1902.09302v5 [math.PR] 13 Dec 2019

arxXiv

CONFIGURATION MODELS OF RANDOM HYPERGRAPHS

PHILIP S. CHODROW

ABSTRACT. Many empirical networks are intrinsically polyadic, with interactions occurring within
groups of agents of arbitrary size. There are, however, few flexible null models that can support
statistical inference for such polyadic networks. We define a class of null random hypergraphs
that hold constant both the node degree and edge dimension sequences, generalizing the classi-
cal dyadic configuration model. We provide a Markov Chain Monte Carlo scheme for sampling
from these models, and discuss connections and distinctions between our proposed models and
previous approaches. We then illustrate these models through a triplet of applications. We
start with two classical network topics — triadic clustering and degree-assortativity. In each, we
emphasize the importance of randomizing over hypergraph space rather than projected graph
space, showing that this choice can dramatically alter statistical inference and study findings. We
then define and study the edge intersection profile of a hypergraph as a measure of higher-order
correlation between edges, and derive asymptotic approximations under the stub-labeled null.
Our experiments emphasize the ability of explicit, statistically-grounded polyadic modeling to
significantly enhance the toolbox of network data science. We close with suggestions for multiple
avenues of future work.

Graphs provide parsimonious mathematical descriptions of systems comprised of objects (nodes)
and dyadic relationships (edges). When analyzing a given graph, a common task is to compare an
observable of interest to its distribution under a suitably specified null model. A standard choice
of null for dyadic networks is the class of configuration models [5l [0l 33| [16]. Configuration models
preserve the degree sequence of the graph, which counts the number of edges incident to each node.
These counts are natural first-order statistics of the graph, which are known to constrain many
macroscopic graph properties [38]. Preserving these counts gives a natural null model constraint:
properties observed in data that are not present in a configuration model require explanation in
terms of higher-order graph structures.

In many systems of contemporary interest, groups of arbitrary size may interact simultaneously.
Examples include social contact networks [45] 29]; scholarly and professional collaboration net-
works; [34] [l [18, [41]; digital communications [27]; classifications on patents [52]; and many more
[6]. In the past decades, the dominant approach to these systems has been to represent these
networks dyadically, allowing the analyst to apply standard techniques of dyadic network science,
including the configuration model. Recent work, however, has highlighted limitations of the dyadic
paradigm in modeling of polyadic systems, both in theory [43] and in application domains including
neuroscience [20], ecology [23], computational social science [48] [7] among others [6]. The impor-
tance of polyadic interactions calls into question the use of the dyadic configuration model in such
systems. It is therefore desirable to construct random models for polyadic data that inherit the
useful properties of the dyadic configuration model. In this article, we construct two such models
on suitably chosen spaces of hypergraphs, and demonstrate their utility for polyadic network data
science. Along the way, we argue for two principle theses. First, the choice between dyadic and
polyadic null models can determine the directional findings of standard network analyses. Second,
the use of polyadic nulls allows the analyst to measure and test rich measures of polyadic structure,
thereby expanding the network-scientific toolbox.
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Outline. We begin in with a survey of the landscape of null models for relational data,
including the dyadic configuration model, random hypergraphs, and random simplicial complexes.
In we define stub- and vertex-labeled configuration models of random hypergraphs.
Practical application of these models requires a sampling scheme, which we provide in
We turn to a triplet of illustrative applications in We first consider triadic closure,
showing that some networks that would be considered clustered in comparison to dyadic nulls
are significantly less clustered than the corresponding hypergraph nulls. We then turn to degree-
assortativity, where hypergraph data representations allow us to define novel measures and conduct
null hypothesis tests. Finally, we introduce a novel measure of correlation between polyadic edges,
which can be tested against either the full configuration model or analytic approximations. We
close in with a summary of our findings and suggestions for future development.

1. GRAPHS, HYPERGRAPHS, AND SIMPLICIAL COMPLEXES

Random graph null modeling has a rich history; see [I6] for a review. In this section, we take a
rapid tour through some of the most important results in configuration-type models for graphs and
their generalizations. We begin with a brief review of the configuration model for dyadic graphs.

Definition 1 (Graph). A graph G = (V,E) consists of a finite set V of nodes or vertices and a
multiset E of pairs of nodes, also called edges. We assume that both sets are endowed with an
(arbitrary) order. An edge of the form (u,u) is called a self-loop. Two distinct edges ey and e
are parallel if they are equal as sets.

Let n = |V| and m = |E| be fixed. We denote by G the set of all graphs on n nodes, and by
G c GO the set of graphs on n nodes without self-loops. Parallel edges are permitted in G. While
it is indeed possible to define configuration models on GC, we do not do so here [16] [39]. Rather
we will formulate most of our results for elements of G, only discussing GC below in the context
of certain technical issues.

