,
p. 155). For instance, Example 18.3.2.2 (see Section 18.3.2) involves n = 454 data points, but
the reordered precision matrix has a bandwidth of just 24. The matrix computations are
therefore speeded up by a factor of 357 each, and the ensuing increase in computational
speed is even larger.

18.2.3 Summary

Linear Gaussian random fields are a simple and flexible approach to modeling dependent
data.When thedata arepoint-level,GPs are convenient since the covariance canbe specified
as a function of the distance between any two locations. When the data are aggregated or
on a lattice, GMRFs are convenient as dependence can be specified in terms of adjacencies
and neighborhoods. MCMC allows for easy simulation from the posterior distribution for
both categories of models, especially since the low-dimensional posterior distribution of
the covariance (or precision) parameters and regression coefficients may be obtained in
closed form. Relatively simple univariate Metropolis–Hastings algorithms may work well,
and existing software packages can implement reasonably efficient MCMC algorithms.
When the simple approaches produce slow mixing Markov chains, reparameterizations
or block updating algorithms may be helpful. Many strategies are available for reducing
the considerable computational burden posed by matrix operations for linear GP models,
including theuse of covariance functions that result in specialmatrix structures amenable to
fast computations. GMRFs have significant computational advantages over GPs due to the
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conditional independence structure which naturally results in sparse matrices and greatly
reduced computations for each update of the MCMC algorithm.

18.3 Spatial Generalized Linear Models
Linear GP and GMRF models are very flexible, and work surprisingly well in a variety of
situations, including many where the process is quite non-Gaussian and discrete, such as
some kinds of spatial count data. When the linear Gaussian assumption provides a poor fit
to data, transforming thedata via the Box–Cox family of transformations, say, andmodeling
the transformed response via a linear GP or GMRF may be adequate (see “trans-Gaussian
kriging,” for instance, in Cressie, 1993, with the use of delta method approximations to
estimate the variance and perform bias correction). However, when it is important tomodel
the known sampling mechanism for the data, and this mechanism is non-Gaussian, spatial
generalized linear models (SGLMs) may be very useful. SGLMs are generalized linear
models (McCullagh andNelder, 1983) for spatially associated data. The spatial dependence
(the error structure) for SGLMs can be modeled via GPs for point-level (“geostatistical”)
data as described in the seminal paper by Diggle et al. (1998). Here, we also include the
use of GMRF models for the errors, as commonly used for lattice or areal data. Note that
the SGLMs here may also be referred to as “spatial generalized linear mixed models” since
the specification of spatial dependence via a generalized linear model framework always
involves random effects.

18.3.1 Generalized Linear Model Framework

We begin with a brief description of SGLMs using GPmodels. Let {Z(s) : s ∈ D} and {w(s) :
s ∈ D} be two spatial processes onD ⊂ R

d (d ∈ Z
+.) Assume that theZ(si) are conditionally

independent given w(s1), . . . ,w(sn), where s1, . . . , sn ∈ D, the Z(si) conditionally follow
some common distributional form, for example, Poisson for count data or Bernoulli for
binary data, and

E(Z(si) | w) = μ(si), for i = 1, . . . , n. (18.9)

Let η(s) = h{μ(s)} for some known link function h(·) (e.g. the logit link, h(x) = log
(

x
1−x
)
,

or log link, h(x) = log(x)). Furthermore, assume that

η(s) = X(s)β+ w(s), (18.10)

whereX(s) is a set of p covariates associatedwith each site s, and β is a p-dimensional vector
of coefficients. Spatial dependence is imposed on this process by modeling {w(s) : s ∈ D}
as a stationary GP so w = (w(s1), . . . ,w(sn))T is distributed as

w | Θ ∼ N(0,Σ(Θ)). (18.11)

Σ(Θ) is a symmetric, positive definite covariance matrix usually defined via a parametric
covariance such as a Matérn covariance function (Handcock and Stein, 1993), where Θ is
a vector of parameters used to specify the covariance function. Note that with the identity
link function and Gaussian distributions for the conditional distribution of the Z(si), we
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can obtain the linear GPmodel as a special case. The model specification is completed with
prior distributions placed onΘ, β, where proper priors are typically chosen to avoid issues
with posterior impropriety. There has been little work on prior settings for SGLMs, with
researchers relying on a mix of heuristics and experience to derive suitable priors. Prior
sensitivity analyses are, again, crucial, as also discussed in Section 18.6. It is important to
carefully interpret the regression parameters in SGLMs conditional on the underlying spatial
random effects, rather than as the usual marginal regression coefficients (Diggle et al., 1998,
p. 302).
The GMRF version of SGLMs is formulated in similar fashion, so Equations 18.9 and

18.10 stay the same but Equation 18.11 is replaced by Equation 18.7. Inference for the SGLM
model is based on the posterior distributionπ(Θ, β,w | Z). Predictions can then be obtained
easily via the posterior predictive distribution. In principle, the solution to virtually any
scientific question related to these models is easily obtained via sample-based inference.
Examples of such questions include findingmaxima (see the example in Diggle et al., 1998),
spatial cumulative distribution functions when finding the proportion of areawhereZ(s) is
above some limit (Short et al., 2005), and integrating over subregions in the case of Gaussian
process SGLMs when inference is required over a subregion.

18.3.2 Examples

18.3.2.1 Binary Data

Spatial binary data occur frequently in environmental and ecological research, for instance
when the data correspond to presence or absence of a certain invasive plant species at a
location, or when the data happen to fall into one of two categories, say two soil types.
Interpolation in point-level data and smoothing in areal/lattice data may be of interest.
Often, researchers may be interested in learning about relationships between the observa-
tions and predictors while adjusting appropriately for spatial dependence, and in some
cases learning about spatial dependence may itself be of interest.

Example 18.4

The coastal marshes of the mid-Atlantic are an extremely important aquatic resource. An invasive
plant species called Phragmites australis or “phrag” is a major threat to this aquatic ecosystem (see
Saltonstall, 2002), and its rapid expansion may be the result of human activities causing habitat
disturbance (Marks et al., 1994). Data from the Atlantic Slopes Consortium (Brooks et al., 2006)
provide information on presence or absence of phrag in the Chesapeake Bay area, along with
predictors of phrag presence such as land use characteristics. Accounting for spatial dependence
when studying phrag presence is important since areas near a phrag-dominated region are more
likely to have phrag. Of interest is estimating both the smoothed probability surface associatedwith
phrag over the entire region as well as the most important predictors of phrag presence. Because
the response (phrag presence/absence) is binary and spatial dependence is a critical component
of the model, there is a need for a spatial regression model for binary data. This can be easily
constructed via an SGLM, as discussed below.

An SGLM for binary data may be specified following Equations 18.9 and 18.10:

Z(s) | p(s) ∼ Bernoulli(p(s)),

Φ−1{p(s)} = βX(s)+ w(s),
(18.12)
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where Φ−1{p(s)} is the inverse cumulative density function of a standard normal density,
so p(s) = Φ{βX + w(s)}. X(s), as before, is a set of p covariates associated with each site s,
and β is a p-dimensional vector of coefficients. w is modeled as a dependent process via a
GP or GMRF as discussed in Section 18.3.1. The model described by Equation 18.12 is the
clipped Gaussian random field (De Oliveira, 2000) since it can equivalently be specified as:

Z(s) | Z∗(s) =
{
1, if Z∗(s) > 0,
0, if Z∗(s) ≤ 0.

Z∗(s) is thenmodeled as a linearGPorGMRFas in Section 18.2. This is an intuitive approach
to modeling spatial binary data since the underlying latent process may correspond to a
physical process that was converted to a binary value due to the detection limits of themea-
suring device. It may also just be considered a modeling device to help smooth the binary
field, when there is reason to assume that the binary field will be smooth. Alternatively,
a logit model may be used instead of the probit in the second stage in Equation 18.12, so
log
{

p(s)
1−p(s)

}
= βX(s)+ w(s).

Several of the covariance function parameters are not identifiable. Hence, for a GPmodel
the scale and smoothness parameters are fixed at appropriate values. These identifiability
issues are common in SGLMs, but are made even worse in SGLMs for binary data since
they contain less information about themagnitude of dependence.Apotential advantage of
GMRF-basedmodels overGP-basedmodels for binarydata is that they canaggregatepieces
of binary information from neighboring regions to better estimate spatial dependence.

18.3.2.2 Count Data

SGLMs are well suited to modeling count data. For example, consider the model

Z(s) | μ(s) ∼ Poisson(E(s)μ(s)),

log(μ(s)) = βX + w(s),

where E(s) is a known expected count at s based on other information or by assuming
uniform rates across the region, say by multiplying the overall rate by the population at s.

Example 18.5

Yang et al. (2009) study infant mortality rates by county in the southern US states of Alabama,
Georgia, Mississippi, North Carolina, and South Carolina (Health Resources and Services
Administration, 2003) between 1998 and 2000. Of interest is finding regions with unusually
elevated levels in order to study possible socio-economic contributing factors. Since no interpo-
lation is required here, the purpose of introducing spatial dependence via a GMRF model is to
improve individual county-level estimates using spatial smoothing by “borrowing information”
from neighboring counties. The raw and smoothed posterior means for the maps are displayed in
Figure 18.3. Based on the posterior distribution, it is possible to make inferences about questions
of interest, such as the probability that the rate exceeds some threshold, and the importance of
different socio-economic factors.

The two main examples in Diggle et al. (1998) involve count data, utilizing a Poisson
and binomial model respectively. SGLMs for count data are also explored in Christensen
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FIGURE 18.3
(a) Raw infant mortality rates. (b) Posterior mean infant mortality rates.

and Waagepetersen (2002), where a Langevin–Hastings MCMC approach is also devel-
oped for simulating from the posterior distribution. Note that count data with reasonably
large counts may be modeled well by linear GP models. Given the added complexity of
implementing SGLMs, it may therefore be advisable to first try a linear GP model before
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using an SGLM. However, when there is scientific interest in modeling a known sampling
mechanism, SGLMs may be a better option.

18.3.2.3 Zero-Inflated Data

In many disciplines, particularly ecology and environmental sciences, observations are
often in the form of spatial counts with an excess of zeros (see Welsh et al., 1996). SGLMs
provide a nice framework for modeling such processes. For instance, Rathbun and Fei
(2006) describe a model for oak trees which determines the species range by a spatial
probit model which depends on a set of covariates thought to determine the species’ range.
Within that range (corresponding to suitable habitat), species counts are assumed to follow
an independent Poisson distribution depending on a set of environmental covariates. The
model for isopod nest burrows in Agarwal et al. (2002) generates a zero with probability
p and a draw from a Poisson with probability 1− p. The excess zeros are modeled via a
logistic regression and the Poisson mean follows a log-linear model. Spatial dependence is
imposed via a GMRF model.

Example 18.6

Recta et al. (2011) study the spatial distribution of Colorado potato beetle populations in potato
fields where a substantial proportion of observations were zeros. From the point of view of popu-
lation studies, it is important to identify the within-field factors that predispose the presence of an
adult. The distribution may be seen as a manifestation of two biological processes: incidence, as
shown by presence or absence; and severity, as shown by the mean of positive counts. The obser-
vation at location s, Z (s), is decomposed into two variables: incidence (binary) variable U(s) = 1
if Z (s) > 0, else U(s) = 0, and severity (count) variable V (s) = Z (s) if Z (s) > 0 (irrelevant other-
wise). Separate linear GP models can be specified for the U(s) and V (s) processes, with different
covariance structures and means. This formulation allows a great deal of flexibility, including
the ability to study spatial dependence in severity, and spatial dependence between severity and
incidence, and the potential to relate predictors specifically to severity and independence.
For convenience, we order the data so that the incidences, observations where U(s) = 1,

are the first n1 observations. Hence, there are n1 observations for V , corresponding to the first
n1 observations of U, and n1 ≤ n. Our observation vectors are thereforeU = (U(s1), . . . ,U(sn))T

andV = (V (s1), . . . ,V (sn1))T . Placing this model in an SGLM framework:

U(s) = Bernoulli(A(s)), so Pr(U(s) = 1 | wU (s),α) = A(s),

V (s) = TruncPoisson(B(s)), so E(V (s) | wV (s), β) = B(s)
1− e−B(s) .

TruncPoisson is a truncated Poisson random variable (cf. David and Johnson, 1952) with Pr(V (s) =
r | B(s)) = B(s)r e−B(s)

r !(1−e−B(s))
, r = 1, 2, . . . , and wU (s),wV (s),α, β are described below. Furthermore,

using canonical link functions,

log
(

A(s)
1− A(s)

)
= XU (s)α+wu(s),

log(B(s)) = XV (s)β+wv (s),

where XU (s),XV (s), are vectors of explanatory variables, α, β are regression coefficients, and
wU = (wU (s1), . . . ,wU (sn))T and wV = (wV (s1), . . . ,wV (sn1))T are modeled via GPs. The
resulting covariance matrices for wU ,wV are ΣU ,ΣV respectively, specified by exponential
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covariance functions as described in Section 18.2.1. The parameters of our model are there-
fore (α, β,Θ), with Θ representing covariance function parameters. Note that the model structure
also allows for a flexible cross-covariance relating these two latent processes (Recta et al., 2011),
though we do not discuss this here. Priors for α, β,Θ are specified in standard fashion, with a flat
prior for the regression parameters and log-uniform priors for the covariance function parameters.
Inference and prediction for this model are based on the posterior π(wU ,wV ,α, β,Θ | U,V). An
algorithm for sampling from this distribution is discussed in the next section.

18.3.3 MCMC for SGLMs

For SGLMs, unlike spatial linear models, marginal distributions are not available in closed
form for any of the parameters. In other words, for linear spatial models it is possible to
study π(Θ, β | Z) (“marginalizing out” w), while for SGLMs, inference is based on the
joint distribution π(Θ, β,w | Z). Hence, the dimension of the distribution of interest is
typically of the same order as the number of data points. While one can easily construct
variable-at-a-time Metropolis–Hastings samplers for such distributions, the strong depen-
dence among the spatial random effects (wi) and the covariance/precision parameters (Θ)
typically results in heavily autocorrelated MCMC samplers, which makes sample-based
inference a challenge in practice. In addition, expensive matrix operations involved in each
iteration of the algorithm continue to be a major challenge for GP-based models, though
some recent approaches have been proposed to resolve this (see Section 18.5). Hence not
only are standard MCMC algorithms for SGLMs slow mixing, but also each update can be
computationally expensive, leading to very inefficient samplers.
A general approach to improve mixing in the Markov chain is to update parameters

jointly in large blocks. This is a well-known approach for improving mixing (see, e.g. Liu
et al., 1994) and is particularly useful in SGLMs due to the strong dependence among the
components of the posterior distribution. However, constructing joint updates effectively
can be a challenge, especially in high dimensions. Approaches proposed for constructing
joint updates for such models often involve deriving a multivariate normal approximation
to the joint conditional distribution of the random effects, π(w | Θ, β,Z). We now briefly
discuss two general approaches for constructing MCMC algorithms for SGLMs.

18.3.3.1 Langevin–Hastings MCMC

Langevin–Hastings updating schemes (Roberts and Tweedie, 1996) and efficient reparame-
terizations forGP-basedSGLMsare investigated inChristensenet al. (2006) andChristensen
andWaagepetersen (2002). TheLangevin–Hastings algorithm is avariant of theMetropolis–
Hastings algorithm inspiredby considering continuous-timeMarkovprocesses that have as
their stationarydistributions the targetdistribution. Since it is onlypossible to simulate from
the discrete-time approximation to this process and the discrete-time approximation does
not result in a Markov chain with desirable properties (it is not even recurrent), Langevin–
Hastings works by utilizing the discrete-time approximation as a proposal for a standard
Metropolis–Hastings algorithm (Roberts and Tweedie, 1996). Hence, Langevin–Hastings,
like most algorithms for block updating of parameters, is an approach for constructing
a multivariate normal approximation that can be used as a proposal for a block update.
The significant potential improvement offered by Langevin–Hastings over simple random-
walk typeMetropolis algorithms is due to the fact that the local property of the distribution,
specifically thegradient of the targetdistribution, is utilized. This canhelpmove theMarkov
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chain in the direction of modes. To illustrate the use of MCMC block sampling approaches
based on Langevin–Hastings MCMC, we return to Example 18.3.2.3.

Example 18.7 Langevin–Hastings MCMC for a Two-Stage Spatial Zero-Inflated
Poisson Model

This description follows closely the more detailed discussion in Recta et al. (2011). Simple uni-
variate Metropolis–Hastings updates worked poorly and numerousMetropolis random-walk block
update schemes for the random effects resulted in very slowmixingMarkov chains as well. Hence,
Langevin–Hastings updates were applied to the random effects. Borrowing from the notation and
description in Christensen et al. (2006) and Diggle and Ribeiro (2007), let

-(γ) = ∂

∂γ
logπ(γ | . . . ) = −γ+ (Σ1/2)T

⎡
⎢⎢⎢⎢⎢⎣

{
(U(si )− A(si ))

h
′
c (A(si))

h′(A(si ))

}n

i=1{
(V (sj)− B(sj))

g
′
c (B(sj))

g ′ (B(sj))

}n+n1

j=n+1

⎤
⎥⎥⎥⎥⎥⎦

denote the gradient of the log target density evaluated at γ (denoted by π(γ | . . . )) where h
′
c and g

′
c

are the partial derivatives of the canonical link functions for the Bernoulli and truncated Poisson
distributions respectively, h

′
and g

′
are partial derivatives of the actual link functions used, and

Σ1/2 is the Choleski factor of the joint covariance matrix for wU ,wV . Since we used canonical

links in both cases, h
′
c {A(si )}

h′ {A(si )} =
g
′
c {B(si )}

g ′ {B(si )} = 1 for each i. However, since the Langevin–Hastings

algorithm above is not geometrically ergodic (Christensen et al., 2001), we use a truncated version
where the gradient is

-trunc(γ) = ∂

∂γ
logπ(γ | . . . ) = −γ+ (Σ1/2)T

⎡
⎢⎣

{U(si)− A(si)}ni=1{
V (sj)− (B(sj) ∧H)

}n+n1

j=n+1

⎤
⎥⎦ ,

where H ∈ (0,∞) is a truncation constant. This results in a geometrically ergodic algorithm
(Christensen et al., 2001) so a central limit theorem holds for the estimated expectations and
a consistent estimate for standard errors can be used to provide a theoretically justified stopping
rule for the algorithm (Jones et al., 2006). The binomial part of the gradient does not need to be
truncated because the expectation, A(s), is bounded. Given that the current value of the random
effects vector is γ, the Langevin–Hastings update for the entire vector of spatial random effects
involves using a multivariate normal proposal, N(γ+ h

2 - (γ)trunc, hI), h > 0. The tuning param-
eter h may be selected based on some initial runs, say by adapting it so that acceptance rates are
similar to optimal rates given in Roberts and Rosenthal (1998).
Unfortunately, the above MCMC algorithm still mixes slowly in practice, which may be due to

the fact that Langevin–Hastings works poorly when different components have different variances
(Roberts and Rosenthal, 2001); this is certainly the case for the random effectswU ,wV . To improve
the mixing of the Markov chain we follow Christensen et al. (2006) and transform the vector of
random effects into approximately (a posteriori) uncorrelated components with homogeneous
variance. For convenience, let w = (wT

U ,wT
V )T be the vector of spatial random effects and Y =

(UT ,VT )T . The covariance matrix for w | Y is approximately Σ̃ = (Σ−1 +Λ(ŵ))−1, where Λ(ŵ)

is a diagonal matrix with entries ∂2

(∂wj)2
logπ(Yj | wj), and wj and Yj are the jth elements of w

and Y respectively. Also, ŵ is assumed to be a typical value of w, such as the posterior mode
of w. Let w̃ be such that w = Σ̃1/2w̃. Christensen et al. (2006) suggest updating w̃ instead of w,
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since w̃ has approximately uncorrelated components with homogeneous variance, simplifying the
construction of an efficient MCMC algorithm. For our application, setting Λ(w(x)) = 0 for all x
is a convenient choice and appears to be adequate, though there are alternative approaches (see
Christensen et al., 2006). An efficient Metropolis–Hastings algorithm is obtained by updating the
transformed parameter vector w̃ via Langevin–Hastings. The remaining parameters α, β,Θ may
then be updated using simple Metropolis random-walk updates. This worked reasonably well in
our examples, but certain reparameterizations may also be helpful in cases where mixing is poor.
The above Langevin–Hastings algorithm was found in Recta et al. (2011) to be efficient in a

number of real data and simulated examples. Similar efficiencies were seen for SGLMs for count
data in Christensen et al. (2006). For prediction at a new set of locations, say s∗1, . . . , s∗m, we
would first predict the spatial random effect vectors w∗U = (wU (s∗1), . . . ,wU (s∗m))T and w∗V =
(wV (s∗1), . . . ,wV (s∗n))T . Again, sample-based inference provides a simple and effective way to
obtain these predictions. Given a sampled vector of (wU ,wV ,α, β,Θ) from above, we can easily
sample the vectors w∗U ,w∗V | wU ,wV ,α, β,Θ from the posterior predictive distribution as it is
a multivariate normal, similar in form to Equation 18.5. Once these vectors are obtained, the
corresponding predictions for the incidence and prevalence (U and V ) processes at the new
locations are produced by simulating from the corresponding Bernoulli and truncated Poisson
distributions. Many scientific question related to prediction or inference may be easily answered
based on the samples produced from the posterior distribution of the regression parameters and
spatial dependence parameters, along with the samples from the posterior predictive distribution.

18.3.3.2 Approximating an SGLM by a Linear Spatial Model

Another approach for constructing efficient MCMC algorithms involves approximating
an SGLM by a linear spatial model. This can be done by using an appropriate normal
approximation to the non-Gaussian model. Consider an SGLM of the form described in
Section 18.3.1. A linear spatial model approximation may be obtained as follows:

M(si) | β,w(si) ∼ N(X(si)β+ w(si), c(si)), i = 1, . . . , n,

w | Θ ∼ N(0,Σ(Θ)),
(18.13)

withM(si) representing the observation or some transformation of the observation at loca-
tion si, and c(si) an approximation to the variance ofM(si). It is clear that an approximation
of the above form results in a joint normal specification for the model. Hence, the approxi-
matemodel is a linear spatialmodel of the formdescribed in Section 18.2.1 and the resulting
full conditional distribution for the spatial random effects, π(w | Θ, β,Z), is multivariate
normal. Note that an approximation of this form can also be obtained for SGLMs that have
underlying GMRFs. We consider, as an example, the following version of the well-known
Poisson-GMRF model (Besag et al., 1991):

Z(si) | w(si) ∼ Poisson(Ei exp{w(si)}), i = 1, . . . , n,

f (w | τ) ∝ τ(N−1)/2 exp{−wTQ(τ)w},

with a proper inverse gamma prior for τ.An approximation to the Poisson likelihood above
may be obtained by following Haran (2003) (see also Haran and Tierney, 2011; Haran et al.,
2003). By using the transformation M(si) = log (Yi/Ei), and a delta method approxima-
tion to obtain c(si) = min(1/Yi, 1/0.5), we derive the approximationM(si)

·∼ N(w(si), c(si)).
Other accurate approximationsof the formEquation18.13, includingversionsof theLaplace
approximation, have also been studied (cf.Knorr-Held and Rue, 2002; Rue andHeld, 2005).
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The linear spatial model approximation to an SGLM has been pursued in constructing
block MCMC algorithms where the approximate conditional distribution of the spa-
tial random effects can be used as a proposal for a block Metropolis–Hastings update
(Haran et al., 2003; Knorr-Held and Rue, 2002). The spatial linear model approximation
above also allows for the random effects to be integrated out analytically, resulting in
low-dimensional approximate marginal distributions for the remaining parameters of the
model. The approximate marginal and conditional may be obtained as follows:

1. The linear spatial model approximation of the form Equation 18.13 results in a
posterior distribution π̂(Θ, β,w | Z). This can be used as an approximation to the
posterior distribution of the SGLM (π(Θ, β,w | Z)).

2. The approximate distribution π̂(Θ, β,w | Z) can be analytically integrated with
respect to w to obtain a low-dimensional approximate marginal posterior π̂(Θ, β |
Z). The approximate conditional distribution ofw is also easily obtained in closed
form, π̂(w | Θ, β,Z).

The general approach above has been explored in the development of heavy-tailed pro-
posal distributions for rejection samplers, perfect samplers and efficient MCMC block
samplers (Haran, 2003; Haran and Tierney, 2011). Separate heavy-tailed approximations to
the marginal π̂(Θ, β | Z) and the conditional π̂(w | Θ, β,Z) can be used to obtain a joint dis-
tribution, whichmay then be used as a proposal for an independenceMetropolis–Hastings
algorithm that proposes from the approximation at every iteration (see Haran and Tierney,
2011, for details). This algorithm is uniformly ergodic in some cases (Haran and Tierney,
2011) so rigorous ways to determine MCMC standard errors and the length of the Markov
chain (Flegal et al., 2008; Jones et al., 2006) are available. The general framework described
above for obtaining a linear spatial model approximation and integrating out the random
effects (Haran, 2003; Haran and Tierney, 2011) has been extended in order to obtain fast,
fully analytical approximations for SGLMs and related latent Gaussian models (Rue et al.,
2009). While their fully analytical approximation may not have the same degree of flexibil-
ity offered by Monte Carlo-based inference, the approach in Rue et al. (2009) completely
avoids MCMC and is therefore a promising approach for routine, efficient fitting of such
models especially when model comparisons are of interest or large data sets are involved.
However, it is worth noting that with Monte Carlo approaches, unlike with purely ana-
lytical approaches, it is possible in principle to obtain arbitrarily precise estimates. That
is, as the Monte Carlo sample size gets large, the standard error reduces to zero. Sample-
based inference is also an extremely useful tool for appropriately propagating uncertainty;
this is increasingly important in complex scientific problems where multiple models are
used—output from onemodel often acts as input to another model. In the spatial modeling
context, when joint distributions are of particular interest, sample-based inference provides
a convenient approach for propagating uncertainty while preserving properties of the joint
distribution.
Both the Langevin–Hastings algorithm and MCMC based on “linearizing” an SGLM,

along with their variants, result in efficient MCMC algorithms in many cases. An advan-
tage of algorithms that use proposals that depend on the current state of the Markov
chain (like the Langevin–Hastings algorithm or other block sampling algorithms dis-
cussed here), over fully-blocked independence Metropolis–Hastings approaches is that
they take into account local properties of the target distribution when proposing updates.
This may result in a better algorithm when a single approximation to the entire distribu-
tion is inaccurate. However, if the approximation is reasonably accurate, the independence
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Metropolis–Hastings algorithm using this approximation can explore the posterior distri-
bution very quickly, does not get stuck in local modes, and can be easily parallelized as
all the proposals for the algorithm can be generated independently of each other. Since
massively parallel computing is becoming increasingly affordable, this may be a useful
feature.
We note that computing and inference for GP-based models and GP-based SGLMs for

binary data, particularly for large data sets, have been studied extensively in the machine
learning literature as well. While the context of the problems may not always be obviously
spatial in nature, the models used are very similar. Therefore, several of the associated
computational approaches may also be very useful and practical in the context of the spa-
tial models discussed here. Both analytical approaches and sophisticated MCMC-based
approaches (see Neal, 1999) have been developed. An excellent review of this literature
may be found in Chapters 3 and 8 of Rasmussen and Williams (2006).

18.3.4 Maximum Likelihood Inference for SGLMs

It is important to note that even in a non-Bayesian framework, computation for SGLMs
is nontrivial. For the SGLMs described in the previous section, the maximum likeli-
hood estimator (MLE) maximizes the integrated likelihood. Hence, the MLE for Θ, β
maximizes ∫

L(Θ, β,w;Z) dw,

with respect to Θ, β. Evaluating the likelihood requires high-dimensional integration and
the most rigorous approach to solving this problem uses MCMC maximum likelihood
(Geyer, 1996; Geyer and Thompson, 1992). Alternatives include Monte Carlo expectation-
maximization (MCEM) (Wei and Tanner, 1990), as explored by Zhang (2002) for SGLMs,
although in some cases fast approximate approaches such as composite likelihood may be
useful, as discussed for binary data by Heagerty and Lele (1998). In general, computation
for maximum likelihood-based inference for SGLMs may often be at least as demanding
as in the Bayesian formulation. On the other hand, the Bayesian approach also provides a
natural way to incorporate the uncertainties (variability) in each of the parameter estimates
when obtaining predictions and estimates of other parameters in the model.

18.3.5 Summary

SGLMs provide a very flexible approach for modeling dependent data when there is a
known non-Gaussian sampling mechanism at work. Either GP or GMRF models can be
used to specify the dependence in a hierarchical framework. Constructing MCMC algo-
rithms for SGLMs can be challenging due to the high-dimensional posterior distributions,
strong dependence among the parameters, and expensive matrix operations involved in
the updates. Recentwork suggests thatMCMCalgorithms that involve block updates of the
spatial random effects can result in improved mixing in the resulting Markov chains. Con-
structing efficient block updating algorithms can be challenging, but finding accurate linear
spatial model approximations to SGLMs or using Langevin–Hastings-based approaches
may improve the efficiency of the MCMC algorithm in many situations. Matrix operations
can be greatly speeded up by using similar tools to those used for linear spatial models.
Thesewill be discussed again in Section 18.5 in the context of spatialmodeling for large data
sets.Appropriate SGLMs and efficient sample-based inference allow for statistical inference
for a very wide range of interesting scientific problems.
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18.4 Non-Gaussian Markov Random Field Models
Non-Gaussian Markov random field (NMRF) models provide an alternative to SGLM
approaches for modeling non-Gaussian lattice/areal data. These models were first pro-
posed as “auto-models” in Besag (1974) and involve specifying dependence among spatial
random variables conditionally, rather than jointly. NMRFs may be useful alternatives to
SGLMs, especiallywhen used to build space-timemodels, since they canmodel some inter-
actions in amoredirect and interpretable fashion, for example,whenmodeling the spreadof
contagious diseases from one region to its neighbor, thereby capturing some of the dynam-
ics of a process. GMRFs, as described by Equation 18.6, are special cases ofMarkov random
field models. Amore general formulation is provided as follows:

p(Zi | Z−i) ∝ exp

⎛
⎝Xiβ+ψ∑

j =i
cijZj

⎞
⎠,

with ψ > 0. This conditional specification results in a valid joint specification (Besag, 1974;
Cressie, 1993) and belongs to the exponential family. Consider a specific example of this for
binary data, the autologistic model (Besag, 1974; Heikkinen and Högmander, 1994):

log
p(Zi = 1)
p(Zi = 0)

