
High-Dimensional Bayesian Structure
Learning in Gaussian Graphical Models

using Marginal Pseudo-Likelihood

Reza Mohammadi, Marit Schoonhoven, Lucas Vogels, S. Ilker Birbil
Department of Business Analytics, University of Amsterdam

July 4, 2023

Abstract

Gaussian graphical models depict the conditional dependencies between variables
within a multivariate normal distribution in a graphical format. The identification
of these graph structures is an area known as structure learning. However, when
utilizing Bayesian methodologies in structure learning, computational complexities
can arise, especially with high-dimensional graphs surpassing 250 nodes. This paper
introduces two innovative search algorithms that employ marginal pseudo-likelihood
to address this computational challenge. These methods can swiftly generate reliable
estimations for problems encompassing 1000 variables in just a few minutes on stan-
dard computers. For those interested in practical applications, the code supporting
this new approach is made available through the R package BDgraph.

Keywords: Bayesian structure learning; High dimensionality; Gaussian; Graphical model;
Marginal pseudo-likelihood; Birth-death process; Markov Chain Monte Carlo approach.

1

ar
X

iv
:2

30
7.

00
12

7v
1

 [
st

at
.M

E
]

 3
0

Ju
n

20
23

1 Introduction

Graphical models have been used in many application areas for analyzing conditional depen-

dencies in a network with a large number of variables. Partial correlation is the correlation

between two variables with the effect of the other variables removed; two variables are

called conditionally independent if they are partially uncorrelated. The conditional depen-

dencies can be depicted in a graph where each node corresponds to a random variable (see

Lauritzen (1996)). For an undirected graph, a missing edge between two nodes indicates

that the two variables are conditionally independent (Rue and Held (2005)). Estimating

the structure of the graph is called structure learning.

Consider the undirected graph G = (V,E), where V = {1, ..., p} is the set of nodes,

E is the set of edges and where we use if (i, j) ∈ E then i < j. The nodes correspond

to the random variables and form a p-dimensional vector x. In this article, we focus on

the Gaussian graphical model (GGM), in which case x = (x1, ..., xp)
T ∼ Np(0,Σ) with Σ

the covariance matrix. The precision matrix is denoted by K = Σ−1. If Kij = 0, then

(i, j) /∈ E and xi and xj are conditionally independent (see Lauritzen (1996)).

For the purpose of structure learning in GGMs, both frequentist (see e.g. Friedman

et al. (2008)) and Bayesian approaches are available. In this paper, we focus on Bayesian

methods in graphical models, which is known as Bayesian structure learning (BSL). BSL

uses knowledgde about prior beliefs, which can increase the accuracy of the output. An-

other advantage of BSL is that it outputs the full posterior distribution of the parameters.

However, the disadvantage of existing BSL methods is that they require considerable com-

putational time, especially for high dimensions, i.e. when the number of variables (p) is

high.

Suppose we have a random sample X = (X1, ...,Xn)T from Np(0,Σ) and the depen-

2

dence structure is represented by an undirected graph G∗. Structure learning aims at

identifying G∗ based on X and a Bayesian approach achieves this by obtaining the poste-

rior distribution of a graph G given the data X, which is denoted by P (G|X). Obtaining

P (G|X) requires the calculation of P (X|G), which in turn requires the calculation of a

complex integral. For this reason, most BSL methods obtain the joint posterior distribution

of G and K given the data X, which is denoted by P (G,K|X).

Calculating P (G,K|X) is computationally impossible because of the number of possi-

ble graphs and precision matrices. Therefore, most BSL methods rely on a search algorithm

over the graph space. Most BSL methods use Markov Chain Monte Carlo (MCMC) sam-

pling. Green (1995) proposed a so-called reversible jump MCMC, which is based on a

discrete-time Markov chain. The derivation of P (G,K|X) requires the prior distribution

of the precision matrix K given the graph G, denoted by P (K|G). Most BSL methods use

the G-Wishart prior for P (K|G), which was introduced by Roverato (2008). A computa-

tionally expensive step in the search algorithm is to determine the ratio of prior normalizing

constants for the G-Wishart distribution. To reduce the computational time, approxima-

tions for the ratio of normalizing constants have been proposed by Wang and Li (2012),

Lenkoski (2013) and Hinne et al. (2014) among others. In addition, Mohammadi and Wit

(2015) proposed a search algorithm known as the birth-death MCMC algorithm, which

is based on a continuous-time Markov chain, to explore the graph space more efficiently.

Subsequently, Mohammadi et al. (2021) proposed a closed-form approximation to obtain

the ratio of the normalizing constants, which further reduces the computational time of the

reversible jump and birth-death search algorithms. Wang (2015) introduced a new type of

MCMC-based search algorithm, namely the spike-and-slab algorithm. His algorithm uses

a new prior on the precision matrix K and therefore avoids the computationally costly

3

sample from the G-Whisart distribution and also allows changing the graph by more than

one edge leading for a faster convergence of the MCMC chain. However, a disadvantage

of the existing MCMC algorithms is that they evaluate P (G,K|X) instead of P (G|X).

This means that, when a graph is updated during an iteration of the algorithm, the preci-

sion matrix K needs to be updated, which is a computationally expensive step. Existing

MCMC-based BSL methods are therefore computationally expensive from 100 variables

upward for the reversible jump and birth-death MCMC algorithms, or 250 variables for the

spike-and-slab algorithm introduced by Wang (2015).

The main contribution of this paper is to introduce a new MCMC-based BSL method.

This method evaluates P (G|X) instead of P (G,K|X) and thus avoids having to sample

the precision matrix at each iteration of the search algorithm. With this method, we

approximate P (X|G) by using the MPL approach. The MPL has been used by Pensar

et al. (2017) to learn undirected graphical models with discrete variables. Leppä-Aho

et al. (2017) applied the MPL approach to approximate P (X|G) but used a hill-climbing

search algorithm that outputs single graph estimation. In this paper, we will use the MPL

approach in combination with the MCMC search algorithm, allowing statistical inference.