The degree sequence of a graph G = (V, E) is the vector d € Z" defined componentwise as
(1) dy=Y I(vee).

eeE

A configuration model is a probability distribution on the set Gg = {G € G : deg(G) = d} of graphs
with degree sequence d. There are two closely-related model variants which should be distinguished
[16]. On its first introduction [9], the configuration model was defined mechanistically through a
“stub-matching” algorithm. To perform stub-matching, we place d,, labeled half-edges (or “stubs”)
into an urn for each node v. We draw half-edges two at a time, with each draw producing an edge.
A stub-labeled graph “remembers” which labeled stubs were drawn to form each edge.

Definition 2 (Stub-Labeled Graphs). For a fized node set V and degree sequence d, define the
multiset

Ya=H {v1,...,v4,} ,
veV

where w denotes multiset union. The copies vi,...,vq, are called stubs of node v. A stub-labeled

graph S = (V, E) consists of the node set V and an edge set E = {{u;,v;}}*, which partitions Xq
into unordered pairs. An edge of the form {v;,v;} is called a self-loop.

Let SC be the set of stub-labeled graphs, and S ¢ S© the set without self-loops. Technically
speaking, one should remember that the set SC of stub-labeled graphs is not a subset of the set
GC of graphs, since the objects in the edge-set are of different logical types. The same is true of
the sets S and G. These technical considerations will also apply when we generalize to hypergraphs
below, but will not present any major practical issues.
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There is a natural surjection g : SC - GC. If § € SO, g(S) € GO is the graph obtained by
replacing each stub v; in S with v and then consolidating the result as a multiset. We use the
notation A = g71(G) to refer to the preimage A € S of G ¢ G by g. We emphasize that g is not

a bijection, and the symbol g~! should not be interpreted as an inverse of g. We define Sdo to
be g1 (gf). Note that an edge € € S is a self-loop if and only if e € g(S) is. Because of this,
S =g71(G). It is therefore natural to define Sq = g~(Gq).

Definition 3 (Dyadic Configuration Models [16]). Fiz d € Z7. The vertex-labeled configuration
model on Gq is the uniform distribution nq. Let Aq be the uniform distribution on Sq. The
stub-labeled configuration model on Gq is the distribution pug = Ag o g~ *.

In our formalism, the stub-labeled configuration model is not a distribution over the space of
stub-labeled graphs Syq. Rather, it is the pushforward of such a distribution to the space Gq of
graphs. Intuitively, the vertex-labeled configuration model assigns the same probability to each
graph with degree sequence d, while the stub-labeled model weights these graphs according to their
likelihood of being realized via stub-matching. One of the key insights of [9], since generalized by
works such as [33, 2], is that these two models are related. Let Ggmple be the set of simple graphs,
which contain neither self-loops nor parallel edges. Then, 114(G|G € Gsimple) = 1d(G|G € Gsimpie)-
Furthermore, when the degree sequence is sampled from a fixed distribution with finite second
moment, pa(G € Gsmple) is bounded away from zero as n grows large (see, e.g. [2]), implying
that repeated sampling from pg will produce a simple graph in a number of repetitions that is
asymptotically constant with respect to n. As aresult, in the “large, sparse regime,” it is possible to
sample from the stub-labeled configuration model until a simple graph is obtained, which will then
be distributed according to the vertex-labeled model. This relationship is extremely convenient,
enabling asymptotic analytic expressions for many quantities of theoretical and practical interest
[38].

This close relationship between models is likely the reason why the distinction between them
has often been elided in applied network science. Recently, however, the authors of [16] pointed out
that, in many data sets, these two models are not interchangeable. It is important to distinguish
them when the data may possess multi-edges or self-loops and the edge density is relatively high.
The first condition is important because stub- and vertex-labeled models agree only on the subspace
of simple graphs, not the full space of multigraphs. The second condition locates us away from
the large, sparse regime and implies that parallel edges will occur under stub-matching with non-
negligible probability.

From a modeling perspective, the choice of vertex- or stub-labeling must depend on domain-
specific reasoning about counterfactual comparisons. Roughly, stub-labeling should be used when,
for a fixed graph G € G, the elements of the set g~'(G) c S have distinct identities in the context
of the application domain. This corresponds to asking whether permutations of stubs lead to
meaningfully different counterfactual data sets. In contrast, when stub-permutations are either
nonsensical or are considered to leave the observed data unchanged, vertex-labeling is to be pre-
ferred. For example, in [16], the authors argue that vertex-labeled nulls are most appropriate for
studying a collaboration network of computational geometers. Their reason is that stubs in this
case correspond to an author’s participation in a paper. It is nonsensical to say that A’s first col-
laboration with B is B’s second collaboration with A, and therefore stub-labeling is inappropriate.