= Xiβ+ψ
∑
j =i

wijZj,

where wij = 1 if i and j are neighbors, and wij = 0 otherwise. For a fixed value of the
parameters β and ψ, the conditional specification above leads to an obvious univariate
Metropolis–Hastings algorithm that cycles through all the full conditional distributions in
turn. However, when inference for the parameters is of interest, as is often the case, the
joint distribution can be derived via Brook’s lemma (Brook, 1964; see also Cressie, 1993,
Chapter 6), to obtain

p(Z1, . . . ,Zn) = c(ψ, β)−1 exp

⎛
⎝β
∑
i
XiZi +ψ

∑
i,j
wijZiZj

⎞
⎠,

where c(ψ, β) is the intractable normalizing constant, which is actually a normalizing func-
tion of the parametersψ, β. Other autoexponentialmodels can be specified in similar fashion
to the autologistic above, for example, the auto-Poisson model for count data (see Ferrán-
diz et al., 1995), or the centered autologistic model (Caragea and Kaiser, 2009). Specifying
conditionals such that they lead to a valid joint specification involves satisfying mathemat-
ical constraints like the positivity condition (see, e.g. Besag, 1974; Kaiser and Cressie, 2000)
and deriving the joint distribution for sound likelihood-based analysis can be challeng-
ing. Also, the resulting dependence can be nonintuitive. For example, Kaiser and Cressie
(1997) propose a “Winsorized” Poisson automodel since it is not possible to model posi-
tive dependence with a regular Poisson auto-model. In addition, it is nontrivial to extend
these models to other scenarios, say to accommodate other sources of information or data
types such as zero-inflated data. These challenges, along with the considerable computa-
tional burden involved with full likelihood-based inference for such models (as we will
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see below), have made non-GaussianMarkov random fields more difficult to use routinely
than SGLMs.
Since the joint distributions for NMRFs contain intractable normalizing functions involv-

ing the parameters of interest, Besag (1975) proposed the “pseudolikelihood” approxi-
mation to the likelihood, which involves multiplying the full conditional distributions
together. The pseudolikelihood is maximized to provide an approximation to the MLE.
This approximation works well in spatial models when the dependence is weak, but under
strong dependence the maximum pseudolikelihood estimate may be a very poor approxi-
mation to the maximum likelihood estimate (see Gumpertz et al., 1997). MCMCmaximum
likelihood (Geyer, 1996; Geyer and Thompson, 1992) provides a sound methodology for
estimating the maximum likelihood via a combination of MCMC and importance sam-
pling. This is yet another instance of the enormous flexibility in model specification due
to the availability of MCMC-based algorithms. MCMCmaximum likelihood is a very gen-
eral approach for maximum likelihoods involving intractable normalizing functions that
also automatically provides sample-based estimates of standard errors for the parameters,
though the choice of importance function plays a critical role in determining the quality of
the estimates.
Now consider a Bayesianmodel obtained by placing a prior on the parameters (say, (β,ψ)

for the autologistic model). Since the normalizing function is intractable, the Metropolis–
Hastings acceptance ratio cannot be evaluatedandconstructinganMCMCalgorithmfor the
model is therefore nontrivial. Approximate algorithms replacing the likelihood by pseudo-
likelihood (Heikkinen and Högmander, 1994) or by using estimated ratios of normalizing
functions have been proposed, but these do not have a sound theoretical basis, though
recent work by Atchadé et al. (2008) is a first attempt at providing some theory for the
latter algorithm. A recent auxiliary variables approach (Møller et al., 2006) has opened
up possibilities for constructing a Markov chain with the desired stationary distribution,
though it requires samples from the exact distribution of the auto-model at a fixed value of
the parameter, which is typically very difficult. Perfect sampling algorithms that produce
samples from the stationary distribution of the Markov chains do exist for some models
such as the autologistic model (Møller, 1999; Propp andWilson, 1996). Perfect samplers are
attractive alternatives to regular MCMC algorithms but are typically computationally very
expensive relative toMCMC algorithms; Bayesian inference for non-GaussianMarkov ran-
dom fields, however, is one area where perfect sampling has potential to be useful. Zheng
and Zhu (2008) describe how the Møller et al. (2006) approach can be used to construct an
MCMC algorithm for Bayesian inference for a space-time autologistic model. While there
has been some recent activity in this area (cf. Hughes et al., 2011), Bayesian inference and
computation for auto-models is still a relatively open area for research.
To summarize, non-Gaussian Markov random fields are an alternative to modeling

dependent non-Gaussian data. The specification of dependence does not involve link func-
tions and can therefore provide a more direct or intuitive model than SGLMs for some
problems. Unfortunately, the mathematical constraints that allow conditional specifica-
tions to lead to valid joint specifications of non-Gaussian Markov random fields can be
complicated and nonintuitive. Also, such models are not easily extended to more compli-
cated scenarios (as discussed in Section 18.5). Sound inference for NMRFs has been amajor
hurdle due to intractable normalizing functions that appear in the likelihood. Maximum
likelihood based inference for such models can be done via MCMC maximum likelihood;
Bayesian inference for such models has been an even greater challenge, but recent research
in MCMCmethods has opened up some promising possibilities. Potential advantages and
disadvantages of NMRFs over SGLMs are yet to be fully explored.
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18.5 Extensions
The classes ofmodels described in the previous three sections,while very rich, are relatively
simple and only have two or three (hierarchical) levels each. Using random field models as
building blocks, a very large number of more flexible models can be developed for tackling
an array of important scientific problems. In particular, when there is interest in incorpo-
rating mechanistic models and physical constraints, spatial models can be specified via a
series of conditional models, capturing the physical characteristics while still accounting
for spatial and temporal dependence and various sources of error. For instance, Wikle et al.
(2001) describe a series of conditionally specifiedmodels to obtain a very flexible space-time
model for tropical ocean surface winds.
In similar fashion, joint models for data that are both point-level and areal can be eas-

ily specified in a hierarchical framework, providing a model-based approach to dealing
with data available at different levels of aggregation (see the discussion of spatial misalign-
ment in Banerjee et al., 2004, Chapter 6). Methods for spatial processes that either occur
or are observed at multiple scales (Ferreira and Lee, 2007) take advantage of much of the
same basic machinery described here. Models for spatiotemporal processes are particu-
larly important since many problems involve space-time data, and it is critical to jointly
model both sources of dependence. Spatiotemporal processes are particularly useful when
mechanistic models are of interest and when there are interesting dynamics to be captured.
Assuming space-time “separability”—that is, that the dependencies across time and space
do not interact (mathematically, the covariance is multiplicative in the spatial and temporal
dimensions)—allows the use of Kronecker products and dramatic increases in the speed of
matrix computations. However, nonseparability is often not a tenable assumption. Classes
of computationally tractable spatialmodelswith stationary, nonseparable covariances have
been proposed (Cressie andHuang, 1999; Gneiting, 2002) to address this issue, but inmany
cases computation can quickly become very challenging with increase in space-time data,
particularly for more flexible models. While MCMC-based approaches are feasible in some
cases (see Wikle et al., 1998), approximate approaches based on dimension reduction and
empirical Bayes estimation combined with Kalman filtering (Wikle and Cressie, 1999) or
sequential Monte Carlo-based approaches (Doucet et al., 2001) may be more computa-
tionally efficient, for example, in fitting multiresolution space-time models (Johannesson
et al., 2007). It is also often of interest to model dependencies among multiple space-time
variables, along with various sources of missing data and covariate information; multiple
variables, covariates and missing data are very common in many studies, particularly in
public health and social science related research. These variables and missing information
can just be treated as additional randomvariables in themodel, and added into the sampler,
thereby accounting for any uncertainties associated with them. Multivariate models can be
explored via bothmultivariate GMRFs (Carlin and Banerjee, 2003; Gelfand and Vounatsou,
2003) and multivariate or hierarchical GP models (Royle and Berliner, 1999).
As with many other areas of statistics, a major challenge for spatial modelers is dealing

with massive data sets. This is particularly problematic for GP-based models since matrix
operations involving very large matrices can be computationally prohibitive. One set of
approaches centers around fast matrix computations that exploit the sparsity of matrices
in GMRF models. Rue and Tjelmeland (2002) attempt to approximate GPs by GMRFs to
exploit these computational advantages in the GP model case as well, but discover that
the approximation does not always work as desired, particularly when the dependence is
strong. However, utilizing sparsity does seem to be among the more promising general
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strategies, as shown in recent work by Cornford et al. (2005) who describe a framework to
first impose sparsity and then exploit it in order to speed up computations for large data
sets. Furrer et al. (2006) and Kaufman et al. (2008) use covariance tapering while Cressie
and Johannesson (2008) use a fixed number of basis functions to construct a nonstationary
covariance and exploit the special structure in the resulting covariancematrix to drastically
reduce computations. Other approaches that have been investigated in recent years include
using a Fourier basis representation of a GP (see Fuentes, 2007; Paciorek, 2007), and fast
likelihood approximations for a GP model based on products of conditionals (Caragea,
2003; Stein et al., 2004; Vecchia, 1988).Wikle (2002) presents an approach formodeling large-
scale spatial count data using an SGLMwhere he uses a spectral-domain representation of
the spatial random effects to model dependence. Higdon (1998) describes a kernel mixing
approach by utilizing the fact that a dependent process can be created by convolving a
continuous white noise process with a convolution kernel. By using a discrete version of
this process, for instancewith a relatively small set of independent normal randomvariates,
it is possible to model a very large spatial data set. The recently developed “predictive
process” approach due to Banerjee et al. (2008) involves working with a low-dimensional
projection of the original process, thereby greatly reducing the computational burden.
Stationarity and isotropy may be restrictive assumptions for the spatial process, particu-

larlywhen there are strong reasons to suspect that dependencemay be different in different
directions or regions. Including anisotropy in GPmodels is fairly standard (Cressie, 1993);
however, it is more difficult to obtain valid nonstationary processes that are also compu-
tationally tractable. Several such models for nonstationary processes have been proposed,
including spatially-varying kernel based approaches for GPs (Higdon et al., 1999; Paciorek
and Schervish, 2006) and GMRFs, or by convolving a fixed kernel over independent spatial
processes with different kernels (Fuentes and Smith, 2001). MCMC plays a central role in
fitting these flexible models.
To summarize, linear Gaussian random field models and SGLMs provide nice building

blocks for constructing much more complicated models in a hierarchical Bayesian frame-
work. Much of the benefit of Bayesian modeling and sample-based inference is realized in
spatialmodeling in situationswhere aflexible andpotentially complicatedmodel is desired,
but ismuchmore easily specified via a series of relatively simple conditionalmodels, where
one or more of the conditional models are spatial models.

18.6 Conclusion
The linear Gaussian random fields discussed in Section 18.2 are enormously powerful and
flexible modeling tools when viewed in a maximum likelihood or Bayesian perspective, as
are some of the non-Gaussian random fields discussed briefly in Section 18.4. Although the
discussion here has focused on spatial data, the methods are useful in a very wide array
of nonspatial problems, including machine learning and classification (primarily using GP
models; see Rasmussen andWilliams, 2006), time series, analysis of longitudinal data, and
image analysis (primarily GMRFmodels; see references in Rue and Held, 2005). The major
advantage of using a Bayesian approach accrues from the ability to easily specify coherent
joint models for a variety of complicated scientific questions and data sets with multiple
sources of variability. Bayesian approaches are particularly useful for the broad classes of
models and problems discussed in Sections 18.3 and 18.5.
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MCMC and sample-based inference in general greatly expands the set of questions that
can be answered when studying spatial data, where for complicated conditionally spec-
ified models, asymptotic approximations may be difficult to obtain and hard to justify.
Sample-based inference allows for easy assessment of the variability of all estimates, joint
and marginal distributions of any subset of parameters, incorporation of nonlinearities,
multiple sources of variability, allowing for missing data, and the use of scientific informa-
tion in the model as well as via prior distributions. It is also typically much harder to study
likelihood surfaces inmaximum likelihood inference, but one can routinely study posterior
surfaces—this provides amuchmore detailed picture regarding parameters in complicated
models, which is important when likelihood or posterior surfaces are multimodal, flat or
highly skewed. In principle, once the computational problem is solved (a good sampler is
implemented), essentially all such questions can be based on the estimated posterior dis-
tribution. Since this is a very concise overview of Gaussian random field models for spatial
data, we have neither discussed the theory underlying Gaussian random fields nor impor-
tant principles of exploratory data analysis and model checking, but these can be found
in many texts (Banerjee et al., 2004; Cressie, 1993; Diggle and Ribeiro, 2007; Schabenberger
and Gotway, 2005).
It is perhaps best to endwith somewords of caution.While MCMC algorithms and pow-

erful computing have made it possible to fit increasingly flexible spatial models, it is not
always clear that there is enough information to learn about the parameters in such mod-
els. Zhang (2004) shows that not all parameters are consistently estimable in maximum
likelihood-based inference for Gaussian process SGLMs; however, one quantity is consis-
tently estimable (the ratio of the scale and range parameters in a Matérn covariance), and
this is the quantity that drives prediction. It has beennoted that the likelihood surface for the
covariance parameters in a linear GP model is relatively flat, which accounts for the large
standard errors of the estimates in a maximum likelihood setting (see Handcock and Stein,
1993; Li and Sudjianto, 2005). In our experience, this can also lead to large posterior stan-
dard deviations for the parameters in a Bayesian framework, both in GMRF and GP-based
models. Remarkably, prediction based on these models often works extremely well—Stein
(1999) provides a theoretical discussion of this in the context of linear GPmodels. This can
be viewed as both a positive and a negative: a positive because often researchers are most
concernedwith prediction, and a negative because inference about the parameters is unreli-
able, andmodel validation techniques such as cross-validation cannot detect problemswith
inference about these parameters, as noted by Zhang (2002). The large uncertainties about
parameter values can also be a problem in other situations. For example, the inferreddepen-
dence (range parameter) may not differ significantly even when differences in dependence
exist, say at different time points or across different subregions.While the discussion above
has centered on GP-based models and there has been less theoretical work on studying
properties of GMRF-based models, many of the same practical concerns appear to exist,
including identifiability issues, especially for the variance components (see, e.g. Bernar-
dinelli et al., 1995). Prior sensitivity analysis should be a critical component of a careful
spatial analysis.
As discussed at length here, Gaussian random field models are very useful but present

considerable computational challenges. Software to meet this challenge includes the
R (Ihaka and Gentleman, 1996) packages geoR (Ribeiro and Diggle, 2001), spBayes
(Finley et al., 2007) for various linear GPmodels, geoRglm (Christensen and Ribeiro, 2002)
for GP models for count data, ramps (Smith et al., 2008) for joint linear models for point-
level and areal data, and the GeoBugsmodule in WinBUGS (Lunn et al., 2000) for various
GMRF models. However, although these software packages are a great advance, there still
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remains a lot of room for development of new algorithms and software for the classes of
spatial models discussed here.
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19
Modeling Preference Changes via a Hidden Markov
Item Response Theory Model

Jong Hee Park

19.1 Introduction
Over the past two decades, political scientists have made great advances in the empirical
estimation of ideal points (Bafumi et al., 2005; Bailey and Chang, 2001; Clinton et al., 2000;
HeckmanandSnyder, 1997; Jackman, 2001; Londregan, 2000;Martin andQuinn, 2002; Poole
and Rosenthal, 1997). An ideal point, or preference, is a foundational theoretical concept
for explaining the choices a political actor makes. For example, in simple unidimensional
spatialmodels of voting, a legislator’s vote choice ismodeled as a rational decision based on
a (Euclidean geometric) calculation of differences in utility values between the legislator’s
ideal point, a proposed bill, and the status quo.
Although an ideal point is often assumed to be static for theoretical convenience, dynam-

ics in ideal points pose an important theoretical and empirical puzzle to researchers. For
example, examining the judicial opinion writing of 16 US Supreme Court justices, Epstein
et al. (1998) conclude that there is enough evidence to invalidate the assumption of pref-
erence stability over time.∗ They also go on to claim that any inference about a justice’s
“revealed preference” that is based on the stable preference assumption can be misleading
if the justice actually underwent several preference changes over a lifetime. However, the
development of statistical methods for dynamic ideal point estimation has been limited to
a few published works (Martin and Quinn, 2002; McCarty et al., 1997). Also, the existing
methods for dynamic ideal point estimation fail to distinguish fundamental changes from
randomdrifts. In this paper I propose amethod to detect sharp, discontinuous changes in ideal
points.
The approach I take in this paper is to combine Chib’s (1998) hidden Markov model

(HMM) with the two-parameter item response theory (IRT) model. In this model, the
dynamics in ideal points are modeled as agent-specific hidden regime changes. I demon-
strate the utility of the hidden Markov IRT model by analyzing changes in ideal points
among the 43 US Supreme Court justices serving between 1937 and 2006, and conclude
that the model provides an effective benchmark for making probabilistic inferences about
the timing of preference changes.

∗ The study of linkages between judges’ opinions and their ideological leanings has become an important area of
research in the last two decades, as political scientists have rejected “apolitical” legal understandings of judicial
opinions in favor of attitudinal and rational models that introduce “political” factors into the decision-making
process (Epstein and Knight, 1998; Segal and Spaeth, 1993).
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19.2 Dynamic Ideal Point Estimation
Assuming a quadratic utility loss function, the utility of voting for item i by legislator j at
time t is

Ujt(Yi) = −(θjt − Yi)2 + δ(Y)
ijt ,

where θjt is legislator j’s ideal point at t, Yi is the location of Yay, and δ(Y) is a stochastic
error drawn from a Gaussian distribution. For simple notation, I assume that θjt and Yi are
scalar, which means that the underlying political space is one-dimensional. The utility of
voting against item i is defined similarly:

Ujt(Ni) = −(θjt −Ni)
2 + δ(N)

ijt .

In this random utility model, a legislator votes for a bill i when Ujt(Yi)−Ujt(Ni) > 0. If
the utility difference between two vote choices is treated as a latent variable, the process
can be modeled as a Bernoulli trial in which the probability of a yes vote is a function of a
legislator’s ideal point and the proposed bill’s location:

yijt =
{
1, if zijt = Ujt(Yi)−Ujt(Ni) > 0,
0, if zijt = Ujt(Yi)−Ujt(Ni) ≤ 0.

Then, as shown by Jackman (2001), some simple algebra shows the connection between the
random utility voting model and the two-parameter IRT model:

zijt = Ujt(Yi)−Ujt(Ni) = −(θjt − Yi)2 + δ(Y)
ijt + (θjt −Ni)

2 − δ(N)
ijt

= −2(Ni − Yi)θjt − (Y2i −N2
i )+ δ(Y)

ijt − δ(N)
ijt

= βiθjt − αi + εijt.
Note that the t subscript in ideal points is carried through the equation to denote the
dynamics in ideal points.
If apolitical actoronlymakesa fewdecisionsor is active for a shortperiodof time, ignoring

ideal point temporal dynamics is unlikely to pose a problem.However, for someone such as
a legislator who serves multiple terms in office sessions, the conventional IRT model with
constant ideal points very likely fails to capture any political evolution. As the legislator
ages, exposure to exogenous shocks in the form of economic shifts, social upheavals, and
new political environments is likely to affect voting decisions. It would be unrealistic to
attribute all time-varying patterns in voting behavior to bill characteristics (α and β).∗
Since the constant IRTmodel itself is highly parameterizedwith 2I + J parameters, where

I is the number of items and J is the number of legislators, letting ideal points (θjt) vary over
time is not a trivialmodification. Twomethods have been proposed so far. The firstmethod,
whichdoesnot rely on the IRT framework, is to specify ideal points as apolynomial function
of time (McCarty et al., 1997). The other is to model the transition of ideal points as a first-
order Markov process while the observed voting data are generated from the IRT model

∗ Note that the variance parameter in the IRT model is not identified as in the binary response models.
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(Martin and Quinn, 2002). One major difference between two methods is the source of the
dyanmics. McCarty et al.’s (1997) method assumes that the effect of time on ideal points is
deterministic. By contrast, Martin and Quinn’s dynamic ideal point method decomposes
the source of changes in ideal points into a deterministic part and a stochastic part, and
estimates the variance of legislator-specific transitions. These twomethods are successfully
applied to developing dynamic measurements of ideal points in US legislators and US
SupremeCourt justiceswithDW-NOMINATE (McCarty et al., 1997) and theMartin–Quinn
score (Martin and Quinn, 2002), respectively.
However, while both methods are effective in uncovering transitions in ideal points,

neither is specifically designed to detect the timing of changes in ideal points. In other
words, the existing dynamic ideal point estimation methods are not optimal for modeling
sharp, discontinuous changes in ideal points. This is an important issue since theoretical
discussions on changes in ideal points pit continuous transitions of ideal points against
discontinuous transitions. To put it differently, researchers who are more interested in the
existence and timing of ideal point shifts rather thanwith smooth evolutions of ideal points
over time would not find the existing methods helpful. This is why I have introduced
a dynamic IRT model specifically designed to capture sharp, discontinuous ideal point
shifts.

19.3 Hidden Markov Item Response Theory Model
The approach I take combines a HMMwith the standard two parameter IRTmodel. Specif-
ically, I use Chib’s (1998) model to capture hidden regime changes in a legislator’s ideal
point. Note that in Chib’smodel the regime transition is constrained so that aMarkov chain
only moves forward to the terminal state. This constraint generates a nonergodic Markov
chain,which turns out to be computationally efficient and as flexible asHMMswith ergodic
Markov chains.∗
Let sjt be an indicator of hidden regimes for legislator j’s ideal point at t, and Pj be a

transition matrix for the hidden regimes. Due to the nonergodic constraint, it is trivial to
compute the initial probability: π0 = (1, . . . , 0). The latent propensity of voting for an item
i can be expressed as a function of item characteristics and ideal points, which are subject
to agent-specific regime changes:

zijk = βiθj,sjt − αi + εijt, εijt ∼ N(0, 1), (19.1)

sjt | sj,t−1 ∼Markov(π0,Pj). (19.2)

∗ Let pij = Pr(st = j | st−1 = i) be the probability of moving to state j from state i at time t when the state at t− 1
is i. Then, the transition matrix of Chib (1998) is

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

p11 p12 0 . . . 0
0 p22 p23 . . . 0
...

...
...

...
...

0 0 0 pM−1,M−1 pM−1,M
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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The value of θj,sjt can take M different values at each time point subject to the first-order
Markov process. In other words, sjt indicates the preference regime associated with a
legislator’s ideal point at t.
It should be stressed that the hidden Markov IRT model can be considered as a special

type of the dynamic IRTmodel developed byMartin and Quinn (2002). While the dynamic
IRT model assumes that ideal points change at each time point due to random shocks,
the hiddenMarkov IRTmodel assumes that ideal points change only when the underlying
regime changes.When there is no detected change point, sjt = 1 for t = 1, . . . ,Tj, the hidden
Markov IRT model reduces to the constant IRT model.
Albert (1992) and Johnson and Albert (1999) provide an efficient Gibbs sampling algo-

rithm for the constant IRT model. Once hidden state variables sjt are sampled, the rest of
the sampling scheme is similar to the constant IRT model.
Normal distributions are used as prior distributions for ideal points and itemparameters.

For identification, I use the standard normal distribution as a prior distribution of ideal
points:∗

λi ∼ N(μ0,V0),

θj,st ∼ N(0, 1),

pii ∼ Beta(a, b),

where λi = (αi, βi)′.
The MCMC sampling algorithm for the hidden Markov IRT model consists of five steps,

including two steps for augmented variables. We have

p(α, β, θ,P | y) =
∫
p(α, β, θ,P, s, z | y) ds dz

=
∫
p(α, β | θ,P, s, z)p(θ |P, s, z)p(P | s, z)p(s | z, y)p(z | y) ds dz.

Step 1. Simulation of latent utilities. FollowingAlbert and Chib (1993), the latent variable
(zijk) inEquation19.1 is sampled fromtwo truncatednormaldistributions, the support
of which changes depending on realized binary outcomes:

zijk ∼
{
N(−∞,0](αi + βiθj,sjt , 1), if yijt = 0,
N(0,∞)(αi + βiθj,sjt , 1), if yijt = 1.

Step 2. Simulation of item parameters.A vectorized notation is used to explain the simu-
lation of item parameters. Latent utilities are formed as a J × 1 vector (zit), and ideal
point estimates are transformed into a J × 2 matrix Θt = (1, θj,sjt) where θj,sjt is a vec-
tor of ideal points for all legislators at time t: θj,sjt = (θ1,s1,t , . . . , θJ,sJ,t)′. Finally, item
parameters are stacked as a 2× 1 matrix λi = (αi, βi)′. Then we have a multivariate
linear regression model

zit = Θtλi + εit.

∗ See Clinton et al. (2000) and Jackman (2001) for the identification of the IRT model in Bayesian estimation.
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Note that Θt serves as a design matrix and λi serves as a parameter vector at this
sampling step. From this,

λi | θ,P, z, y ∼ N(μλ,Vλ),

Vλ =
( T∑
t=1

Θ′
tΘt +V−10

)−1
,

μλ = Sλ

( T∑
t=1

Θ′
tzit +V−10 μ0

)
.

Step 3. Simulation of a latent state vector. For the simulation of ideal points, I transform
Equation 19.1 into a multivariate time series model by subtracting the difficulty
parameter α

j
t from latent utilities (z∗jt = zjt − α

j
t ) and stacking them as an Ijt × 1 vector.

Ijt indicates the number of items considered by legislator j at time t and varies across
legislators. α j

t indicates difficulty parameters for all items considered by legislator j
at time t. The dimension of α

j
t also changes by legislators and time. Similarly, let β

j
t

denote discrimination parameters for all items considered by legislator j at time t.
The new equation can take the form of a linear regression model with β

j
t as a I

j
t × 1

design matrix and θj,st as a 1× 1 parameter vector as follows:

z∗jt = β
j
t θj,st + εjt. (19.3)

Sampling a latent state vector for each legislator is done using Chib’s (1998) recursive
sampling algorithm. The algorithm is identical for all legislators and needs to be
repeated J times. Thus, I drop subscript j for notational simplicity. β, z∗, θ andP should
be read as β j, z∗j , θj and Pj in the following. Note that I suppress time subscripts of
β, z∗, θ to denote them as matrices containing all observations. The joint sampling of
latent states can be decomposed as follows:

p(s1, . . . , sT | β, z∗, θ,P) = p(sT | β, z∗, θ,P)p(sT−1, sT−2, . . . , s1 | sT , β, z∗, θ,P)

= p(sT | β, z∗, θ,P) . . . p(st | St+1, β, z∗, θ,P) . . .

p(s1 | β, z∗, S2, θ,P), (19.4)

where St+1 indicates the history of the state from t+ 1 to T. Using Bayes’ theorem, a
typical form of Equation 19.4 can be decomposed as follows:

p(st | St+1, β, z∗, θ,P) ∝ p(st+1 | st,P)p(st | β, z∗t , θ,P).

The first part of the right-hand side is a transition probability from t to t+ 1, which is
obtained from a transition matrix (P). The second part of the right-hand side should
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FIGURE 19.1
Estimated ideal points with one break. The chain was run for 20,000 draws after throwing out the first 10,000.
Every 10th drawwas stored for the analysis. Thick lines indicate posterior means and light lines are 95% Bayesian
credible intervals.

be obtained via recursive calculation. Let Z∗t denote all z∗ up to t. Then

p(st |Z∗t−1, β, θ,P) =
∫
S
p(st | st−1)p(st−1 |Z∗t−1, β, θ,P)dst

=
M∑
m=1

p(st | st−1 = m)p(st−1 = m |Z∗t−1, β, θ,P),

p(st |Z∗t , β, θ,P) = p(st |Z∗t−1, β, θ,P)p(z∗t |Z∗t−1, θst)∑M
m=1 p(st = m |Z∗t−1, β, θ,P)p(z∗t |Z∗t−1, θst=m)

.
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FIGURE 19.1
Continued.

Step 4. Simulation of transition probabilities. Simulating transition probabilities given
sampled state variables is a standard beta update from binary outcomes. For each
legislator, let nii be the number of one-step transitions from state i to i, and nij be the
number of one-step transitions from state i to j. Then for the posterior distributions
of legislator-specific transition probabilities we have

p(pii | s) ∝ p(s | pii)Beta(a, b)
∝ pniiii (1− pii)1pa−1ii (1− pii)b−1,

pii | s ∼ Beta(a+ nii, b+ 1).
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FIGURE 19.1
Continued.

Step 5. Simulation of ideal points. Ideal points are sampled using the transformation
shown in Equation 19.3. Based on the sampled transition matrices, state variables,
item characteristic parameters, and latent variables, θj,st is updated across all legisla-
tors by treating β j as a design matrix and z∗j,t as response variables. Let βj,m and z∗j,m
denote sampled parameters for legislator j’s mth state. Then

θj,m | z∗j,m ∼ N(μ
j,m
θ
,Vj,m
θ

),

Vj,m
θ = (β′j,mβj,m + 1)−1,

μ
j,m
θ = Vj,m

θ (β′j,mz
∗
j,m).
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FIGURE 19.2
Comparison of ideal point estimates from the dynamic IRT model by Martin and Quinn (2002) and the hidden
Markov IRT model: Black, Douglas, Stewart, and Marshall. The chain was run for 20,000 draws after throwing
out the first 10,000. Thick lines on the plots in the top two rows indicate posterior means and light lines are 95%
Bayesian credible intervals. The plots in the bottom row showposterior probabilities of being in state 1 (dark lines)
and in state 2 (light lines).

19.4 Preference Changes in US Supreme Court Justices
Using the hidden Markov IRT model, I analyze ideal point changes of 43 U.S. Supreme
Court justices who served between 1937 and 2006.∗ The 43 justices considered 4868 cases
during the period, and on average each justice considers 113 cases throughout their terms
on the bench.
In this analysis, I drop six justices with 2 years of service or less: Sutherland, Cardozo,

Brandeis, Butler, Roberts, and Alito. Following Martin and Quinn (2007), I use informa-
tive priors for three justices, the liberal Hugo Black, the moderate Potter Stewart, and the
conservative William Rehnquist, in order to interpret results in such a way that positive
ideal point estimates indicate the conservative position and negative ideal point estimates
indicate the liberal position:

θBlack ∼ N(−2, 0.1),

∗ I thank Martin and Quinn for providing data. For details, see Martin and Quinn (2007).
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FIGURE 19.3
Comparison of ideal point estimates from the dynamic IRT model by Martin and Quinn (2002) and the hidden
Markov IRTmodel: Brennan,White, Frakfurter, and Blackmun. The chainwas run for 20,000 draws after throwing
out the first 10,000. Thick lines on the plots in the top two rows indicate posterior means and light lines are 95%
Bayesian credible intervals. The plots in the bottom row showposterior probabilities of being in state 1 (dark lines)
and in state 2 (light lines).

θStewart ∼ N(1, 0.1),

θRehnquist ∼ N(3, 0.1).

Also, these informative priors serve to limit the bounds of ideal point estimates; ideal point
estimates near −2 and 3 are highly extreme values in this scale.
Figure 19.1 shows the results of the hidden Markov analysis of the 43 US Supreme Court

justices. The fitted hidden Markov IRT model finds a break in ideal points for each justice.
By checking the size of the break, we can tell whether a justice’s preferences have actually
changed.
Sixteen justices exhibit dramatic ideal points changes over their careers in the Court.

Harlan, Black, Douglas, Marshall, Brennan,Warren, Frankfurter, Reed, Jackson, Blackmun,
Rehnquist, Stevens, Souter, Thomas, O. J. Roberts, and Stone have dramatic shifts in their
terms.However, significant preference changes are not found in Stewart,White,Whittacker,
Burger, Kennedy, Scalia, Ginsburg, Breyer, Murphy, and O’Connor.
The results of the hidden Markov analysis identify substantively important issues about

the timing and grouping of ideal point changes that may be indicative of broader social
and political contextual factors. First, ideal points of the justices who served early in the
sample period—Frankfurter, McReynolds, O. J. Roberts, and Stone—changed dramatically
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FIGURE 19.4
Comparison of ideal point estimates from the dynamic IRT model by Martin and Quinn (2002) and the hidden
Markov IRT model: Rehnquist, Stevens, O’Connor, and Scalia. The chain was run for 20,000 draws after throwing
out the first 10,000. Thick lines on the plots in the top two rows indicate posterior means and light lines are 95%
Bayesian credible intervals. The plots in the bottom row showposterior probabilities of being in state 1 (dark lines)
and in state 2 (light lines).

between the late 1930s and the early 1940s. Given the timing of the breaks, these preference
changes seem likely to be related to what is known commonly as “the switch in time that
saved nine,”when Justice O. J. Roberts shifted his alignment to the liberal bloc of justices on
a key 1937 case, amove that is often viewed as ameans to protect the Court’s independence
from President Franklin Roosevelt’s attempts to reorganize it through expansion (Epstein
and Walker, 2007; Ho and Quinn, 2010).
Another interesting finding is timing of David Souter’s preference shift. Souter, who was

nominated byGeorgeH.W. Bush in 1990, has drawn the ire of conservatives for votingwith
liberal justices on many important cases including Planned Parenthood v. Casey and Bush v.
Gore.WhenGeorgeH.W.Bush’s son,GeorgeW.Bush, sought to fill twoopeningsduringhis
presidential term, conservatives fretted over whether his conservative picks would exhibit
a similar leftward drift over their careers. The hidden Markov IRT model detects Souter’s
movement to the left in the early 1990s, very shortly after his confirmation. This movement
was not so much a slow evolution, but a quick about-face followed by a long, consistent
liberal preference.
Figures 19.2 through 19.4 compare the estimates from the hidden Markov IRT model

with the estimates from Martin and Quinn (2002)’s dynamic IRT model. To save space, I
select 12 justices with more than 20 years of service in the Court. In each figure, the top row
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replicates Martin and Quinn (2002)’s dynamic ideal point estimates, the middle row shows
the hidden Markov ideal point estimates, and the bottom row shows the posterior regime
probabilities from the hidden Markov IRT model.
The difference is clear.WhileMartin andQuinn’s (2002) dynamic IRTmodel tracks trends

in ideal points over time, the hidden Markov IRT model provides a sharp estimate of
preference changes. For example, in the case of Douglas in Figure 19.2, it is hard to pinpoint
the timing of Douglas’s change from theMartin andQuinn (2002) estimate. By contrast, the
hidden Markov IRT model clearly shows the timing of the shift. However, when justices’
ideal points change slowly as in the case of Blackmun, the timing of the break uncovered
by the hidden Markov IRT model is not as informative as the estimate from Martin and
Quinn’s (2002) dynamic IRT model.

19.5 Conclusions
In this chapter, I present a statistical model for dynamic ideal point estimation. The model
combines the hidden Markov model with the standard two-parameter IRT model. The
application of the the model to the US Supreme Court data demonstrates that the hidden
Markov IRT model is an effective method to detect preference changes from longitudinal
voting data.
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20
Parallel Bayesian MCMC Imputation for Multiple
Distributed Lag Models: A Case Study in
Environmental Epidemiology

Brian Caffo, Roger Peng, Francesca Dominici, Thomas A. Louis, and Scott Zeger

20.1 Introduction
Patterned missing covariate data is a challenging issue in environmental epidemiology.
For example, particulate matter measures of air pollution are often collected only every
third day or every sixth day, while morbidity and mortality outcomes are collected daily.
In this setting, many desirablemodels cannot be directly fit.We investigate such a setting in
so-called “distributed lag” models when the lagged predictor is collected on a cruder time
scale than the response. In multi-site studies with complete predictor data at some sites,
multilevel models can be used to inform imputation for the sites with missing data.
We focus on the implementation of such multilevel models, in terms of both model

development and computational implementation of the sampler. Specifically, we paral-
lelize single chain runs of sampler. This is of note, since theMarkovian structure of Markov
chain Monte Carlo (MCMC) samplers typically makes effective parallelization of single
chains difficult. However, the conditional independence relationships of our developed
model allow us to exploit parallel computing to run the chain. As a first attempt at using
parallel MCMC for Bayesian imputation on such data, this chapter largely represents a
proof of principle, though we demonstrate some promising potential for the methodol-
ogy. Specifically, the methodology results in proportional decreases in run-time over the
nonparallelized version near one over the number of available nodes.
In addition, we describe a novel software implementation of parallelization that is

uniquely suited to disk-based shared memory systems. We use a “blackboard” paral-
lel computing scheme where shared network storage is a used as a blackboard to tally
currently completed and queued tasks. This strategy allows for easy addition and sub-
traction of compute nodes and control of load balancing. Moreover, it builds in automatic
checkpointing.
Our investigation is motivated by multi-site time series studies of the short-term effects

of air pollution on disease or death rates. A commonmeasure of air pollution used for such
studies is the amount in micrograms per cubic meter of particulate matter of a specified
maximumaerodynamic diameter.We focus onPM2.5 (see Samet et al., 2000). Unfortunately,
the definitive source of particulate matter data in the United States, the Environmental
Protection Agency’s air pollution network of monitoring stations, collects data only a few
times per week at some locations. One of the most frequent observed data patterns for
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PM2.5 is data being recorded every third day. However, the disease rates that we consider
are collected daily.
In this setting, directly fitting a model that includes several lags of PM2.5 simultaneously

is not possible. Such models are useful, for example, to investigate a cumulative weekly
effect of air pollution on health. They are also useful tomore finely investigate the dynamics
of the relationship between the exposure and response.As an example, onemight postulate
that after an increase in air pollution, high air pollution levels on later days may have a
smaller impact, as the risk set has been depleted from the initial increase (Dominici et al.,
2002; Schwartz, 2000; Zeger et al., 1999).
We focus on distributed lag models that relate the current-day disease rate to particulate

matter levels over the past week. That is, our model includes the current day’s PM2.5 levels
as well as the previous six days. While direct estimation of the effect for any particular lag
is possible, joint estimation of the distributed lag model is not possible (see Section 20.3).
Moreover, missing-data imputation for counties with patterned missing data is difficult.
We consider a situation where several independent time series are observed at different
geographical regions, somewith complete PM2.5 data. We usemultilevel models to borrow
information across series tofill in themissingdata viaBayesian imputation. Thehierarchical
model is also used to combine county-specific distributed lag effects into national estimates.
The rest of the chapter is organized as follows. In Section 20.2 we outline the data set

used for analysis and follow in Section 20.3 with a discussion of Bayesian imputation.
In Section 20.4 we describe the distributed lag models of interest, and in Section 20.5 we
illustrate a multiple imputation strategy. Section 20.6 uses the imputation algorithm to
analyze hospitalization rates of chronic obstructive pulmnonary disease (COPD). Finally,
Section 20.7 gives some conclusions, discussion and proposals for future work.