The rest of the paper is structured as follows. Section 2 reviews the basic concepts

related to BSL, Section 3 outlines the new BSL method together with the MCMC-based

search algorithm and Section 4 evaluates the proposed BSL method as well as existing

state-of-the-art BSL methods. We end with concluding remarks and a description of some

issues for future research.

4

2 Bayesian Structure Learning

This section starts by reviewing the basic concepts related to Bayesian Structure Learning

(BSL).

Recall from Section 1 that X = (X1, ...,Xn)T denotes the sample used to identify

G∗. We assume that X has an Np distribution whose conditional dependence structure is

represented by the undirected graph G∗, an unknown quantity. A BSL approach aims at

identifying G∗ based on X by obtaining the posterior probability of the graph conditional

on the data

P (G|X) ∝ P (X|G)P (G) (1)

where P (G) is the likelihood of a graph G, for which a non-informative prior is often

used such as the uniform distribution over all graphs with p nodes (see Mohammadi et al.

(2021)), and P (X|G) is the marginal likelihood of G, which is given by

P (X|G) =

∫
K

P (X|G,K)P (K|G)dK (2)

where P (K|G) denotes the prior for K given G and P (X|G,K) is the likelihood func-

tion. The G-Wishart distribution (Roverato (2008) and Letac and Massam (2007)) is the

conjugate prior for P (K|G). The G-Wishart density is given by

P (K|G) =
1

IG(b,D)
|K|

b−2
2 exp{−1

2
tr(KD)}1PG

(K) (3)

where |K| denotes the determinant of K, tr(A) is the trace of a square matrix A, PG is

the set of positive definite matrices K with kij = 0 if (i, j) /∈ E and 1PG
(K) is an indicator

function that equals 1 ifK ∈ PG and 0 otherwise. The symmetric positive definite matrixD

and the scalar b > 2 are the scale and the shape parameters of the G-Wishart distribution.

They are often set to b = 3 and D = I. IG(b,D) is the normalizing constant, which is given

5

by

IG(b,D) =

∫
K∈PG

|K|
b−2
2 exp{−1

2
tr(KD)}dK. (4)

Substituting the G-Wishart distribution into Equation 2 gives

P (X|G) = (2π)−np/2 IG(b+ n,D +XTX)

IG(b,D)
. (5)

This ratio of normalizing constants is hard to obtain. Most BSL methods therefore sample

over the joint space of graphs and precision matrices. The joint posterior distribution of

the graph G and the precision matrix K is given by

P (G,K|X) ∝ P (X|K,G)P (K|G)P (G)

∝ P (G)
1

IG(b,D)
|K|

b+n−2
2 exp{−1

2
tr(K(D +XTX))}.

(6)

Calculating P (G,K|X) is not possible because the set of all possible graphs is too

big. To obtain P (G,K|X), most BSL methods therefore use Markov Chain Monte Carlo

(MCMC) sampling. A well-known sampling algorithm for GGMs is the reversible jump

MCMC algorithm based on a discrete-time Markov chain, which was first used for Gaussian

graphical models by Dobra et al. (2011). During each iteration s = 1, ..., S, the state of the

Markov chain is denoted by (G(s), K(s)) and the chain jumps to state (G(s+1), K(s+1)). For a

sufficiently large number of iterations, the distribution of the sample pairs {(G(1), K(1)), ..., (G(S), K(S))}

approximates the posterior distribution P (G,K|X). The reversible jumpMCMC algorithm

applies the Metropolis Hastings (MH) algorithm that was introduced by Green (1995). Each

iteration first proposes a new graph G(s+1) by deleting or adding one edge from G(s); the

move to the new graph is accepted with probability α. To get the probability α, the fol-

lowing, computationally expensive, ratio of normalizing constants needs to be determined

IG(s+1)(b,D)

IG(s)(b,D)
. (7)

6

Given the new graph G(s+1), a new precision matrix K(s+1) needs to be derived by sam-

pling from the G(s+1)-Wishart distribution. This step is also computationally expensive.

After the introduction of the reversible jump MCMC for BSL, several improvements have

been proposed to reduce its computational time. Wang (2012), Cheng and Lenkoski (2012)

and Mohammadi et al. (2021) introduced approximations for the ratio of the normaliz-

ing constants in Equation 7. Second, Lenkoski (2013) proposed a more efficient sampling

algorithms to reduce the computational time needed to sample from the G-Wishart dis-

tribution. Hinne et al. (2014) used existing techniques based on conditional Bayes factors

and the continuous-time Markov chain to reduce the computational time.

The reversible jump algorithms are based on a discrete-time Markov chain. As a conse-

quence, these algorithms often have low acceptance rates and need more time for MCMC

chain convergence. To overcome this issue, Mohammadi and Wit (2015) proposed a new

algorithm based on the continuous-time Markov chain. To move from a state (G(s), K(s))

with edge set E(s) to a new state (G(s+1), K(s+1)), the algorithm first calculates the so-called

birth rates for all edges not in E(s) and death rates for all edges in E(s). The birth (death)

rate of an edge (not) in E(s) follows an independent Poisson process with rate equal to

the corresponding birth (death) rate, and the time between two events is exponentially

distributed. In every state (G(s), K(s)), the chain spends a waiting time W (s) in this state

before it jumps to a new state (G(s+1), K(s+1)). After a sufficiently large number of jumps,

the samples of (G(s), K(s)) weighted by their waiting time W (s) are an approximation of

the posterior distribution P (G,K|X).

Despite the above improvements, reversible jump and birth-death search algorithms

need a lot of computational time because, during each iteration, a new precision matrix

needs to be sampled from the G-Wishart distribution and, during each iteration, the graph

7

changes by at most one edge. To overcome these problems, Wang (2015) introduced the

so-called spike-and slab-prior that replaces the G-Wishart prior.

3 Bayesian Structure LearningWith Marginal Pseudo-

Likelihood

In this section, we derive new BSL methods based on the marginal pseudo-likelihood (MPL)

approximation. We describe the approach in combination with the reversible jump and

birth-death MCMC search algorithms. Section 3.1 and 3.2 describe the birth-death and

reversible jump search algorithms respectively, and Section 3.3, derives the birth and death

probabilities for the birth-death algorithm and α for the reversible jump algorithm, using

the MPL approximation.