Configuration models and their variants have played a fundamental role in the development of
modern network science. The seminal paper by Molloy and Reed [32] has, according to Google
Scholar, been cited at least 2,000 times since its publication, and over 800 times since 2015. How
can we extend these models for application to polyadic data sets? A direct approach, taken in early
studies such as [34], is to compute the projected (dyadic) graph. The projected graph represents each
k-adic interaction as a k-clique, which contains an edge between each of the possible (g) pairs of
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FIGURE 1. A synthetic coauthorship network with n = 9 nodes. On the left,
the network represented as a hypergraph with 3 hyperedges. On the right, the
projected graph with 17 dyadic edges.

nodes . The resulting dyadic graph may then be randomized according to vertex- or stub-
labeled dyadic configuration models. Projecting, however, can have unintended and occasionally
counterintuitive consequences. First and most clearly, all properties which depend explicitly on
the presence of higher-dimensional interactions are lost. Second, other observables such as node
degrees and edge multiplicities may be transformed in undesirable ways; for example, a single
interaction between six agents becomes 15 pairwise interactions after projection. As consequence,
each of the six agents involved in a single 6-adic interaction are dyadically represented as nodes of
degree 5. Third, and most subtly, projecting transforms the null space for downstream hypothesis-
testing in ways that may not be intended. For example, projecting the network in prior to
randomization implicitly chooses a null space of counterfactuals consisting of 17 two-author papers.
This may be undesirable, especially when the null is viewed as a candidate data generating process.
Given that the data possesses higher-order interactions, a null model that is by construction unable
to produce such interactions may not be physically relevant to the problem at hand.

Random Hypergraphs. Considerations such as these motivate the development of dedicated null
models for polyadic data. Such models enable the analyst to delay or omit dyadic projection when
conducting null-hypothesis testing. We now make a brief survey of efforts to define configuration-
type models for polyadic data. Hypergraphs provide the most general context for such models.
Hypergraphs are straightforward generalizations of graphs in which each edge is permitted to have
an arbitrary number of nodes.

Definition 4 (Hypergraph). A hypergraph H = (V, E) consists of a node set V and an edge set
E= {Aj};ﬂ:l which is a multiset of multisets of V. Each subset is called a hyperedge, edge, or, in
some contexts, a simplex. Two hyperedges are parallel if they are equal as multisets. A hyperedge
is degenerate if it contains two copies of the same node.

Degenerate hyperedges generalize the notion of self-loops in dyadic graphs. We denote by H©
the set of all hypergraphs and by H the set of all hypergraphs without degenerate edges. As before,
parallel edges are permitted in . We continue to let n = V| and m = |E|.

Extant literature provides several approaches to defining null distributions on hypergraphs. One
of the earliest approaches [38] takes a somewhat indirect route through bipartite graphs. A bipartite
graph contains nodes of two classes, with connections permitted only between nodes of differing
classes. To construct a bipartite graph B from a hypergraph H, one can construct a layer of nodes
in B corresponding to the nodes V' of H, and a second layer in B corresponding to the edges E of
H. A node v is linked to an edge-node e iff v € e in H. We can now apply dyadic configuration
models to the randomize B, before recovering a hypergraph by projecting B onto its node layer.
This approach is natural and convenient, but is only able to gracefully recover a generalization
of the stub-labeled configuration model to hypergraphs. Generalizing the vertex-labeled model
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requires more complex tools which are not gracefully expressed in the bipartite formalism. We go
into greater detail on this connection when discussing sampling methods in

A more direct approach is to define a null distribution directly over H. In [19], the authors define
an analog of the stub-labeled configuration model over the set of hypergraphs in which all edges
have three nodes, in the service of studying a tripartite tagging network on an online platform.
Somewhat more general models have been formulated for the purposes of community-detection in
hypergraphs via modularity maximization, which requires the specification of a suitable null. In
[28], the authors develop a degree-preserving randomization via a “corrected adjacency matrix,”
which may then be used for modularity maximization on the projected dyadic graph. In [25],
the authors explicitly generalize the model of Chung and Lu [I2], which preserves degrees in
expectation, to non-uniform hypergraphs.