20.2 The Data Set
The Johns Hopkins Environmental Biostatistics and Epidemiology Group has assembled
a national database comprising time series data on daily hospital admission rates for
respiratory outcomes, fine particles (PM2.5), and weather variables for the 206 largest US
counties having a population larger than 200,000 and with at least one full year of PM2.5
data available. The study population, derived from Medicare claims, includes 21 million
adults older than 65 with a place of residence in one of the 206 counties included in the
study.
Daily counts of hospital admissions and daily number of people enrolled in the cohort are

constructed from the Medicare National Claims History Files. These counts are obtained
from billing claims of Medicare enrollees residing in the 206 counties. Each billing claim
contains the following information: date of service, treatment, disease (ICD 9 codes), age,
gender, race and place of residence (zip and county).
Air pollution data for fine particles are collected and posted by theUnited States Environ-

mental Protection Agency Aerometric Information Retrieval Service (AIRS, now called the
Air Quality System,AQS). To protect against outlying observations, a 10% trimmedmean is
used to average acrossmonitors after correction for yearly averages for eachmonitor. Specif-
ically, after removing a smoothly varying annual trend from each monitor time series, the
trimmedmeanwas computed using the deviations from this smooth trend.Weather data is



Multiple Distributed Lag Models 495

Region

Pr
op

or
tio

n 
ob

se
rv

ed

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

0

219

438

658

877

1096

N
Lag 1

FIGURE 20.1
Summary of the missing-data pattern. The gray line displays the proportion of the total days in the study with
observed PM2.5 data for each county, with the actual number of days displayed on the right axis. The black
line shows the proportion and count of the days with observed air pollution data where the lag-1 day is also
observed.

obtained from the National Weather Monitoring Network which comprises daily temper-
ature and daily dew points temperature for approximately 8000 monitoring stations in the
USA. We aggregate data across monitors to obtain temperature time series data for each of
the 206 counties, of which 196 were used in analysis. Details about aggregation algorithms
for the air pollution and weather are posted at http://www.biostat.jhsph.edu/MCAPS
and further information about data collection is given in Dominici et al. (2006).
Figure 20.1 illustrates the salient features of the missing-data pattern for PM2.5 in this

database. This study considered 1096 monitoring days. Figure 20.1 displays the proportion
of the 1096 days with observed PM2.5 data for each county (dark gray line). The associ-
ated number of observed days is displayed on the right scale. This figure also displays the
proportion of 1096 days with observed PM2.5 data where the lag-1 day was also observed
(black line).
The plots show that nearly half of the 196 counties have measurements on roughly one

third of the total possible days. Ninety-six of these counties have over 40% of the air pol-
lution data observed and enough instances of seven consecutive observed PM2.5 days to
estimate thedesireddistributed lagmodel (see Section 20.4). For these counties, anymissing
data is often due to a large contiguous block, for example, several weeks where the mon-
itor malfunctioned. Such uninformative missing data leaves ample daily measurements
to estimate distributed lag models, so is ignored in our model. The remaining counties
have PM2.5 data collected every third day and possibly also have blocks of missing data,
hence have data on less than 33% of the days under study. Because of the systematically
missing PM2.5 data in these counties, there is little hope of fitting a distributed lag model
without borrowing information on the exposure-response curve from daily time series
data from other counties. The plot further highlights this by showing that direct estimates
of the lag-1 autocovariances are not available for roughly half of the counties. However,
because of the missing-data pattern, all of the counties have direct estimates of the lag-3
autocovariances.
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20.3 Bayesian Imputation
In this section, we discuss the relative merits of Bayesian imputation. We focus on our
particular missing-data problem, and refer the reader to Carlin and Louis (2009) and
Little and Rubin (2002) for general introductions to Bayesian statistics, missing data, and
computation. We argue that imputation for systematic missingness in the predictor time
series is relevant for distributed lag models, and particularly for the data set in question,
while it is less relevant for single-lag models. In this section, we restrict our discussion to
the consideration of a single outcome time series, say Yt, and single predictor time series,
Xt. For context, consider the outcome to be the natural log of the county-specific Medi-
care emergency admissions rate for COPD, and the predictor to be PM2.5 levels for that
county. To make this thought experiment more realistic, let Yt and Xt be the residual time
series obtained after having regressed out relevant confounding variables. We assume that
the {Yt} are completely observed and the {Xt} are observed only every third day, so that
X0,X3,X6, . . . are recorded; and we evaluate whether or not to impute the missing predic-
tors. In our subsequent analysis of the data, we will treat this problemmore formally using
Poisson regression.

20.3.1 Single-Lag Models

A single-lag model relates the Yt to Xt−u for some u = 0, 1, 2, . . . via the mean model
E[Yt] = θuXt−u,whenan identity link function isused.Weargue that, for any such single-lag
model, implementing imputation strategies for themissing predictor values is unnecessary.
Consider that direct evidence regarding any single-lagmodel is available in the formof sim-
ple lagged cross-correlations. For example, the pairs (Y0,X0), (Y3,X3), (Y6,X6), . . . provide
direct evidence for u = 0; the pairs (Y1,X0), (Y4,X3), (Y7,X6), . . .provide direct evidence for
u = 1 and so on. Imputing the missing predictors only serves to inject unneeded assump-
tions. Furthermore, there is a tradeoff where more variation in the predictor series benefits
the model’s ability to estimate the associated parameter, yet hampers the ability to impute
informatively. Hence, in the typical cases where the natural variation in the predictor series
is large enough to be of interest, we suggest that imputing systematically missing predictor
data for single-lag models is not worth the trouble. In less desirable situations with low
variation in the predictor series, imputation for single-lag models may be of use.

20.3.2 Distributed Lag Models

Now consider a distributed lag model, such as E[Yt] =∑d
u=0 θuXt−u. Here, if a county

has predictor data recorded every third day, there is no direct information to estimate
this relationship. Specifically, let t = 0, . . .,T − 1 and D be the design matrix associated
with the distributed lag model and Y be the vector of responses. Then the least squares
estimates of the coefficients are ( 1TD

tD)−1 1TD
tY. The off-diagonal terms of 1

TD
tD contain

the lagged autocovariances in the {Xt} series; 1TDtY contains the lagged cross-covariances
between the {Yt} and {Xt}. As was previously noted, these lagged cross-covariances are
directly estimable, even with patternedmissing data in the predictor series. In contrast, the
autocovariances in the predictor series are only directly estimable for lags that aremultiples
of 3. Thus, without addressing themissing predictor data, the distributed lagmodel cannot
be fit. For our data, this would eliminate information from nearly 50% of the counties
studied. Hence, a study of the utility of predicting the missing data is warranted.
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FIGURE 20.2
Likelihood for theAR(1) coefficient forAR(1) simulateddatawithanassumedcorrectlyknown innovationvariance
of 1 and coefficient of 0.5, for three missing-data patterns: completely observed (solid), observed only every three
days (dashed) and observed only every six days (dotted). A solid vertical line denotes the actual coefficient value
of 0.2.

One might consider using a model, such as anAR(p), to extrapolate the missing autocor-
relations. However, a single time series with this degree of systematic missingness may not
have enough information to estimate the parameters. Consider an AR(1) process. To illus-
trate, Figure 20.2 shows the likelihood for the AR(1) coefficient for data simulated under
an AR(1) model with a correctly known innovation variance of 1 and data observed every
day (solid), every third day (dashed) and every sixth day (dotted). Any inference for the
AR(1) parameter (at 0.5, depicted with a horizontal line) would be imprecise with the sys-
tematically missing data. For the data observed every sixth day, notice that the likelihood is
multimodal and symmetric about zero. This is because the likelihood only depends on the
AR coefficient raised to even powers. This poses a problem even for our every-third-day
data, because additional missing observations create patterns of data collected only every
sixth day. Suchmultimodal likelihoods forARmodels are described inWallin and Isaksson
(2002) (also see Broersen et al., 2004). In addition, here we assume that the correct model is
known exactly, which is unlikely to be true in practice.
In our data set, there is important information in the counties with completely observed

data that canbeused tohelp choosemodels for thepredictor time series andestimateparam-
eters. Figure 20.3 demonstrates suchmodel fits with anAR(4)model applied to a detrended
version of the log of the PM2.5 process. This plot is informative because when the data are
available only once every thirdday, it is not possible to estimate the autocorrelation function
using data only from that county. However, it also illustrates that the population distribu-
tion of autoregressive parameters appears to be well defined by the counties with mostly
observed data. Figure 20.4 shows the estimated residual standard deviations from these
model fits, suggesting that these are well estimated even if the autoregressive parameters
are not. The data suggest that an AR(1) process is perhaps sufficient, though we continue
to focus on AR(4) models to highlight salient points regarding imputation.
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FIGURE 20.3
Estimated AR(4) coefficients, labeled “1” to “4,” by counties ordered by decreasing percentage of observed data
from left to right. Roughly the first 100 counties have substantial consecutively observed data to estimate the AR
parameters while the remaining 100 do not.

20.4 Model and Notation
In this section, we present notation and modeling assumptions. A summary of the most
important parameters and hyperparameters is given in Table 20.1. Let Yct, for county
c = 0, . . .,C − 1 and day t = 0, . . .,T − 1, denote a response time series of counts, such
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FIGURE 20.4
Variances from individual autoregressive time series by counties ordered by decreasing percentage of observed
data from left to right.
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TABLE 20.1

Parameters and their Definitions
Yct Response count for county c at time t
Rct Size of the risk set for county c at time t
λct County-specific expected rate for Yct
Xct Log PM2.5 level in micrograms per cubic meter for county c at time t
θcu Distributed lag parameters for county c
θ∗cu Constrained distributed lag parameters for county c
θ†cu Constrained and reparameterized distributed lag parameters for county c
�̃(θc) Profile log likelihood for θc
Wct, ψc Slowly varying trend model on the log PM2.5 series log(Xct) =Wctψc + εct
εct Residuals from above model, where we presume ψc is known and fixed at the estimated value;

these terms are the actually imputed terms
μ Inter-county mean of the θc
Σθ Inter-county variance–covariance matrix of the θc
αc County-specific autoregressive parameters on the εct
ζ Inter-county mean of the αc
Σα Inter-county variance–covariance matrix of the αc

as the daily incident counts of COPD. Let Rct denote the number of persons in county
c at risk for disease on day t. We assume that both of these processes are completely
observed. Let λct = E[Yct | Rct,Xct, θc, βc] be the daily mean, Xct denote PM2.5, and Zctj, for
j = 0, . . ., J − 1, be other covariates of interest, which we assume are completely observed.
We assume that the response process follows a Poisson law with means satisfying:

log(λct/Rct) =
d∑

u=0
θcuXc,t−u +

J−1∑
j=0

Zctjβcj.

For the hospital admissions data, we consider d = 6. That is, the model relates the prior
week’s air pollution to the current day’s mean disease rate.
The sum of the lagged air pollution parameters, labeled the distributed lag “total” or

“cumulative” effect,
∑d

u=0 θcu, is a parameter of primary interest. The total effect is the
change in the log mean response rate given a one-unit across-the-board increase in the
PM2.5 over the current and prior d days.
Tomitigate the variance inflation incurred by includingmany obviously collinear lagged

covariates, sometimes a functional form is placed on the θcu, especially if d is large (see
Zanobetti et al., 2000).Aparticularly effective approach is to assume that θcu = Auθ

∗
c , where

Au is column u from a smoothing design matrix, say A, on the time points 0, . . ., d. When
d = 6, choosing A to be a bin smoother with bins for the current day, days lag 1 to 2, and
days lag 3 to 6, has been shown to be a useful approach in the air pollution time series
literature (Bell et al., 2004). Such a smoother requires three parameters, θ∗c = (θ∗c1, θ

∗
c2, θ

∗
c3),

so that the model becomes

log(λctr/Rctr) = θ∗c1xct + θ∗c2
2∑

u=1
Xc,t−u + θ∗c3

6∑
u=3

Xc,t−u +
k∑
j=0

zctjβcjr.

This restriction on the distibuted lag parameters is equivalent to a convenient form for
the rate model that considers the seven-day average air pollution and its deviation from
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the three-day average and current day:

log(λctr/Rctr) = θ†c1x̄(6)
ct + θ†c2(x̄(2)

ct − x̄(6)
ct )+ θ†c3(xct − x̄(2)

ct )+
k∑
j=0

zctjβcjr . (20.1)

Here x̄(k)
ct is the average of the current-day and k previous days’ PM2.5 values. These

parameters are related to the θ∗i via the equalities

θ∗c1 =
1
7
θ†c1 +

4
21
θ†c2 +

6
7
θ†c3,

θ∗c2 =
1
7
θ†c1 +

4
21
θ†c2 −

1
7
θ†c3,

θ∗c3 =
1
7
θ†c1 −

1
7
θ†c2 −

1
7
θ†c3.

In this constrained model the total effect is θ†c1 = θ∗c1 + 2θ∗c2 + 4θ∗c3. We use the constrained
and reparameterized specification from Equation 20.1 for analysis. For convenience, we
have dropped the superscript ∗ or † from θ when generically discussing the likelihood or
MCMC sampler.
We denote the Poisson log likelihood for county c by �c(θc, βc), where bold face represents

a vector of the relevant parameters, such as θc = (θc1, . . ., θcd)t. Our approach uses Bayesian
methodology to explore the joint likelihoodby smoothingparameters across counties.How-
ever, the number of nuisance parameters makes implementation and prior specification
unwieldy. Therefore, we replace the county-specific log likelihoods with the associated
profile log likelihoods:

�̃c(θc) = �c{θc, β̂c(θc)}, where β̂c(θc) = argmaxβc
�c(θc, βc).

This step greatly reduces the complexity of the MCMC fitting algorithm. However, it does
so at the cost of theoretical unity, as the profile likelihood used for Bayesian inference is
not a proper likelihood (Monahan and Boos, 1992), as well as computing time.We stipulate
that this choice may impact the validity of the sampler and inference. Currently, we assess
validity by comparing results with maximum likelihood results for counties with complete
data.
Themodel for the air pollution time series contains trend variables andAR(p) distributed

errors. We assume that
log(Xct) =Wctψc + εct, (20.2)

where the εct are a stationary autoregressive process of order pwith conditional means and
variances

E[εct|εc,t−1, . . ., εc,t−p] =
p∑
j=1
αcjεc,t−j, var(εct|εc,t−1, . . ., εc,t−p) = σ2c .

Here the trend term,Wctψc, represents the slowly varying correlation between air pollution
and seasonality. Specifically, we set Wct to be a natural cubic spline with 24 degrees of
freedom per year. Throughout, we set p = 4.
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20.4.1 Prior and Hierarchical Model Specification

We place a N(μ,Σθ) prior on the distributed lag parameters, and a diffuse normal prior
for μ and an inverted Wishart prior with an identity matrix scale on Σθ with 4 degrees of
freedom. Here, μ is a parameter of central interest, estimating the between-county mean
distributed lag parameters.
We do not place a prior on themissing-data trend termψc, instead fixing it from the onset

at the least squares estimated value. For the autoregressive parameters, αcj, we place the
prior on the lagged partial autocorrelations (Barnett et al., 1996; Monahan, 1983). We refer
the reader to Diggle (1990) for a definition of partial autocorrelations and Huerta andWest
(1999) for a different perspective for placing priors on autoregressive parameters.
We use a recursive formula of Durbin (1960), to transform the autoregressive parameters

to and from the partial autocorrelations. Let α̃cj represent the p partial autocorrelations for
county c; we specify that

0.5 log{(1+ α̃c)/(1− α̃c)} ∼ N(ζ,Σα),

where the Fisher’sZ transformation, log{(1+ a)/(1− a)}, is assumed to operate componen-
twise on vectors. Here, taking Fisher’s Z transformation is useful as the partial correlations
are bounded by 1 in absolute value for stationary series.
We use a diffuse normal prior for ζ and an inverse Wishart distribution centered at an

identity matrix with 10 degrees of freedom. The prior on σ−2c is gamma with a mean set at
the county-specific method of moments estimates and a coefficient of variation of 10. Note
that we chose not to shrink variance estimates across counties, as they appear to be well
estimated from the data.

20.5 Bayesian Imputation
20.5.1 Sampler

Here we give an overview of the Bayesian imputation algorithm. Let brackets generically
denote a density, and let Xc,obs and Xc,miss be the collection of Xtc observed and missing
components for county c respectively, Yc be the collection of Ytc, Pc = {ψc, α1c, . . ., αpc, σc},
P be the collection of between-county parameters and H denote hyperparameters. Then,
the full join posterior is

[X0,miss, . . .,XC−1,miss, θ0, . . ., θC−1,P0, . . .,PC−1,P | Y0, . . .,YC−1,X0,obs,XC−1,obs,H]

∝
{∏

c
[Yc | Xc,miss,Xc,obs, θc][Xc,miss,Xc,obs | Pc][Pc | P,H]

}
[P | H].

Here, recall that [Yc | Xc,miss,Xc,obs, θc] uses the profile likelihood, rather than the actual
likelihood. Our sampler proceeds as follows (where EE is “everything else”):

[X0,miss | EE] ∝ [Y0 | X0,miss,X0,obs, θ0][X0,miss,X0,obs | P0],
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[X1,miss | EE] ∝ [Y1 | X0,miss,X0,obs, θ1][X0,miss,X0,obs | P1],
...

[XC−1,miss | EE] ∝ [YC | XC−1,miss,XC−1,obs, θC−1][XC−1,miss,XC−1,obs | PC−1],
[P0 | EE] ∝ [Y0 | Xc,miss,Xc,obs, θ0][X0,miss,X0,obs | P0],
[P1 | EE] ∝ [Y1 | Xc,miss,Xc,obs, θ1][X1,miss,X1,obs | P1],
...

[PC−1 | EE] ∝ [YC−1 | XC−1,miss,XC−1,obs, θC][XC−1,miss,XC−1,obs | PC−1],
[P | EE] ∝ [Pc | P,H][P | H].

Because of the Gibbs-friendly priors, μ and ζ have multivariate normal full conditionals.
Moreover,Σθ andΣα have inverseWishart full conditionals, while the {σ2c } have an inverted
gamma. The county-specific distributed lag parameters and AR parameters, {θc} and αc,
require aMetropolis step.Weuse a variable-at-a-time, random-walk update. Further details
on the full conditionals are given in the Appendix to this chapter.
The update of the missing data deserves special attention. We use a variable-at-a-time

Metropolis step to impute εtc for each missing day conditional on the remaining. Consider
p = 4 and let εc5 be a missing day to be imputed. We use the autoregressive prior for the
day under consideration given all of the remaining days as the proposal. For example, the
distribution of εc5 given {εc1, . . ., εc4, ε6, . . ., ε9} is used to generate the proposal for εc5, that
is, the four neighboring days before and after the day under consideration. Because of the
AR(4) assumption, this is equivalent to the distribution of ε5 given all of the days. After
imputation,Xc5 = exp(Wc5ψc + εc5), is calculated. By simulating from thepriordistribution
of the current missing day given the remainder, only the contribution of Xc5 to the profile
likelihood remains in the Metropolis ratio. To summarize, the distribution of the current
day given the remainder, disregarding the profile likelihood, is used to generate proposals;
the profile likelihood is then used in a Metropolis correction. Of course, since PM2.5 has a
relatively weak relationship with the response, the acceptance rate is high.

20.5.2 A Parallel Imputation Algorithm

Given the large number of days that need to be imputed for the counties withmissing data,
and the difficult calculation of the county-specific profile likelihoods, the time for running
such a sampler is quite long. In this section we propose a parallel computing approach that
can greatly speed up computations.
Notice that the conditional-independence structure from Section 20.5.1 illustrates that

all of the county-specific full conditionals are conditionally independent. Thus, the imputation
of the missing predictor data, the simulation of the county-specific parameters, and the
calculation of the profile likelihoods can be performed simultaneously. Hence, it represents
an ideal instance where we can increase the efficiency of the simulation of a single Markov
chain with parallel computation.
To elaborate, let f be the time required to update [P | EE], g0, g1, . . ., gC−1 be the time

required to transfer the relevant information to and from the separate nodes for parallel
processing, and h0, h1, . . ., hC−1 be the time required to perform the processing, as depicted
in Figure 20.5. Suppose that C nodes are available for computation. Then, conceptually, the
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FIGURE 20.5
Parallel computing diagram.

run-time per parallel MCMC iteration is f + maxc(gc + hc). In contrast, the single processor
run-time would be f +∑c(hc). Clearly, if the transfer times, { gc} are small relative to the
county-specific processing times, {hc}, then substantial savings can bemade byparallelizing
the process,with the gains scaling proportional to the number of conditionally independent
full conditionals. This is exactly the setting of the Medicare claims data, where the profile
likelihood and imputation county-specific calculations are very time-consuming.Of course,
this simple schematic is extremely optimistic in not accounting for several factors, such as
variability in the number of available nodes, node-specific run-times and the added time
for the software to manage the parallelization. However, it does suggest that substantial
gains can be made with parallelization.
While we know of few implementations of parallel MCMC of this scope, this approach

to parallelizing Markov chains and its generalizations has been discussed previously
(Kontoghiorghes, 2006; Rosenthal, 2000; Winkler, 2003). Moreover, other approaches could
be used for parallelizing Markov chains. When applicable, perfect sampling (Fill, 1998; Fill
et al., 2000; Propp and Wilson, 1998) could be easily parallelized. Specifically, each perfect
sample is an independent and identically distributed draw from the stationary distribu-
tion and hence can be generated independently. Also regeneration times (Hobert et al.,
2002; Jones et al., 2006; Mykland et al., 1995) create independent tours of the chain from
other regeneration times. Therefore, given a starting value at a regeneration time, the tours
could be generated in parallel. These two techniques have the drawback that a substantial
amount of mathematics needs to be addressed to simply implement the sampler prior to
any discussion of parallel implementation. A less theoretically justified, yet computation-
ally simple, approach parallelizes and combinesmultiple independent chains (Gelman and
Rubin, 1992; Geyer, 1992).
Most work on statistical parallel computing algorithms depends on existing network-

based parallel computing algorithms, such as Parallel Virtual Machines (Beguelin et al.,
1995) or Message Passing Interface (Snir et al., 1995), such as implemented in the R
package SNOW (Rossini et al., 2007). These programs are not optimized for particular
statistical problems or computational infrastructures and, furthermore, require direct
computer-to-computer communication. While such parallel computing architectures are
used, large computing clusters that employ queuing management software often cannot
take advantage of these approaches.
In contrast, our approach uses a disk-based shared memory blackboard system which

required building the parallelization software. Specifically in our approach, a collection
of tokens, one for each county, are used to represent which counties currently need pro-
cessing. A collection of identical programs, which we refer to as spiders, randomly select
a token from the bin and move it to a bin of tokens representing counties currently being
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operated on. We have adopted several strategies to avoid race conditions, where two spi-
ders simultaneously attempt to grab the same token, including: using file system locks
and creating small random delays before the spider grabs the token. The spider then per-
forms the county-specific update and moves its token to another bin of counties with
finished calculations. The spider then goes back to the original bin and repeats the pro-
cess. If there are no tokens remaining, the first spider to discover this fact then performs
the national update while the remaining sit idle. It then moves the tokens back to the
original bin to restart the process. Disk-based shared memory is used for all of the data
transfer.
The benefits of this strategy for parallel MCMC are many. Notably, nodes or spiders

can be dynamically added or subtracted. Moreover, load balancing can be accomplished
easily. In addition, the system allowed us to use a storage area network (SAN) as the
sharedmemory resource (blackboard). While havingmuch slower data transfer than direct
computer-to-computer based solutions, this approach allowed us to implement a parallel
programming in spite of scheduling software that precludesmore direct parallelization.As
an added benefit, using the SAN for data transfer builds in automatic checkpointing for
the algorithm. We’ve also found that this approach facilitates good MCMC practice, such
as using the ending value from initial runs as the starting value for final runs. Of course,
an overwhelming negative property of this approach is the need to create the custom,
setting-specific, parallelization software.

20.6 Analysis of the Medicare Data
Weanalyzed theMedicaredatausingourparallelMCMCalgorithm.Weused30processors,
resulting in a run-time of 5–10 seconds per MCMC iteration. In contrast, the run-time for
a single processor was over 2 minutes. That is, there is a 90% decrease in run-time due to
parallelization.
The sampler was run for 13,000 iterations. This number was used as simply the largest

feasible in the time given. Final values from testing-iterations were used as starting values.
Trace plots were investigated to evaluate the behavior of the chains, and were also used to
change the step size of the random-walk samplers.
Figure 20.6 displays an example imputation for 1000 monitoring days for a county.

The black lines connects observed days while the gray line depicts the estimated trend.
The points depict the imputed data set. Figure 20.7 depicts a few days for a county where
pollution data is observed every three days; the separate lines are iterations of the MCMC
process. These figures illustrate the reasonableness of the imputed data. A possible con-
cern is that the imputed data are slightly less variable than the actual data. Moreover, the
data is more regular, without extremely high air pollution days. However, this produces
conservatively wider credible intervals for the distributed lag estimates.
Figure 20.8 shows the estimated posterior medians for the exponential of the cumulative

effect for a 10-unit increase in air pollution, alongwith 95% credible intervals. The estimates
range from 0.746 to 1.423. The cumulative effect is interpreted as the relative increase or
decrease in the rate of COPDcorresponding to an across-the-board 10-unit increase inPM2.5
over theprior sixdays. Therefore, for example, 1.007 (thenational average) represents a 0.7%
increase in the rate of COPD per microgram per 10 cubic meter increase in fine particulate
matter over six days.
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FIGURE 20.6
Example imputation from theMCMC sampler for a specific county. The black line connects observed points while
the gray line shows the estimated trend. The points are from a specific iteration of the MCMC sampler.

Thenational estimate,μ1, represents thevariance-weightedaverageof the county-specific
cumulative effects. The 95% equi-tail credible interval ranges from an estimated 2.6%
decrease to a 4.0% increase in the rate of COPD. The posterior median was a 0.7% increase.
In contrast, a meta-analysis model using the maximum likelihood fits and variances for
only those counties with adequate data for fitting the distributed lag model results in a
confidence interval for the national cumulative effect ranging from a 5.1% decrease to a
7.5% increase, while the mean is a 1.0% increase. That is, adding the data from the counties
with systematic missing data does not appear to introduce a bias, but does greatly reduce
the width of the interval.
The shapeof thedistributed lag function is of interest to environmental health researchers,

as different diseases can have very different profiles, such as rates of hospitalization, recur-
rence, and complications. Examining the shape of the distributed lag function can shed light
on the potential relationship of air pollution and the disease. For example, a decline over
time could be evidence of the “harvesting” hypothesis, whereby a large air pollution effect
for early lags would deplete the risk set of its frailest members, through hospitalization or
mortality. Hence, the latter days would have lower effects. Figure 20.9 shows the exponent
of 10 times the distributed lag parameters’ posterior medians, θ∗c1, θ

∗
c2, and θ

∗
c3, by county.

Here θ∗c1 is the current-day estimate, while θ
∗
c2 and θ

∗
c3 are cumulative effect for days lag

1 to 2 and 3 to 6, respectively. The current-day effect tends to be much larger, and more
variable, by county. The comparatively smaller values for the later lags are supportive of
the harvesting hypothesis, though we emphasize that other mechanisms could be in place.
Further, this model is not ideal for studying such phenomena, as the bin smoothing of
the distributed lag parameters may be too crude to explore the distributed lag function’s
shape.
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FIGURE 20.7
Several example imputations for a subset of the days for a county. The lines converge on observed days.
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FIGURE 20.8
Estimates and credible intervals for the exponential of the distributed lag cumulative effect by county for a 10-
unit increase in air pollution, 10θc1. The solid middle line shows the posterior medians; the gray area shows the
estimated 95% equi-tail credible intervals. A horizontal reference line is drawn at 1. Hash marks denote counties
with systematic missing data, where the distributed lag model could not be fit without imputation.

Figure 20.10 shows 95% credible intervals for the AR parameters across counties. The
counties are organized so that the rightmost 97 counties have the systematic missing
data. Notice that, in these counties, their estimate for the AR(1) parameter is attenuated
toward zero over the counties with complete data. The estimated posterior median of ζ
is (0.370,−0.010,−0.011,−0.025)t. The primary AR(1) parameter is slightly below the 0.5,
because of the contribution of those counties with missing data. Regardless, we note that
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FIGURE 20.9
Exponent of ten times the distributed lag parameters’ posterior medians: θ∗c1 (top), θ∗c2 (middle), and θ∗c3 (bottom),
by county.



Multiple Distributed Lag Models 507

0.25

0.35

0.45

0.55
αc2αc1

αc4αc3

–0.10

–0.05

0.00

0.05

–0.05

0.00

0.05

0.10

–0.10

–0.06

–0.02

0.02

FIGURE 20.10
Posterior credible intervals for the AR parameters by county.

this shrinkage estimation greatly improves on county-specific estimation (see Figure 20.3)
for those cites with incomplete data.

20.7 Summary
In this chapter, we propose an MCMC algorithm for fitting distributed lag models for time
series with systematically missing predictor data. We emphasize that our analysis only
scratches the surface for the analysis of the Medicare claims data. One practical issue is the
effect of varying degrees of confounder adjustment, in terms of both the degrees of freedom
employed in nonlinear fits and the confounders included. Moreover, a more thorough
analysis would consider other health outcomes and different numbers of lags included.
Also, commonly air pollution effects are interacted with age or age categories, because of
the plausibility of different physical responses to air pollution with aging. In addition, the
PM measurements are aggregates of several chemical pollutants. Determining the effects
of individual component parts may help explain some of the county variation in the effect
of air pollution on health.
The bin smoother on the distributed lag parameters allows for a simpler algorithm and

interpretation. However,more reasonable smoothers, such as settingA to the designmatrix
for a regression-splinemodel, should be considered. This would allowmuchmore accurate



508 Handbook of Markov Chain Monte Carlo

exploration of the shape of the distributed lag model, as well as variations in its shape by
counties.
The use of the profile likelihood instead of the actual likelihood raises numerous issues

and concerns. Foremost is the propriety of the posterior and hence the validity of the
sampler and inference. The theoretical consequences of this approach should be evaluated.
Moreover, comparisons with other strategies, such as placing independent diffuse priors
on the nuisance parameters, are of interest.
Also of interest is to eliminate the attenuation of the estimates of the autoregressive

parameters for the counties with missing data. To highlight this problem more clearly,
suppose that instead of 97 counties with missing data, we had 9700 with data recorded
every other day. Then the accurate information regarding ζ andΣα contained in the counties
with complete data would be swamped by the noisy bimodal likelihoods from the counties
with systematic missingness. More elaborate hierarchies on this component of the model
may allow for the counties with observed data to have control over estimation of these
parameters.
In addition, the potential informativeness of counties having missing data (see Little

and Rubin, 2002) should be investigated. To elaborate, clearly the pattern of missing data
is uninformative for any given county; however, whether or not a county collected data
every day or every third daymay be informative. For example, counties with air pollutions
levels well below or above standards may be less likely to collect data every day. Such
missingness may impact national estimates.
We also did not use external variables to impute the missing predictor data. Ideally, a

completely observed instrumental variable that is causally associated with the predictor,
yet not with the response, would be observed. Such variables could be used to impute
the predictor, but would not confound its relationship with the response. However, such
variables are rarely available. More often variables that are potentially causally associated
with the predictor are also potentially causally associated with response. For example,
seasonality and temperature are thought to be causally associatedwithPM levels andmany
health outcomes. Hence, using those variables to impute the missing predictor data would
immediately raise the criticism that any association foundwas due to residual confounding
between the response and the variables used for imputation.
These points notwithstanding, thiswork suggests potential for the ability to imputemiss-

ing data for distributed lag models. The Bayesian model produces a marked decrease in
the width of the inter-county estimate of the cumulative effect. Moreover, the imputed data
sets are consistent with the daily observed data, though perhaps being more regular and
less variable. However, we note the bias incurred by lower variability in the imputed air
pollution is conservative, and would attenuate the distribute lag effects.
A second accomplishment of this chapter is the parallelization algorithm and software

development. The computational overhead for the parallelization software was small, and
hence the decrease in run-time was nearly linear with the number of nodes.
Race conditions, times when multiple spiders attempted to access the same token, rep-

resent a difficult implementation problem. For example, after the county-specific updates
finish, all spiders attempt to obtain the token representing the national update simultane-
ously. A colleague implementing a similar system proposed a potential solution (Fernando
Pineda, personal communication). Specifically, he uses atomic operations on a lock file
to only allow access to the bin of tokens to one program at a time. As an analogy, this
approach has a queue of programs waiting for access to the bins to obtain a token. In con-
trast, our approach allows simultaneous access to the bins, thus increasing speed, though
also increasing the likelihood of race conditions. A fundamental problem we have yet to



Multiple Distributed Lag Models 509

solve is the need for truly atomic operations on networked file systems to prevent these
race conditions. Our use of file system locks when moving files as the proposed atomic
operation made the system very fragile, given the complex nature and inherent lag of an
NFS-mounted SAN.
Our current solutions to these problems are inelegant. First, as described earlier, random

waiting times were added. Secondly, spiders grabbed tokens in a random order. Finally,
a worker program was created that searched for and cleaned up lost tokens and ensured
that the appropriate number of spiders were operational. We are currently experimenting
with the use of an SQL database, with database queries, rather than file manipulations to
manage the tokens.

Appendix: Full Conditionals
We have

θc ∝ exp
(

�̃c(θc)− 1
2
(θc − μ)tΣθ(θc − μ)

)
,

μ ∼ N
{(

CΣ−1θ + G−11
)−1

Σ−1θ
C−1∑
c=0

θc,
(
CΣ−1θ + G−11

)−1}
,

Σ−1θ ∼Wishart
(
G2 +

C−1∑
c=0

(θc − μ)(θc − μ)t, df1 + C
)
,

αc ∼ N
{
(EtcEc/σ2c +Σ−1α )−1Etcεc, (EtcEc/σ2c +Σ−1α )

}
,

ζ ∼ N
{(

cΣ−1α + G−14
)−1

Σ−1α
C−1∑
c=0

αc,
(
cΣ−1α + G−14

)−1
Σ−1α

}
,

Σα ∼Wishart
(
G5 +

C−1∑
c=0

(αc − ζ)(αc − ζ)t), df2 + C
)
,

σ−2c ∼ Γ
⎧⎨
⎩C/2+ G6,

C−1∑
c=0

(
εct −

p∑
u=1
εc,t−uαu

)2
+ G7

⎫⎬
⎭.

Here εc = (εc1, . . ., εcTc)t, where εct are the residuals after fitting model (Equation 20.2). The
matrixEc denotes the lagged values of εc.G1,G2, . . .denote generic hyperparameterswhose
values are described in the chapter, while df1 and df2 correspond to prior Wishart degrees
of freedom. That is,G1 is the prior variance on μ;G2 represents theWishart scale matrix for
Σθ; (G3,G4) represent the prior means and variance on ζ; G5 represents the Wishart scale
matrix for Σα; and G6 and G7 are the gamma shape and rate on σ−2c .
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21
MCMC for State–Space Models

Paul Fearnhead

21.1 Introduction: State–Space Models
In this chapter, we look at Markov chain Monte Carlo (MCMC) methods for a class of time
series models called state–space models. The idea of state–space models is that there is an
unobserved state of interest the evolves through time, and that partial observations of the
state are made at successive time points. We will denote the state byX and observations by
Y, and assume that our state–space model has the following structure:

Xt | {x1:t−1, y1:t−1} ∼ p(xt | xt−1, θ), (21.1)

Yt | {x1:t, y1:t−1} ∼ p(yt | xt, θ). (21.2)

Here, and throughout, we use the notation x1:t = (x1, . . ., xt), and write p(· | ·) for a generic
conditional probability density ormass function (with the argumentsmaking it clearwhich
conditional distribution it relates to). To fully define the distribution of the hidden state we
further specify an initial distribution p(x1 | θ). We have made explicit the dependence of the
model on an unknown parameter θ, which may be multidimensional. The assumptions in
this model are that, conditional on the parameter θ, the state model is Markov, and that
we have a conditional independence property for the observations: observation Yt only
depends on the state at that time, Xt.
For concreteness we give three examples of state–space models:

Example 21.1: Stochastic Volatility

The following simple stochastic volatility (SV) model has been used for modeling the time-varying
variance of log-returns on assets; for fuller details, see Hull andWhite (1987) and Shephard (1996).
The state–space model is

Xt | {x1:t−1, y1:t−1} ∼ N(φxt−1, σ2),

where |φ | < 1, with initial distribution X1 ∼ N(0, σ2/(1− φ2)), and

Yt | {x1:t , y1:t−1} ∼ N(0, β2 exp{xt }).