3.1 Birth-Death MCMC Algorithm

Recall that, for this new method, we aim to save computational time by obtaining P (G|X)

from Equation 1 (instead of P (G,K|X) from Equation 6) and searching over the graph

space instead of the joint space of graphs and precision matrices. Calculating P (G|X) for

all possible graphs G directly is not possible because the graph space is too big. We there-

fore use MCMC sampling. Mohammadi and Wit (2015) introduced birth-death MCMC

sampling to search over the joint space of graphs and precision matrices in order to ap-

proximate P (G,K|X). Since we approximate P (G,K|X) by the MPL approximation, the

birth-death MCMC search algorithm (BMCMC) that we describe below searches only over

the graph space.

The birth-death algorithm is based on a continuous-time Markov chain (Preston (1975))

8

and was first applied to Gaussian graphical models by Mohammadi and Wit (2015). During

iteration s, with s = 1, ..., S, the state of the Markov chain is a certain graph G(s) and it

jumps to a new state G(s+1) by adding or removing one edge. These events of adding

(removing) one edge are called birth (death) processes and are modeled as independent

Poisson processes. Each edge e /∈ E is born independently of other edges that are not in

E as a Poisson process with rate Be(G). If the birth of edge e occurs, the process jumps

to G+e = (V,E ∪ {e}). Similarly, each edge e /∈ E dies independently of other edges in E

as a Poisson process with rate De(G). If the death of edge e occurs, the process jumps to

G−e = (V,E\{e}). Since the birth and death processes are modeled as independent Poisson

processes, the time between two consecutive events is exponentially distributed with mean

W (G) =
1∑

e∈Ē Be(G) +
∑

e∈E De(G)
, (8)

where W (G) is called the waiting time and the birth/death probabilities are

P (birth of edge e) =
Be(G)∑

e∈Ē Be(G) +
∑

e∈E De(G)
, for each e ∈ Ē (9)

P (death of edge e) =
De(G)∑

e∈Ē Be(G) +
∑

e∈E De(G)
, for each e ∈ E. (10)

Dobra and Mohammadi (2018) proved that the following is a sufficient condition for the sta-

tionary distribution of the birth-death process to equal the posterior distribution P (G|X)

Be(G)P (G|X) = De(G
+e)P (G+e|X). (11)

Based on Equation 11, the birth and death rates are defined as:

Be(G) = min

{
P (G+e|X)

P (G|X)
, 1

}
for each e ∈ Ē (12)

and

De(G) = min

{
P (G−e|X)

P (G|X)
, 1

}
for each e ∈ E (13)

9

and more compactly as

Re(G) = min

{
P (G′|X)

P (G|X)
, 1

}
(14)

with G′ either G+e or G−e. This birth-death algorithm that searches over the graph space

only is denoted by BD-G and described in Algorithm 1.

Algorithm 1: BD-G search algorithm

Input: A graph G = (V,E) with data X.

for S iterations do

for all the possible moves in parallel do

Calculate the birth and death rates by Equation 14;

Calculate the waiting time by Equation 8;

Update the graph based on the birth/death probabilities in Equations 9 and 10.

Output: Samples from the posterior distribution (1).

The output of Algorithm 1 consists of a set of S graphs G(1), ..., G(S) and a set of S

waiting times W (1), ...,W (S). Based on the Blackwellized estimator given by Cappé et al.

(2003), the estimated posterior probability of each graph is proportional to the expectation

of the waiting time of that graph. The posterior probability of an edge e can be estimated

by

P̂ (edge e|X) =

∑S
s=1 1(e ∈ G(s))W (s)∑S

s=1W
(s)

, (15)

where S denotes the number of MCMC iterations and 1(e ∈ G(s)) is the indicator function

that equals 1 if e ∈ G(s) and 0 otherwise.

3.2 Reversible Jump MCMC Algorithm

The reversible jump MCMC searach algorithm uses the Metropolis Hastings (MH) algo-

rithm introduced by Green (1995). Within each step of the search algorithm, a new graph

10

G′ is proposed by adding or deleting an edge from G, and the acceptance probability α(G)

is calculated, which is used to decide whether or not the graph should be changed. We use

the random distribution as the proposal distribution for the new graph, as has been done

by Dobra et al. (2011) and Lenkoski and Dobra (2011). The acceptance probability α(G)

can be calculated as

α(G) = min

{
P (G′|X)

P (G|X)
, 1

}
(16)

as shown by Green (1995). Note that α(G) is equal to Re(G) given by Equation 14. The

reversible jump MCMC search algorithm that we use within our new method only moves

over the graph space and is abbreviated to RJ-G. The procedure is described by Algorithm

2.

Algorithm 2: RJ-G search algorithm

Input: A graph G = (V,E) with data X.

for S iterations do

Select a proposal graph;

Calculate α(G) according to 16 and update the graph.

Output: Samples from the posterior distribution (1).

3.3 Marginal Pseudo-Likelihood

In this subsection, we approximate the ratio in 14 to obtain Re(G). To do so, we rewrite

the fraction in 14 as

P (G′|X)

P (G|X)
=

P (G′)P (X|G′)

P (G)P (X|G)
, (17)

∀ G′ = (V,E ∪ e = (i, j)) or G′ = (V,E\e = (i, j)) and G = (V,E). To approximate

P (X|G), we use the MPL approximation:

P (X|G) ≈
p∏

h=1

PG(Xh|Xnb(h)) (18)

11

where Xnb(h) denotes the data belonging to xnb(h) with nb(h) the neigbors of node h i.e.

nodes i for which (i, j) ∈ E, and PG is the probability based on graph G. We then have:

P (X|G′)

P (X|G)
=

∏p
h=1 PG′(Xh|Xnb(h))∏p
h=1 PG(Xh|Xnb(h))

=
PG′(X i|Xnb(i))PG′(Xj|Xnb(j))

PG(X i|Xnb(i))PG(Xj|Xnb(j))
. (19)