One subspecies of hypergraph has received additional attention. A simplicial compler is a
hypergraph with additional structure imposed by a subset-inclusion relation: if A € E, then I"'e E
for all T" ¢ A. Simplicial complexes are attractive tools in studying topological aspects of discrete
data [I0], since the inclusion condition enables often-dramatic data compression while preserving
topological features of interest. Configuration models of simplicial complexes provide one route for
conducting null hypothesis tests of such features. The model of [T4] achieves analytic tractability by
restricting to simplicial complexes with maximal hyperedges of uniform dimension. The authors
[53] allow heterogeneous dimensions but sacrifice analytic tractability, instead applying Markov
Chain Monte Carlo to sample from the space. In applying any of these models, it is important to
remember that subset-inclusion is strong property suited only to certain data-scientific contexts.
Particular problems arise when edges possess the semantics of interaction, such as in collaboration
networks. Suppose that authors A, B, and C jointly coauthor a paper. Using hypergraphs, we
would represent this collaboration via an edge (A, B, C). In the setting of simplicial complexes, on
the other hand, subset inclusion would also require us to include the edges (A, B), (B,C), (4,C),
(A), (B), and (C). This may be undesirable, since we are not guaranteed that B and C, say,
wrote a two-author paper. While simplicial complex modeling may be useful in carefully-selected
application areas, in other cases we may require more flexible configuration models defined on more
general spaces of polyadic data structures. We now formulate two such models.

2. Two HYPERGRAPH CONFIGURATION MODELS

We now construct two configuration models for general hypergraphs. Our models generalize the
stub- and vertex-labeled dyadic configuration models described in the previous section [I6].

We use Greek letters to denote random edges of H, and English letters to denote nonrandom
tuples of nodes. For example, the statement A = R describes the event that a random edge A
has fixed location R = (u1,usg,us,...). Let (IZ”) denote the set of all subsets of R of size . Let I
give the indicator function of its argument. We define the degree sequence d € Z and dimension
sequence k € Z77* of a hypergraph H componentwise by

dy=> I(vee) and ke=) I(vee).

eeFE veV

Let ’Hdo « and Hgq x denote the sets of hypergraphs with the specified degree and edge dimension
sequences with and without degenerate hyperedges, respectively. We say that the sequences d and
k are configurable of Hqx + &.

Definition 5. The vertex-labeled configuration model 7q,k @s the uniform distribution on Hq k.

The stub-labeled configuration model is defined similarly as in the dyadic case. The map g
extends naturally to the space of hypergraphs.
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Definition 6. Let
Y= {v1,...,04,}

veN
be a multiset of stubs. For each v, d, copies of v appear in 3. A stub-labeled hypergraph S has
as its edge set E a partition of ¥ in which each edge contains at most one stub for each node. Let
Sq.x denote the set of all stub-labeled hypergraphs with given degree and dimension sequence, and
let Agx be the uniform distribution on Sqx. Then, the stub-labeled configuration model is defined

by pax = Aaxog .

We have now defined two hypergraph configuration models, generalizing the vertex- and stub-
labeled models of [16]. The vertex-labeled configuration model is the entropy-maximizing distri-
bution on Hq x in the case that the identities of stubs are not meaningful, while the stub-labeled
configuration model is the entropy-maximizing distribution when these identities are meaningful.
The same considerations discussed in [16] (and briefly in the previous section) apply to the question
of when to apply which null model.

3. SAMPLING

Stub-matching is a classical method for sampling from the stub-labeled dyadic configuration
model [9], and extends naturally to the case of random hypergraphs. Pseudcode for sampling from

fax via stub-matching is provided by
Algorithm 1: Hypergraph Stub-Matching
Input: Configurable d € Z} and k € Z*".

Initialization: j < 1, S < @, ¥ < Wyey {v1,.., 04, }
for j=1,...,m do
R ()
W<«W~NR
S« Su{R}
end
Output: S

Since any stub-labeled graph S is as likely as any other the output, conditioned on
nondegeneracy, is distributed according to p1q k. As in the dyadic setting, there is nonzero proba-
bility for the output of stub-matching to produce a degenerate hypergraph. This probability will
generally be large in the presence of highly heterogeneous node degrees — a common phenomenon
in empirical data. Many iterations of may therefore be necessary in order to generate
a single valid sample. Because of this, pure stub-matching is often not a practical method for
generating random hypergraphs. That said, the stub-matching algorithm is often useful in proofs
involving pud k.

For practical sampling, we consider a Markov Chain Monte Carlo approach, in which we use
successive, small alterations to the edge-set £ in order to systematically explore the space Hq k.
Our approach fits within a large class of edge-swap Markov chains [16], 49} 3] [50, [30] 24} 111 47, [8|
15] [T, 22| [26] used for sampling a wide variety of random structures.

Definition 7 (Pairwise Reshuffle). Let S € Sqk, and A,T' € S. A pairwise reshuffle b(A,T'|S) of
A and T is a sample from the conditional distribution u(-|E ~ {A,T}). Depending on context, we
will regard a pairwise reshuffie as either a random map on stub-labeled hypergraphs or on pairs of
hyperedges.

Lemma 1. Let S € S. Let b(A,T|H) = (A", T) be a pairwise reshuffle which results in S" € S.
Then,
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(1) The degree and dimension sequences are preserved: deg(S) = deg(S’) and dim(S) =
dim(.S").

(2) We have A'nT"=AnT.