The parameters of the model are θ = (β,φ, σ). The idea of the model is that the variance of the
observations depends on the unobserved state, and the unobserved state is modeled by an AR(1)
process.
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Example 21.2: Discrete Hidden Markov Model

A general class of models occurs when the underlying state is a discrete-valued Markov model,
with a finite state space. Thus we can assume without loss of generality that Xt ∈ {1, 2, . . .,K } and
that the model for the dynamics of the state (Equation 21.1) is defined by a K × K transition matrix
P . Thus, for all i, j ∈ {1, . . . ,K },

Pr(Xt = j |Xt−1 = i, x1:t−2, y1:t−1) = Pij .

Usually it is assumed that the distribution for X1 is given by the stationary distribution of this
Markov chain. The observation Equation 21.2 will depend on the application, but there will be K
observation regimes (depending on the value of the state). Thus we can write

Yt | {xt = k , x1:t−1, y1:t−1} ∼ fk (yt | θ). (21.3)

The parameters of this model will be the parameters of Equation 21.3 and the parameters of the
transition matrix P .
Examples of suchmodels includemodels of ion channels (Ball and Rice, 1992; Hodgson, 1999),

DNA sequences (Boys et al., 2000), and speech (Juang and Rabiner, 1991).

Example 21.3: Change-Point Model

Change-point models partition the data into homogeneous regions. The model for the data is the
same within each region, but differs across regions. Change-point models have been used for
modeling stock prices (Chen and Gupta, 1997), climatic time series (Beaulieu et al., 2007; Lund
and Reeves, 2002), DNA sequences (Didelot et al., 2007; Fearnhead, 2008), and neuronal activity
in the brain (Ritov et al., 2002), among many other applications.
A simple change-point model can be described as a state–space model with the following state

equation:

Xt | {x1:t−1, y1:t−1} =
{

xt−1, with probability 1− p,
Zt , otherwise,

where the Zt s are independent and identically distributed random variables with density function
pZ (· |φ). Initially X1 = Z1, and the observation equation is given by

Yt | {x1:t , y1:t−1} ∼ p(yt | xt ).

The parameters of this model are θ = (p,φ), where p governs the expected number of change
points in the model, and φ the marginal distribution for the state at any time.
We will focus on models for which we can calculate, for any t < s,

Q(t , s) =
∫ ⎛⎝ s∏

i=t

p(yi | x)

⎞
⎠ pZ (x |φ) dx . (21.4)

This is the marginal likelihood of the observations yt :s , given that the observations come from
a single segment. The functions Q(t , s) depend on φ, but for notational convenience we have
suppressed this.
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21.2 Bayesian Analysis and MCMC Framework
Our aim is to performBayesian inference for a state–spacemodel givendata y1:n.We assume
a prior for the parameters, p(θ), has been specified, and we wish to obtain the posterior of
the parameters p(θ | y1:n), or in some cases we may be interested in the joint distribution of
the state and the parameters p(θ, x1:n | y1:n).
How can we design an MCMC algorithm to sample from either of these posterior distri-

butions? In both cases, this can be achieved using data augmentation (see Chapter 10, this
volume). That is, we design a Markov chain whose state is (θ,X1:n), and whose stationary
distribution is p(θ, x1:n | y1:n) (samples from themarginal posterior p(θ | y1:n) can be obtained
from samples from p(θ, x1:n | y1:n) just by discarding the x1:n component of each sample). The
reason for designing anMCMC algorithm on this state space is that, for state–spacemodels
of the form Equations 21.1 through 21.2, we can write down the stationary distribution of
the MCMC algorithm up to proportionality:

p(θ, x1:n | y1:n) ∝ p(θ)p(x1 | θ)
( n∏
t=2

p(xt | xt−1, θ)
)( n∏

t=1
p(yt | xt, θ)

)
. (21.5)

Hence, it is straightforward to use standard moves within our MCMC algorithm.
In most applications it is straightforward to implement an MCMC algorithm with

Equation 21.5 as its stationary distribution. A common approach is to design moves that
update θ conditional on the current values of X1:n and then update X1:n conditional on θ.
We will describe various approaches within this framework. We first focus on the problem
of updating the state; and to evaluate different methods we will consider models where θ
is known. Then we will consider moves to update the parameters.

21.3 Updating the State
The simplest approach to updating the state X1:n is to update its components one at a time.
Such a move is called a single-site update. While easy to implement, this move can lead to
slow mixing if there is strong temporal dependence in the state process. In these cases it
is better to update blocks of state components, Xt:s, or the whole state process X1:n in a
single move. (As we will see, in some cases it is possible to update the whole process X1:n
directly from its full conditional distribution p(x1:n | y1:n, θ), in which case these moves are
particularly effective.)
We will give examples of single-site moves, and investigate when they do and do not

work well, before looking at designing efficient block updates. For convenience we drop
the conditioning on θ in the notation that we use within this section.

21.3.1 Single-Site Updates of the State

The idea of single-site updates is to design MCMCmoves that update a single value of the
state, xt, conditional on all other values of the state process (and on θ). Repeated application
of this move for t = 1, . . ., nwill enable the whole state process to be updated.
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Let x−t = (x1, . . ., xt−1, xt+1, . . ., xn) denote the whole state process excluding xt. So a
single-site update will update xt for fixed x−t, θ. The target distribution of such a move
is the full conditional distribution p(xt | x−t, θ, y1:t), which as mentioned above we will
write as p(xt | x−t, y1:t), dropping the conditioning on θ in the notation that we use, as we
are considering moves for fixed θ. Due to the Markov structure of our model, this sim-
plifies to p(xt | xt−1, xt+1, yt) for t = 2, . . ., n− 1, p(x1 | x2, y1) for t = 1, and p(xn | xn−1, yn)
for t = n. Sometimes we can simulate directly from these full conditional distributions,
and such (Gibbs) moves will always be accepted. Where this is not possible, then if xt is
low-dimensional we can often implement an efficient independence sampler (see below).
We now give details of single-site update for Examples 21.2 (Gibbs move) and 21.1 (inde-

pendence sample), and in both cases we investigate the mixing properties of the move in
updating X1:n.

Example 21.4: Single-Site Gibbs Move

For the hidden Markov model (HMM) of Example 21.2, with state transition matrix, P , we have
for t = 2, . . ., n − 1 that

Pr(Xt = k |Xt−1 = i,Xt+1 = j, yt ) ∝ Pr(Xt = k |Xt−1 = i) Pr(Xt+1 = j | xt = k)p(yt |Xt = k)

= Pik Pkj fk (yt ),

for k = 1, . . .,K . Now as Xt has a finite state space, we can calculate the normalizing constant of
this conditional distribution, and we get

Pr(Xt = k |Xt−1 = i,Xt+1 = j, yt ) =
Pik Pkjpk (yt )∑K
l=1 PilPlj fl (yt )

.

Similarly, we obtain Pr(X1 = k | x2 = j, y1) ∝ Pr(X1 = k)Pkj fk (y1) and Pr(Xn = k |Xn−1 =
i, yn) ∝ Pik fk (yn). In both cases the normalizing constants of these conditional distributions can
be obtained.
Thus for this model we can simulate from the full conditionals directly, which is the optimal

proposal for xt for fixed x−t . Note that the computational cost of simulation is O(K ), due to
calculation of the normalizing constants. For large K it may be more computationally efficient
to use other proposals (such as an independence sample) whose computational cost does not
depend on K .
We examine the efficiency of this MCMC move to update the state X1:n by focusing on an

HMM for DNA sequences (see, e.g. Boys et al., 2000). The data consists of a sequence of DNA, so
yt ∈ {A,C,G,T} for all t . For simplicity we consider a two-state HMM, with the likelihood function
for k = 1, 2 being

Pr(Yt = y |Xt = k) = π(k)
y , for y ∈ {A,C,G,T}.

We denote the parameter associated with Xt = k as π(k) = (π
(k)
A ,π(k)

C ,π(k)
G ,π(k)

T ).
We will consider the effect of both the dependence in the state dynamics, and the information

in the observations, on the mixing rate of the MCMC move. To do this we will assume that state
transition matrix satisfies P12 = P21 = α, and

π(1) = (1, 1, 1, 1)/4+ β(1, 1,−1,−1), π(2) = (1, 1, 1, 1)/4− β(1, 1,−1,−1),

for 0 < α < 1 and 0 < β < 1/4. Small values of α correspond to large dependence in the state
dynamics, and small values of β correspond to less informative observations.
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FIGURE 21.1
Lag-1 autocorrelation values for differing α for a two-state hidden Markov model: (a) n = 200; (b) n = 500. In
each plot, different lines refer to different values of β; from top to bottom: β = 0.02; β = 0.065; β = 0.11; β = 0.155;
and β = 0.2.

To measure the mixing properties of the single-site MCMC update we (i) simulated data for a
given value of (α, β); (ii) ran an MCMC algorithm with single-site updates; and (iii) calculated an
autocorrelation function for the MCMC output after discarding a suitable burn-in. For simplicity,
we summarized the output based on the autocorrelation at lag-1 (all MCMC runs suggested auto-
correlations that decayed approximately exponentially).We calculated the autocorrelation for the
number of differences between the true value of the hidden state and the inferred value of the
state.
Results are shown in Figure 21.1, where we see that the value of α is the main determinant of

the mixing of the MCMC algorithm. Small values of α, which correspond to large dependence,
result in poor mixing. Similarly, as β decreases, which relates to less informative observations, the
mixing gets worse—though the dependence on β is less than on α. Qualitatively similar results
are observed for the two values of n, but for smaller n we see that the value of β has more impact
on the mixing properties.

Example 21.5: Single-Site Independence Sampler

Now consider the SV model of Example 21.1. We describe an independence sampler that was
derived by Shephard and Pitt (1997). With this model we obtain, for t = 2, . . ., n − 1,

p(xt | xt−1, xt+1, yt ) ∝ p(xt | xt−1)p(xt+1 | xt )p(yt | xt ) (21.6)

∝ exp
{
− 1
2σ2

((xt − φxt−1)+ (xt+1 − φxt )
2)

}
exp

{
−xt

2

}
exp

{
−exp{−xt }y2t

2β2

}
,
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where we have removed any constants of proportionality that do not depend on xt ; the first term
of the final expression corresponds to the two state transition densities, and the final two terms
come from the likelihood.
Simulating directly from this conditional distribution is not possible, so we resort to approx-

imation. Our approximation is based on a Taylor expansion of log p(xt | xt−1, xt+1, yt ) about
an estimate of xt , which we call x̂t . Now if we define μt = φ(xt−1 + xt+1)/(1+ φ2) and
τ2 = σ2/(1+ φ2), then the first term in Equation 21.7 can be rewritten, up to a constant of propor-
tionality, as exp{−(xt − μt )

2/(2τ2)}. Thus without any observation, our conditional distribution
of xt would have a mean μt , and this appears a sensible value about which to take a Taylor
expansion. Doing this leads to

log p(xt | xt−1, xt+1, yt ) ≈ − (xt − μt )
2

2τ2
− xt

2
− y2t

2β2
exp{−μt }

(
1− (xt − μt )+ 1

2
(xt − μt )

2
)
.

As this approximation to the log-density is quadratic, this gives us a normal approxima-
tion to the conditional distribution, which we denote by q(xt | xt−1, xt+1, yt ). (For full details
of the mean and variance of the approximation, see Shephard and Pitt, 1997.) Thus we
can implement an MCMC move of Xt by using an independence sampler with proposal
q(xt | xt−1, xt+1, yt ).
Similar normal approximations can be obtained for p(x1 | x2, y1) and p(xn | xn−1, yn), the only

difference being in the values of μt and τ. Note that better estimates of x̂t can be found, for
example, by numerically finding the mode of p(xt | xt−1, xt+1, yt ) (Smith and Santos, 2006), but
for single-site updates any increase in acceptance rate is unlikely to beworth the extra computation
involved.
We investigate the efficiency of single-site updates for the SV model via simulation. We fix

β = 1 and consider how mixing of the MCMC algorithm depends on the time dependence of
the state process, φ, and marginal variance of the state process, τ2 = σ2/(1− φ2). As above, we
evaluate mixing by looking at the lag-1 autocorrelation of the mean square error in the estimate
of the state process. Results are shown in Figure 21.2, where we see that φ has a sizeable effect
on mixing—with φ ≈ 1, which corresponds to strong correlation in the state process, resulting in
poor mixing. By comparison both n and τ2 have little effect. For all MCMC runs the acceptance
rate of the MCMC move was greater than 99%.

21.3.2 Block Updates for the State

While the single-site updates of Section 21.3.1 are easy to implement, we have seen that
the resulting MCMC algorithms can mix slowly if there is strong dependence in the state
process. This leads to the idea of block updates—updating the state at more than one time
point in a single move. Ideally we would update the whole state process in one move,
and in some cases it turns out that this is possible to do from the full conditional, so that
moves are always accepted. These include the linear Gaussian models, where we can use
the Kalman filter (see, e.g. Carter and Kohn, 1994; Harvey, 1989), as well as the HMM of
Example 21.2 and the change-point model of Example 21.3. We give details of the methods
used for the latter two below.
In situations where it is not possible to update the whole state process from its full con-

ditional, one possibility is to use an independence proposal to update jointly a block of
state values. We will describe such an approach for the SV model of Example 21.1, and
then discuss alternative approaches for block updates for models where it is not possible
to draw from the full conditional distribution of the state.
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FIGURE 21.2
Lag-1 autocorrelation values for differing φ for the stochastic volatility model: (a) n = 200; (b) n = 500. In each
plot, different lines refer to different values of τ2: τ2 = 0.5 (full lines); τ2 = 1 (dashed lines); τ2 = 2.0 (dotted lines).

Example 21.6: Updating the State from its Full Conditional

The forward–backward algorithm is amethod for sampling from the full conditional of the state pro-
cess for discrete HMMs. See Rabiner and Juang (1986) for a review of this method, and Scott (2002)
for further examples of its use within Bayesian inference. Here we describe its implementation for
the model of Example 21.2.
The algorithm is based upon a forward recursion which calculates the filtering densities

Pr(Xt | y1:t ) for t = 1, . . ., n; followed by a backward simulation step that simulates from
Pr(Xn | y1:n) and then Pr(Xt | y1:n, xt+1) for t = n − 1, . . ., 1. The forward recursion is initialized
with

Pr(X1 = k | y1) ∝ Pr(X1 = k)fk (y1), for k = 1, . . .,K ,

where the normalizing constant is p(y1) =
∑K

l=1 Pr(X1 = l)fl (y1). Then for t = 2, . . ., n we have

Pr(Xt = k | y1:t ) ∝ fk (yt )

K∑
l=1

Pr(Xt−1 = l | y1:t−1)Plk , for k = 1, . . .,K ,

where the normalizing constant is p(yt | y1:t−1). (Note that a byproduct of the forward recur-
sions is that we obtain the likelihood as a product of these normalizing constants, as p(y1:n) =
p(y1)

∏n
t=2 p(yt | y1:t−1)).

Once these filtering densities have been calculated and stored, we then simulate backwards.
First, we simulateXn from the filtering density Pr(Xn | y1:n); then, for t = n − 1, . . ., 1, we iteratively
simulate Xt given our simulated value for Xt+1, from

Pr(Xt = l | y1:n,Xt+1 = k) = Pr(Xt = l | y1:t ,Xt+1 = k) ∝ Pr(Xt = l | y1:t )Plk .
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The computational complexity of the forward–backward algorithm is O(nK 2) for the forward
recursion, and O(nK ) for the backward simulation. This compares with O(nK ) for applying the
single-site update to all state values.Thus, particularly for values largeK , it may be computationally
more efficient to use single-site updates. As seen above, whether this is the case will depend on
the amount of dependence in the state model.
In the above description, we suppressed the dependence on the unknown parameter θ. Standard

MCMC algorithms will update X1:n given θ and then θ given X1:n in one iteration. Thus each
iteration will (potentially) have a new θ value, and will require the reapplication of the forward–
backward algorithm to simulate X1:n. One approach to reducing the computational cost of using
the forward–backward algorithm within MCMC, suggested by Fearnhead (2006), is to (i) obtain
a good point estimate of the parameters, θ̂; (ii) apply the forward recursion for this value of the
parameter; and (iii) use Pr(X1:n | y1:n, θ̂) as an independence proposal for updating the state. The
advantage of this is that the costly forward recursion is only required once, as opposed to at every
iteration of the MCMC algorithm. Furthermore, Fearnhead (2006) describes an efficient algorithm
for simulating large samples of X1:n from the backward simulation step. In applications, providing
a good estimate is obtained in (i), this approach has shown to produce efficient MCMC updates.
Note that estimation in (i) could be performed in an adaptive manner during the burn-in period
of the MCMC algorithm.
Our forward–backward description has focused on discrete-time processes. It is possible

to extend the idea to continous-time (though still discrete-valued) HMMs; see, for example,
Fearnhead and Meligkotsidou (2004) and Fearnhead and Sherlock (2006).

Example 21.7: Updating the State from its Full Conditional

We now show how the forward–backward algorithm can be applied to the change-point model
of Example 21.3. The idea behind this application dates back toYao (1984), but see also Barry and
Hartigan (1992), Liu and Lawrence (1999), and Fearnhead (2006).
We introduce a new state variable, Ct , which we define to be the time of the most recent change

point prior to t . Mathematically this is a function of x1:t , with

Ct = max{s : xs = xs+1 for s < t},

and Ct = 0 if there has been no change point prior to t (i.e. the set on the right-hand side is empty).
Note that Ct ∈ {0, . . ., t − 1}, and Ct is a Markov process with

Pr(Ct = j |Ct−1 = i) =
{

p, if j = t − 1,
1− p, if i = j,

with all other transitions being impossible. Note that these two transitions correspond to there
either being or not being a change point at time t − 1.
We can now derive the forward–backward algorithm. The forward recursion is initialized with

Pr(C1 = 0 | y1) = 1, and for t = 2, . . ., n we have

Pr(Ct = j | y1:t ) ∝ (1− p)
Q(j + 1, t)

Q(j + 1, t − 1)
Pr(Ct−1 = j | y1:t−1), for j = 0, . . ., t − 2,

Pr(Ct = t − 1 | y1:t ) ∝ pQ(t , t).

The first equation corresponds to there not being a change point at time t − 1. This happens
with probability 1− p, and in this case Ct = Ct−1. The second corresponds to there being a
change point, which happens with probability p. The Q(·, ·) are defined in Equation 21.4. In both
equations, the term involving Q(·, ·) is the likelihood of the observation yt given Ct and y1:t−1.
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Once the filtering recursions have been solved, backward simulation proceeds using the
conditional distributions

Pr(Ct = j |Ct+1 = t , y1:n) = Pr(Ct = j | y1:t ),

where conditioning on Ct+1 = t is equivalent to conditioning on a change point at t . Thus we can
simulate the time of the last change point from Pr(Cn | y1:n), and then recursively, given a change
point at t , simulate the next most recent change point from Pr(Ct | y1:t ). This simulation continues
until we simulate Ct = 0, which corresponds to no more change points.
The computational complexity of this algorithm is O(n2). The main cost is in solving the recur-

sions, and one approach to reduce computational cost is to solve these for a specific value
of the parameters, and then use the resulting conditional distribution for X1:n as an indepen-
dence proposal (see Fearnhead, 2006, and the discussion for Example 21.2 above). Note that
this forward–backward algorithm can be generalized to allow for different distributions of time
between successive change points (see Fearnhead, 2008), and for HMM dependence in the state
value for neighbouring segments (Fearnhead and Vasileiou, 2009).

Example 21.8: Block Independence Sampler

For the SVmodel of Example 21.1, we cannot sample directly from the full conditional distribution
p(x1:n | y1:n). Instead we follow Shephard and Pitt (1997) and consider an independence sampler
for block updating. The proposal distribution for the independence sampler is based on a natural
extension of the independence sampler for singe-site updates.
Consider an update for Xt :s for s > t . For an efficient independence proposal we require a good

approximation to p(xt :s | xt−1, xs+1, yt :s). (If t = 1 we would drop the conditioning on xt−1, and
if s = n we would drop the conditioning on xs+1 here and in the following.) Now we can write

p(xt :s | xt−1, xs+1, yt :s) ∝ p(xt :s | xt−1, xs+1)
s∏

j=t

p(yj | xj),

where the first term on the right-hand side is a multivariate Gaussin density. Thus if, for all j =
t , . . ., s, we approximate p(yj | xj ) by a Gaussian likelihood, we obtain a Gaussian approximation
to p(xt :s | xt−1, xs+1, yt :s) which can be used as an independence proposal. We can obtain a
Gaussian approximation to p(yj | xj) by using a quadratic (in xj ) approximation to log p(yj | xj) via a
Taylor expansion about a suitable estimate x̂j . The details of this quadratic approximation are the
same as for the single-step update described above. Further details can be found in Shephard and
Pitt (1997). The resulting quadratic approximation to p(xt :s | xt−1, xs+1, yt :s) can be calculated
efficiently using the Kalman filter (Kalman and Bucy, 1961), or efficient methods for Gaussian
Markov random field models (Rue and Held, 2005), and its complexity is O(s − t).
Implementation of this method requires a suitable set of estimates x̂t :s = (x̂t , . . ., x̂s). If we

denote by q(xt :s | x̂t :s) the Gaussian approximation to p(xt :s | xt−1, xs+1, yt :s) obtained by using

the estimate x̂t :s , then one approach is to: (i) choose an initial estimate x̂(0)
t :s ; and (ii) for i =

1, . . ., I, set x̂(i)
t :s to be the mean of q(xt :s | x̂ (i−1)

t :s ). In practice, choosing x̂(0)
t :s to be the mean of

p(xt :s | xt−1, xs+1) and using small values of I appears to work well.
This approach to designing independence proposals can be extended to other models where

the model of the state is linear Gaussian (see Jungbacker and Koopman, 2007). Using the resulting
independence sampler within an MCMC algorithm is straightforward if it is efficient to update the
complete state path X1:n. If not, we must update the state in smaller blocks. A simplistic approach
would be to split the data into blocks of (approximately) equal size, τ say, and then update in
turn X1:τ, X(τ+1):2τ, and so on. However, this approach will mean that state values toward the
boundaries of each block will mix slowly due to the conditioning on the state values immediately
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outside the boundary of the blocks. To avoid this, Shephard and Pitt (1997) suggest randomly
choosing the blocks to be updated for each application of the independence proposal. Another
popular alternative is to choose overlapping blocks, for example, X1:2τ, X(τ+1):3τ, X(2τ+1):4τ and
so on.
A further important consideration in implementation is the choice of block size. Too small and

we will obtain poor mixing due to the strong dependence of Xt :s on Xt−1 and Xs+1; too large and
we will have poor mixing due to low acceptance rates. (One approach is to use adaptive MCMC
methods to choose appropriate block sizes; see Roberts and Rosenthal, 2009.) Here we will look
at the effect that block size has on acceptance probabilities for the SV model.
Plots of average acceptance rates for different block sizes and different data sets are shown

in Figure 21.3. Two features are striking. The first is that efficiency varies substantially with φ,
with values of φ ≈ 1 producing higher average acceptance rates. This is because for φ ≈ 1 there
is stronger dependence in the state process, and thus the (Gaussian) p(xt :s | xt−1, xs+1) dom-
inates the (non-Gaussian) likelihood p(yt :s | xt :s). The second is that there is great variability
in acceptance rates across different runs: thus choice of too large block sizes can lead to the
chain becoming easily stuck (e.g. acceptance probabilities of 10−8 or less were observed for
blocks of 2000 or more observations when φ = 0.8). This variability suggests that a sensible strat-
egy is either to randomly choose block sizes, or to adaptively choose block sizes for a given
data set.
However, overall we see that the block updates are particularly efficient for the SV model. For

block updates, acceptance rates greater than 0.01 are reasonable, and the average acceptance rate
was greater than this for all combinations of φ and block size that we considered. Even looking
at the worse-case acceptance rates across all runs, we have acceptances rates greater than 0.01
for blocks of size 400 when φ = 0.8, and for blocks of size 2500 when φ = 0.99.
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FIGURE 21.3
Average acceptance rates for different block sizes, and different φ values. Dots show mean acceptance rates for
20 different data-sets for each block size. Lines show mean acceptance rates for each block size. All runs had
τ2 = σ2/(1− φ2) = 0.2. (Some MCMC runs had acceptance rates that are too small to appear on the plot.)
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21.3.3 Other Approaches

Our examples have shown how to simulate directly from the full conditional of the state, or
howtoapproximate the full conditional forusewithin an independenceproposal.However,
the former method can only be applied to a limited class of models, and the latter used
the linear Gaussian nature of the state model. It is possible to obtain good independence
proposals for more general state models, but this can become challenging, particularly for
high-dimensional states and models with strong nonlinearities.
Onegeneral approach toblockupdatesof the stateshas recentlybeenproposed inAndrieu

et al. (2010), which is based upon using sequentialMonte Carlomethods (see Liu andChen,
1998) within MCMC. Sequential Monte Carlo methods can be efficient for analysing state–
space models where parameters are known, and the idea is that these are used to generate
a proposal distribution for the path of the state within an MCMC algorithm.

21.4 Updating the Parameters
Wenow consider how to update the parameter, θ, within theMCMCalgorithm. The natural
approach is to update θ conditional on the current value of the state path x1:n. Often this is
simple to implement as either conjugate priors for θ can be chosen so that we can sample
directly from p(θ | x1:n, y1:n), or θ is of sufficiently low dimension that we can use efficient
independence proposals. In some cases we need to update components or blocks of θ at a
time, rather than the updating the whole parameter vector in one go.
However, even if we can sample from the full conditional p(θ | x1:n, y1:n), the overall effi-

ciency of the MCMC algorithm can still be poor if there is strong correlation between θ
and x1:n. The rate of convergence of an algorithm that alternates between sampling from
p(x1:n | θ, y1:n) and p(θ | x1:n, y1:n) is given by Liu (1994) and Roberts and Sahu (1997). If, for
a square-integrable function f of the parameters, we define the Bayesian fraction of missing
information,

γf = 1− E
(
var

(
f (θ) |X1:n, y1:n

) | y1:n)
var

(
f (θ) | y1:n

) , (21.7)

then the geometric rate of convergence of the MCMC algorithm is γ = supf γf . Values of
γ ≈ 1 suggest a poorly mixing MCMC algorithm. This will occur when, after conditioning
on the data, there are functions f for which most of the variation in f (θ) is explained by the
value of the state, X1:n.
When there is strongdependencebetween θandX1:n, there are two techniques for improv-

ing mixing. The first is to consider a different parameterization, with the hope that for this
new parameterization there will be less dependence between the state and the parameter.
The second is to use moves that jointly update θ and X1:n. We will describe and eval-
uate approaches for updating θ given X1:n, and then consider these two approaches for
improving mixing in turn.

21.4.1 Conditional Updates of the Parameters

Here we focus on Examples 21.1 and 21.2, and give outlines of how parameter updates can
be made with these models. We will also investigate the mixing properties of the resulting
MCMC algorithms.
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Example 21.9: Conditional Parameter Updates

Following Shephard and Pitt (1997), we will consider independent priors for β, σ2, and φ. As β is
a scale parameter, we choose the canonical uninformative prior, p(β) ∝ 1/β. For σ2 our prior is
S0χ

−2
p . As it is normal to restrict |φ | < 1, we choose a Beta(a, b) prior for (φ+ 1)/2. For these

choices we have that, conditional on {x1:n, y1:n}, β is independent of φ, σ2, and has distribution

β2 | {x1:n, y1:n} ∼ χ−2n

n∑
t=1

y2t exp{−xt }. (21.8)

To update φ and σ it is simplest to use their conditional distributions,

σ2 | {x1:n, y1:n,φ} ∼ χ−2n+p

{
S0 + x21 (1− φ2)+

n∑
t=2

(xt − φxt−1)2
}
,

p(φ | x1:n, y1:n, σ) ∝ (1+ φ)a−1/2(1− φ)b+1/2 exp

{
− (1− φ2)x21

2σ2
− 1

2σ2

n∑
t=2

(xt − φxt−1)2
}
.

The distribution for σ2 can be sampled from directly. For φ, a simple procedure is an independence
sampler with Gaussian proposal. The Gaussian proposal is chosen proportional to

exp

{
− (1− φ2)x21

2σ2
− 1

2σ2

n∑
t=2

(xt − φxt−1)2
}
,

which corresponds to a mean of
∑n

t=2 xt xt−1/
∑n−1

t=2 x2t and a variance of σ2/
∑n−1

t=2 x2t . (Note
that this distribution can propose values outside (−1, 1), and such values will always be rejected.)
An example of how the mixing of the MCMC algorithm is affected by the dependence within

the state model is shown in the top row of Table 21.1 (labeled noncentered parameterization). We
notice that as φ increases—that is, the dependence in the state model increases—so the mixing
deteriorates. This is because in this limit the amount of information about β contained in the state
path remains roughly constant as φ increases, but the amount of information about β contained
just in the observations is decreasing. This means that the Bayesian fraction of missing information
is increasing, and thus the MCMC algorithm mixes more poorly.

Example 21.10: Conditional Parameter Updates

Let Pk denote the k th row of the transition matrix, P . Consider the case where the parameter
vector can be written as θ = (P ,φ1, . . .,φK ), with the likelihood function given Xt = k is of the

TABLE 21.1

Lag-1 Autocorrelation for β for Both Noncentered and Centered
Parameterizations
φ 0.8 0.9 0.95 9.75 0.99

Noncentered 0.11 0.21 0.37 0.62 0.98
Centered 0.89 0.79 0.64 0.43 0.29

Results are for σ2 = 0.022, β = 1 and n = 200, and different values of φ.



State–Space Models 525

form fk (y | θ) = fk (y |φk ). That is, we have a disjoint set of parameters for each of the K likelihood
models. Further assume first that the distribution of X1 is independent of θ. In this case, if our
priors for the Pk and φk are independent, then the full conditional p(θ | x1:n, y1:n) simplifies.
Conditional on {x1:n, y1:n}, we have independence of P1, . . ., PK ,φ1, . . .,φK .Thuswe can perform
independent updates of each of these 2K parameters in turn. (If the distribution of X1 depends on
P , then this will introduce weak dependence in the posterior distribution of the Pk .)
If we choose a Dirichlet prior for the entries of Pk , then the p(Pk | x1:n, y1:n) will be a

Dirichlet distribution. Updating of φk will depend on the specific likelihood model and pri-
ors used. However, for the DNA model introduced in Section 21.3.1, we have φk = π(k) =
(π

(k)
A ,π(k)

C ,π(k)
G ,π(k)

T ), and if we have a Dirichlet prior then p(φk | x1:n, y1:n) will again be
Dirichlet.

21.4.2 Reparameterization of the Model

We have seen that dependence between X1:n and θ can result in an MCMC algorithm
for (X1:n, θ) that mixes poorly. One approach to alleviate this is to consider alternative
parameterizations.
Papaspiliopoulos et al. (2007) describe two possible general parameterizations for hier-

archical models (see also Gelfand et al., 1995; Papaspiliopoulos et al., 2003), and these can
be used for state–space models. These are centered parameterizations, which in our setup
are defined by a model where p(θ | x1:n, y1:n) = p(θ | x1:n), and noncentered parameterizations,
where a priori θandX1:n are independent. Ifwe considerExamples 21.9 and21.10 above, then
for the SVmodel of Example 21.9 our parameterization for β is noncentered—as our model
for X1:n does not depend on β. By comparison, for Example 21.10 our parameterization for
P is a centered parameterization.
While it is nontrivial to introduce a noncentered parameterization for Example 21.10—

though Papaspiliopoulos (2003) and Roberts et al. (2004) propose approaches that could be
used—it is straightforward to introduce a centered parameterization for Example 21.9. We
define μ = 2 log β and a new state model X′1:n where

X′t | {x′1:t−1, y1:t−1} ∼ N(μ+ φ(x′t−1 − μ), σ2),

with X′1 ∼ N(μ, σ2/(1− φ2)), and

Yt | {x′1:t, y1:t−1} ∼ N(0, exp{x′t}).

For this parameterization we have (Pitt and Shephard, 1999)

μ | {x′1:n, y1:n} ∼ N(b/a, σ2/a),

where a = (n− 1)(1− φ)2 + (1− φ2) and b = (1− φ){∑n
t=2(x′t − φx′t−1} + x′1(1− φ2).

For large nwe can compare γf (Equation 21.7) for f (θ) = μ for both centered and noncen-
tered parameterizations. If we conjecture that γ ≈ γf , then these valueswill informus about
the relative efficiency of the twoparameterizations. To compare γf for the twoparameteriza-
tions we need only compare E(var(2 log β |X1:n, y1:n) | y1 : n) and E(var(μ |X′1:n, y1:n) | y1:n).
If the former is larger, than the centered parameterization will have a smaller value for γf ,
and we may conjecture will have a better rate of convergence. Otherwise γf will be smaller
for the noncentered parameterization.
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Now for the noncentered parameterization we have var(μ |X′1:n, y1:n) = 1/a ≈ σ2/(n(1−
φ)2). Thus, as this does not depend on X′1:n, we have

E(var(μ |X′1:n, y1:n) | y1:n) ≈
σ2

n(1− φ)2 .

For the centeredparameterization, fromEquation21.8,wehave thatE(var(2 log β |X1:n, y1:n)
| y1:n) = var(logχ2n), thus for large n,

E(var(2 log β |X1:n, y1:n) | y1:n) ≈ 2
n
.

Thus γf is smaller for the centered parameterization if 2/n > σ2/(n(1− φ)2) or

φ > 1− σ√
2
.

This suggests that as φ→ 1 we should prefer using the centered parameterization, but
for small φ the noncentered parameterization would be preferred. This is confirmed by
simulation (see Table 21.1). Similarly, when σ is small we should prefer the centered
parameterization.
For the specific model we consider in Example 21.1, we have centered parameterizations

for σ and φ. It is possible to extend the noncentered parameterizations for β to one for (β, σ)
and even (β, σ,φ). For (β, σ) we introduce a state X′1:n where

X′t | {x′1:t−1, y1:t−1} ∼ N(φx′t−1, 1),

with X′1 ∼ N(0, 1/(1− φ2)), and

Yt | {x′1:t, y1:t−1} ∼ N(0, β2 exp{σx′t}).
For (β, σ,φ) we can parameterize the state in terms of the standardized residuals in the
AR model, (Xt − φXt−1)/σ, and X1

√
1− φ2, which are independent standard normal ran-

dom variables. Together with related ideas, this idea has been used extensively within
continuous-time SVmodels (seeGolightly andWilkinson, 2008; Roberts and Stramer, 2001).