For this last step, we use the fact that the graphs G and G′ are the same except that one

link e = (i, j) is added or removed in moving from G to G′. As a result, the probabilities

of all nodes except xi and xj are the same and can be removed from the fraction; only the

probabilities that relate to xi and xj remain. Finally, from Leppä-Aho et al. (2017) and

Consonni and Rocca (2012), we know that

PG(Xh|Xnb(h)) = π
−(n−1)

2
Γ
(
n+ph

2

)
Γ
(
ph+1
2

)n−1(2ph+1)

2

(
|Sfa(h)|
|Snb(h)|

)−(n−1)
2

, (20)

where fa(h) = nb(h)∪h is the family of variable xh, ph is the size of the set nb(h), S = XTX

is the unscaled sample covariance matrix, SA denotes the submatrix of S corresponding to

the variables in set A, and matrices Sfa(h) and Snb(h) should be positive definite for every

h, which is the case if n ≥ max{ph + 1|h = 1, ..., p}. Using the result from Equation 20 to

obtain the probabilities in the right-hand side of Equation 19, we can easily calculate the

fraction P (G′|X)
P (G|X)

in Equation 17 to obtain Re(G) in 14.

4 Performance Evaluation

In this section, we compare the performances of the newly proposed methods based on the

MPL approximation combined with the reversible jump and birth-death MCMC search al-

gorithms (MPL-BD and MPL-RJ respectively) with two state-of-the-art methods, namely

the birth-death MCMC method (BD) proposed by Mohammadi et al. (2021), and the

method proposed by Wang (2015) based on the spike-and-slab prior (SS). We use simu-

lation to evaluate the methods in terms of quality and efficiency. Section 4.1 describes

12

the performance metrics used, Section 4.1 gives the simulation settings and Section 4.3

summarizes the results.

4.1 Performance Metrics

The methods will be evaluated in terms of accuracy and computational time. We start

our explanation with graph accuracy. Recall that the MCMC methods do not produce a

single graph estimation G but, for each MCMC iteration, a graph resulting in a collection

of graphs {G(1), ..., G(S)} with S the number of MCMC iterations. The graph collection

{G(1), ..., G(S)} is used to calculate the accuracy metrics namely the Area Under Curve

(AUC) (see e.g. Hanley and Mcneil (1982)), the average edge inclusion probability for all

edges in the underlying graph G∗ (p+) and the average edge inclusion probability for all

the non-edges (p−).

To define the AUC, we first have to calculate the edge inclusion probability pij, the true

positive ratio (TPR) and the false positive ratio (FPR). The edge inclusion probability pij

is defined by Equation 15. Note that W (s) = 1 for the MPL-RJ and RJ methods. The

TPR (the ratio between the number of incorrectly identified edges and the number of true

edges) can then be calculated as

TPR =
1

|E∗|
∑

∀(i,j)∈G∗

I[p(i, j) > α], (21)

with |E∗| the number of edges in the true graph G∗ and α the threshold value. Similary,

the FPR (the ratio between the incorrectly identified edges and the number of non-edges)

is calculated by

TPR =
1

|Ē∗|
∑

∀(i,j)/∈G∗

I[p(i, j) > α], (22)

with |Ē∗| the number of non-edges in the true graph G∗. The Receiver Operating Charac-

teristic (ROC) shows the TPR and FPR for different values of α. For a method that ranks

13

perfectly, it is possible to find a threshold value α for which the FPR value is still 0 and

the TPR value is 1. In that case, the area under the ROC curve (AUC) is 1. Thus, the

AUC metric evaluates the quality of the ranking based on the outputted pij values.

The AUC does not evaluate the level of the pij values and in practice it is not known

what the ideal value for α is. This is why we will also evaluate the absolute level pij values,

by calculating the average pij for the edges in G∗, resulting in

p+ =

∑
∀(i,j)∈G∗ pij

|E∗|
, (23)

and the average pij for the non-edges in G∗, resulting in

p− =

∑
∀(i,j)/∈G∗ pij

|Ē∗|
. (24)

The metric p+ ranges from 0 (worst) to 1 (best); p− ranges from 0 (best) to 1 (worst).

Apart from accuracy, we evaluate the efficiency of the methods by measuring the wall

clock time using the following procedure. We run the methods for at least XXX iterations

and then determine whether the AUC has stabilized based on visual inspection. If the

AUC has not stabilized, we run the method again for XXXX iterations. If the AUC has

converged after those iterations, we determine the minimum time t for which the AUC

differs no more than 0.01 from the AUC value in the last iteration.

4.2 Simulation Settings

In the following, we set out the simulation settings, namely the graph types, values for n

and p, the number of simulations and the method-specific settings.

We consider three graph types:

1. Random: A graph in which every edge is randomly generated from independent

Bernoulli distributions with probability 0.2.

14

2. Cluster: A graph in which the number of clusters is max(2, [p/20]). Each cluster has

the same structure as the random graph.

3. Scale-free: A tree graph generated with the B-A algorithm provided by Albert and

Barabási (2002).

The expected number of edges depends on the value of p and the graph type, and is given

by Table 1.

p 50 100 500 1000

Random 20% 20% 20% 20%

Cluster 8% 3.3% 0.8% 0.4%

Scale-free 4% 2% 0.4% 0.2%

Table 1: Expected number of edges, expressed as a percentage of the number of pairwise

combinations of p.

We used p = 10, 50, 100, 500, 1000 and n ∈ p, 2p, 10p. For each sampled graph G∗, the

true precision matrix K∗ was sampled from the G-Wishart distribution WG(3, Ip). For

p = 10, 50, 100, we sampled 50 true graphs and corresponding precision matrices; for p =

500, 1000, we sampled 10 true graphs and precision matrices. Subsequently, for each com-

bination of G∗ and K∗, we sampled n observations from the p−variate normal distribution

with covariance matrix Σ∗ = K∗−1. As a prior for G, we used P (G) = 0.2|E|0.8p(p−1)/2−|E|.