(3) Any given realization of b occurs with probability

|A|+T]-2|An r|)1

) (a2

Proof. A pairwise reshuffle may be performed via the following sequence, which is an alternative
description of the final two iterations (conditioning on nondegeneracy).

(1) Delete A and T from E.

(2) Construct A" and I as (initially empty) node sets.

(3) For each node ve AnT, add a v-stub to both A’ and I".

(4) From the remaining stubs, select |A\T| stubs u.a.r. and add them to A’. Add the
remainder to I".

(5) Add A" and T" to E.

Each node begins with the same number of edges as it started, so degrees are preserved. Next, by
construction, |A’'| = [ANnT|+|A -T| =|A|, and similarly |T”| = |T'|. The edge dimension sequence is
thus also preserved.

Finally, by construction, step 2 above preserves the intersection A nT'. There are 21271 ways
to assign stubs to this intersection. There are a total of |A|+|T'| - 2|A N T'| remaining stubs, and of
these one must choose |A| —|ANT| to be placed in A. We infer that any given pairwise reshuffle

is realized with probability given by |[Equation (2), as was to be shown. O

We now define a transition kernel of a first-order Markov chain on the space Sqx. Write
S ~ar S if there exists a pairwise shuffle b such that b(A,T'|S) = S’. Note that, since each element
of each edge has a distinct label in Sqk, for any S and S’ there is at most one pair (A,I') such
that S ~a r S’. If no such pair exists, we write S ¢ S’. Then, let

®) 5u(5'15) - {g’"> WA

where ¢, (A,T") is the number of distinct possible shuffles realizable from A and T'; an explicit
expression is given in the SI. To sample from p,(:|S), it suffices to sample two uniformly random
edges from E and perform a reshuffle. The prefactor (Z’)_1 gives the probability that any two
given edges are chosen.

Th sequence {S;} is Markovian by construction. The following lemma and its corollary ensure
that the sequence {H;} = {g(S;)} is also a Markov chain.

Lemma 2. Let H,H' ¢ H. Suppose that S1,S2> € g7 (H) and S|, S5 € g~ *(H'). Then, p,(S|S1) =
Pu(5252) -

Proof. The objects S; and S5 may each be considered arbitrary stub-labelings of part-edges in H.

Similarly, S] and S5 are each arbitrary labelings of part-edges in H'. However, by
P (1) depends only on the sizes of edges and their intersections in H, not their labels. a

Corrolary 1. The process {H;} = {g(S;)} on Hax is a Markov chain.

Proof. Markovianity of {H;} follows from Indeed, we can construct H; mechanistically
from H;_; by choosing Si_1 € g~'(Hi-1), setting S; ~ §,(}[Si-1), and then letting H; = g(Si-1).
ensures that the distribution of H; depends only on H;_1, and not on the choices of S;_;
and S;. 0
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Theorem 1. The Markov chain {S¢} on Sqx defined by the kernel p,, is irreducible and reversible
with respect to A\q x, the uniform distribution on Sqx. If in addition at least two entries of k are
two or larger, {S;} is also aperiodic. In this case, Aax 1s the equilibrium distribution of {S.}.
Furthermore, pa x is the equilibrium distribution of the process {H;} = {g(S¢)}.

Proof. We will first show reversibility with respect to Ag k. Fix S. Let S ~ar 8" and S’ ~ar 1 S.
In this case, we have A’ TV = b(A,T'|S). Then,

m

5u(s19)=(3) aua) = (5) (a1 = 5SS

as required. The second equality follows from since ¢(A,T") depends only on |Al, [T,
and [AnT.

Our proof approach for irreducibility generalizes that of [16]. We need to construct a path
of nonzero probability between two arbitrary elements S; and Sy of S. Let E; and E5 be the
edge-sets of S; and 5o, respectively. We first describe a procedure for generating a new stub-
labeled hypergraph S5 such that |Es \ E5| < |Ex \ Ey|. Since E; # FEy and |Ey| = |Es|, we may
pick A = {61,...,0¢} € E5 ~ Ey. Note that, since A ¢ F; and the edge dimension sequences must
agree, there exists an edge U € E; \ FEy such that |¥| = |A| = £. Now, for each i, since A ¢ Ey, §;
belongs to a different edge (call it IT';) in E;. Note that we may have I'; = I';s in case ¢; and &
belong to the same hyperedge in E;j. Suppose we have j < £ such edges. Since d; is a stub, §; can
belong to only one edge in each hypergraph, and therefore I'y, ¢ Fs for each k=1,...,j. For each
k=1,...,7, let (¥, T%) = bp(¥i_1,Tk), where by assigns all elements of the set An (¥y_3 UT,_1)
to Uy and uniformly distributes the remainder. Since A ¢ (Ui=1 Fk) by construction, by the end
of this procedure we have ¥; = A. Call the resulting stub-labeled hypergraph Ss with edge set
E5. Since we have only modified the edges {I'y} and ¥, which are elements of F; \ Ey, we have
not added any edges to the set Fq \ FEs, but we have removed one, namely ¥. We therefore have
|E2 \ B3| < |Ey \ Ey|, as desired. Applying this procedure inductively, we obtain a path of nonzero
probability between S; and Ss, proving irreducibility.