21.4.3 Joint Updates of the Parameters and State

One way of thinking about why strong correlation between θ and X1:n produces poor
mixing, is that large moves of θ are likely to be rejected as they will be inconsistent with the
current value of the state. Thiswill happen even if the proposed newvalue for θ is consistent
with the data. Thismotivates jointly updating θ andX1:n from a proposal q(θ′, x′1:n | θ, x1:n) =
q(θ′ | θ)q(x′1:n | θ′). Thus q(θ′ | θ) could propose large moves, and then values of the state
process consistent with θ′ will be simulated from q(x′1:n | θ′).
This is most easily and commonly implemented for models where we can simu-

late directly from p(x1:n | θ, y1:n), in which case we choose q(x′1:n | θ′) = p(x′1:n | θ′, y1:n). The
resulting acceptance ratio then simplifies to

min
{
1,
q(θ | θ′)p(θ′ | y1:n)
q(θ′ | θ)p(θ | y1:n)

}
.
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This acceptance ratio does not depend on x1:n or x′1:n. The marginal chain for θ is equivalent
to an MCMC chain for p(θ | y1:n) with proposal distribution q(θ′ | θ).
Providing an efficient proposal q(θ′ | θ) can be found, such an MCMC algorithm will

always be more efficient than one that updates θ and X1:n independently. However, the
difficulty with implementing this idea is how to choose q(θ′ | θ). For Markov modulated
Poisson processes, Sherlock et al. (2008) found that a Gibbs sampler that updated X1:n
given θ and θ given X1:n performed better than this joint update where q(θ′ | θ) was chosen
to be a symmetric random walk. A further advantage of the Gibbs sampler is that it avoids
tuning q(θ′ | θ), though this problem can be alleviated by using adaptive MCMC schemes
(Andrieu and Thoms, 2008; Sherlock et al., 2008).
A simple extension of this joint updating idea is possible if we have an efficient inde-

pendence proposal for x1:n given θ—as this proposal could be used as q(x′1:n | θ′). Here the
efficiency of the resulting algorithm will depend on both the efficiency of q(θ′ | θ) as a pro-
posal for an MCMC algorithm that explores p(θ′ | y1:n), and also the closeness of q(x′1:n | θ′)
to p(x′1:n | θ′, y1:n).

21.5 Discussion
This chapter has given an introduction to MCMC methods for state–space models. Two
main issues have been covered. Firstly, if there is strong, or long-range, dependence in the
state–spacemodel, then an efficientMCMCalgorithmwill need to update blocks of the state
process in a single move. Secondly, strong correlation between the parameters and the state
process can lead to slowmixing of theMCMCalgorithm (even if there are efficientmethods
for updating the state process). To improvemixing, either reparameterization of themodel,
or joint updates of the state and the parameters will be needed.
While we have looked at examples where it is possible to construct efficient moves for

updating the state, inmany applications this can be difficult to achieve. Recent research has
looked at the use of sequential Monte Carlo methods within MCMC (Andrieu et al., 2010),
and these ideas show promise for providing a general-purpose approach for updating the
whole state process (or large batches of it) in a single MCMC move. Related methods are
able to allow for efficient joint updates of the state and parameter process (Andrieu et al.,
2010) or for methods that mix over the marginal posterior of the parameters (Andrieu and
Roberts, 2009).
While we have focused on discrete-time state processes, many of the issues extend nat-

urally to continuous-time processes. For example, the issue of model parameterization for
diffusion models is discussed in Roberts and Stramer (2001), and for these models certain
parameterizations can lead to MCMC algorithms which are reducible. Extensions of the
forward–backward algorithm to continuous-time models are considered in Fearnhead and
Meligkotsidou (2004), and independence sampler updates for the state process in diffusion
models are developed in Golightly and Wilkinson (2008).
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22
MCMC in Educational Research

Roy Levy, Robert J. Mislevy, and John T. Behrens

22.1 Introduction
Quantitative educational research has traditionally relied on a broad range of statistical
models that have evolved in relative isolation to address different facets of its subject mat-
ter. Experiments on instructional interventions employ Fisherian designs and analyses of
variance; observational studies use regression techniques; and longitudinal studies use
growth models in the manner of economists. The social organization of schooling—of stu-
dents within classrooms, sometimes nested within teachers, of classrooms within schools,
schools within districts, districts within states, and states within nations—necessitates hier-
archical analyses. Large-scale assessments employ the complex sampling methodologies
of survey research. Missing data abound across levels. And most characteristically, mea-
surement error and latent variable models from psychometrics address the fundamental
fact that what is ultimately of most interest, namely what students know and can do, can-
not be directly observed: a student’s performance on an assessment may be an indicator
of proficiency but, no matter how well the assessment is constructed, it is not the same
thing as proficiency. This measurement complexity exacerbates computational complexity
when researchers attempt to combine models for measurement error with models address-
ing the aforementioned structures. Further difficulties arise from an extreme reliance on
frequentist interpretations of statistical methods that limit the computational and inter-
pretive machinery available (Behrens and Smith, 1996). In sum, most applied educational
research has been marked by interpretive limitations inherent in the frequentist approach
to testing, estimation, andmodel building, a plethora of independently created and applied
conceptualmodels, and computational limitations in estimatingmodels thatwould capture
the complexity of this applied domain.
This chapter discusses how a Markov chain Monte Carlo (MCMC) approach to model

estimation and associated Bayesian underpinnings address these issues in threeways. First,
the Bayesian conceptualization and the form of results avoid a number of interpretive prob-
lems in the frequentist approachwhile providing probabilistic information of great value to
applied researchers. Second, the flexibility of the MCMC models allows a conceptual uni-
fication of previously disparate modeling approaches. Third, the MCMC approach allows
for the estimation of the more complex and complete models mentioned above, thereby
providing conceptual and computational unification.
Because MCMC estimation is a method for obtaining empirical approximations of pos-

terior distributions, its impact as calculation per se is joint with an emerging Bayesian
revolution in reasoning about uncertainty—a statistical mindset quite different from that of
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hypothesis testing, parameter estimation, and model-fitting in the classical paradigm that
has characterized educational research.A fertile groundwork was laid in this field from the
1960s through the 1980s by Melvin Novick. Two lines of Novick’s work are particularly
relevant to the subject of this chapter. First is the subjectivist Bayesian approach to model-
based reasoning about real-world problems—building models in terms what one knows
and does not know, from experience and theory, and what is important to the inferential
problem at hand (see, e.g. Lindley and Novick, 1981, on exchangeability). His application
of these ideas to prediction acrossmultiple groups (Novick and Jackson, 1974) foreshadows
the modular model-building to suit the complexities of real-world problems that MCMC
enables. In particular, the ability to “borrow” information across groups to a degree deter-
mined by the data, rather than pooling the observations or estimating groups separately,
was amajor breakthrough of the time—natural from a Bayesian perspective, but difficult to
frame and interpret under the classical paradigm. Second is the realization that broad use
of the approach would require computing frameworks to handle the mathematics, so the
analyst could concentrate on the substance of the problem. His Computer-Assisted Data
Analysis (CADA; Libby et al., 1981) pioneered Bayesian reasoning about posteriors inways
that are today reflected in the output of MCMC programs such asWinBUGS (Spiegelhalter
et al., 2007).

22.2 Statistical Models in Education Research
Hierarchical or multilevel models extend more basic statistical models to model depen-
dencies between subjects or measures that have a hierarchical structure (e.g. test scores
over time nested within students, students within classrooms, classrooms within schools,
schools within districts/states, etc.). Regression-like models are formulated at the lowest
level (level 1) of analysis. Parameters from this level of analysis are in turn modeled, fre-
quently by regression-like models, to specify level-2 parameters that capture the effects of
covariates at that level, such as school policies. This may be extended to any number of lev-
els. Applications in education typically employ linear regression-like models at each level,
frequently assuming normality in each case. The effects of primary interest differ from one
study to another, but properly modeling the structure better captures patterns of shared
influence and appropriately models the levels at which effects occur.
Within models for educational effects, the lowest level of modeling often addresses stu-

dents’ responses conditional on unobservable or latent variables that characterize students.
These psychometric models facilitate inference from observations of behaviors made by
subjects to more broadly conceived statements about the subjects and/or the domain of
interest. Though surface features vary,modernpsychometricmodeling paradigms are char-
acterized by the use of probabilistic reasoning in the form of statistical models to facilitate
such inferences in light of uncertainty (Mislevy and Levy, 2007).
Table 22.1 summarizes several of the more popular psychometric models in terms of

assumptions about the latent variables capturing subject proficiency and the observables
serving as indicators of the latent variables. Factor analysis (FA; Bollen, 1989;Gorsuch, 1983)
posits that both the observables and latent variables are continuous and frequently addi-
tionally assumes the observables to be normally distributed. Structural equation modeling
(SEM; Bollen, 1989) can be historically viewed as extending the factor-analytic tradition
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TABLE 22.1

Taxonomy of Popular Psychometric Models
Latent Variable(s)

Continuous Discrete
Observable
Variables Univariate Multivariate Univariate Multivariate

Dichotomous Item response
theory

Multidimensional
item response
theory

Latent class
analysis

Bayesian networks
Cognitive diagnosis
models

Polytomous
unordered

Item response
theory

Latent class
analysis

Bayesian networks
Cognitive diagnosis
models

Polytomous
ordered

Item response
theory

Multidimensional
item response
theory
Factor analysis

Latent class
analysis

Bayesian networks
Cognitive diagnosis
models

Normal Factor analysis Factor analysis
Structural equation
modeling

Structural equation
modeling

with regression-like structures that relate latent variables to one anther. Item response the-
ory (IRT; Lord, 1980) assumes the observables to be discrete and,when polytomous, usually
ordered. Latent class analysis (LCA; Lazarsfeld and Henry, 1968) and related models (dis-
cussed in more detail below) assume that both the observables and latent variables are
discrete.
The nomenclature in Table 22.1 reflects historical traditions, with associated purposes,

assumptions, and estimation frameworks. As each of the modeling frameworks have
expanded the historical lines have become blurred. For example, multidimensional latent
variable models for discrete data may be framed as either a multidimensional extension of
(unidimensional) IRT models or the application of common factor models to discrete data
(Takane and de Leeuw, 1987). Moreover, the models can be combined in nuanced ways,
such as the recently developed mixtures of IRT models that synthesize hitherto separate
streams of work in IRT and latent class modeling (Rost, 1990).
This treatment is far from exhaustive and beyond the intent of this chapter (though in

later sections we will discuss these and other models in use in education research, some
of which can be viewed as extensions or combinations of those already mentioned). For
the focus of this chapter, it is important to recognize that these modeling paradigms grew
out of their own independent traditions, with at best only partially overlapping foci, liter-
atures, notational schemes, and—principally related to the current discussion—estimation
frameworks and routines. For example, FA and SEM have historically been employed to
model relationships among constructs, rather than features of subjects. Estimation typi-
cally involves least squares or maximum likelihood using first- and second-order moments
from sample data, with an emphasis on the estimation of structural parameters, that is,
parameters for the conditional distributions of observed scores given latent variables,
here interpreted as factor loadings and factor covariances, but not on the values of the
latent variables for individual persons, here factors (Bollen, 1989). In contrast, IRT models
are commonly employed to scale test items and examinees. Estimation usually involves
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the analysis of individual-level data or frequencies of response patterns and assump-
tions regarding the distribution of the latent variables for individuals, here interpreted
as student proficiencies. Once again the estimation of structural parameters, now inter-
preted as item parameters, is important, but here, estimation of students’ proficiencies is
important to guide desired inferences about individuals (Lord, 1980). Disparate estimation
approaches that optimized these different target of inferences evolved in IRT and in FAand
SEM, with the unfortunate consequence of obscuring fundamental similarities among the
models.
As a consequence of these fragmented strands of development, analysts faced choos-

ing from a palette of partial and incomplete solutions as to both models and computer
programs. The most sophisticated techniques available for IRT and LCA, for example,
assumed simple random sampling, while the most widely used programs for hierarchical
analysis and for complex-sampled data offered at best simple error models for student
proficiencies. Each of the features addressed in the various models, however, represented
a recurring structure in educational research settings, often at the same time. It is to solv-
ing this problem that the Bayesian inferential approach and MCMC estimation make their
greatest contribution.

22.3 Historical and Current Research Activity
This section traces key developments and current applications of MCMC in educational
research. The focus is on research settings where the power and flexibility of MCMC are
leveraged to conduct modeling that, without MCMC, would prove difficult computation-
ally or in terms of desired inferences. It is no coincidence that this collection of work is
mainly Bayesian in nature, though we note that MCMC estimation has been employed
in frequentist applications as well (Song and Lee, 2003). Aside from the natural linkage
between MCMC estimation and Bayesian inference, a Bayesian approach in which models
are formulated hierarchically, prior information can be easily incorporated, and uncer-
tainty in unknown parameters is propagated offers advantages regardless of the estimation
routine.∗

22.3.1 Multilevel Models

Applications of multilevel models commonly assume linearity and normality within a
level, either of the random effects themselves or of residuals given covariates at that level.
A thorough overview of Bayesian and Gibbs sampling approaches to hierarchal models
of this type as they are used in education is given by Seltzer et al. (1996). Anticipating
the growth in popularity of MCMC, Draper (1995) points out that marginal likelihoods
of variance parameters at level-2 units may be considerably skewed with few level-2
units (the logic of which may extended for hierarchies with more levels). The impli-
cation is that maximum likelihood (ML) estimation of point estimates fails to account
for such skewness and will poorly account for the heterogeneity implied by higher-
level variance components. Raudenbush et al. (1999) echoed this concern, and employed
Gibbs sampling in an analysis of data on the Trial State Assessment from 41 states. They
further noted a concern with a classical approach, as the 41 states were a nonrandom

∗ See Lindley and Smith (1972) and Mislevy (1986) for illustrative applications not involving MCMC.
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sample and were better treated as strata; however, the traditional approach to treating
strata as fixed effects contradicts the goal of modeling between-state variation. Kasim
and Raudenbush (1998) noted the importance of properly accounting for uncertainty in
higher levels ofmultilevel models, and turned to Gibbs sampling for estimation of variance
components.
Assuming linearity and normality permits estimation via Gibbs sampling, in a straight-

forward way of applying MCMC. A key strength of MCMC, however, lies in its flexibility
to be applied to models that pose challenges for other estimation strategies, such as those
with nonnormal distributional assumptions. In the context of multilevel models, MCMC
has proven useful in conducting sensitivity analysis for distributional assumptions at vari-
ous levels of hierarchicalmodels (Seltzer, 1993; Seltzer et al., 2002) and in fitting hierarchical
structures in multilevel logistic regression models (Schulz et al., 2004).
A related use of hierarchical modeling ideas appears in meta-analysis (Glass, 1976; Glass

et al., 1981), which was originated to synthesize evidence across studies in educational,
medical, and social science research. The most common statistical procedures (see Hedges
and Olkin, 1985) rely on a fixed effects model and a series of binary decisions regard-
ing which set of studies constitutes a homogeneous set of sub-studies from which to
estimate effects. Unfortunately this approach uses χ2 tests that suffer from the sample
size sensitivity that meta-analysis was designed to solve in the first place: large studies
lead to conclusions of separateness regardless of effect size and small studies lead to the
opposite conclusion. The Bayesian approach (supported by MCMC estimation) takes a
random effects view that models the degree of homogeneity of effects, thereby sidestep-
ping the bifurcations required in the classical approach (Smith et al., 1995; Sutton and
Abrams, 2001).
In meta-analytic hierarchical linear modeling, as in other contexts, a Bayesian MCMC

approach provides probabilistic information through the posterior distributions that are
of great interest to researchers and consumers of research alike; for example, “what is the
probability that an effect will be negative?” or “what is the probability that school X had
an effect greater than school Y?” These are common-sense questions that are unaddressed
in the non-Bayesian framework (Gelman et al., 1995), but flow naturally from a Bayesian
inferential framework and MCMC estimation (Gelman and Hill, 2007).

22.3.2 Psychometric Modeling

Table 22.1 classifies several popular psychometric models in terms of their assumptions
regarding the latent and observable variables and serves to guide the current discussion.

22.3.2.1 Continuous Latent and Observable Variables

Standard factor-analytic and structural equation models, characterized by linear equations
relating the latent and observed variables and (conditional) normality assumptions, do not
pose challenges for traditional estimation routines. However, in detailing the use of Gibbs
sampling for such models, Scheines et al. (1999) pointed out many advantages of Gibbs
sampling over normal-theory ML estimation: Gibbs sampling does not rely on asymptotic
arguments for estimation ormodel checking, inequality constraintsmay be easily imposed,
information aboutmultimodality—undetectable by standardMLestimation—may be seen
in marginal posterior densities, and information for underidentified parameters may be
supplied via informative priors.
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A key advantage of MCMC for SEM lies in its power to estimate nonstandard mod-
els that pose considerable challenges for ML and least-squares estimation. Examples of
such applications include models with quadratic, interaction, and other nonlinear relation-
ships among latent variables (Arminger andMuthén, 1998; Lee et al., 2007), covariates (Lee
et al., 2007), finite (latent) mixtures of structural equation models (Lee and Song, 2003; Zhu
and Lee, 2001), heterogeneous factor analysis (Ansari et al., 2002), complex growth curve
models (Zhang et al., 2007), and nonignorable missingness (Lee and Tang, 2006). Contrary
to a common belief, the computation and programming necessary to implement a Bayesian
solution via MCMC in such complex models is less intense than that necessary to conduct
ML estimation (Ansari et al., 2002; Zhang et al., 2007).

22.3.2.2 Continuous Latent Variables and Discrete Observable Variables

Models in which a set of discrete, possibly ordinal observables (say, scored task or item
responses) are modeled via continuous latent variables are widely used in assessment set-
tings. In this section, we survey applications of MCMC to these models from both an IRT
and FA perspective, highlighting aspects in which existing estimation traditions limit our
modeling potential.
Working in an IRT framework, Albert’s (1992) seminal work considered a model for

dichotomous observables based on the normal distribution function (i.e. a probit model)
and showedhowposterior distributions for person and itemparameters could be estimated
via a Gibbs sampler. The algorithm was extended to handle polytomous data by Albert
and Chib (1993); Sahu (2002) described a similar Gibbs sampling approach to modeling
dichotomous item responses allowing for examinee guessing in assessment contexts.
A turning point in the application of MCMC for IRT and psychometric modeling more

generally arrived with the work of Patz and Junker (1999a), who considered a model
for dichotomous observables based on the logistic distribution function and offered a
Metropolis–Hastings-within-Gibbs sampling approach, in which a Metropolis–Hastings
step is employed to sample from the full conditional distributions. A particularly note-
worthy aspect of the Metropolis(–Hastings)-within-Gibbs approach is its applicability to
situations in which it is not possible to sample directly from the full conditional distribu-
tions. This flexibility has produced an explosion in theuse ofMCMCfor complex, IRT-based
models. Examples include models for polytomous data (Patz and Junker, 1999b), nominal
data (Wollack et al., 2002), missing data (Patz and Junker, 1999b), rater effects (Patz and
Junker, 1999b), testlets (Bradlow et al., 1999), multilevel models (Fox and Glas, 2001), and
hierarchical models for mastery classification (Janssen et al., 2000).
An alternative perspective on continuous latent variable models for discrete data stems

from the FA tradition, which views the observables as discretized versions of unobservable
continuous data. Following the normality assumptions of FA for continuous variables, this
approach is akin to a probit model. In surveying estimation approaches to such models,
Wirth and Edwards (2007) concluded that traditional factor-analytic methods, even with
corrections to estimates and standard errors for discrete data, can fail to capture the true
fit. The underlying problem is that the traditional factor-analytic estimation based onmini-
mizing some function of residual covariances or correlationswas developed for continuous
data, not discrete data. This illustrates the restrictions and limitations imposed by remain-
ing within an estimation paradigm when trying to fit models beyond the scope of those
originally intended for the estimation routine. What is needed is an estimation frame-
work flexible enough to handle a variety of assumptions about the distributional features
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of the data and the data-generating process, not to mention the all too real potential for
missingness or sparseness. MCMC provides such a framework.
An arena where the intersection of different modeling paradigms and their associated

traditional estimation routines poses unnecessary limits involves multidimensional mod-
els for discrete observables, which may be viewed from an IRT perspective as an increase
in the number the latent variables (over traditional unidimensional models) or from a
(multidimensional) factor-analytic perspective as the factor analysis of discrete data. Inter-
estingly, Wirth and Edwards (2007) tied common misconceptions associated with each
perspective to the historical traditions of estimation within each paradigm. Traditional
factor-analytic estimation approaches to discrete data have relied on integration over the
distribution of the observable variables.As the number of observables increases, this integra-
tion becomes increasingly difficult, and the applicability of ML and weighted least squares
routines requiring large sample sizes relative to the number of observables becomes sus-
pect. Hence, an FA perspective prefers (relatively) few observables in the model, without
regard to the number of latent variables. In contrast, traditional estimation approaches in
IRT focus on the integration over the latent variable(s), which becomes increasingly difficult
as the number of latent variables increases. Hence, an IRT perspective prefers (relatively)
few latent variables in the model, but is silent with respect to the number of observables.
Thus the particulars of the estimation paradigms restrict the scope of the models to be
employed. MCMCmay be seen as a unifying framework for estimation, freeing the analyst
from these restrictive (and conflicting) biases. Examples of the use of MCMC in multi-
dimensional modeling from both IRT and FA perspectives include the consideration of
dichotomous data (Béguin and Glas, 2001; Bolt and Lall, 2003; Lee and Song, 2003), poly-
tomous data (Yao and Boughton, 2007), combinations of continuous, dichotomous, and
polytomous data (Lee and Zhu, 2000; Shi and Lee, 1998), multiple groupmodels (Song and
Lee, 2001), missing data (Song and Lee, 2002), and nonlinear relationships among latent
variables (Lee and Zhu, 2000).

22.3.2.3 Discrete Latent Variables and Discrete Observable Variables

Traditional, unrestricted latent class models that model discrete observables as dependent
on discrete latent variables are commonly estimated via ML. MCMCmay still be advanta-
geous for suchmodels in handlingmissingness by design, large data sets with outliers, and
constructing credibility intervals for inference when an assumption of multivariate nor-
mality (of ML estimates or posterior distributions) is unwarranted (Hoijtink, 1998; Hoijtink
and Notenboom, 2004).
Turning to more complex models, MCMC has been shown to be useful in the estimation

of models with covariates (Chung et al., 2006) and with ordinal and inequality constraints
(van Onna, 2002). In assessment, cognitive diagnostic models involve modeling discrete
observables (i.e. scored item responses) as dependent on different combinations of the
latent, typically binary, attributes characterizing mastery of componential skills necessary
to complete the various tasks. The models frequently involve conjunctive or disjunctive
effects among parameters to model the probabilistic nature of student responses. These
models pose estimation difficulties for traditional routines but can be handled by MCMC
(de la Torre and Douglas, 2004; Hartz, 2002).
Such models may be also be cast in a graph-theoretic light as Bayesian networks, which

allow for the estimation of a wide variety of complex effects via MCMC. Examples include
compensatory, conjunctive, disjunctive, and inhibitor relationships for dichotomous and
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polytomous data assuming dichotomous or ordered latent student skills or attributes
(Almond et al., 2007; Levy and Mislevy, 2004).
We note that the import of cognitive theory is receiving an increasing amount of atten-

tion here and across psychometric modeling more generally. Other examples include
the use of multidimensional IRT models that posit conjunctive relationships among the
latent variables in attempt to align the models with cognitive theories of student process-
ing in solving tasks. Applications of these models have been limited due to difficulties
associated with traditional estimation. Bolt and Lall (2003) fit a conjunctive multidimen-
sional model via MCMC, illustrating how the flexibility of MCMC opens the door for
the application of complex statistical models aligned with substantive theories regarding
students.

22.3.2.4 Combinations of Models

The preceding discussions have been couched in terms of traditional divisions between
models (Table 22.1), highlighting applications that pose difficulties for estimation routines
typically employed.Expandingon that theme, anadvancedapproach tomodel construction
takes a modular approach in which the statistical model is constructed in a piecewise man-
ner, interweaving andoverlaying features from the traditional paradigms. Simple examples
include the models that bridge the FAand IRT divide bymodeling discrete and continuous
observables simultaneously (Lee and Zhu, 2000; Shi and Lee, 1998). More complex exam-
ples embed IRT and FA models in latent classes to construct finite mixtures of IRT or FA
models (Bolt et al., 2001; Cohen and Bolt, 2005; Lee and Song, 2003; Zhu and Lee, 2001).
Table 22.1 no longer reflects choices that must be made about models and associated esti-
mation procedures, but rather modules of recurring relationships that can be adapted and
assembled to suit the substantive problem at hand, then fit to data using the overarching
framework of Bayesian inference and MCMC estimation.
Missingdata aredealtwith naturally underMCMC in suchmodelswhen they aremissing

at random (see, e.g. Chung et al., 2006, in LCA). Indeed, there is no distinction conceptu-
ally between latent variables and missing data (Bollen, 2002), and under MCMC no new
impediments are introduced.
Furthering this theme, recent work has sought to simultaneously address two key

hallmarks of educational research, namely hierarchical structures of data and the pres-
ence of measurement error. Examples of the use of MCMC for multilevel psychometric
models can be found in Ansari et al. (2002), Fox and Glas (2001), and Mariano and
Junker (2007). Traditional estimation strategies have not been established for these mod-
els. Prior to MCMC, overlaying hierarchical structures on latent variable models in a
single analysis was intractable. In the following section, we extend these ideas further
and consider a model that interweaves hierarchical structures, regression models, and IRT
models.

22.4 NAEP Example
This section describes a practical application that combines several of the prototypical
structures of educational research discussed above. Johnson and Jenkins (2005) model the
distribution of latent proficiencies of student populations, from clustered student-sampling
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designs, with matrix-sampled item presentation (a version with a multivariate model is
given in Johnson, 2002). After reviewing the problem context, we note how previous anal-
yses addressed some aspects of the complex whole while simplifying or ignoring others.
We then describe Johnson and Jenkins’s solution: a unified Bayesian model, made viable
through the use of MCMC.
Large-scale educational assessments such as the National Assessment of Educational

Progress (NAEP), the National Adult Literacy Survey (NALS), and the Trends in Inter-
national Mathematics and Science Study (TIMSS) are developed to collect information
on the knowledge and skills of targeted populations, and report how that knowledge
varies across different groups in the population and may be related to demographic and
educational background variables (Johnson and Jenkins, 2005). These projects simultane-
ously exhibit several of the recurring structural features that are common to educational
research:

• Hierarchical organization of the focal groups. In design, analysis, and interpre-
tation, large-scale educational surveys must address the fact that schooling is
organized in terms of students within classes, sometimes crossed with teachers,
nestedwithin schools, typicallywithin districts, within states, and, in international
surveys, within countries.

• Complex sampling designs for students. Related to the structure of education is the
necessityof stratifiedandcluster samplingdesigns for schooling. InNAEP,primary
samplingunits (PSUs) are standardmetropolitan sampling areas or similar regions,
from which schools are sampled, from which in turn students are sampled.

• Complex sampling designs for tasks. Students’ knowledge is better represented by
a broad sampling of tasks than by a small single sample of tasks. To reduce respon-
dent burden, many overlapping blocks of tasks are presented to different students
in order to better cover content domains at the level of populations. Furthermore,
item samples frequently differ across time points and age or grade populations.

• Latent variables. In order to synthesize data across the different samples of tasks
that different students take, many projects use latent variablesmodels, notably IRT
models. Key inferences are thus based on variables that are not observed from any
respondent.

• Regression models. Covariates related to educational outcomes are available,
and have effects, at all levels in the hierarchy. NAEP includes student back-
ground questionnaires on demographic and educational history, teacher surveys
on pedagogical practices, and school-level data on socioeconomic variables.

The history of large-scale educational surveys exhibits continual efforts to incorporate
these complexities in analysis. Limitations of special-purpose software would allow ana-
lysts to address some features, at the expense of simplifying or ignoring others. Until
the 1980s, for example, NAEP accounted for cluster sampling with balanced half repli-
cate designs and employed matrix sampled booklets of tasks, but reported results only in
terms of single items or total scores in small sets (Chromy et al., 2004). Longford (1995)
and Raudenbush et al. (1999) provide superpopulation-based analyses for educational sur-
veys with hierarchical structures, but consider only error-free dependent variables. The
multiple-imputation NAEP analyses introduced in 1984 (Beaton, 1987) accounted for the
sampling design with jackknife procedures and used IRT to combine information across
booklets, but the point estimates of the IRT item parameters and latent regression models
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were treated as known. Scott and Ip (2002) demonstrated a Bayesian framework for the
multivariate IRT model that NAEP employs, but did not address the complex sampling
design.
In contrast, the Johnson and Jenkins (2005) model allows the analyst to simultaneously

estimate parameters for a joint model that addresses all of these design features. Its com-
ponents are as follows. The item responses Xij of each sampled student i are modeled as
conditionally independent given the latent proficiency θi through an IRT model:

p (Xi | θi, β ) =
∏

p
(
Xij
∣∣ θi, βj ),

where βj are parameters for item j with independent prior distributions p(βj). The forms
and parameterizations of the IRT models depend on item types, with the three-parameter
logistic IRT model for multiple-choice items and the partial credit graded response model
for open-ended taskswith ordered rating scales. (Johnson and Jenkins did notmodel effects
for individual raters andmultiple ratings, but could have done so using the aforementioned
Patz and Junker approach.)
Aregression structure is employed tomodel the relationship between θ and student-level

covariates yi,with school-level andPSU-level clustering accounted for a linearmixed effects
model (Laird and Ware, 1982). Letting student i attend school s(i) and school s belong to
PSU p(s), Johnson and Jenkins posit

θ
∣∣(yi, γ, σ, υs(i)) ∼ N

(
υs(i) + γ′yi, σ2s(i)

)
,

υs |τ ∼ N
(
ηp(s), τ2

)
,

ηp
∣∣∣ω ∼ N

(
0,ω2

)
,

again with independent prior distributions on the vector of regression coefficients γ, resid-
ual variances σ2, and school and PSU effects and their variances. To estimate any function
G(Θ) of the finite population, Johnson and Jenkins calculate the appropriately weighted
mean of that function calculated with the MCMC draws of sampled students in each cycle,
and monitor its distribution in the Gibbs chain. Figure 22.1 provides a “plate diagram” of
the model (with covariates for schools added to illustrate where they would appear in the
hierarchy).
Johnson and Jenkins compared the results from this unifiedmodel to the standard NAEP

analysis with its piecewise approximations, using both simulations and data from oper-
ational NAEP assessments. They found that both the standard analysis and their unified
model provided consistent estimates of subpopulation features, but the unifiedmodelmore
appropriately captured the variance of those estimates; the standard analysis, by treating
IRT itemparameters andpopulationvariances as known, tended tounderestimateposterior
uncertainty by about 10%. Furthermore, the unifiedmodel andMCMCestimationprovided
more stable estimates of sampling variance than the standard jackknife procedures. In sum,
the use of MCMC estimation supported an analytic model that at once better captured sig-
nificant features of the design and provided better-calibrated inferences for population and
subpopulation characteristics of interest.
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FIGURE 22.1
Plate diagram based on Johnson and Jenkins (2005), with school-level covariateszs added. Solid rectangles repre-
sent observed data, rounded rectangles represent variables, and hp(.) represent highest-level prior distributions
for indicated variables. Plates indicate replication over structurally similar relationships for PSUs, schools, stu-
dents, and items.Wp,Ws, andWi are known weights for PSUs, schools, and students respectively, that are used
in the calculation of the target statistic G(Θ).

22.5 Discussion: Advantages of MCMC
While many of the above examples highlight complex statistical models that cannot be
practically estimated by conventionalmeans,MCMC can be gainfully employed in settings
where alternative estimation routines already exist. For example, traditional estimation of
IRT and LCA models proceed first with the estimation of conditional probability param-
eters for the observables which are then treated as known in estimating values of the
latent variables. This divide-and-conquer approach understates the uncertainty in esti-
mation, whereas a fully Bayesian analysis (facilitated by MCMC) propagates uncertainty
appropriately.
Acommon criticism critique ofMCMC is that it is difficult, both computationally in terms

of computing resources and conceptually in terms of constructing the chains. As to the
former, the availability of general use software such asWinBUGS (Spiegelhalter et al., 2007)
and the publishing of code for various models represent considerable steps forward. As to
the latter, there is no debate but that a certain level of technical sophistication is required to
properly conduct an MCMC analysis. However, the criticism that MCMC is conceptually
difficult is somewhat ironic, given that—for substantively motivated, statistically complex
models—it is actually easier to set up an MCMC estimation routine than it is to proceed
through the necessary steps (e.g. solving for first- and second- order derivatives) in ML
and least squares estimation routines. A number of historically reoccurring features and
assumptions of models in educational research (e.g. linear relationships, independence
and normality of errors, few latent variables in IRT, few discrete observables in FA) have
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evolved in part from limitations on estimation routines. The flexibility of MCMC frees the
analyst from the bonds associated with other estimation approaches, to construct models
based on substantive theory. The lasting impact of the work by Patz and Junker (1999a,
1999b) was not only that MCMC could be employed to estimate existingmodels of varying
complexity, but also that MCMC was a general approach to estimation flexible enough to
handle anymodel that could be constructed. The explosion ofMCMC in education research
in the past decade serves as a testament to this new state of affairs. Applications of MCMC
estimation for models such as cognitive diagnosis and mixtures of latent growth curves
illustrate an interplay among statistical advances, more encompassing substantive models,
and increasingly ambitious applications.