For each MCMC search algorithm, we initialized the Markov chain with an empty graph

with p nodes. The number of iterations depended on AUC stabilization, varying between

5000 and 200 million. All methods were implemented using the BDgraph R package by Mo-

hammadi et al. (2021) and the ssgraph R package by Mohammadi (Mohammadi). For the

15

SS algorithm, we set ϵ = 0.02, υ = 2 and λ = 2 because these result in optimal performance,

as shown by Wang (2015). We did not use burn-in iterations.

4.3 Results

In this subsecton, we report the results of the simulation. As mentioned before, we evaluate

the discriminative power with the AUC metric, the level of the edge inclusion probabilities

with metrics p+ and p− and the efficiency of the methods in terms of wall clock time until

AUC convergence.

Table 2 shows the AUC values. We can learn from the table that, for problems with a

moderate number of variables (50 ≤ p ≤ 100), the AUC values are comparable. When both

the number of variables and observations are low (p = 10 in combination with n = 10 or

n = 20), the MPL-based methods achieve a slightly lower AUC value. When the number

of variables is high, i.e. p = 500 or p = 1000, the AUC value is considerably lower for the

BD methods than for the other methods. This is due to the fact that there are a lot of

true edges in G∗: 99,900. The Markov chain starts with an empty graph and the MPL-

BD method changes only one edge at a time so that too many iterations are necessary to

approach the true graph.

The level of the edge inclusion probabilities is evaluated by means of p+ and p−. Table

3 shows the p+ values; these values should be close to 1 because then the edges in the

true graph G∗ have a high edge inclusion probability pij. When the number of variables

is moderate (p = 50 or p = 100), the BD method has the highest p+ value. For all three

graph types, a high number of variables (p = 500 or p = 1000) raises the p+ value of the

MPL-based methods considerably. It is surprising that the SS method performs poorly in

terms of pij’s with its p+ value is considerably lower in all situations.

16

We also evaluate the p− metric, whose values are shown in Table 4. p− should be close

to 0 because it means that the pij values of the non-edges of G∗ are close to 0. For a

moderate or high number of variables (p ≥ 50), the p− values of the SS method are higher

than those of the other methods, while the MPL-based methods have the lowest p− values.

Only in the case of the random graph does the MPL-BD method show worse performance,

which is due to the huge number of edges in this situation.

The wall clock time until AUC convergence is shown in Table 5. For the random graph,

the MPL-RJ and SS methods are the fastest when the number of variables is high, i.e.

p = 500, 1000. However, that is an exceptional case because the number of possible edges

in the true graph G∗ is enormous. For the cluster graph, when the number of variables is

high, i.e. p = 500, 1000, the MPL-based methods are the fastest.

We also depict the differences in results by selecting two situations. Figure 1 shows

plots of the AUC, p+ and p− as functions of the wall clock time for the cluster graph given

a high number of variables and observations, i.e. p = 500 and n = 1000. We can see that

the AUCs of the MPL-based methods converge the fastest and that the resulting p+ and p−

values are better. Figure 2 shows the results for the random graph given a relatively small

problem size, i.e. p = 50 and n = 500. The plots show that the AUC of the MPL-based

methods converges the fastest but not much faster than the other methods and that the

p+ and p− values of the SS method are not as good.

To summarize, the simulation shows that for large problems, i.e. p = 500, 1000, the

MPL-based methods are of similar quality in terms of discriminative power and calibration,

and show outstanding performance in terms of computational efficiency. The only exception

is that, when the number of links is extremely high (the probability of a link is 0.2), the

MPL-BD method takes up considerable computational time. However, we can speed up

17

the algorithm by using parallelization (i.e. calculating the birth and death rates in parallel)

or by considering multiple jumps in each iteration of the algorithm.

(a) AUC (b) p− (c) p+

Figure 1: Convergence of AUC (left), p− (middle) and p+ (right) for the case of p = 500,

n = 5000 on the cluster graph

(a) AUC (b) p− (c) p+

Figure 2: Convergence of AUC (left), p− (middle) and p+ (right) for the case of p = 50,

n = 500 on the random graph

5 Concluding Remarks and Issues for Future Research

In this paper, we have proposed a new method that is based on a combination of MCMC

search algorithms, namely the reversible jump and birth-death MCMC, using the MPL to

18

graph p n MPL-RJ MPL-BD BD SS
random 10 10 0.62 (0.63) 0.61 (0.61) 0.7 (0.71) 0.7 (0.7)

20 0.73 (0.74) 0.73 (0.75) 0.76 (0.76) 0.76 (0.77)
100 0.86 (0.89) 0.86 (0.88) 0.88 (0.9) 0.87 (0.88)

50 50 0.71 (0.71) 0.72 (0.72) 0.73 (0.73) 0.72 (0.72)
100 0.77 (0.77) 0.78 (0.79) 0.79 (0.79) 0.78 (0.78)
500 0.88 (0.88) 0.9 (0.89) 0.91 (0.91) 0.88 (0.88)

100 100 0.69 (0.69) 0.72 (0.72) 0.73 (0.72) 0.73 (0.73)
200 0.75 (0.75) 0.78 (0.78) 0.79 (0.79) 0.78 (0.78)
1000 0.86 (0.86) 0.89 (0.88) 0.9 (0.9) 0.88 (0.88)

500 5000 0.84 (0.84) 0.77 (0.84) 0.5* (0.5) 0.81 (0.82)
1000 10000 0.78 (0.77) 0.5* (0.5) 0.5* (0.5) 0.79 (0.79)

cluster 10 10 0.66 (0.69) 0.66 (0.69) 0.72 (0.73) 0.73 (0.74)
20 0.76 (0.83) 0.78 (0.81) 0.79 (0.84) 0.79 (0.82)
100 0.92 (0.95) 0.92 (0.93) 0.93 (0.95) 0.92 (0.95)

50 50 0.82 (0.83) 0.83 (0.83) 0.85 (0.86) 0.84 (0.85)
100 0.87 (0.88) 0.88 (0.88) 0.89 (0.9) 0.88 (0.88)
500 0.94 (0.94) 0.94 (0.94) 0.95 (0.96) 0.93 (0.93)