To prove aperiodicity, we will construct supported cycles of length 2 and 3 in S. Since the lengths
of these cycles are relatively prime, aperiodicity will follow. To construct a cycle of length 2, pick
two edges A and I' and any valid reshuffle b : (A, T) = (A’,I). Then, b™!: (A, T") » (A,T) is
also a valid reshuffle, and the sequence (b,b™!) of transitions constitutes a supported cycle through
S of length 2. To construct a cycle of length 3, choose two edges A and I" which each contain two
or more nodes, writing A = {d1,d2,...} and ' = {~1,72,...}. This is always possible by hypothesis.
Then, the following sequence of pairwise reshuffles constitutes a cycle of length 3:

{61,62a"'}7{717727"'} g {717627"'}’{617727"'}

g {727627"'}a{61771a' . }
ind {617627-"}7{71772%"} .

We have shown reversibility, irreducibility, and aperiodicity, completing the proof. O

A small modification enables sampling from the vertex-labeled model ngq k. Let ma give the
number of edges parallel to edge A in hypergraph H, including A itself. Define
Q\Aml"\

(4) 0,(5)5) = {mw S~ars

0 otherwise.
Theorem 2. Let p,(S'|S) = a(S'|S)p.(S'|S). Let {S:} be the Markov chain generated by py.
Then, the process {H;} = {g(S¢)} is a Markov chain. Furthermore, {H;} is irreducible and re-

versible with respect to nax. If in addition k has at least two entries larger than 2, {H,} is
aperiodic. In this case, nax is the equilibrium distribution of {H;}.
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Proof. Markovianity of {H;} follows from the same argument as [Corrolary 1| Irreducibility and
aperiodicity follow from since the state space H is a partition of S into equivalence
classes induced by g. It remains to demonstrate reversibility with respect to 7q k. Let p, be the
transition kernel of Hy. Fix H and H'. Fix S e g '(H) and S* € g7 (H'). Then, we can write

Pn(H/|H) = Z ﬁn(S/|S)
S’eg=1(H")

= > a(S'9)pu(S'19)
S'eg T (H')

=a(S*1S) > pu(5]S) .
S'eg=!(H')
The expressions appearing in this calculation are independent of the specific choices of S or S*
following the same argument as in the proof of We now evaluate the sum in the third
line. The summand is nonzero if and only if S ~a 1 S’, in which case its value depends only on |A|,
U], and |ANT|. We therefore count terms. There are 2147 ways to arrange the intersection of
A and I in S, and mamr ways to choose two edges parallel to A and T" to reshuffle, all of which
generate a distinct element of g~'(H’). The sum therefore possesses precisely a(S*|S)~! terms.
We find that p,(H'|H) = p,,(S'|S) for any S e g"'(H) and S’ € g"'(H'). Reversibility of p, thus
follows from reversibility of p,,. ]

supplies pseudocode for sampling from the stub- and vertex-labeled hypergraph
configuration models.

Algorithm 2: Markov Chain Monte Carlo for hypergraph configuration models

Input: d, k, target distribution v € {114 x,7a,x}, initial hypergraph Hy € Hq x, sample
interval h € Z,, desired sample size s € Z,.
Initialization: ¢ < 0, H < Hy
fort=1,2,...,sh do
sample (A,T') v.a.r. from (g’)
H' =b(A,T|Hy)
if Uniform([0,1]) < a,(H'|H) then
‘ H, <« H'
else
| Hy< Hia
end

end

Output: {H; such that t|h}

and [2| constitute a guarantee that, for sufficiently large sample intervals h, the
hypergraphs sampled from will be asymptotically i.i.d. according to the desired
distribution. Unfortunately, we are unaware of any mixing-time bounds for this class of Markov
chain. It is therefore possible in principle that the scaling in the mixing time as a function of
system size is extremely poor, a result suggested by work on related classes of edge-swap Markov
chains [21I] 22]. Our experience indicates, however, that sampling is possible for configuration
models with hundreds of thousands of edges on personal computing equipment in practical time.