22.6 Conclusion
The subjectmatter of educational research is inherently complex. Schooling is hierarchically
organized,withdistinct covariates and resulting effects at each level. Concomitant variables
for students must be included to address preexisting sources of variation. The dependent
variables of interest, namely aspects students’ knowledge and skill, are not directly observ-
able and are often multivariate. Advances in the learning psychology ground increasingly
complex within-student models, which interact with characteristics of tasks (as addressed
in cognitive diagnosis). The tradition of disparate models that could each address only a
few of these features, and did so in terms of hypothesis tests and point estimates of effects,
was clearly inadequate to the substantive challenges of the field.
The way forward, as Novick realized nearly half a century ago, was the Bayesian

inferential paradigm: a conceptual way to create models that address questions of sub-
stantive importance, built up from model fragments that addressed recurring structures
and problems, that would enable researchers to understand patterns of variation in com-
plex situations and properly account for both what could be learned and what remained
uncertain. The advent of MCMC estimation makes this vision eminently achievable. Con-
tinued progress in user-friendly analytic frameworks, further examples of the superiority
of the inferential approach, and infusion of this way of reasoning into the training of the
next generation of educational researchers will complete the task.
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23
Applications of MCMC in Fisheries Science

Russell B. Millar

23.1 Background
It has been said that counting fish is like counting trees, except that you can’t see them,
and they move. In a sea of uncertainty and variability, fisheries science has the daunting
task of providing advice to fisheries managers who are charged with exploiting fisheries
for maximum sustainable social and economic benefit.
There has been someprogress toward ecosystem-basedmodels of fisheries (see Browman

and Stergiou, 2004, for a perspective), but typically, scientific advice about fisheries is pro-
vided tomanagers on a case-by-case basis.Afishery for a particular species is often spatially
partitioned into separate management units, particularly if there is little movement of the
species fromonemanagementunit to another (asdeterminedby tagging studies, say). These
management units are called stocks, and each stock of sufficient importancewill be the sub-
ject of a stock assessment. Stock assessments are as varied as the species they assess, but in
a nutshell, they seek to predict the consequences of exploiting the fishery under alternative
regulations on the harvest. These regulations could include specification of total allowable
catch,minimum(and/ormaximum) legal size,durationoffishingseason, areaopen forfish-
ing, size and type of fishing gear, maximum size or horsepower of fishing vessel, and so on.
The amount of effort and expense invested in a stock assessment is typically commen-

surate with the perceived social and economic value of the stock, and the will of relevant
stakeholders to fund the work. The latter can be particularly problematic for a stock that
straddles or traverses geopolitical boundaries. In simpler cases, the stock assessment may
utilize only the annual commercial catch rate (Section 23.4.1). At the other extreme, a high-
value stock may be surveyed annually by a dedicated research vessel. A subset of the
commercial and/or research catch may be measured for length, and where appropriate
also for weight, sex, sexual maturity and age. Age can be determined by counting annual
rings deposited in hard body parts – in fish this is typically the otolith (ear bone). Aging is
more challenging for crustaceans because they molt their exoskeleton, and also for animals
in the tropics because annual growth rings will not be formed if there is little seasonal vari-
ability. Larval surveys may also be conducted regularly, by research fishing with a small
trawl with a very fine mesh (finer than 1 mm, for example). In addition, further research
may be undertaken to investigate other features of the dynamics of the fishery, such as the
effects of environmental change and variability, the relationship between recruitment (the
number of young fish entering the fishery) and the size of the stock that spawned them
(Section 23.4.3), behavior of fish to the fishing gear (Section 23.4.2), impact of recreational
fishers, or the amount of (often unaccounted) wastage from the discard of fish that are not
of legal or commercially viable size.
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Unfortunately, even in the most data-rich situations, stock assessment models are often
ill-conditioned and vastly different models can achieve similar fits to the available data.
It is commonly the case that a stock will have been fished for many years prior to the
establishment of a formal stock assessment and associated data collection. In this case, the
two following scenariosmayfit the data about equallywell: first, that the stock is potentially
highly productive but has been overfished to the extent that recruitment and productivity
have been severely reduced; second, that the stock is of relatively low productivity and is
being fished at an optimal level. The difficulty of distinguishing between scenarios arises
because, even if the stock assessment is able to estimate overall mortality reasonablywell, it
cannot easily separate natural mortality from fishing-induced mortality. In the first case, a
temporary reduction in fishing mortality should allow the biomass of the stock to increase,
with a corresponding increase in recruitment and therefore long-term productivity. Failure
to do so may push the stock to commercial extinction. In the second case, the prevailing
management strategies for the stock are appropriate andany temporary reduction infishing
mortality would merely result in a temporary loss of economic benefit from the resource.
As a consequence of the ill-conditioning of many stock assessment models, it has been

traditional to take certain key parameters to be known. For example, the value of 0.2 has
ubiquitously been used as the rate of instantaneous natural mortality of cod∗ and many
other ground-fish species (Myers and Cadigan, 1995). A typical stock assessment would be
implemented by fitting a baseline model using fixed values of key parameters, and a sen-
sitivity analysis would subsequently be performed using alternative values of those fixed
parameters.However, therewould generally be no cohesive framework for producing clear
expressions of risk and uncertainty to managers. Moreover, the collection of stock assess-
ments produced from the sensitivity analysis presentedmanagement with the opportunity
to emphasize the particular model that best suited political objectives, or to reject the stock
assessments outright due to their perceived unreliability. These were contributing factors
in the demise of the Grand Banks cod fishery where, in particular, overweighting of com-
mercial data (relative to research data) in the 1989 assessment produced considerably less
pessimistic estimates of thefishery. Even so, therewas a strong reluctance tomake the reduc-
tion in total allowable catch that was indicated under even the least pessimistic assessment
(Shelton, 2005), and the reductions that were made were insufficient to prevent the end of
this thousand-year-old fishery in 1992 (Kurlansky, 1997).
A second major feature of traditional stock assessment models was their lack of realism

and, in particular, their inability to include sources of variability in addition to observation
error in themeasureddata.Until recently, a typical stockassessmentmodel assumed that the
population dynamics of a stock were deterministic. In effect, given the model parameters,
these models provide a perfect prediction of the status of the stock, past and present. This
deterministic ideology gave rise to nebulous practice. For example, maximum sustainable
yield (MSY) is defined to be “The largest average catch or yield that can continuously
be taken from a stock under existing environmental conditions” (Ricker, 1975). Mangel
et al. (2002) argue that this definition of MSY gives a useful management concept and
note that it implicitly allows for variability. The failure of deterministic models to include
this variability gave the false impression that MSY was effectively “the yield that could
continuously be taken.” Fisheries managers were aware of the danger of interpreting MSY

∗ In the absence of fishing, ∂Nt
∂t = −mNt, where m is instantaneous natural mortality and Nt is the number of

fish in any given cohort (i.e. from the same spawning year) at time t. Wizened fisheries scientists tell the story
of a fractious round-table meeting where agreement on a suitable value for the natural mortality of cod could
not be achieved. The minute-keeper of the meeting recorded this lack of consensus by writing m =? on the
handwritten minutes. This was later mistyped by a secretary, as m = .2.
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in this naive way, and it was usual practice to incorporate a small safety factor factor by
setting a target yield slightly lower than MSY. However, this was not based on any formal
assessment of risk.
The major shortcomings of the early stock assessment models were well known, and

were the subject of regular attention in the fisheries literature (see, for example, Hilden,
1988; Walters and Ludwig, 1981). Bayesian approaches appearing in the fisheries literature
during the 1980s and early 1990s (see Hilborn et al., 1994, for a list) made some progress
in this regard, but were necessarily confined to relatively simple models, often employed
ad hoc or approximate methods of calculation, andwere not applicable to mainstream stock
assessments. These works had little impact on the implementation of stock assessments.
It was not until later in the 1990s that methodological and computational advances pro-

vided the opportunity for more realistic representation of uncertainty and variability in
stock assessment models. Of particular note, Sullivan (1992) presented a linear-normal
state–space model for incorporating uncertainty in the dynamics of a length-structured
stock assessment, and demonstrated a maximum likelihood implementation via the clas-
sical Kalman filter. Schnute (1994) presented the general matrix recursion formulas for the
Kalman filter and included the extended Kalman filter for nonlinear-normal state–space
models. He also noted the natural Bayesian interpretation of the state–space framework.
At about the same time, the first fully Bayesian stock assessment models appeared in
the primary literature. McAllister et al. (1994) and McAllister and Ianelli (1997) used the
sampling-importance resampling (SIR) algorithm to fit age-structured models that used
deterministic stock dynamics, but did incorporate random variability in initial conditions.
Raftery et al. (1995) also used the SIR algorithm in a deterministic population dynamics
model for bowhead whales. Formal use of Bayesian hierarchical models for a fisheries
meta-analysis was presented by Liermann and Hilborn (1997), notwithstanding that the
posterior was approximated using profile likelihood to eliminate nuisance parameters.
ThefirstmentionofMarkovchainMonteCarlo (MCMC) in theprimaryfisheries literature

appears to be a brief comment inMcAllister et al. (1994). Subsequently, in their discussion of
methodologies for Monte Carlo sampling from the posterior, McAllister and Ianelli (1997)
reported that they had also fitted their age-structuredmodel using theMetropolis–Hastings
algorithm, but preferred the SIR algorithm. Punt and Hilborn (1997) provided a descrip-
tion of several approaches for approximating or sampling from the posterior. This included
the Metropolis–Hastings algorithm, but did not provide an example of its implementa-
tion. The first fully described implementation of MCMC in the primary fisheries literature
appears to be Meyer and Millar (1999a), who fitted a nonlinear state–space model using
Metropolis-within-Gibbs sampling with the aid of adaptive rejection sampling routines
provided by Gilks et al. (1995). Patterson (1999) also used this algorithm, to fit an age-
structured model which included model uncertainty in the choice of the error distribution
and shape of the assumed stock–recruitment curve. Later that same year, Meyer andMillar
(1999b) introduced fisheries scientists to the BUGS language, in the context of a state–space
surplus production model, and Millar and Meyer (2000) provided more detail concerning
the evaluation of this model. This is the example presented in Section 23.4.1.

23.2 The Current Situation
Bayesian stock assessments are now routinely used by fisheries agencies around the globe.
For example, at present, of the ten most commercially important species assessed by the
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New Zealand Ministry of Fisheries, seven use formal models of stock dynamics and these
seven utilize Bayesian inference in some or all of the assessment.∗ At fisheries agencies
where classical models are still used, it is often due to inertia rather than deliberate rejec-
tion of Bayesian principles. For example, the 2006 Workshop on Advanced Fish Stock
Assessment of the International Council for Exploration of the Sea† regarded Bayesian
methodology as a specialist area (ICES, 2006).

23.2.1 Software

WinBUGS is frequently used for simpler fisheries models, but the ADMB (Automatic Dif-
ferentiation Model Builder, freely available from http://admb-project.org/) software has
made by far the biggest contribution to the widespread use of Bayesian methodology and
MCMC in fisheries. Automatic differentiation gives ADMB great ability to find the pos-
terior mode and to evaluate the Hessian of the log-posterior to high precision, even for
models that may contain thousands of parameters. This software is aided by additional
features to improve stability of the optimization, and to enhance the efficiency of its imple-
mentation of the Metropolis–Hastings algorithm (Section 23.3.2). Command-line options
enable an ADMB executable to switch from Bayesian mode to classical (penalized) max-
imum likelihood, with the priors either ignored or treated as penalty terms. It therefore
also has wide acceptance by fisheries agencies which continue to use classical methods.
Moreover, classical mode can be used as a preliminary model selection tool, leaving full
Bayesian analysis and risk assessment to a smaller subset of models.
ADMB was first made available as commercial proprietary software (Otter Research,

2007). Its extensive modeling capabilities earned it a loyal and proactive following among
the fisheries modeling community, but its cost and proprietary restrictions limited its use
by a broader audience. The nonprofit ADMB Foundation (http://admb-foundation.org/)
was incorporated in 2007, with one objective being to coordinate development of ADMB
and promote its use amongst the wider scientific community. Through generous grants,
the ADMB Foundation was able to purchase the rights to the ADMB software, and it was
made freely available in late 2008 from the ADMB Project website. ADMB was made open
source a few months later.
The ADMB Project has greatly improved the experience of installing and using ADMB.

In particular, there are now utilities for running ADMB from within the R language, and
for input and output of data files and model results between ADMB and R. Nonetheless,
there is a steep learning curve to using ADMB because the model must be explicitly coded
in a C++ like ADMB template language.
Programming in the ADMB template language can be prohibitively complicated to the

vast majority of fisheries scientists, especially given the required complexity of many types
of fisheries models. Consequently, several freely available stock assessment packages have
been created using an ADMB executable (or dynamic link library) as the computational
engine behind a user-friendly interface. Three such packages are ASAP (Age Structured
Assessment Program), Stock Synthesis, and Coleraine (named for a New Zealand-made
Cabernet Merlot). The first two can be downloaded from the US National Oceanic and
AtmosphericAdministration (NOAA) Fisheries Toolbox (http://nft.nefsc.noaa.gov/). The

∗ Indecreasingorderof 2006 commercial value: hoki, lobster, paua (abalone), arrowsquid, orange roughy, snapper,
lingcod, hake, scampi and tarakihi. Arrow squid (a reoccurring annual stock), scampi and tarakihi assessments
currently do not utilize stock dynamic models. A Bayesian model for scampi is currently under development.

† The ICES organization has 20 member countries, and is responsible for coordinating marine research in the
North Atlantic. See www.ices.dk.
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ASAPtechnicalmanual also includes an appendix containing theADMB template program.
Coleraine is available from the School ofAquatic and Fisheries Sciences at the University of
Washington, Seattle (www.fish.washington.edu/research/coleraine/).As the namewould
suggest, Coleraine has the strongest Bayesian flavor of these three packages.

23.2.2 Perception of MCMC in Fisheries

In fisheries modeling, MCMC is often touted as an alternative to bootstrapping for the
purpose of including uncertainty. This is so much the case that many users of MCMC are
unaware that they are operatingwithin theBayesianparadigm. For example, because it uses
an ADMB computational engine, the ASAP software offers an MCMC option to “estimate
uncertainty in the model solution.” However, searches of the ASAP documentation for the
words “Bayes,” “Bayesian,” “prior,” and “posterior” all drew blanks.Agood proportion of
fisheries stock assessment reports exhibit the same characteristics. That is, some fisheries
modelers are performing stock assessments using the convenient “MCMC option,” with
no conceptual understanding that they are employing a Bayesian model and hence with
no notion of the priors that are implicitly being assumed.

23.3 ADMB
In its base form,ADMB is a sophisticated tool for general-purpose optimization. It includes
many features for coping with high-dimensional problems. These include implicit trans-
formation of bounded parameters, centering of parameter vectors, and the ability to fit a
model in phases (Section 23.3.2). However, the rawoptimization power ofADMB is derived
from its use of automatic differentiation, giving it the ability to perform quasi-Newton
optimization using accurate and computationally efficient calculation of derivatives.

23.3.1 Automatic Differentiation

WhenusingADMBinBayesianmode, thenegative log jointdensity function,− log f (y, θ), is
specified within an ADMB template file using operator-overloaded C++ code. Automatic
differentiation facilitates exact algebraic calculation (to within machine precision) of the
derivative of the joint density with respect to all elements of the parameter vector θ. The
calculation is efficient, and the Jacobian vector is typically obtained in less than three times
the number of operations (Griewank, 2003) required to evaluate log f (y, θ).
In crude form, automatic differentiation can be considered an application of the chain

rule of differentiation. By way of example, the hierarchical model in Section 23.4.2 uses the
assumption qi ∼ N(μq, σ2q), where qi is the log catchability of stock i. This contributes a term
of the form

− log σq − (qi − μq)2
2σ2q

(23.1)

to the log joint density. The Jacobian of Equation 23.1 with respect to model parameters
is zero except for partial derivatives with respect to qi,μq, and σq, and attention will be
restricted to these three partial derivatives only. In ADMB, the objects f1 = log σq and
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f2 = (qi−μq)2
2σ2q

also contain derivative information. That is,

f1 ≡
(
log σq,

[
∂ log σq

∂qi
,
∂ log σq

∂μq
,
∂ log σq

∂σq

])

=
(
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0, 0,
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σq

])
(23.2)

and

f2 ≡
⎛
⎜⎝ (qi − μq)2

2σ2q
,

⎡
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(qi−μq)2
2σ2q

∂qi
,
∂
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2σ2q

∂μq
,
∂

(qi−μq)2
2σ2q

∂σq

⎤
⎥⎦
⎞
⎟⎠. (23.3)

In Equation 23.2, the derivative (with respect to σq) is obtained directly from overloading of
the log operator, so that it evaluates its derivative in addition to its value. In Equation 23.3,
the derivatives are obtained by overloading of the unary power operator and the binary
multiplication/division and addition/subtraction operators, and successive application of
the chain rule. For example, the partial derivative with respect to σq is obtained as

∂
(qi−μq)2
2σ2q

∂σq
=

∂
(qi−μq)2
2σ2q

∂2σ2q
× ∂2σ2q

∂σ2q
× ∂σ2q

∂σq

= − (qi − μq)2
4σ4q

× 2× 2σq

= − (qi − μq)2
σ3q

.

Griewank (2003) notes that obtaining the derivative is far from “automatic” and recom-
mends “algorithmic” differentiation as a more apt name for this methodology.

23.3.2 Metropolis–Hastings Implementation

TheADMB template program uses overloaded C++ code to specify an objective function to
be minimized. In the Bayesian context this is the (negative of the) log joint density function
log f (y, θ), and hence the optimization finds the mode of the posterior density f (θ | y).
Moreover, the Jacobian of − log f (θ, y) is efficiently obtained to machine precision, and so
the Hessian can quickly be obtained from first-order differences. In Bayesian mode,ADMB
uses the Metropolis–Hastings algorithm with the default initial proposal density being
multivariate normal with covariancematrix,Σ, obtained as the inverse of this Hessian. The
posterior mode is the default initial parameter value.
Gelman et al. (2003, Section 11.9) state that they found the above simple form of

Metropolis–Hastings algorithm to be useful for problems with up to 50 parameters. ADMB
provides several enhancements to this simple form of implementation and has success-
fully been deployed for Bayesian fisheries models containing at least several hundred
parameters. For example, the 2007 Gulf of Alaska walleye pollock assessment contained
308 parameters and the posterior was sampled using a chain of length 1 million with a
thinning factor of 200.
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The ADMB implementation of the Metropolis–Hastings follows the recommendation in
Gelman et al. (2003, Section 11.9) to enhance the algorithm by adjusting the rejection rate
through scaling the covariancematrix of themultivariate normal proposal density. Notable
additional features of ADMB include

• Automatic methods (e.g. smooth transformations) to cope with bounded
parameters.

• The ability to fit themodel in phases. That is, in optimizationmode, it can introduce
model parameters in steps (see the next item).

• Automatic centeringofblocksofparameters. This isparticularlyusefulwhenfitting
random effects because the (centered) random effects can be introduced into the
optimization at a later stage, having allowed ADMB to first fit the mean effects.
In Bayesian mode this feature is likely to be highly beneficial to mixing of the
Metropolis–Hastings algorithm, due to reduced correlations in Σ.

• Command-line options for the ADMB executable are used to specify MCMC
options. In addition to specifying standard options (such as length of the chain,
degree of thinning, input–output options) there is an option to allow it to use a
mixture proposal density to fatten the tails relative to themultivariate normal, and
another to reduce the extreme correlations in Σ.

23.4 Bayesian Applications to Fisheries
The examples below have been chosen to give a taste of the variety of modeling challenges
that have been met by application of MCMC in fisheries. However, they do not include a
formal stock assessment. A complete assessment of a high-value stock can be very lengthy,
and the interested reader will find that numerous Bayesian assessments are publicly avail-
able online. For instance, the 118-page Gulf of Alaska walleye pollock assessment for 2007
can be found at www.afsc.noaa.gov/REFM/docs/2007/GOApollock.pdf.
The first example presents a state–space formulation of a surplus production model,

and it is employed to assess a stock of albacore tuna where only annual catch and
catch rate information is available. This example is demonstrative only—it uses histori-
cal data taken from Polacheck et al. (1993), but these data have since been substantially
revised and extended. Moreover, length-disaggregated data are now measured on this
species and the Highly Migratory Species Division of the US National Marine Fisheries
Service is currently implementing a length-structured model for this stock using the
MULTIFAN-CL software (another ADMB-engined stock assessment tool, freely available
from www.multifan-cl.org/). The second and third examples demonstrate two different
meta-analyses that have been applied to North-East Pacific (i.e. West Coast of USA and
Canada) rockfish stocks.

23.4.1 Capturing Uncertainty

23.4.1.1 State–Space Model of South Atlantic Albacore Tuna Biomass

Surplus productionmodels are widely used in fisheries stock assessment and are appropri-
ate when the measurements on the fishery consist of just the annual catches and a measure
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of relative abundance. The deterministic version of these models takes the form

Bt = Bt−1 + s(Bt−1)− Ct−1, (23.4)

where Bt is the fishable biomass at the start of year t and Ct is the catch during year t
(for simplicity, assumed known). The surplus production function s(B) denotes the overall
change in biomass due to fish growth, recruitment of fish reaching legal size, and natural
mortality.
The simplest plausible form for s(B) is the quadratic Schaefer (1954) surplus production

function, s(B) = rB(1− B/K), where r is the intrinsic growth rate of the population and K
is virgin biomass. The Schaefer surplus production function takes its maximum value of
rK/4 when biomass is half of virgin, B = K/2. This maximum value of surplus production
is often regarded by management as the maximum sustainable yield of the fishery, and is
the unknown quantity of primary interest.
Surplus production models are fitted to an annual index of abundance, y = (y1, . . . , yn).

These could be obtained from research surveys, butmost often catch-per-unit-effort (CPUE)
data are used. CPUE is simply the catch divided by the fishing effort expended. For the
example herein, the tuna are caught by longline, and CPUE was calculated as the catch
weight (in kilograms) per 100 hooks deployed (Figure 23.1). The index of abundance is
commonly assumed to be proportional to the biomass (but see Harley et al., 2001, who
investigated a power relationship between CPUE and biomass) and the assumption of
lognormal error is most commonly used. That is,

yt = QBtevt , (23.5)

where vt are independent and identically distributed (i.i.d.) N(0, τ2). The parameter Q is
the so-called “catchability coefficient.”
Previously, Schaefer surplus production models had traditionally been fitted using non-

linear least squares (Hilborn andWalters, 1992; Polacheck et al., 1993). If year t = 1 denotes
the year in which fishing commenced, the nonlinear least squares model sets B̂1 = K and
uses the deterministic process (Equation 23.4) to obtain the predicted values B̂t, t = 2, . . . , n.
The primary deficiency of this classical approach is that subsequent risk assessments fail to
incorporate variability in the process equation. For example, recruitment of fish can vary
an order of magnitude due to environmental variability.
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FIGURE 23.1
Catch rate and catch of South Atlantic albacore tuna, 1968–1989. The Bayes estimate of maximum surplus
production (19,400 tonnes) is shown with a dotted line.
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Meyer andMillar (1999b) applied a Bayesian state–space implementation of the Schaefer
surplus productionmodel to the albacore tuna data. They also chose to use the terminology
“maximum surplus production” instead of the potentially misleading “maximum sustain-
able yield.” The state–space implementation modeled variability in the process equation
and the Bayesian framework permitted existing prior knowledge to be utilized. Under this
model the biomass in year t is given by

B1 = Keu1 ,

Bt = (Bt−1 + rBt−1(1− Bt−1/K)− Ct−1) eut , t > 1,

where ut are i.i.d. N(0, σ2).
Meyer and Millar (1999b) specified lognormal priors for model parameters K and r. The

prior on rwas obtained from formal hierarchicalmodeling of six other albacore tuna stocks.
Punt et al. (1995) specified that the virgin biomass of this tuna stock was between 80 and
300 (1000 t) and the lognormal prior on K was derived by setting 80 and 300 as its 5th and
95th percentiles, respectively. Model parameters σ2 and τ2 were assigned inverse gamma
priors. The hyperparameters of these priors were based on knowledge from other tuna
stocks and indices of biomass. The catchability parameter, Q, was given a reference prior
(uniform on the log scale). All model parameters were assumed a priori independent, that
is, π(K, r,Q, σ2, τ2) = π(K)π(r)π(Q)π(σ2)π(τ2).

23.4.1.2 Implementation

The state–space Schaefer surplus production model was applied to the albacore tuna data
using WinBUGS, and the program code is available from www.stat.auckland.ac.nz/∼
millar/Bayesian/BayesIndex.html. The implementation reparameterized the model using
Pt = Bt/K because this was found to greatly reduce autocorrelation of the samples from the
joint posterior. Note that Pt gives the biomass in year t as a proportion of virgin biomass.
The process equation then becomes

P1 = eu1 ,

Pt = (Pt−1 + rPt−1(1− Pt−1)− Ct−1/K) eut , t > 1.

A few additional lines of WinBUGS code enable the biomass trajectory to be extended
beyond the last year of available data under different harvest scenarios (Figure 23.2). Such
presentationof biomassuncertainty is instantlymeaningful tofisheriesmanagers. It is quick
and convenient to produce (WinBUGS can draw a plot very much like Figure 23.2 with a
couple of mouse clicks using the Inference > Compare menu), yet is also formally
rigorous, subject to validity of the model.

23.4.2 Hierarchical Modeling of Research Trawl Catchability

The absolute catchability of a fishing gear can loosely be defined as the proportion of fish
contacting the gear that are caught by the gear. For example, a small-meshed research
trawl has absolute catchability of unity if it catches all fish in its path. For bottom dwelling
fish, this gives rise to the swept-area estimate of biomass. This is applicable if the sea-bed
habitat is sufficientlyhomogeneous (within strata) that it canbe assumed thatfishare evenly
distributed, so that the biomass can be estimated by scaling up the catch using the fraction
of habitat “swept” by the research trawl.
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FIGURE 23.2
Boxplots of the posterior distribution of albacore biomass, fitted to data from 1967 to 1989, and projected to 2001.
The top plot assumes catch equal to the Bayes estimate of maximum surplus production (19,400 tonnes) from
1990 onwards. The bottom plot assumes a moratorium on fishing in 1990 and 1991, and catch equal to maximum
surplus production from 1992 onwards.

However, fish are not trees, and they do not remain still when the reaper calls. Bigger fish
tend to be faster andmore durable swimmers, and theymay be able to swim away from the
trawl before it engulfs them. In addition, some bottom fishmay swim sufficiently high that
they go over the top of a ground trawl. Smaller fishmay be able to go under a ground trawl
because the footrope of this gear typically rides over the sea floor on rollers and does not
make direct contact with the sea bed.Also, some rougher bottom habitats are not amenable
to trawling (due to the chance of ripping the trawl mesh, or losing the entire trawl if it gets
stuck on rocks) and so trawlsmay not be viable in habitats of potentially higher abundance.
These factors would result in the swept-area estimate of biomass tending to underestimate
true biomass. On the other hand, the warps and bridles of trawl gears (Figure 23.3) can
herd fish into the path of a trawl, so that it catches fish that are outside of its swept path, in
which case the swept-area estimate of abundance could overestimate true biomass.
Swept-area estimates of rockfish biomass are calculated from research trawls off theWest

Coast of the USA. However, due to the factors noted above, these are regarded as a rel-
ative index of biomass. They are typically modeled according to Equation 23.5, with yt
being the swept-area estimate of biomass in year t, and parameter Q now called the bulk
catchability. To combine information about bulk catchability across similar rockfish species
Millar and Methot (2002) used the ADMB software (Section 23.3.2) to implement an age-
structured meta-analysis of six West Coast rockfish species. Information required for the
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Sketch of an otter trawl. Reproduced from Figure 7.4B in (Hayes et al., 1996, p. 199) by permission of theAmerican
Fisheries Society.

model included catch-at-age data and knowledge about weight-at-age. This information
was taken from the most recent stock assessment for each species. These assessment docu-
ments also provided a relative index of recruitment in each year. For each stock, the biomass
Bt was obtained by summing the product of numbers-at-age and weight-at-age, over all
relevant ages.
The hierarchical model of Millar andMethot (2002) assumed exchangeability ofQ across

the different species of rock fish. Denoting q = log(Q), it was assumed that

q ∼ N(μq, σ2q).

Two different hyperpriors were used:

μq ∼ N(0, 1), σ2q ∼ Γ−1(1, 2),
and

μq ∼ N(−1, 1), σ2q ∼ Γ−1(1, 1),

where Γ−1(α, β) denotes an inverse gamma distribution with the associated gamma distri-
bution havingmean αβ and variance αβ2. The first induces a vague prior forQwithmedian
slightly in excess of unity and an extremely long and slowly decaying right tail. The second
prior is mildly informative and reflects a higher prior belief that catchability is below unity
(Figure 23.4).
The posterior distribution ofQwas reasonably insensitive to the choice of prior. In partic-

ular, the prior probabilities ofQ being in excess of unity were 0.51 and 0.27 under the vague
and mildly informative priors respectively, and the corresponding posterior probabilities
were 0.06 and 0.05.

23.4.3 Hierarchical Modeling of Stock–Recruitment Relationship

It is generally considered that the number of recruits (young fish) joining the stock in any
given year is highly dependent on conditions prevailing during their early life history,
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Prior and posterior densities for bulk catchability, Q.

especially the availability of food and extent of predation during the larval stage. These
conditions can be highly variable, and this high variability often obscures the relation-
ship between the size of the spawning parent stock and the number of resulting recruits.
Nonetheless, if this relationship is not taken into consideration then the stock could suffer
“recruitment over-fishing,” that is, reach the point where the reduction in spawners results
in substantial loss of recruitment. Proper risk assessment of fisheries policies must include
this possibility.
In addition to largeannualvariability in recruitment (possiblywith considerable temporal

autocorrelation), estimates of spawning stock size and recruitment generally have high
estimation uncertainty. Not surprisingly, the stock and recruitment estimates from a single
stock often show little clear pattern of any relationship. To address this issue, a publicly
available worldwide stock–recruit database, now containing approximately 700 data sets,
was set up by the late Professor RamMyers in the early 1990s to facilitate meta-analysis of
this relationship (www.mathstat.dal.ca/∼myers/welcome.html).
In a stock–recruitmeta-analysis ofUSWestCoast rockfish,Dorn (2002) considered the two

most commonly employed stock–recruit curves, the Beverton–Holt and the Ricker curves.
Here, attention will be confined to the Beverton–Holt curve, which can be expressed in the
form

R = aS
b+ S

where S is the spawning stock size (usually expressed as biomass) and R is the resulting
number of recruits. This curve has recruitment asymptote at a, and b is the spawning stock
biomass at which recruitment is 0.5a.
It would not be sensible in a stock–recruit meta-analysis to assume that either of param-

eters a or b could be assumed exchangeable over different rockfish stocks because these
parameters depend on the overall size of the stock, which in turn depends on habitat range
and suitability. Instead, the Beverton–Holt stock–recruit curve can be uniquely determined
by specifying the point (S0,R0), where S0 and R0 are the spawner size and recruitment of
the stock in the absence of fishing, and the so-called “steepness” parameter, h, where hR0
is the recruitment when the stock is at 20% of S0 (Figure 23.5). The steepness parameter
necessarily lies in the interval (0.2, 1), with a value close to unity corresponding to a stock
with recruitment that is robust to fishing, and a value close to 0.2 corresponding to a near
proportional decrease in Rwith S. It is this parameter that is assumed exchangeable across
different stocks of the same or similar species. In practice, if there is sufficient knowledge
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Beverton–Holt stock–recruit curve for a stock with steepness h.

about the rates of growth, (natural) mortality and fecundity of the stock, then the ratio
between S0 and R0 can be determined, say S0 = φR0. Then, the Beverton–Holt curve can be
expressed as a function of (R0, h),

R = 0.8R0hS
0.2φR0(1− h)+ (h− 0.2)S

. (23.6)

Themeta-analysis ofDorn (2002)was implemented inADMBandused stock–recruit data
from 11 rockfish species. It used vague priors on individual values of R0 for each stock, and
a hierarchical prior on the scaled logit (mapping the interval (0.2,1) to R) of h. That is,

β = log
(
h− 0.2
1− h

)
∼ N(μ, τ2),

with relatively uninformative priors on hyperparameters μ and τ. For simplicity, temporal
structurewas not included in themodel, spawner biomasseswere assumed knownwithout
error, and φ was also assumed known for each stock. Conditional on (R0, h), recruitment
was modeled as lognormal, with mean given by Equation 23.6.
In the case of black rockfish, stock–recruit data were extremely limited, with only seven

data points (Figure 23.6). For this species, φ = 1.21 was calculated from biological infor-
mation. If fitted to the black rockfish data only, the maximum likelihood estimate of h is
close to unity, corresponding to a stock that appears immune to recruitment overfishing.
In contrast, within the meta-analysis, the posterior modal value of h for black rockfish is
shrunk to 0.68 (Figure 23.6).
Dorn (2002) incorporated the results of the stock–recruit meta-analysis into a reevalua-

tion of the harvest policies for USWest Coast rockfish. He concluded that, notwithstanding
limitations due to simplifying assumptions used in the model, the fishing mortality of US
West Coast rockfish generally exceeded the limits established by the Pacific Fishery Man-
agement Council tomeet the requirements of theMagnuson–Stevens Fishery Conservation
and Management Act (www.nmfs.noaa.gov/sfa/magact/).
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Beverton–Holt stock–recruit curve for black rockfish from ameta-analysis including 10 other similar stocks, using
the posterior modal values of parameters h and R0 (obtained fromADMB) for this stock.

23.5 Concluding Remarks
The above three examples give just a flavor for the application of MCMC to fisheries mod-
eling. In particular, state–space models are natural tools for the temporal modeling of the
unknown biomass of a stock, and MCMC has provided a viable computational frame-
work for their general implementation. More generally, in an age-structured model the
unknown state would be a vector of the numbers at different ages. The notion of deter-
ministic population trajectories has no place in the sustainable management of fisheries
resources.
Relatively simple examples were used here for readability. In comparison, a full Bayesian

stock assessment model for an important commercial species may use data of many dif-
ferent types and can contain several hundred parameters, many of which will be random
effects used to quantify variability in the population dynamics of the stock and uncer-
tainties in measurements. For such highly parameterized models, the use of somewhat
informative priors is often necessary. The hierarchical analyses in the last two examples
demonstrated typical application of Bayesianmeta-analysis to obtain such knowledge from
similar stocks.
There is now a feeling among some fisheries scientists that the last few decades have been

the Golden Age of fishery modeling (Quinn, 2003). MCMC has been prominent in the last
part of this age and has allowed modelers to use more realism, and to incorporate prior
knowledge. Nonetheless, the models cannot parsimoniously include all sources of relevant
uncertainty (Cotter et al., 2004), some of which may be the dominant factors affecting the
fishery. Examples of these rogue uncertainties include the response of fishers to regulation
change (which often differs from that intended), the extent of poaching (often by organized
crime), predator/prey shifts (due to halting of seal culls, say) or the effects of environmental
change in the medium (e.g. El Niño and La Niña oscillations) or long term (e.g. global
warming).To this end,mucheffort isnowbeingdirectedat embeddingfisheriesmodelingas
a stepwithin thewider conceptual frameworkoffisheriesmanagement evaluation (Hilborn,
2003). Thiswill be a natural arena for application of decision theory, and itwill be interesting
to see what role Bayesian methods and MCMC eventually play in this larger scheme of
things.
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24
Model Comparison and Simulation for Hierarchical
Models: Analyzing Rural–Urban Migration
in Thailand

Filiz Garip and Bruce Western

24.1 Introduction
Sociologists often argue that social context matters. Features of the social context, not just
the characteristics of individuals, help produce aggregate outcomes such as the distribution
of economic rewards, or paths of development. Multilevel designs where individuals are
nested within social contexts provide a strong design for observing both contextual effects
and the aggregate outcomes those effects might produce.
We present an analysis of migration in rural Thailand, in which survey respondents are

nested within villages, providing annual reports on migration for the 1980s and 1990s.
Rural–urban migration has propelled economic development as rural migrants remit their
earnings back to their villages and return with news of economic opportunities for friends
and family members. Though our data describe thousands of individual migration deci-
sions, our interest focuses on aggregate differences across villages. The rural northeast of
Thailand varies tremendously in the degree to which villages are integrated into the urban
economies further south. The evolution of inequality in migration across villages is thus
important for our understanding patterns of poverty and development in the rural areas
of countries experiencing rapid growth.
Hierarchicalmodels provide avaluable tool for studyingmultilevel sociological data such

as the Thai migration surveys (Mason et al., 1983; Western, 1999). In sociology and demog-
raphy, panel surveys of individuals and households, survey data frommany countries, and
pooled time series data from US states and cities have all been analyzed with hierarchical
models (DiPrete and Forristal, 1994). Sometimes sociological applications have studied the
heterogeneity of parameters across units, thoughmore commonly hierarchicalmodels offer
away to account for clustering in inferences about fixed parameters. In these cases, random
effects are a nuisance, integrated out for correct inference.
Hierarchical models are common in sociology, but applied research often neglects two

important topics. First, sociological analysis of hierarchical models rarely provides a
detailed examination of model fit. In our analysis of the Thai migration data we study
the fit of several alternative models by comparing the deviance information criterion (DIC)
and posterior predictive statistics. Model fit is an important applied topic because sociolog-
ical theory is often indifferent to alternative specifications of random effects. The structure
of random effects may also have important implications for substantive conclusions. In
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particular, substantively important aggregate outcomes that are not directly modeled—
like inequality in a response across units or response variable quantiles—may be sensitive
to the specification of random effects. A second limitation of applied sociological research
with hierarchical models is that these aggregate implications of model estimates typically
go unexamined. Our analysis of rural–urban migration in Thailand examines several hier-
archical models. In our analysis, Markov chain Monte Carlo (MCMC) computation for
hierarchical models provides a convenient framework for studying aggregate patterns of
variation by simulating migration given different hypothetical distributions of covariates.