100 100 0.85 (0.86) 0.87 (0.87) 0.88 (0.88) 0.87 (0.86)
200 0.89 (0.89) 0.91 (0.91) 0.92 (0.92) 0.89 (0.89)
1000 0.94 (0.94) 0.95 (0.96) 0.95 (0.95) 0.93 (0.93)

500 5000 0.98 (0.98) 0.98 (0.98) 0.77* (0.77) 0.96 (0.96)
1000 10000 0.98 (0.98) 0.99 (0.99) 0.52* (0.52) 0.97 (0.96)

scale-free 10 10 0.65 (0.66) 0.65 (0.66) 0.71 (0.71) 0.72 (0.73)
20 0.75 (0.77) 0.75 (0.78) 0.77 (0.78) 0.77 (0.77)
100 0.88 (0.9) 0.89 (0.9) 0.9 (0.92) 0.89 (0.89)

50 50 0.8 (0.8) 0.8 (0.81) 0.84 (0.84) 0.84 (0.84)
100 0.85 (0.86) 0.86 (0.87) 0.88 (0.89) 0.89 (0.89)
500 0.93 (0.93) 0.94 (0.94) 0.95 (0.95) 0.94 (0.94)

100 100 0.83 (0.82) 0.85 (0.87) 0.88 (0.87) 0.89 (0.89)
200 0.87 (0.86) 0.89 (0.89) 0.91 (0.92) 0.91 (0.91)
1000 0.93 (0.93) 0.95 (0.95) 0.95 (0.96) 0.95 (0.95)

Table 2: AUC mean (median) over several replications. Number of replications differs
across cases (see excel file “simulations-overview”) . Entries with a * indicate that the
AUC had not converged after 5 days.

19

graph p n MPL-RJ MPL-BD BD SS
random 10 10 0.42 (0.38) 0.46 (0.39) 0.31 (0.29) 0.23 (0.21)

20 0.39 (0.36) 0.39 (0.36) 0.4 (0.38) 0.32 (0.32)
100 0.62 (0.61) 0.62 (0.61) 0.61 (0.61) 0.48 (0.43)

50 50 0.28 (0.28) 0.28 (0.28) 0.36 (0.36) 0.31 (0.31)
100 0.38 (0.38) 0.38 (0.38) 0.46 (0.46) 0.39 (0.39)
500 0.64 (0.64) 0.64 (0.64) 0.7 (0.7) 0.55 (0.54)

100 100 0.26 (0.26) 0.26 (0.26) 0.37 (0.36) 0.33 (0.33)
200 0.37 (0.37) 0.37 (0.37) 0.47 (0.46) 0.42 (0.41)
1000 0.62 (0.62) 0.63 (0.63) 0.71 (0.7) 0.58 (0.56)

500 5000 0.57 (0.57) 0.47 (0.5) 0.02* (0.02) 0.58 (0.59)
1000 10000 0.46 (0.44) 0.16* (0.16) 0* (0) 0.53 (0.54)

cluster 10 10 0.48 (0.45) 0.5 (0.46) 0.35 (0.36) 0.26 (0.25)
20 0.47 (0.47) 0.47 (0.47) 0.44 (0.45) 0.37 (0.34)
100 0.68 (0.68) 0.68 (0.68) 0.67 (0.67) 0.53 (0.5)

50 50 0.47 (0.46) 0.47 (0.46) 0.5 (0.5) 0.44 (0.43)
100 0.58 (0.57) 0.58 (0.58) 0.61 (0.61) 0.51 (0.5)
500 0.77 (0.77) 0.78 (0.77) 0.79 (0.8) 0.59 (0.59)

100 100 0.53 (0.53) 0.53 (0.54) 0.57 (0.58) 0.51 (0.52)
200 0.63 (0.63) 0.64 (0.63) 0.67 (0.67) 0.56 (0.57)
1000 0.8 (0.81) 0.81 (0.82) 0.83 (0.83) 0.6 (0.62)

500 5000 0.86 (0.86) 0.9 (0.9) 0.29* (0.28) 0.67 (0.66)
1000 10000 0.79 (0.79) 0.92 (0.92) 0.02* (0.02) 0.69 (0.68)

scale-free 10 10 0.49 (0.43) 0.52 (0.43) 0.34 (0.32) 0.26 (0.24)
20 0.39 (0.36) 0.39 (0.36) 0.4 (0.38) 0.33 (0.31)
100 0.66 (0.67) 0.66 (0.67) 0.66 (0.67) 0.5 (0.46)

50 50 0.45 (0.45) 0.46 (0.45) 0.5 (0.49) 0.43 (0.42)
100 0.57 (0.57) 0.58 (0.58) 0.6 (0.6) 0.49 (0.48)
500 0.79 (0.78) 0.79 (0.79) 0.81 (0.81) 0.56 (0.56)

100 100 0.53 (0.55) 0.54 (0.56) 0.59 (0.61) 0.51 (0.53)
200 0.65 (0.65) 0.66 (0.66) 0.69 (0.69) 0.55 (0.56)
1000 0.82 (0.83) 0.83 (0.84) 0.85 (0.86) 0.58 (0.61)

Table 3: p+ mean (median) over several replications. Number of replications differs across
cases (see excel file “simulations-overview”) . Entries with a * indicate that the AUC had
not converged after 5 days.