3.1. Connections to Random Bipartite Graphs. As briefly mentioned in a hy-
pergraph H = (V, E) corresponds in a natural way to a bipartite dyadic graph B. The graph B
consists of a node set VU E. An edge (u,e) exists between ue V and ee E iff uee (in H). In
this setting, the degree of u (in H) is equal to its degree in B, and the dimension of e (in H)
is similarly equal to its degree in B. Let h be the function that assigns to each hypergraph its
associated bipartite graph. When both nodes and edges are uniquely labeled, h is a bijection. It
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follows that a probability measure v on the space Bq k of bipartite graphs with node degrees d
and k induces a probability measure v o h™! on Hq k. Several extant papers (e.g. [38, 42]) use
this equivalence to construct random models of polyadic data. While it is sometimes thought that
bipartite randomization supplies a complete solution to null hypergraph sampling, we show in this
section that the natural scope of the bipartite method is limited to stub-labeled models.

We first define a bipartite, dyadic, configuration model. We define vq x to be the measure on
Bq,k obtained by performing stub-matching with the node-set V' u E, conditioned on the events
that (a) all edges have the form (u,e) for u € V and e € E, and (b) the bipartite graph is simple,
without multi-edges or self-loops. Note that conditioning on the event that B is simple implies
that the stub-labeled and vertex-labeled models are identical in this case. The work of Kannan et
al. [26] considers the problem of sampling from vq4 k via bipartite edge-swaps. Such a swap maps
(u,e), (v, f) ~ (u, f),(v,e). By construction, such a swap preserves d and k. The authors show
that a Markov chain which performs successive, random bipartite edge-swaps (while avoiding ones
that would lead to a non-simple bipartite graph) is ergodic and therefore sufficient to sample from
Vg k. Such a swap, which viewed in the space Hq x amounts to swapping the edge memberships
of nodes v and v. Importantly, a sequence of such switches is special case of the pairwise reshuffle
Markov chain on Sq k. This implies following relationship:

Proposition 1. The configuration model on simple bipartite graphs is equivalent to the stub-labeled
hypergraph configuration model, in the sense that jiq x = Va x © h7t.

makes precise the primary sense in which bipartite randomization provides an
approach to random hypergraph modeling. This is a convenient result, since a dyadic edge-swap
Markov chain on B can be used to produce samples from pq, k. This equivalence may also be used
to give alternative proofs of However, as discussed in [I6], many data sets in which
we aim to apply null modeling are better represented by vertex-labeled null distributions. There
is no obvious route for vertex-labeled sampling through bipartite random graphs. In particular,
there is no analogue of for this case. Thus, even though the work of [26] treats
vertex-labeled sampling from Bgq k, this does not directly suffice for vertex-labeled sampling from
Ha k- The reason is that sampling from the vertex-labeled measure 7q k requires adjusting for
permutations of parallel hyperedges. When H contains multiple hyperedges of dimension three
or greater, it is necessary to track multiple node-edge incidence relations in order to check when
hyperedges are parallel.

It is possible to write down a version of for vertex-labeled sampling in which the
fundamental data structure is a bipartite graph rather than a hypergraph. However, the result
would not, to the author’s knowledge, correspond to any standard random bipartite graph model.
Expressing both models directly on the space Hq x of hypergraphs supports both conceptual clarity
and a convenient formulation of MCMC for both stub- and vertex-labeled models. Incidentally,
we note that this discussion constitutes another, separate setting in which adherence to dyadic
methods can limit our data-analytical horizons. An exclusive focus on nulls realizable through
bipartite methods obscures the possibility of vertex-labeled polyadic models.

4. NETWORK ANALYSIS WITH RANDOM HYPERGRAPHS

We now illustrate the application of hypergraph configuration models through three simple
network analyses. We first study triadic closure in polyadic networks, finding that the use of
polyadic nulls can generate directionally different, interpretable study findings when compared to
dyadic nulls. We then turn to degree-assortativity, defining and testing three distinct measures of
association via polyadic data representations and randomizations. Finally, we study the tendency
of edges to intersect on multiple vertices in the email-Enron data set, finding using simulation
and analytical methods that large intersections occur at much higher rates than would be expected
by random chance. Collectively, these cases illustrate the use of polyadic methods to define and
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analyze richer measures of network structure, and the use of polyadic nulls in interpreting the
results.

The data sets for case study were gathered, cleaned, and generously made public by the authors
of [6]. In certain experiments, data were temporally filtered in order to reduce their size; these
cases of have been explicitly noted in the text and the filtering procedure described in
Importantly, in no case was the filtering operation motivated by the expense of Monte Carlo
sampling; rather, the bottlenecks were standard, expensive computations such as triangle-counting
in dyadic graphs.