24.2 Thai Migration Data
The Thai migration data are based on the Nang Rong Survey∗ of men and women aged
13–41 from 22 villages in the Nang Rong district of northeastern Thailand (Curran et al.,
2005). We combine data from twowaves (1994 and 2000) of the life history survey. The 1994
wave begins withmen andwomen aged 13–35 in 1994, and asks about respondents’ migra-
tion experiences since the age of 13. This design is replicated in 2000: men andwomen aged
18–41 are asked about their migration behavior starting at the age of 13. Some respondents
were living away from the village at the time of the survey, and they were followed up and
interviewed.† We merge these data with household censuses conducted in 1984, 1994, and
2000 to obtain household and village characteristics. The resulting data contain information
onmigration of 6768 respondents nestedwithin 22 villages over a 16-year time period from
1984 to 2000 (N = 93,914).
Our interest focuses on how the level of migration in a village might subsequently pro-

mote more migration among individuals. Figure 24.1 shows the distribution of village
migration rates, ȳjt =∑i yijt/njt, from 1984 to 2000. The survey data are retrospective, and
the age distributions vary over time. The figure displays the migration rates for men and
women aged 18–25, the age group that we observe every year. Migration rates generally
increase until 1996. In 1984, around a quarter of young residents in Nang Rong left their
district for at least two months. By 1996, the migration rate for the region had increased to
about 50%. In 1996, the Asian financial crisis precipitated recession in Thailand. Migration
rates declined over the next four years. In some villages, migration declines were partic-
ularly steep, with migration rates falling to around 10%. Trends for a high-migration and
low-migration village are also shown in the plot. These trends share some common features,
such as the increase in migration in the first decade and the decline from 1996.
Part of our substantive interest focuses on how the accumulation of migration experi-

ences within villages is associated with an individual’s likelihood of migration. Migration
for an individual may become more likely if they live in a village in which many others
have migrated. This phenomenon, called the cumulative causation of migration, occurs
because prior migration generates resources or influence that make individuals more likely

∗ The Nang Rong Survey is a collaborative effort between investigators at the Carolina Population Center, Uni-
versity of North Carolina at Chapel Hill, and investigators at the Institute for Population and Social Research
(IPSR), Mahidol University, Salaya, Thailand. It is partially funded by Grant R01-HD25482 from the National
Institute of Child Health and Human Development to the Carolina Population Center. Information about the
survey and the data analyzed in this chapter are available at http://www.cpc.unc.edu/projects/nangrong.

† Related project manuscripts report that success in finding migrants was relatively high (Rindfuss et al., 2007)
On average, about 44% of themigrants were successfully interviewed at some point in the six months following
the village surveys.
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FIGURE 24.1
Boxplots of annual village migration rates for men and women aged 18–25, Nang Rong, Thailand, 1984–2000.
Migration rates for villages with the largest and smallest migration rates in 1984 are shown by the trend lines.

to migrate (Massey, 1990). Extensive empirical evidence documents how past migration
becomes a primary engine for future migration flows, eventually diminishing the impor-
tance of alternative explanations (Garip, 2008; Massey and Espinosa, 1997; Massey and
Zenteno, 1999).
We study the effect of social context by a constructing a “village trips” variable that

records the number of trips taken in a village in the years preceding the current year. A
scatterplot of village trips and annual village migration rates for the 1984–2000 period is
shown in Figure 24.2. In any given year, villages with the highest migration rates have a
history of high levels of migration. This pattern is not surprising, but it remains an open
empirical questionwhetheravillage’shistoryofmigration is associatedwithan individual’s
likelihood of migration, after accounting for their own history of migration, their family’s
migration history, and other covariates.
To study the effect of village trips for these multilevel data we write several hierarchical

logistic regression models. For respondent i (i = 1, . . . , ntj) in village j ( j = 1, . . . , 22) in
year t (t = 1984, . . . , 2000), yijt denotes the binary migration outcome, taking the value 1 if
the respondent travels away from the village for more than two months in the year, and
0 otherwise. Individual- and village-level covariates are collected in vectors, xijt and zjt.
In each of the following logistic regressions, yijt, conditional on fixed and random effects
collected in the vector θ, is assumed to be Bernoulli,P( y|θ) = py(1− p)1−y, with expectation
E( y) = p and likelihood L(θ; y) =∏P( yijt|θ).
If we consider only the panel aspect of the data design, we can fit a respondent-level

random effect, αi, to allow for the correlation of observations for the same respondent,
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FIGURE 24.2
Scatterplot of village trips and village migration rates for men and women aged 18–25, Nang Rong, Thailand,
1984–2000. Villages with the smallest and largest migration rates in 1984 are indicated separately.

yielding the logistic regression:

logit( pijt) = αi + δt + β′1xijt + β′2zjt, (24.1)

for xijt and zjt as described in the previous paragraph, with corresponding fixed effects β1
and β2. This specification also includes a time effect, δt, that captures the common trend in
migration across villages. The two levels of clustering, by respondent and village, could be
modeled with separate effects, where a village effect, γj, captures a migration propensity
that is common to all residents of the same village:

logit( pijt) = αi + γj + δt + β′1xijt + β′2zjt. (24.2)

Finally, heterogeneity in village effects over time can be captured with a village-by-year
effect, γjt:

logit( pijt) = αi + γjt + δt + β′1xijt + β′2zjt. (24.3)

Given the observed variability in migration trends, this last model seems most realistic.
It is shown as a directed acyclic graph in Figure 24.3. The parameters, μ and σ2, are the
means and variances of the hyperdistributions from which the random effects are drawn.
Boxes and ovals denote covariates andparameters, respectively. Solid arrows indicate prob-
abilistic dependencies,whereasdottedarrowsaredeterministic relationships. The clustered
structure of the data (individualswithin villages for each year) is denoted by stacked sheets.



Hierarchical Models 567

Year

Village

Individual
β1

zjt

δt

γjt

μγ

μα

σγ
2

σα
2

xijt

yijt

pijt αi

β2

FIGURE 24.3
Three-level logit model with individual, village, and year effects on individual migration outcome.

In this figure, the year sheet is dotted, indicating that year-specific effects will induce cor-
relations among observations from same time point, though individuals and villages are
not nested within years.
The full Bayesian specification requires hyperdistributions for the random effects, and

proper priors for their hyperparameters. In our analysis, the random effects for our three
models are each given a normal distribution. Themeans are given diffuse normal prior dis-
tributions. The standard deviations are given uniform distributions. The priors, displayed
in Table 24.1, are intended to be uninformative so the sample data dominates estimation of
the hyperparameters (Gelman, 2006). We experimented with several alternative priors and
obtained essentially the same results as those reported here.

TABLE 24.1

Hyperdistributions and Prior Distributions for Hierarchical
Logistic Regression Models of Thai Migration
Model Random Effects Prior Distributions

(24.1) αi ∼ N(μα, σ2α) μα ∼ N(0, 106)
σα ∼ U(0, 1000)

(24.2) αi ∼ N(μα, σ2α) μα ∼ N(0, 106)
σα ∼ U(0, 1000)

γj ∼ N(μγ, σ2γ) μγ ∼ N(0, 106)
σγ ∼ U(0, 1000)

(24.3) αi ∼ N(μα, σ2α) μα ∼ N(0, 106)
σα ∼ U(0, 1000)

γjt ∼ N(μγ, σ2γ) μγ ∼ N(0, 106)
σγ ∼ U(0, 1000)
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24.3 Regression Results
We can easily explore the model fit and run simulation experiments with draws from the
posterior obtained by MCMC simulation. The results below are based on 10,000 iterations
from parallel chains, after a burn-in of 2500 iterations. Convergence diagnostics, including
that of Gelman andRubin (1992), for parallel chains indicate convergence for all parameters
(results available upon request).
Posterior means and standard deviations for the regression coefficients are reported in

Table 24.2. All variables are standardized to have zero mean and unit variance. The results
show the positive association of the village history ofmigrationwith an individual’smigra-
tion decision in a given year. A standard deviation difference in the trips per village nearly
doubles the odds of migration for an individual (e0.644 ≈ 1.9). A household’s and individ-
ual’s history of migration are also strongly associated with migration. All these effects are
consistent across model specifications. Unsurprisingly, individual trips are estimated to
have the strongest effect on individual migration. Less expected, however, is the relatively
strongeffect of thevillage level ofmigration.Covariate effects are also similar acrossmodels.
Men, the unmarried, and the more educated are all somewhat more likely to migrate.
Most of the point estimates for the coefficients are insensitive to alternative specifications

of the random effects, though somemodels may still fit the data better than others. The DIC
statistic, proposed by Spiegelhalter et al. (2002), is readily calculated from MCMC output.
The DIC is based on the usual deviance statistic, D(y, θ) = −2 log L(θ; y), evaluated at the
simulated values of the parameters. Like the deviance, better-fitting models have lower
DIC statistics. DIC statistics are virtually the same for the individual and village random
effects models. The DIC statistic for the village–year model, which includes random effects
for each village in each year, is 137 points lower.

TABLE 24.2

Logistic Regression Coefficients (Standard Errors) for Hierarchical Models of
Migration, Nang Rong, Thailand, 1984–2000

Individual Village Village–Year

Village trips 0.644 (0.006) 0.663 (0.063) 0.681 (0.073)
Household trips 0.115 (0.021) 0.118 (0.021) 0.114 (0.022)
Individual trips 1.457 (0.022) 1.454 (0.023) 1.462 (0.022)
Age −0.248 (0.040) −0.228 (0.039) −0.243 (0.041)
Male 0.266 (0.069) 0.250 (0.067) 0.265 (0.070)
Married −1.183 (0.038) −1.185 (0.037) −1.188 (0.038)
Education 0.756 (0.031) 0.774 (0.032) 0.763 (0.031)
Land −0.056 (0.019) −0.060 (0.019) −0.052 (0.019)
σi 2.600 (0.036) 2.578 (0.036) 2.610 (0.037)
σv — — 0.431 (0.092) — —
σvy — — — — 0.190 (0.019)

DIC 0 −14 −137
pD 4955 4946 5094

Note: N = 93,914 for 6768 individual respondents in 22 villages. DIC is adjusted by a constant
(−61,811) to equal zero for the individual model.
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Acomponent of the DIC statistic, the pD, is given by the difference between the posterior
mean deviance and the deviance evaluated at the posterior mean and has been proposed
as a measure of the effective number of parameters of a Bayesian model. The village–year
model is parametrically the most complex and this is reflected in the relatively high pD
statistic. The village–year model includes an additional 352 random effects over the village
model, an effective addition of 139 new parameters according to the pD.

24.4 Posterior Predictive Checks
The DIC statistic is an omnibus measure of fit, and the pD can yield odd results in some
applications.An alternative approach, tailored to the substantive objectives of the research,
examines model predictions for quantities of key substantive interest (Gelman et al., 1996).
The posterior predictive distribution is the distribution of future data, ỹ, integrating over
the posterior parameter distribution for a given model:

p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y)dθ.

To study the posterior predictive distribution the researcher must define a test statistic
which can be calculated from the observed data. Becausewe are interested in the inequality
in migration across villages and over time, we define the test statistic in year t as

Rt =
max( ȳjt)
min( ȳjt)

,

the ratio of the largest to the smallest annual village migration rate. A well-fitting model
should yield posterior predictions that track the observed trend in village inequality in
migration.
Figure 24.4 compares the observed trend in Rt to the 95% posterior predictive confidence

interval for Rt under the individual, village, and village–year models. For the individual-
level model with respondent-level random effects, Figure 24.4a shows that the predictive
distribution generally captures the U-shaped trend in inequality in village migration rates.
Inmost years, the observed level of inequality fallswithin the predictive interval, indicating
that the data are not extreme under the model. Several of the most extreme observations,
however, fall well outside the predictive interval.
The village model adds time-invariant random effects for each village to the individual

model that includes only respondent random effects. Figure 24.4b shows the posterior
predictive interval for the village model. Adding village-level random effects does little to
improve the model’s fit to longitudinal patterns of inequality in village migration rates.
As for the individual model, several extreme values at the ends of the time series are poorly
predicted under the village model.
Finally, the village–year model adds a random effect for each village in each year. The

posterior predictive distribution in this case covers the observed trend in inequality in
all years but one. The flexibility of the village–year model is reflected in the relatively
wide predictive distribution displayed in Figure 24.4c. Accounting for yearly differences in
village effects adds significantly to predictive uncertainty about possible migration rates.
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FIGURE 24.4
Inequality in village migration, Rt, and the 95% confidence region for the posterior predictive distribution of the
(a) individual, (b) village, and (c) village–year models.

As a consequence, however, the observed trend in inequality is relatively likely under the
village–year model.

24.5 Exploring Model Implications with Simulation
The posterior predictive check allows us to study the fit of the model, but we have not
yet examined the implications of model estimates for understanding aggregate patterns.
We explore the implications of the estimated model for inequality in village migration
rates using simulations. Coefficient estimates show the strong effect of village trips on
individuals’ migration probabilities. Those living in villages with a high number of prior
trips are more likely to migrate. In those villages, more trips accumulate over time, fur-
ther increasing the likelihood of migration. This phenomenon, the cumulative causation
of migration, suggests a dynamic mechanism of stratification in migration patterns across
villages (Massey, 1990).
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Due to cumulative causation, small initial differences in village trips may lead to large
inequalities in village migration rates over time (Garip, 2008). Our model does not account
for the initial distribution of village trips. The observed distribution of village trips in
the data is one among many possible configurations. To observe the full extent of the
implications of our model for inequality in village migration, we use a simulation exercise.
Keeping the aggregate trips constant, we alter the initial distribution of trips across vil-

lages in the data. We simulate the migration patterns from 1985 to 2000 using the following
procedure. For each year, we compute individuals’ predicted migration probabilities from
our estimated model. We randomly assign migrants based on that probability. We then
update the cumulative individual, household and village trips, and compute individu-
als’ expected migration probabilities for the next year. We repeat this procedure many
times (N = 1000), and compute average village migration rates over repetitions. In simula-
tion runs, we take random draws from the MCMC-generated posterior distribution of the
parameters to simulate inter-village inequality in migration. By drawing from the whole
posterior distribution, simulation results reflect posterior uncertainty about parameters.
If we collect all the covariates and indicators for the random effects and the fixed time

effect in the matrix X, and the regression coefficients and random and fixed effects are in
the vector β, so the logistic regression in Equation 24.3 is written logit(p) = Xβ, then the
pseudo-algorithm is as follows:

1. Distribute the initial number of village trips, Vt0 , across villages j = 1, . . . , J,
according to scenario S such that

∑J
j=1 vjt0 = Vt0 .

2. Sample parameters, β̂, from the MCMC-generated posterior distribution.
3. From the fitted model, logit(p̂) = Xβ, obtain predicted probabilities p̂ijt for all i, j at
time period t.

4. Simulate data y∗ from the fitted model, that is, y∗ijt+1 ∼ Binomial(1, p̂ijt) for all i, j.
5. Update cumulative independent variables (individual, household, and village
trips), xijt+1 = xijt + f ( y∗ijt+1), where f (·) is a function transforming migration in
t+ 1 into trips for all i, j, yielding an updated covariate matrix, X∗.

6. Compute predicted probabilities from the fitted model logit(p∗) = X∗β̂ using the
updated independent variables.

7. Increment time period t to t+ 1.
8. Repeat steps 3–7 T times, that is, generate a path of fitted values for T time periods.
9. Repeat steps 2–8M times independently.
10. Compute typical values (e.g. means) of the predicted probabilities over the M

replications.

This algorithm is repeated for each scenario S of the initial distribution of village trips.
Figure 24.5 shows the average migration rate observed in simulations under two

scenarios. With minimum initial inequality, we distribute the aggregate number of trips
equally across villages in 1984. With maximum initial inequality, we assign the total num-
ber of trips to one randomly selected village, giving all other villages zero initial trips. The
minimum initial inequality case leads to slightly lower average migration until 1990, and
the two scenarios are indistinguishable thereafter.
Figure 24.6 displays the observed ratio of the largest to the smallest annual villagemigra-

tion rates, Rt, and compares these to series under the two simulation scenarios. In the
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FIGURE 24.5
Annual migration rates and the 95% confidence region in simulations with maximum and minimum initial
inequality in the distribution of village trips.

minimum initial inequality case, since all villages start at the same point, inequality in
village migration rates does not grow over time. In this case, the cumulative mechanism
identified in the model does not lead to increasing inequality in village migration. By con-
trast, with maximum initial inequality, initial inequality increases at a high rate after 1995.
The observed inequality in the data, as expected, falls between theminimumandmaximum
inequality cases. The two extreme case scenarios provide upper and lower bounds for the
potential inequality outcomes.
This simulation exercise thus links our estimates from the individual-level model to

aggregate patterns of inequality between villages. Depending on the initial distribution
of village trips, in a period of 16 years, the cumulative mechanism identified in our model
could sustain or double inequality in village migration rates.

24.6 Conclusion
Hierarchical models are commonly used in sociology chiefly to study the effects of social
context on individual outcomes. In our application, we examined the effects of households
and villages on rural–urban migration in northern Thailand. With survey data on indi-
viduals at many points in time, individuals also formed contexts for migration decisions
in any particular year. In data with this structure, we could specify as many as four
hierarchies of random effects: at the individual, household, village, and village–year
levels.
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The nesting of observations within layers of social context creates data-analytic and sub-
stantive challenges. From the viewpoint of data analysis, a variety of equally plausible
models can be specified to capture the multilevel structure of the data. From a substantive
viewpoint, individual outcomesmay aggregate to reshape the contexts inwhich the actions
of individuals are determined. Though hierarchical models are common in sociology, the
data-analytic problemofmodel comparison and the substantive problemof the aggregative
effects of individual outcomes are often ignored.
Our analysis takes advantage of MCMC methods to fit hierarchical models, compare

alternative models, and study the aggregate implications of the models. The problem
of model fit was studied with both DIC statistics and posterior predictive checks. Both
approaches yielded similar answers. Migration models including individual and village
random effects fitted similarly well, but both were inferior to a model that allowed vil-
lage effects to vary over time. The DIC statistic indicated the superior fit of the village–year
model, andposterior predictive checks showed that thismodel better captured the observed
trend in inequality in migration across villages.
We conducted a simulation exercise to help interpret the model parameters. The simula-

tion experiment showed how the initial inequality in patterns of migration across villages
influenced inequality in migration 16 years later. Inequality in migration nearly doubled
where the initial distribution of migration was highly unequal. Had the initial distribution
been equal across villages, this distribution would have remained largely unchanged.
In sum, MCMC computation for hierarchical provides an enormously flexible tool for

analyzing contextual data. Far beyond the problems of estimation and inferences, posterior
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simulation with MCMC provides an important basis for data analysis and model inter-
pretation. Though MCMC methods have so far seen relatively little application, they hold
enormous promise for the analysis of hierarchical models in sociology.
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common proposal, 212
data augmentation, discrete, 213–215
Markov chains, 322
methods, 210
monotone, 201, 203
perfect slice sampler, 216
with proposals, 214
running time analysis, 245
slice sampling, 215
splitting technique, 211
time, 206
types, 210

Coupling from the past (CFTP), 59, 199
algorithm, 199
antithetic, 220, 221
application challenges, 201
brute-force implementation, 202
composite/block map, 207
concatenated, 218
DCFTP, 238
drawbacks, 206
hitting limit, 200–201
horizontal, 59
MCMC implementation, 200
read-once, 206
stopping time, 200, 201
time sequence, 200

Covariate analysis, 422. See also
Mixed effects model

covariate values, 422, 444
demographic parameters, 422, 444
posterior conditional distributions, 423–424
posterior means and SD, 425
prior sensitivity analysis, 425
proposal parameter values, 424

CPUE. See Catch-per-unit-effort (CPUE)

D

DA. See Data augmentation (DA)
DA algorithm, 253, 279–280.

See also Data augmentation (DA)
basic ideas, 253
Bayesian probit regression, 259
iteration, 255
marginal augmentation algorithms, 280
and MCMC algorithm, 287
missing data concept, 257
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DA algorithm (Continued)
operator theory, 284–285
parameter expansion theory, 57
PX-DA, 280, 288
and PX-DA algorithm comparison, 286
simple slice sampler, 257

DAMarkov chain properties, 261
central limit theorems, 267–269
convergence properties, 263
drift method, 264–267
geometric ergodicity, 264–267
n-step Markov transition function, 263
regularity conditions, 261–263

Data augmentation (DA), 3, 55, 213–215, 253.
See also Coupling—methods; Gibbs
sampler; Markov chain Monte
Carlo (MCMC)

algorithm, 253
discrete, 214
EM algorithm, 384
MCMC algorithm, 444
method, 244
parameter expanded, 280
standard Gibbs sampler construction, 394

DCFTP. See Dominated coupling from
the past (DCFTP)

Delayed acceptance scheme, 402, 411
algorithm, 415
Metropolis-based formulation, 413
sampler, 413–414

DE-MCMC. See Differential evolution
MCMC (DE-MCMC)

Density, 233
estimation, 189–191

Detailed balance condition, 67–68,
126–127, 254. See also Random-walk
Metropolis (RWM)

acceptance probability, 68
Markov chain construction, 68, 317
Metropolis update, 126, 142
mixture transition kernel, 390

Deviance information criterion (DIC), 563
statistic, 568, 569

DIC. See Deviance information criterion (DIC)
Differential acceptance Metropolis, 413.

See also Delayed acceptance scheme
Differential evolution MCMC (DE-MCMC),

402, 409, 410, 411
Dimension jumping.

SeeMetropolis–Hastings–Green
with Jacobians (MHGJ)

Dimension matching, 71, 72. See also
Reversible jump MCMC
sampler—implementation

Diminishing adaptation condition, 104

Diploid, 340
Discrete hidden Markov model, 514
Discretization methods error, 122
Disk-based shared memory system, 493, 503, 504
Distributed lag models, 493

AR, 497, 498, 500
average air pollution, 499–500
Bayesian imputation, 496
data set, 494–495
distributed lag function shape, 505
and notation, 498, 499
Poisson law, 499
prior and hierarchical model

specification, 501
DNAvariants, 341
Dominated coupling from the past (DCFTP),

238. See alsoAcceptance/rejection
method

acoupling, 240
advance underlying state to time 0, 240
algorithm, 242
births and deaths, 239
bounding chain step, 241–242
dominated event generator, 240
dominating process, 238, 239
running time, 248
underlying process, 238, 239

Dominated event generator, 240
Drift function, 264
Dynamic ideal point estimation, 480

dynamic ideal point method, 481
statistical methods development, 479

Dynamic IRT model, 481, 489–490.
See also Hidden Markov IRT model

hidden Markov IRT model, 482
ideal point comparison, 487, 488, 489

E

Educational assessments, large-scale, 538
Educational research

hallmarks, 538
quantitative, 531
statistical models in, 532–534
structural features, 539

Effective sample size (ESS), 396
EIT. See Electrical impedance tomography (EIT)
Electrical impedance tomography (EIT), 402

DE-MCMC, 410
first-order neighborhood MRF, 404
inverse problem, 402–403
MRF prior, 404
multigrid simulator, 412
Neumann boundary-value problem, 403
posterior density, 405
posterior exploration, 405–407
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synthetic EIT application, 403
tricube function, 404

EM algorithm, 351
missing data concept, 257

Empirical autocorrelation function, 9. See also
Autocorrelation function (ACF)

Empirical autocovariance function, 9
Ergodic theorem, 59–60

Birkhoff, 175
Harris ergodicity, 264

Ergodicity, 51
adaptive MCMC, 103
geometric, 193, 264
Harris, 193
HMC, 127
uniform, 193

ESS. See Effective sample size (ESS)
E-step, 351
Euler’s method, 119

Hamiltonian dynamics approximation, 120
modification, 121

Exact sampling. See Perfect sampling
Exponential covariance, 452

Gaussian process, 450
Exponential model, 326

LF-MCMC sampler performance,
325, 326, 327

posterior accuracy, 328

F

Fake-data check, 164
Fill’s algorithm, 208–210. See alsoMarkov chain
Fine particles, 494

distributed lag models, 494
missing-data pattern, 495
observed data patterns, 493–494

Finite mixture models, 69–70, 85
auxiliary variable, 214
convergence assessment, 82
marginalization in, 74
mixture component parameters, 80
moment matching, 72

Fisher’s Z transformation, 501
Fisheries science, 547

Bayesian approaches, 549, 553
CPUE, 554
MCMC in, 549, 551
regulations, 547
surplus production models, 553
WinBUGS, 550

Fixed scan Gibbs sampler, 26
Fixed-time rule, 192
fMRI. See Functional magnetic resonance

imaging (fMRI)

Founders, 340. See also Pedigree
genomes, 346, 347, 348

Full conditionals, 25, 370, 509
distribution, 454
Gibbs updates, 26, 27
state-independent mixing, 27
updating state from, 519, 520

Full-locus Gibbs sampler, 349
Functional connectivity, 363
Functional magnetic resonance imaging

(fMRI), 363, 364
activation results, 371–374
chain analyzing, 371
connectivity, 365, 374–376, 368
data preprocessing, 367
HRF, 368
image acquisition area, 366
inter-group analysis, 365
simulating Markov chain, 369–371
two-stage analysis, 364

Functional neuroimaging technologies, 363

G

Gaussian Markov random field models (GMRF
models), 406, 451, 458, 468. See also
Linear Gaussian Markov random field
models; Non-Gaussian Markov
random field models (NMRF models)

intrinsic, 456
linear, 454
MCMC for, 457
Poisson-GMRF model, 465

Gaussian process (GP), 155, 416, 450
linear, 452
MCMC for, 453–454

Gaussian random field models, 451.
See also Gaussian Markov random
field models (GMRF models);
Gaussian process (GP)

Genetic data analysis, MCMC in, 339, 341
block Gibbs samplers, 349
causal loci localization, 357–358
complete-data log likelihood, 351
conditional independence structures, 341
genetic data inheritance structure, 344–346
genotypes and meioses, 349
Gibbs and restricted updates, 350
ibd structure, 346–348
ibd-graph computations, 348
importance sampling reweighting, 353–354
inheritance sampling, 351
inheritance uncertainty, 356
likelihood ratio estimation, 352
linkage detection, 357
lod score, 354
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Genetic data analysis, MCMC in (Continued)
marker data density impact, 355
MC EM, 351–352
MCMC realizations, 354
MCMC sampling variables, 349
pedigree data genotypic structure,

342–344
prerequisites, 339
SNP data, 356

Genetic model structure, 342
Genomic inheritance, 340
Genotypic peeling, 343
Geostatistical data. See Point-level data
Gibbs chain, 270. See alsoMarkov chain

convergence, 56
simulation, 271
split chain and, 273–274

Gibbs move, single-site, 516–517
Gibbs sampler, 3, 28, 29, 53, 109.

See also Data augmentation (DA);
Reversible jump MCMC sampler

advantage, 527
automaticity, 29
block, 349
construction, 390
fixed scan, 26
four-step, 387–388
full-locus, 349
implementation, 54
Metropolis-within, 28
parent, 394, 395
partially collapsed, 384
random scan, 27, 389
standard, 394
three-step, 385, 386
two-stage, 55

Gibbs sampling, 53, 54, 534–535
advantages, 535
BUGS, 58
dimensionality and distributions, 139
drawback, 56
hyperparameters, 144
invariance, 134
linear mixed models, 57
strategy, 52
variance components estimation, 535

Gibbs update, 24–25, 27, 29, 350
MHG ratio, 42
single-site, 349

Global error, 122
GMRF models. See Gaussian Markov random

field models (GMRF models)
Goldilocks principle, 94
Good event, 246, 247. See also Bad event
GP. See Gaussian process (GP)

Graphical methods, 176, 189
Green ratio, 41, 45
Green’s recipe, 41

H

Haar PX-DA algorithm, 288. See also Parameter
expanded-data augmentation (PX-DA)

iteration, 289
and PX-DA algorithm, 290

Hamilton’s equations, 114
discretizing, 119, 122
energy, 115
equations of motion, 114–115
Euler’s method, 119–120, 121
leapfrog method, 121–122
one-dimensional example, 116

Hamiltonian dynamics, 113, 114.
See also Hamilton’s equations;
Hamiltonian Monte Carlo (HMC)

approximation, 120
data subsets, 147
Hamiltonian conservation, 116–117
handling constraints, 148
in HMC algorithm, 124
MCMC from, 122–123, 124
nonphysical MCMC applications, 114
partial analytical solutions, 146
potential energies, 146–147
probability and Hamiltonian, 122–123
properties, 116
reversibility, 116
splitting, 145
symplecticness, 119
vector field divergence, 117
volume preservation, 117–119

Hamiltonian Monte Carlo (HMC), 113. See also
Hamiltonian dynamics; Leapfrog
method

acceptance rate, 150
algorithm, 123–124, 125, 127
detailed balance, 126–127
disadvantage, 156
ergodicity, 127
Hamiltonian functions, 115
for hierarchical models, 142
illustrations, 127
linear transformation effect, 133–134
and MCMC updates, 138–139
in practice and theory, 133
random-walk behavior avoidance, 130
sampling, 128–130, 130–132
steps, 124, 125–126
trajectories, 127–128

Hamiltonian Monte Carlo (HMC), extensions
and variations, 144
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discretization by splitting, 145
Langevin method, 148
partial momentum refreshment, 150–152
short-cut trajectories, 156–157
tempering, 157–160
trajectory computation, 155–156
windows of states, 152–155

Hamiltonian Monte Carlo (HMC), scaling with
dimensionality, 139

distribution creation, 139
HMC and Random-Walk Metropolis, 139
independent point obtaining cost, 141
Jensen’s inequality, 140
optimal acceptance rates, 141
potential energy distribution, 142

Hamiltonian Monte Carlo (HMC), tuning,
134, 156

multiple stepsizes, 137–138
preliminary runs, 134
stepsize, 135–137, 156–157
trace plots, 134
trajectory length, 137

Hamiltonian, shadow. See Shadow Hamiltonian
Hammersley–Clifford theorem, 53, 451
Haploid, 340
Haplotype, 341, 342, 344
Harris ergodicity, 193–194, 261

CLTs, 267
drift condition, 264
for ergodic theorem, 264

Hastings, W. K, 52
Hastings ratio, 35. See also Green ratio

Metropolis update, 24
Metropolis–Hastings update, 22, 26, 300
variable-at-a-time Metropolis–Hastings

update, 25
Hemodynamic response function (HRF), 368
Hidden Markov IRT model, 481. See also

Dynamic IRT model
agent-specific regime changes, 481–482
Gibbs sampling algorithm, 482
ideal point simulation, 486–487
item parameter simulation, 482–483
latent state vector simulation, 483–485
latent utility simulation, 482
MCMC sampling algorithm, 482
on preference changes, 484, 485, 486, 487, 488
transition probability simulation, 485–486

Hidden Markov model (HMM), 345
with IRT model, 479
pedigree data dependence structure, 346
single-site Gibbs move, 516–517

Hierarchical modeling, 555, 556. See also
Fisheries science

absolute catchability, 555

Beverton–Holt stock–recruit curve,
558–559, 560

bulk catchability, 556, 558
hyperpriors, 557
otter trawl, 557
of stock–recruitment relationship, 557, 558
swept-area estimate of biomass, 556
uses, 535

Hierarchical models
applied research limitations, 563–564
HMC for, 142–144
logistic regression coefficients, 568
migration inequality, 571, 572, 573
model implications, 570–571
parameterizations, 525
posterior predictive distribution, 569
pseudo-algorithm, 571

Hierarchical organization, 539
High-energy astrophysics, 392
Hit and run sampler, 27
HMC. See Hamiltonian Monte Carlo (HMC)
HMM. See Hidden Markov model (HMM)
HRF. See Hemodynamic response

function (HRF)
Hybrid Monte Carlo. See Hamiltonian

Monte Carlo (HMC)
Hyperparameter, 76, 142

Bayesian neural network models, 143
high-level, 135
lognormal priors, 555
mixed effects model, 426

Hypothesis tests, nonparametric, 81

I

i.i.d. See Independent and identically
distributed (i.i.d.)

ibd. See Identical by descent (ibd)
Ideal point, 479

using Chib’s model, 481
comparison, 487, 488, 489
estimation, 484, 486
hidden Markov IRT model, 479
normal distribution use, 482

Idempotent, 25
Identical by descent (ibd), 346

computations for markers and traits,
348, 355, 356

graph, 346, 347
Identity kernel, 38–39
Importance sampling, 295

estimator, 296
MCSEs, 295
reweighting, 353–354
target distribution, 297
umbrella sampling, 302
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Independence sampler
block, 521–522
single-site, 517–518

Independent and identically distributed (i.i.d.),
200, 269, 554

Monte Carlo, 6
sequence, 268
theory, 274

Inference, 163
direct simulation, 167–168
likelihood-free, 314
for linear GP model, 453
maximum likelihood, 467
noniterative simulations, 167
parameters vs. target distribution functions,

166–167
point estimation vs. MCMC, 164–165
posterior, 426–427
for SGLM model, 459
from simulations after convergence, 171–172

Inheritance, 341
ibd-graph, 347
MCMC sampling, 351
structure of genetic data, 344

Inheritance vector, 344
hidden layer, 345
ibd-graph, 346, 355

Initial distribution, 4. See also Transition
probability distribution

Markov chain, 8
stationary, 5
village trips, 571

Initial sequence method, 16–17
Integral computation, 50
Integrated analysis, count data, 435–436.