20

graph p n MPL-RJ MPL-BD BD SS
random 10 10 0.29 (0.18) 0.33 (0.18) 0.15 (0.15) 0.12 (0.12)

20 0.09 (0.09) 0.09 (0.09) 0.12 (0.12) 0.1 (0.09)
100 0.03 (0.03) 0.03 (0.03) 0.06 (0.06) 0.05 (0.04)

50 50 0.03 (0.03) 0.03 (0.03) 0.11 (0.11) 0.11 (0.11)
100 0.02 (0.02) 0.02 (0.02) 0.09 (0.08) 0.09 (0.09)
500 0.01 (0.01) 0.01 (0.01) 0.05 (0.04) 0.06 (0.05)

100 100 0.02 (0.02) 0.02 (0.02) 0.11 (0.1) 0.11 (0.11)
200 0.01 (0.01) 0.01 (0.01) 0.08 (0.08) 0.1 (0.09)
1000 0.01 (0.01) 0 (0) 0.04 (0.04) 0.06 (0.05)

500 5000 0.02 (0.02) 0.12 (0.05) 0.02* (0.02) 0.18 (0.18)
1000 10000 0.02 (0.02) 0.16* (0.16) 0* (0) 0.19 (0.19)

cluster 10 10 0.31 (0.16) 0.33 (0.15) 0.14 (0.13) 0.11 (0.11)
20 0.08 (0.08) 0.08 (0.07) 0.1 (0.1) 0.09 (0.08)
100 0.03 (0.02) 0.03 (0.02) 0.04 (0.04) 0.04 (0.04)

50 50 0.02 (0.02) 0.02 (0.03) 0.07 (0.07) 0.07 (0.07)
100 0.01 (0.01) 0.01 (0.01) 0.05 (0.05) 0.05 (0.05)
500 0 (0) 0 (0) 0.02 (0.02) 0.03 (0.03)

100 100 0.01 (0.01) 0.01 (0.01) 0.05 (0.05) 0.06 (0.06)
200 0.01 (0.01) 0.01 (0.01) 0.03 (0.03) 0.05 (0.05)
1000 0 (0) 0 (0) 0.02 (0.02) 0.03 (0.03)

500 5000 0 (0) 0 (0) 0.01* (0.01) 0.03 (0.03)
1000 10000 0 (0) 0 (0) 0* (0) 0.03 (0.03)

scale-free 10 10 0.33 (0.22) 0.37 (0.22) 0.16 (0.16) 0.13 (0.12)
20 0.08 (0.07) 0.08 (0.07) 0.12 (0.11) 0.1 (0.09)
100 0.02 (0.02) 0.02 (0.02) 0.06 (0.05) 0.06 (0.05)

50 50 0.03 (0.03) 0.03 (0.03) 0.07 (0.07) 0.07 (0.07)
100 0.02 (0.02) 0.02 (0.02) 0.05 (0.05) 0.05 (0.05)
500 0.01 (0.01) 0.01 (0.01) 0.02 (0.02) 0.03 (0.03)

100 100 0.01 (0.01) 0.01 (0.01) 0.05 (0.05) 0.06 (0.06)
200 0.01 (0.01) 0.01 (0.01) 0.03 (0.03) 0.04 (0.04)
1000 0 (0) 0 (0) 0.02 (0.02) 0.03 (0.03)

Table 4: p- mean (median) over several replications. Number of replications differs across
cases (see excel file “simulations-overview”). Entries with a * indicate that the AUC had
not converged after 5 days.

21

graph p n MPL-RJ MPL-BD BD SS
random 10 10 0.03 (0) 0.11 (0.01) 0.58 (0.1) 0.22 (0.05)

20 0.01 (0) 0.05 (0.01) 0.49 (0.1) 0.2 (0.04)
100 0.03 (0) 0.01 (0) 0.14 (0.02) 0.19 (0.02)

50 50 3.17 (2.28) 4.59 (2.43) 234.25 (169.84) 0.98 (0.71)
100 2.78 (2.73) 7.45 (4) 163.34 (131.15) 1.02 (0.71)
500 1.88 (1.53) 13.65 (9.27) 117.79 (106.31) 1.5 (1.19)

100 100 6.27 (5.64) 14.97 (14.91) 5608.53 (5600.37) 7.17 (8.25)
200 5.85 (5.96) 24.03 (21.87) 5715.78 (5819.88) 9.37 (8.26)
1000 4.57 (3.6) 39.97 (37.15) 3810.87 (3703.09) 12.55 (13.36)

500 5000 415.93 (412.85) 13919.92 (10944.59) > 5 days 26823.1 (26850.71)
1000 10000 228873.8 (235717.9) > 5 days > 5 days 292573.2 (294132.5)

cluster 10 10 0.02 (0) 0.09 (0.01) 0.55 (0.07) 0.17 (0.03)
20 0.01 (0) 0.05 (0.01) 0.44 (0.06) 0.05 (0.02)
100 0.01 (0) 0.01 (0) 0.22 (0.02) 0.07 (0.02)

50 50 2.68 (1.71) 4.76 (1.7) 214.11 (116.75) 1.11 (0.7)
100 1.81 (1.33) 3 (1.11) 157.55 (75.3) 1.1 (0.59)
500 0.65 (0.35) 3.24 (0.52) 43.55 (19.76) 2.51 (0.98)

100 100 3.33 (2.2) 5.88 (3.93) 3578.04 (2881.66) 6.44 (3.3)
200 2.66 (3.08) 6.82 (6.7) 2180.34 (1629.79) 6.81 (3.33)
1000 0.71 (0.65) 5.62 (4.75) 424.29 (296.87) 41.87 (6.66)

500 5000 119.09 (119.18) 27.05 (26.44) > 5 days 9456.11 (7515.02)
1000 10000 12917.69 (12500.31) 131.04 (126.85) > 5 days 84294.99 (82907.87)

scale-free 10 10 0.06 (0) 0.14 (0.01) 1.01 (0.11) 0.3 (0.08)
20 0.02 (0.01) 0.06 (0.01) 0.27 (0.08) 0.1 (0.05)
100 0.02 (0) 0.02 (0) 0.13 (0.02) 0.07 (0.02)

50 50 2.47 (1.24) 3.35 (0.98) 128.92 (53.73) 1.39 (0.69)
100 1.81 (0.99) 4.46 (1.2) 86.14 (32.17) 2.64 (1.18)
500 1.15 (0.54) 4.37 (1.04) 63.5 (33.8) 4.22 (1.19)

100 100 5.6 (5.42) 12.06 (10.93) 2583.78 (3260.38) 8.84 (5.01)
200 2.97 (2.59) 27.16 (8.93) 2481.84 (1769.74) 9.93 (6.63)
1000 1.22 (1.13) 21.37 (1.73) 636.93 (578.35) 70.66 (19.81)

Table 5: Time in seconds until AUC convergence: mean (median) over several replications.
Number of replications differs across cases. (see excel file “simulations-overview”).