See also Count data—model selection;
State–space—model

ACF plots, 436, 437, 438
MCMC algorithm, 436, 437
posterior distribution, 439, 440
posterior mean and SD, 437, 438

IRT. See Item response theory (IRT)
Ising model, 222
Item response theory (IRT), 479, 533

dynamic, 481, 490
with HMM, 481–482
two-parameter, 480

J

Johnson and Jenkins’s model, 538, 539.
See also Bayesian model

parameter estimation, 540
plate diagram based on, 541

Joint posterior distribution, 67, 426, 429
Jump diffusion, 84
Jump diffusion sampling, 84
Jump processes. See Continuous-time

spatial birth–death chains

K

Kernel, 37
identity, 38–39
Markov, 38, 55
MHG elementary update, 42
mixing approach, 471
weighting, 316

Kinetic energy, 114, 115, 126
uses in HMC, 129, 137, 140
zero-mean multivariate Gaussian

distribution, 124

L

Label switching, 80
Lag-k autocovariance, 9
Langevin equation, 149
Langevin method, 148
Langevin Monte Carlo (LMC), 149. See also

Hamiltonian Monte Carlo (HMC);
Random-walk Metropolis (RWM)

Metropolis–Hastings form, 150
properties, 150

Langevin–Hastings MCMC, 461
for SGLM, 463–464
for spatial zero-inflated Poisson model,

464–465
Latent variables, 214, 342, 533, 539

continuous, 536
discrete, 537
genotype determination, 345
inheritance structure, 344
MCMC sampling, 349

Lattice data, 449
GMRF model on, 456
non-Gaussian, 468

LD. See Linkage disequilibrium (LD)
Leapfrog method, 121–122, 145. See also

Hamiltonian Monte Carlo (HMC)
Hamiltonian symmetrical splitting, 145–146
local error, 150
modification to handle constraints, 149
nested, 147
partial analytical solutions, 146

Lebesgue decomposition, 39
Likelihood, 401

ratio estimation, 313, 352, 354.
See also Log-odds (lod) score
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Likelihood-free (LF) computation.
See Likelihood-free (LF)-MCMC

Likelihood-free (LF) posterior
approximation, 315

comparison, 317
concessions, 315–316
deviation from target posterior, 316, 317
posterior distribution, 319–320
weighting kernel, 316

Likelihood-free (LF) rejection sampling
algorithm, 313–314

Likelihood-free (LF)-MCMC
algorithm, 318–319
alternative MCMC samplers, 321–322
error-distribution augmented samplers,

320–321
exploratory analysis, 322–324
improving mixing, 329–330
LF approximation, 315–317
LF basics, 314–315
Mahalanobis distance, 327
marginal space samplers, 319–320
Metropolis–Hastings sampler, 317–318
model misspecification evaluation, 330–331
performance, 325, 326, 327
summary statistics choice, 327–329
tempering parameter effect, 324, 325, 326
weighting density effect, 326–327

Linear Gaussian Markov random field models,
454. See also Non-Gaussian Markov
random field models (NMRF models)

full conditional distribution, 454
intrinsic GMRF, 456
intuitive conditional specification, 456
joint distribution, 455
pairwise-difference form, 456
spatial dependence, 457

Linear Gaussian process models, 452
Bayesian model specification, 453
exponential covariance, 452
interpolated flowering dates, 455
Matérn covariance, 452
raw flowering date, 455

Linear spatial models, 451. See also Spatial
generalized linear model (SGLM)

linear Gaussian Markov random field
models, 454–457

linear Gaussian process models, 452–453
MCMC for Linear GMRFs, 457
MCMC for linear GPs, 453–454
SGLM approximation, 465–467

Linkage disequilibrium (LD), 354
Liouville’s theorem, 117
LMC. See Langevin Monte Carlo (LMC)
LM-sampler, 349–350
Local error, 122, 150

Locus, 341
Log joint density function, negative, 551
Logistic regression, 566

coefficients, 568
multilevel, 164
problem, 30
village trips for, 565

Log-odds (lod) score, 355
latent test statistic, 357
trait locus location, 356

L-sampler. See Full-locus Gibbs sampler

M

Mahalanobis distance, 327
MALA. SeeMetropolis-Adjusted Langevin

algorithm (MALA)
MANIAC. SeeMathematical Analyzer,

Numerical Integrator and Computer
(MANIAC)

Marginal augmentation. See Parameter
expanded-data augmentation (PX-DA)

Marginal posterior distribution, 80, 396, 406
unbiased pointwise estimate, 319

Marginal space samplers, 319
likelihood-free posterior distribution,

319–320
marginal posterior distribution, 319

Marginalization, 74, 386, 387
Marker. See also Traits

genetic marker data, 339
ibd-graph computations, 348
likelihood comparison, 355
loci, 345

Markov
kernel, 38, 55
point processes, 233
sampler, 87

Markov chain, 4, 49, 94–95, 175, 232, 254
aperiodic, 233
central limit theorems, 193–194
discrete-time, 230
drawback, 236
empirical finite-sample properties, 176
Harris ergodicity, 193–194
initial output examination, 176–178
invariant density, 254
limit theorems, 107–108, 193–194
multigamma coupler, 211
nonmonotone, 205
parallel tempering, 298
pseudo-convergence, 18
recurrent chain, 233
reversibility, 6, 284
serial tempering, 297
simulation, 255
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Markov chain (Continued)
spatial point processes, 227
with stationary law, 200
time-reversal version, 208
with transition kernel, 230
transition probability distribution, 4

Markov chain Monte Carlo (MCMC), 3, 49, 57,
67, 94, 113, 163, 175, 199, 253, 313, 363,
531, 549, 564. See also Second-
generation MCMC revolution;
Metropolis algorithm; Ordinary Monte
Carlo (OMC); Spatial modeling

advantages, 536, 541–542
black box, 18
burn-in, 19–21
central limit theorem, 59–60
code, 35, 36
for complex trait inference, 354–358
diagnostics, 21
EM precursor, 53
in fisheries, 551
history, 49–60
importance sampling, 295, 353–354
Langevin–Hastings, 463–465
limitation, 164, 199
for linear GMRFs, 457
for linear GPs, 453–454
method, 86, 223
models, 532, 533, 534–535, 535–538
parallelization, 493
p-dimensional vector, 178–189
perfect sampling, 58–59
posterior exploration, 402
practice of, 17–21
run, 31
sampler monitoring convergence, 164, 165
second-generation, 49
for SGLMs, 463
simulation termination, 192–193
spatial data Bayesian analysis, 243
state-independent mixing, 26, 44
stationary distribution, 515
theory, 8–9, 22, 56. See also. Square root law
tools, 419
updates and HMC, 138
variance estimation, 13–16, 60

Markov chain Monte Carlo (MCMC) algorithm,
482. See alsoMetropolis algorithm

ideal point simulation, 486–487
integration, 221–222
item parameter simulation, 482–483
latent state vector simulation, 483–485
latent utility simulation, 482
pairwise-difference form, 456
transition probability simulation, 485–486

Markov chain Monte Carlo (MCMC) methods,
adaptive, 94, 102, 156

algorithm, 94, 108
AM algorithm, 104
AM-within-Gibbs, 105
containment condition, 104
diminishing adaptation condition, 104
ergodicity, 103
frequently asked questions, 108–109
HMC, 156
limit theorems, 107–108
sampler, 389
state-dependent proposal scalings, 107
transition probabilities, 4
trial and error, 103

Markov random field (MRF), 404.
See also Gaussian Markov random
field models (GMRF models)

Markov transition density (Mtd), 254
complex, 276
generic, 284
PX-DA algorithm, 286

m-array, 420
Marriage node, 340
Marriage node graph, 340
Matérn covariance, 452
Maternal genome, 340
Mathematical Analyzer, Numerical Integrator

and Computer (MANIAC), 50n, 405
Maximum likelihood (ML), 534

estimate, 32, 326
inference, 427, 453
MCMC, 469

Maximum likelihood, 469
Maximum likelihood estimator (MLE), 467
Maximum sustainable yield (MSY), 548–549
MCEM. SeeMonte Carlo

expectation-maximization (MCEM)
MCMC. See Particle systems, 58
MCSE. SeeMonte Carlo standard error (MCSE)
Medicare claims data, 503
Medicare data analysis, 504–507
Meiosis, 340

model, 345
sampler, 349

Mendel’s first law, 341
factored hidden Markov structure, 346
inheritance vector, 344
meioses, 353

Metropolis, Nicholas, 50
Metropolis algorithm, 3, 28, 50. See also Gibbs

sampling; Markov chain Monte Carlo
(MCMC) algorithm

acceptance ratio, 221–222
adaptive, 104–105
generalization, 52
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iterations, 51
random-walk, 213
simulated annealing algorithm, 51

Metropolis ratio, 24, 235
Metropolis rejection, 22, 23, 41
Metropolis update, 24, 126, 299

fraction, 31
in HMC algorithm, 124, 127
posterior exploration, 405–407
sequence distribution, 153

Metropolis-Adjusted Langevin algorithm
(MALA), 99. See also Random-walk
Metropolis (RMW); State-dependent
proposal scalings

Metropolis–Hastings (MH) algorithm, 3, 28, 93,
222, 466, 467, 552–553

acceptance probability, 320
generalization, 42
implementation, 444
independence, 29, 466
random-walk, 29
to reversible jump, 67–68
single-update, 427, 436

Metropolis–Hastings (MH) reversible jump
chains, 230

birth, 231
convergence, 232
death, 231
MH ratio, 230
MH step in shift–birth–death, 231
shifting, 230

Metropolis–Hastings
acceptance ratio, 222, 526
ratio, 230, 231

Metropolis–Hastings (MH) sampler, 213, 230,
383. See alsoMarkov chain;
Path-adaptive Metropolis–Hastings
sampler (PAMH sampler)

acceptance probability, 149
detailed-balance condition, 317, 318
feature, 319
Gibbs, 26
green algorithm, 37
LMC, 150
proposal distribution, 317
theorem, 23–24
transition kernel, 388
transition probability, 318
update, 22–23
uses, 390

Metropolis–Hastings–Green algorithm
(MHG algorithm), 5, 35, 37–47

ideas, 37
Markov kernel, 38
MH algorithm generalization, 42
theorem, 42–43

Metropolis–Hastings–Green theorem (MHG
theorem), 42–43

Metropolis–Hastings–Green with Jacobians
(MHGJ), 45

proposal, 46
theorem, 46–47

Metropolis-within-Gibbs algorithm, 105. See also
Adaptive Metropolis algorithm (AM
algorithm)

Metropolis-within-Gibbs sampler, 28, 52, 383
adaptive, 105–106

MHG algorithm. See
Metropolis–Hastings–Green algorithm
(MHG algorithm)

MHG theorem. SeeMetropolis–Hastings–Green
theorem (MHG theorem)

MHGJ. SeeMetropolis–Hastings–Green
with Jacobians (MHGJ)

Migration data, 564. See alsoHierarchical models
DIC statistic, 568, 569
hyperdistributions and prior

distributions, 567
logistic regression, 566
logistic regression coefficients, 568
migration causation, 564, 565
migration rates, 564, 565, 566
three-level logit model, 566–567
village trip, 565, 566

Minorization condition, 272
construction, 277–279
Mtd, 273

Mixed effects model, 425. See also Covariate
analysis

first-year survival probabilities, 425–426
posterior conditional distributions, 427
posterior inference, 426–427
posterior means and SD, 427–428, 429
prior sensitivity analysis, 428

ML. SeeMaximum likelihood (ML)
MLE. SeeMaximum likelihood estimator (MLE)
MLUPS. SeeMultilevel Upscaling (MLUPS)
MNI. SeeMontreal Neurological Institute (MNI)
Molecular simulation

importance sampling, 58
MCMC, 113

Monitoring convergence. See also Inference
burn-in, 168–170
in chains, 170–171
problem, 164, 165

Monotone coupler, 201, 202
Monotone coupling, 201–202

antimonotone distributions, 203, 204
general classes, 203–204
monotone SRS, 202

Monotone distributions, 203
Monte Carlo approximation, 7, 13, 308–309
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Monte Carlo calculation. See. Monte Carlo
approximation

Monte Carlo error, 166, 176
asymptotic normal distribution, 187, 189

Monte Carlo expectation-maximization
(MCEM), 352, 467

Monte Carlo methods
history, 50
Markov chain, 164, 227
sequential, 523

Monte Carlo posterior draws, 243–245
Monte Carlo sample size, 7

classical Monte Carlo, 269–270
CLT, 275
Markov chains related to X, 270–272
minorization condition, 272–273, 277–279
regeneration, 273–274
split chain simulation, 275–276

Monte Carlo standard error (MCSE), 7, 176
calculation, 33–34, 309
importance sampling, 295, 296

Montreal Neurological Institute (MNI), 368
MRF. SeeMarkov random field (MRF)
M-sampler. SeeMeiosis—sampler
M-step, 351
MSY. SeeMaximum sustainable yield (MSY)
Mtd. SeeMarkov transition density (Mtd)
Multi model sampling methods, 84–86
Multigamma coupler, 211

Ro-CFTP, 212
Multigrid solver, robust. See Black

Box—multigrid
Multilevel statistical models, 384
Multilevel Upscaling (MLUPS), 412
Multimodality. See. Pseudo-convergence
Multi-model optimization sampling, 85–86
Multi-model sequential Monte Carlo

sampling, 86
Multistage backward coupling algorithm, 219
Multivariate updating schemes, 402, 408

differential evolution and variants, 409–411
RWM scheme, 408–409

N

NA. See Negative association (NA)
NAEP. See National Assessment of Educational

Progress (NAEP)
NALS. See National Adult Literacy

Survey (NALS)
Nang Rong Survey, 564n
National Adult Literacy Survey (NALS), 539
National Assessment of Educational Progress

(NAEP), 539
Bayesian framework, 540
Johnson and Jenkins model, 540, 541

National Oceanic and Atmospheric
Administration, US, (NOAA), 550

Negative association (NA), 220
Neumann boundary-value problem, 403
NhB distribution. See Nonhomogenous

binomial distribution
(NhB distribution)

NMRF models. See Non-Gaussian Markov
random field models (NMRF models)

NOAA. See US National Oceanic and
Atmospheric Administration (NOAA)

Nonfounders, 340
Non-Gaussian Markov random field models

(NMRF models), 468–469. See also
Linear Gaussian Markov random field
models; Gaussian Markov random
field models (GMRF models)

Nonhomogenous binomial distribution
(NhB distribution), 215

Nonoverlapping batch means, 13–16. See also
Overlapping batch means (OLBM)

Non-Poisson process, 44

O

OLBM. See Overlapping batch means
(OLBM)

OMC. See Ordinary Monte Carlo (OMC)
Optimal algorithmic scaling, 412
Optimal scaling, 93–94

optimal acceptance rate, 96
random-walk metropolis, 95

Ordinary Monte Carlo (OMC), 6–7
Otter trawl, 557
Overlapping batch means (OLBM), 182–184.

See also Nonoverlapping
batch means

P

Palindromic compositions, 26
PAMH sampler. See Path-adaptive

Metropolis–Hastings sampler
(PAMH sampler)

Parallel imputation algorithm, 502–504
Parallel tempering (PT), 297, 298

annealing analogy, 299
odds ratio, 299
update, 299–300

Parameter expanded-data augmentation
(PX-DA), 280. See also Data
augmentation (DA)—algorithm

Haar PX-DA and, 290
iteration, 282–283
Mtd, 286
performance, 288
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Parameter updates, 523. See also Block updates;
Single-site updates

conditional parameter updates, 523–525
joint updates, 526–527
reparameterization, 525–526

Partially collapsed Gibbs sampler (PCG
sampler), 384. See also Gibbs sampler;
Path-adaptive Metropolis–Hastings
sampler (PAMH sampler)

aim, 385
convergence and correlation, 385
ESS, 396
Gibbs sampler, 385, 386, 387–388
marginalization, 386, 387
MCMC sampler comparison, 386
permutation, 387
trimming, 387

Particle
energy, 51
filter method, 58
systems, 58

Paternal genome, 340
Path-adaptive Metropolis–Hastings sampler

(PAMH sampler), 388. See also
Partially collapsed Gibbs sampler
(PCG sampler)

bivariate distribution, 390
Gibbs sampler construction, 390
kernel density estimation, 389
MCMC sampler, 389, 390–391
PCG sampler use, 391–392
transition kernel, 388, 389, 390

PCG sampler. See Partially collapsed Gibbs
sampler (PCG sampler)

pdf. See Probability density function (pdf)
p-dimensional vector, 175

of coefficients, 452, 458, 460
estimation, 189
interval estimates, 182–189
point estimates, 178–181

Pedigree, 340. See alsoMarriage node graph
accumulated probability, 343
dependence structure, 347
DNAdescent, 341
E-step, 351
genotypic configurations on, 349
genotypic data structure, 342
genotypic peeling, 343
graphical representation, 340
HMM dependence data structure, 346
ibd, 346
28-member, 341

Penetrance model, 342
Perfect sampling, 21, 49, 58–59, 236, 469. See also

Markov chain Monte Carlo (MCMC);
Multigamma coupler

acceptance ratio, 222
acceptance/rejection method, 236–238
algorithm, 199, 236, 469
antithetic, 220–221
applications, 223
black box MCMC, 21
DCFTP, 238–243
difficulty in continuous state spaces, 210
drawback, 21, 236
Fill’s algorithm, 208–210
implementation, 206
independence, 503
multistage, 219
vs. nonperfect sampling, 223
Ro-CFTP, 206–208
strategies for, 206
successes of, 223

Perfect simulation method, 248
Permutation, 387. See alsoMarginalization

methods, 365
Peskun ordering, 95
PET. See Positron emission tomography (PET)
Phase transition, 158n
Point process, 244, 246

data, 449
formulations, 85
horizontal CFTP, 59
Markov, 233
Poisson, 227
spatial, 43, 227

Point-level data, 449
Poisson law, 499
Poisson point process, 227. See also Spatial point

processes
algorithm, 228
configurations, 228
DCFTP, 238
with distribution π, 230
unnormalized density, 228–229

Poisson-GMRF model, 465
Population MCMC sampling, 86
Population model, 342
Positivity constraint, 53
Positron emission tomography (PET), 363
Posterior density, 405

complete data, 257
HPDI, 428
hyperparameters and low-level

parameters, 143
unnormalized, 155

Posterior exploration, 402
GMRF prior, 406
via MCMC, 402
posterior mean, 406, 407
posterior realizations, 406, 407
via single-site metropolis, 405–406
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Posterior variances, Monte Carlo
estimates, 33

Potential energy, 114, 115
approximation, 155–156
constraints, 148
distribution, 142
posterior distribution, 123
splitting, 146, 147

Potential scale reduction factor
(PSRF), 81, 170

Predictive distribution, posterior,
453, 459, 569–570

Preston spatial birth–death chain, 234, 238, 245
Primary sampling unit (PSU), 539
Probabilistic model, 243
Probability density function (pdf),

122, 253, 280
joint, 287

Process convolution prior, 407, 416
continuous Gaussian process, 416
posterior mean, 416, 417
smoothing kernel, 417

Product space formulations sampling, 85
Proposal density, 25, 46

automatic scaling, 74
fastest-converging, 94
Metropolis–Hastings acceptance

probability, 320
Proposal distribution, 26, 42, 395, 431

adaptive MCMC, 94
AM algorithm, 104, 105
Gaussian, 396
mapping functions and, 72–73
parameters, 75

Pseudo-algorithm, 571
Pseudo-convergence, 18, 19
Pseudo-prior, 85, 308, 320

log, 309
ST/US chain, 304, 307

PSRF. See Potential scale reduction
factor (PSRF)

PSU. See Primary sampling unit (PSU)
Psychometric models, 532, 533

combinations, 538
continuous latent and discrete observable

variables, 536–537
discrete latent and discrete observable

variables, 537–538
latent and observable variables, 535–536

PT. See Parallel tempering (PT)
PX-DA. See Parameter expanded-data

augmentation (PX-DA)

Q

Qin and Liu’s procedure, 154–155
Quasars, 393

R

R. hat. See Potential scale reduction factor
(PSRF)

Radon–nikodym derivatives, 230. See also
Metropolis ratio

calculation, 40, 41, 44, 46
in MHGAlgorithm, 39

RAMA. See Regional adaptive Metropolis
algorithm (RAMA)

Random number generator (RNG), 32, 36
Random scan Gibbs sampler, 27, 389
Random sequence scan Gibbs sampler, 27
Random-walk Metropolis (RWM), 408, 213.

See also Langevin Monte Carlo (LMC);
Parallel tempering (PT); Serial
tempering (ST); Single-site Metropolis

acceptance rate, 150
behavior of, 130–132
benefit of avoiding, 130
frequently asked questions, 10–102
Hastings algorithm, 29, 56, 194
vs. HMC, 128–130
independent point obtaining cost, 141
inhomogeneity factor, 98
inhomogeneous covariance, 100–101
inhomogeneous target distributions,

98–99, 101
invariance to rotation, 134
MALA, 99
in Markov chain iteration, 430
MCMC traces, 409
multivariate, 402, 408–409
off-diagonal covariance, 100
optimal acceptance rate, 96–98
optimal scaling of, 95
partial momentum refreshment, 150
in posterior conditional distributions, 427
and proposal distribution, 73
proposals, 408
reversible jump analogy of, 78
scaling of, 139–141, 150
symmetric, 94
symmetric proposal distribution, 140

Rao-Blackwellized estimator (RB estimator),
179, 180

RB estimator. See Rao-Blackwellized estimator
(RB estimator)

Read-once CFTP (Ro-CFTP), 206–208
with blocks of fixed length, 207
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and CFTP, 207
deterministic map, 208

Recovery probabilities
HPDI, 428
posterior estimates, 440
posterior model probabilities, 432
survival probabilities and, 429
time, 422, 425

Recruitment over-fishing, 558
Regeneration theory, 60
Regional adaptive Metropolis algorithm

(RAMA), 107
Regions of interest (ROIs), 366, 367
Regression model, 539. See also Bayesian model

hierarchical logistic, 565, 567
linear, 483
multilevel logistic, 535
multivariate linear, 482
regression coefficients, 142

Repulsive distributions. SeeAntimonotone
distributions

Reverse peeling sampling, 349
Reversible jump. SeeMetropolis–Hastings (MH)

reversible jump chains
Reversible jump algorithm, 6, 67, 70, 430.

See also.Metropolis–Hastings–Green
algorithm (MHG algorithm)

Markov chain, 59
MCMC sampler, 67
sampler of Stephens, 85

Reversible jump MCMC sampler, 67. See also
Metropolis–Hastings (MH) algorithm

acceptance probability, 71
application areas, 68
Bayes factors estimation, 82–84
Bayesian modeling context, 67
Bayesian nonparametrics, 70
centering and order methods, 74–77
change-point models, 69
convergence assessment, 81
dimension matching, 71, 72
finite mixture models, 69–70
future directions, 86
generic samplers, 78–80
implementation, 71
joint posterior distribution, 67
label switching, 80–81
mapping functions, 72–73
marginalization and augmentation, 73–74
Markov chain construction, 68
Metropolis–Hastings algorithm, 67–68
moment matching, 72
multi model sampling methods, 84
multi-step proposals, 77–78
with N iterations, 68
one-to-one mapping function, 71

post simulation, 80–84
proposal distributions, 72, 73
second-order method, 76–77
time series models, 70
variable selection, 70
zeroth-order method, 75–76

Reweighting, 353–354
Ring-recovery data, 420. See also Count data

count data and, 435–438, 441
covariate analysis, 422–425
m-array, 420
mixed effects model, 425–428
model uncertainty, 428, 429–432
multinomial probabilities, 421
for UK Lapwings, 421

RNG. See Random number generator (RNG)
Ro-CFTP. See Read-once CFTP (Ro-CFTP)
ROIs. See Regions of interest (ROIs)
Running time analysis, 245

bad event, 246–247
good event, 246
on perfect simulation methods, 248–250

Rural–urban migration, 563
migration data, 564–569

RWM. See Random-walk Metropolis (RWM)

S

SAEM. See Simulated annealing EM (SAEM)
Sampling. See Perfect sampling
Sampling-importance resampling algorithm.

(SIR algorithm), 549
SAN. See Storage area network (SAN)
SBM. See Subsampling bootstrap method (SBM)
Scanner drift, 368
Schaefer surplus production function,

quadratic, 554
SD. See Standard deviation (SD)
Second-generation MCMC revolution, 49
Sequential Monte Carlo (SMC), 86
Serial tempering (ST), 297, 298. See also Parallel

tempering (PT)
annealing analogy, 299
Hastings ratio, 300
tuning, 301–302

SGLM. See Spatial generalized linear
model (SGLM)

Shadow Hamiltonian, 144
Simple slice sampler, 257. See also Data

augmentation (DA)—algorithm
Simulated annealing EM (SAEM), 54
Simulated tempering (ST), 297

annealing analogy, 298
augmented sampler, 414
effectiveness, 300–301
parallel tempering, 299–300
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Simulated tempering (ST) (Continued)
serial tempering, 300, 301–302
during trajectory, 157
umbrella sampling, 302–303

Simulators, fast approximate, 402, 411. See also
Electrical impedance tomography (EIT)

approximate solver production, 412, 413
augmented sampler, 414–415
delayed acceptance Metropolis, 413–414
MLUPS algorithm, 412
for multigrid EIT simulator, 412
utilizing approaches, 411, 412

Single-lag models, 496
Single-site Metropolis, 405. See also

Random-walk Metropolis (RWM)
chains from, 411
MCMC traces, 409
posterior mean, 406, 407, 416
realizations, 406, 407
scan, 417
updates, 415

Single-site updates, 515–516. See also Block
updates; Parameter updates

in posteriormean image, 407
in samplers, 349
single-site Gibbs move, 516–517
single-site independence sampler, 517–518

SIR algorithm. See Sampling-importance
resampling algorithm. (SIR algorithm)

Slice sampler. See also Gibbs sampler;
Multigamma coupler

perfect, 216–217
simple, 257

Slice sampling, perfect, 215–217. See also
Coupling—methods

SLLN. See Strong law of large numbers (SLLN)
Slowly varying trend terms, 368
Small set, 211
SMC. See Sequential Monte Carlo (SMC)
Soft core model, 229
Sojourn length, 329

distribution of, 330
Souter’s preference shift, 489
Spatial data, 449

Bayesian analysis of, 243
categories, 449
geodesic distances, 452
in point processes, 227

Spatial generalized linear mixed models. See
Spatial generalized linear model
(SGLM)

Spatial generalized linear model (SGLM), 458.
See also Linear spatial models;
Non-Gaussian Markov random field
models (NMRF models)

binary data, 459–460
count data, 460, 461
framework, 458–459
GMRF formulation, 459
infant mortality rates, 461
Langevin–Hastings MCMC, 461–462,

463–465
likelihood-based inference, 467
MCMC for, 463
Poisson-GMRF model, 465
posterior mean infant mortality rates, 461
zero-inflated data, 462–463

Spatial modeling, 449–450. See alsoMarkov
chain Monte Carlo (MCMC)

for dependence, 450
joint distributions, 466
Markov random field specification, 451
for spatially varying mean, 450–451

Spatial point processes, 43, 227. See also
Poisson point process

Spatial random effects
integration, 457
and mixing, 467
in modeling dependence. 471
regression parameter interpretation, 459

Spectral analysis
in high-energy astrophysics, 392–393
MCMC sampler comparison, 396
using MH sampler, 395, 396
PCG I construction, 394–395
PCG II construction, 395
probability vector computation, 395
quasar’s spectrum, 393–394
sampler’s ESS, 396–397
standard Gibbs sampler failure, 394

Spectrum, 392
Split chain, 273. See also Gibbs chain;

Markov chain
regeneration and, 60, 274, 277
simulation, 275–276

Splitting technique, 211. See also
Coupling—methods

Square root law, 7
SRS. See Stochastic recursive sequence (SRS)
ST. See Serial tempering (ST); Simulated

tempering (ST)
Standard deviation (SD), 425
State-dependent proposal scalings, 107. See also

Metropolis-Adjusted Langevin
algorithm (MALA)

State–space, 4. See also Count data—model
selection; Integrated analysis, count
data; Markov chain Monte Carlo
(MCMC)

Bayesian analysis, 515
block updates, 518–523
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centered parameterizations, 525
change-point model, 514
in continuous, 201
in count data analysis, 433
discrete HMM, 514
disjoint union, 46
equilibrium distribution, 46
full, 114, 127, 128
functional, 6
Hastings ratio and, 35
Markov chain, 14, 135, 286
of MCMC, 74
MHG with, 45
model, 434, 435, 513, 549, 553
observation process, 434
parameter updates, 523–527
of Poisson process, 44
pseudo-convergence, 18
sampler and, 32
Schaefer surplus production, 555
single-site updates, 515–518
in singular proposals, 43
SV, 513
system process, 43
trajectory length, 137
variables, 152, 200

Statistical ecology
Bayesian methods in, 419
count data analysis, 433
covariate analysis, 422
ecological data forms, 420
integrated analysis, 435–436
marginal posterior probability, 432
MCMC algorithm, 436–437
model, 425–426, 428–429, 430, 439
posterior conditional distributions,

423–424, 427
posterior inference, 426–427
proposal distribution, 431
reversible jump algorithm, 430–431
ring-recovery data analysis, 420–421
state–space model, 434

Statistical models
complex, 541
in educational research, 531, 532–534
multilevel, 384, 534–535
psychometric models, 533, 535

Stepsize
in approximating Hamiltonian dynamics,

119–122
leapfrog, 130, 135–137, 156–157
in 2D Gaussian distribution, 128

Stochastic process, 5
Markov chains and, 4, 14
variance estimation, 13

Stochastic recursive sequence (SRS), 200

bounding chain’s, 204
monotone, 202, 205

Stochastic volatility (SV), 513
autocorrelation values, 519

Stock, 547
hyperparameters of priors, 555
recruit meta-analysis, 558, 559, 560

Stock assessment models, 547. See also
Fisheries science

CPUE, 554
features, 548
fully Bayesian, 549
ill-conditioned, 548
shortcomings of, 549
surplus production models, 553–554

Storage area network (SAN), 504
Strauss process, 229

density, 238
locally stable, 233, 242

Strong law of large numbers (SLLN), 107, 108,
175, 263

Subsampling, 27–28
Subsampling bootstrap method (SBM), 187–189.

See also Overlapping batch means
(OLBM)

Surplus production models, 553–554
SV. See Stochastic volatility (SV)
Swindles, 217

antithetic perfect sampling, 220–221
exact and approximate MCMC algorithms,

221
exact samples, 218–219
Metropolis–Hastings algorithm, 222
multistage perfect sampling, 219
parallel antithetic backward CFTP processes,

221
perfect tour, 218

Symplectic integration methods, 145

T

Tempering method, 157
Jacobian matrix, 158
limitation, 160
multiple mode distributions, 144
trajectories, 159

Thinning, 235
Dt, 238
purpose of, 171

Three-level logit model, 566–567
Time series models, 70. See also

State–space—model
Time-backward sequence, 200
Time-forward sequence, 200
TIMSS. See Trends in International Mathematics

and Science Study (TIMSS)
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Traits
ibd-graph computations, 348
marker genotype information and, 354, 358
on MCMC, 339

Trajectory length
choosing, 137
error in H, 144
optimal choice of, 156
stepsize, 140

Transition probability distribution, 4
asymptotic variance formula and, 8
initial distribution, 5, 6

Transmission model, 342
Trends in International Mathematics and

Science Study (TIMSS), 539
Trimming, 387

U

Umbrella sampling (US), 297, 302–303
Unnormalized Bayes factor, 303, 304, 308–309
Update mechanism, 22

combining updates, 26
Gibbs update, 24–25, 26
Metropolis update, 24
Metropolis–Hastings, 22–24, 25

US. See Umbrella sampling (US)

V

Vanishing adaptation condition. See
Diminishing adaptation condition

Variable selection, 70
marginalization in, 74
in regression, 57
RJMCMC, 59

Variance reduction factor (VRF), 221
V-cycle multigrid iterative algorithm, 412
Village migration

causation of, 564, 565, 570–571
inequality in, 569–570, 573
rates, 564, 565, 566

Village trip, 565, 566
hierarchical model migration, 568
for men and women, 566
on migration, 570–572, 573

Village–year model, 569
DIC statistic for, 568, 573
predictive distribution, 569–570

VRF. See Variance reduction factor (VRF)

W

Weak law of large numbers (WLLN), 107, 108
White box approach, 36
WinBUGS, 445, 550

code for, 420
as MCMC programs, 532, 541
surplus production model code, 555

Windowed HMC procedure, 152–154. See also
Qin and Liu’s procedure

Windows of states
accept window, 153
acceptance probability, 114, 144, 152–155
advantage, 154
HMC performance, 154
reject window, 153

Winsorized Poisson automodel, 468
Wishart distribution

in prior, 501
for variance components, 377

WLLN. SeeWeak law of large numbers (WLLN)




	Contents
	Preface
	Editors
	Contributors
	Part I. Foundations, Methodology, and Algorithms
	Chapter 1. Introduction to Markov Chain Monte Carlo
	Chapter 2. A Short History of MCMC: Subjective Recollections from Incomplete Data
	Chapter 3. Reversible Jump MCMC
	Chapter 4. Optimal Proposal Distributions and Adaptive MCMC
	Chapter 5. MCMC Using Hamiltonian Dynamics
	Chapter 6. Inference from Simulations and Monitoring Convergence
	Chapter 7. Implementing MCMC: Estimating with Confidence
	Chapter 8. Perfection within Reach: Exact MCMC Sampling
	Chapter 9. Spatial Point Processes
	Chapter 10. The Data Augmentation Algorithm: Theory and Methodology
	Chapter 11. Importance Sampling, Simulated Tempering, and Umbrella Sampling
	Chapter 12. Likelihood-Free MCMC

	Part II. Applications and Case Studies
	Chapter 13. MCMC in the Analysis of Genetic Dataon Related Individuals
	Chapter 14. An MCMC-Based Analysis of a Multilevel Model for Functional MRI Data
	Chapter 15. Partially Collapsed Gibbs Sampling and Path-Adaptive Metropolis–Hastings in High-Energy Astrophysics
	Chapter 16. Posterior Exploration for Computationally Intensive Forward Models
	Chapter 17. Statistical Ecology
	Chapter 18. Gaussian Random Field Models for Spatial Data
	Chapter 19. Modeling Preference Changes via a Hidden MarkovItem Response Theory Model
	Chapter 20. Parallel Bayesian MCMC Imputation for Multiple Distributed Lag Models: A Case Study in Environmental Epidemiology
	Chapter 21. MCMC for State–Space Models
	Chapter 22. MCMC in Educational Research
	Chapter 23. Applications of MCMC in Fisheries Science
	Chapter 24. Model Comparison and Simulation for Hierarchical Models: Analyzing Rural–Urban Migrationin Thailand

	Index
	Back cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