22

approximate the marginal likelihood P (X|G). This allows us to obtain the posterior distri-

bution P (G|X) instead of P (G,K|X), making it possible to search over the graph space

rather than the joint space of graphs and precision matrices and thus save computional

time.

The newly proposed MPL-based methods behave as follows. For relatively small-sized

problems (p = 10, 50, 100), the new methods generate a similar or slightly worse AUC than

state-of-the-art BSL methods (BD and SS). For high dimensions, i.e. p = 500, 1000, the

MPL methods can solve problems with excellent accuracy within minutes. For the cluster

graph with settings p = 500 and n = 5000, the MPL-based methods outputted an excellent

AUC within 2 minutes while the SS and BD methods needed 2.6 hours and more than

5 days, respectively. For the cluster graph with p = 1000 and n = 10000, the MPL-BD

method had an excellent AUC within 2 minutes, the MPL-RJ method within 3.6 hours,

the SS method within 1 day and the DB method after more 5 days.

There are some promising lines of future research that could improve the performance of

the newly proposed methods even further. One of these involves the calculation in parallel

of multiple birth and death rates in order to reduce the computational time needed by the

MPL-BD method. And it might also pay to investigate whether computational time can be

reduced if the methods use a suitable burn, another prior P (G) or multiple jumps during

a single iteration.

Software

The BD-MPL and RJ-MPL methods are implemented in the R package BDgraph, which

is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.

r-project.org/packages=BDgraph.

23

http://cran.r-project.org/packages=BDgraph
http://cran.r-project.org/packages=BDgraph

References

Albert, R. and A.-L. Barabási (2002). Statistical mechanics of complex networks. Rev.

Mod. Phys. 74 (1), 47–97.

Cappé, O., C. Robert, and T. Rydén (2003). Reversible jump, birth-and-death and more

general continuous time markov chain monte carlo samplers. Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology) 65 (3), 679–700.

Cheng, Y. and A. Lenkoski (2012). Hierarchical Gaussian graphical models: Beyond re-

versible jump. Electronic Journal of Statistics 6, 2309–2331.

Consonni, G. and L. L. Rocca (2012). Objective bayes factors for gaussian directed acyclic

graphical models. Scandinavian Journal of Statistics 39 (4), 743–756.

Dobra, A., A. Lenkoski, and A. Rodriguez (2011). Bayesian inference for general gaussian

graphical models with application to multivariate lattice data. Journal of the American

Statistical Association 106 (496), 1418–1433.

Dobra, A. and R. Mohammadi (2018). Loglinear model selection and human mobility. The

Annals of Applied Statistics 12 (2), 815–845.

Friedman, J., T. Hastie, and R. Tibshirani (2008). Sparse inverse covariance estimation

with the graphical lasso. Biostatistics 9 (3), 432–441.

Green, P. (1995). Reversible jump markov chain Monte carlo computation and Bayesian

model determination. Biometrika 82 (4), 711–732.

Hanley, J. and B. Mcneil (1982). The meaning and use of the area under a receiver operating

characteristic (roc) curve. Radiology 143 (1), 29–36.

24

Hinne, M., A. Lenkoski, T. Heskes, and M. van Gerven (2014). Efficient sampling of

gaussian graphical models using conditional bayes factors. Stat 3 (1), 326–336.

Lauritzen, S. (1996). Graphical Models. Clarendon Press.

Lenkoski, A. (2013). A direct sampler for G-Wishart variates. Stat 2 (1), 119–128.

Lenkoski, A. and A. Dobra (2011). Computational aspects related to inference in Gaussian

graphical models with the G-Wishart prior. Journal of Computational and Graphical

Statistics 20, 140–157.

Leppä-Aho, J., J. , T. Roos, and J. Corander (2017). Learning gaussian graphical mod-

els with fractional marginal pseudo-likelihood. International Journal of Approximate

Reasoning 83, 21–42.

Letac, G. and H. Massam (2007). Wishart distributions for decomposable graphs. The

Annals of Statistics 35 (3), 1278–1323.

Mohammadi, A. and E. Wit (2015). Bayesian structure learning in sparse Gaussian graph-

ical models. Bayesian Analysis 10 (1), 109–138.

Mohammadi, R. ssgraph: Bayesian graph structure learning using spike-and-slab priors. R

package version 1.15..

Mohammadi, R., H. Massam, and G. Letac (2021). Accelerating bayesian structure learning

in sparse gaussian graphical models. Journal of the American Statistical Association, 1–

14.

Mohammadi, R., E. Wit, and A. Dobra (2021). BDgraph: Bayesian Structure Learning in

Graphical Models using Birth-Death MCMC. R package version 2.64.

25

Pensar, J., H. Nyman, J. Niiranen, and J. Corander (2017). Marginal pseudo-likelihood

learning of discrete markov network structures. Bayesian Analysis 12 (4), 1195–1215.

Preston, C. (1975). Spatial birth-and-death processes. Bull. Inst. Inst. Stat. 46 (2), 371–391.

Roverato, A. (2008). Hyper inverse wishart distribution for non decomposable graphs and

its application to bayesian inference for gaussian graphical models. Scandinavian Journal

of Statistics 29 (3), 432–441.

Rue, H. and L. Held (2005). Gaussian Markov Random Fields: Theory and Applications.

london: Chapman and Hall-CRC Press.

Wang, H. (2012). The Bayesian graphical Lasso and efficient posterior computation.

Bayesian Analysis 7, 771–790.

Wang, H. (2015). Scaling it up: Stochastic search structure learning in graphical models.

Bayesian Analysis 10, 351–377.

Wang, H. and S. Li (2012). Efficient Gaussian graphical model determination under G-

Wishart prior distributions. Electronic Journal of Statistics 6, 168–198.

26

	Introduction
	Bayesian Structure Learning
	Bayesian Structure Learning With Marginal Pseudo-Likelihood
	Birth-Death MCMC Algorithm
	Reversible Jump MCMC Algorithm
	Marginal Pseudo-Likelihood

	Performance Evaluation
	Performance Metrics
	Simulation Settings
	Results

	Concluding Remarks and Issues for Future Research