4.1. Triadic Closure. Triadic closure refers to the phenomenon that, in many networks, if two
nodes u and v interact with a third node w, then it is statistically likely that u and v also
interact with each other. Studies such as [46], [34] [38] observed triadic closure in many empirical
networks, and highlighted the fact that dyadic configuration models tend to be unable to reproduce
this behavior. Traditionally, triadic closure is measured by a ratio of the number of triangles
(closed cycles on three nodes) that are present in the graph, compared to the number of “wedges”
(subgraphs on three nodes in which two edges are present)ﬂ Local and global variants of this
ratio have been proposed. We follow the choice of [46] and work with the average local clustering
coefficient. Let T, denote the number of triangles incident on v, and W, the number of wedges.
Note that W, = (d;). The average local clustering coefficient is

- T
(5) C=— v
|N|UEZNWU

It is direct to show [37] that, in dyadic configuration models and under mild sparsity assumptions,
C decays to zero as n grows large.

The average local clustering coefficient C' is a natively dyadic metric, in the sense that “wedges”
and “triangles” are defined explicitly in terms of 2-edges. To compute C in polyadic data, it is
therefore necessary to project a hypergraph down to a dyadic graph. In the context of hypothesis-
testing, there is some subtlety involved in the choice of when to do this. One method is to project
first and then randomize via a dyadic null model. This is the most common historical approach,
used for example in [38]. Alternatively, one may randomize via polyadic nulls prior to projection.
This approach has the effect of preserving clustering induced by polyadic edges, since an edge of
dimension k£ contains 3(’;) wedges and 3(’;) ordered triangles.

summarizes a sequence of experiments performed on two collaboration networks (top)
and four communication networks (bottom). For each network, we computed the observed local
clustering coefficient C' on the unweighted projected graph. We then compared the observed value
to its null distribution under four randomizations. We first randomized using the vertex- and stub-
labeled hypergraph configuration models, prior to projecting and measuring C. These results are
shown in the second and third columns. We then reversed the order, first computing the projected
graph and randomizing via dyadic configuration models. The results are shown in the fourth and
fifth columns.

Benchmarking against dyadic configuration models yields mixed results. Vertex-labeled configu-
ration models conclude in all cases that the observed degree of clustering is significantly higher than
would be expected by random chance. Stub-labeled benchmarking concludes that congress-bills
and the two email data sets have significantly less clustering than expected, while the remainder
have significantly more. The stub-labeled results should be approached with caution — for reasons
discussed in detail in [I6], the stub-labeled configuration model is a less-relevant comparison for
these data sets than the vertex-labeled model.

Hypergraph randomization leads to directionally different conclusions. First, the expected val-
ues of C' under both hypergraph vertex- and stub-labeled nulls are much closer together than under

1Recent measures have been developed for higher-order notions of clustering on larger subgraphs; see [51].
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Hypergraph Projected
C Vertex Stub Vertex Stub
congress-bills* 0.608 0.601(1) 0.622(2) 0.451(2) 0.611(1)
coauth-MAG-Geology* 0.8200 0.8196(7) 0.8186(7) 0.00035(3) 0.00035(3)
email-Enron 0.658 0.825(3)  0.808(4) 0.638(5) 0.797(3)
email-Eu* 0.540 0.569(4)  0.601(4) 0.398(4) 0.598(4)
tags-ask-ubuntu* 0.571 0.609(4)  0.631(5) 0.183(4) 0.499(6)
threads-math-sx* 0.293 0.435(3)  0.426(3) 0.041(1) 0.093(2)

TABLE 1. Average local clustering coefficients for selected data sets, compared
to their expectations computed under vertex- and stub-labeling of hypergraph
and projected graph models. Parentheses show standard deviations in the least-
significant figure under the equilibrium distribution of each null model. Starred*

data sets have been temporally filtered as described in

dyadic nulls, indicating that the polyadic statistical test is much less sensitive than the dyadic test
to the choice of vertex- and stub-labeling. Second, the vertex-labeled null separates the two collabo-
ration networks from the four communication networks. These two data sets are only slightly more
clustered than expectation under the vertex-labeled model, and only congress-bills would be
considered “significantly more clustered” than its expectation under most p-value based tests. The
stub-labeled model also has expectation close to the observed values, but finds congress-bills to
be slightly-but-significantly less clustered than would be expected by chance, while the significance
of coauth-MAG-Geology would depend strongly on the desired power of the test. In contrast, the
four communication networks are all significantly less clustered than either vertex- or stub-labeled
nulls would expect. Not only is there no clustering beyond that implied by the edge dimensions;
triadic closure even appears to be inhibited in these data sets.

From a purely statistical perspective, these examples highlight the importance of careful null
model selection in hypothesis-testing for triadic closure. More physically, use of hypergraph nulls
allows us in this case to distinguish data sets by their generative mechanisms. The communication
networks are all less clustered than expected, while the collaboration networks are approximately
as clustered as expected. This result is to some extent intuitive. Collaborations between many
agents often have nontrivial coordination costs that scale with the number of agents involved. It
may be easier to assemble and coordinate a set of overlapping groups than a single large collective.
In such cases, one may expect to observe clustering near or above that expected at random, since
overlaps between related groups would generate triangles. In contrast, in digital communications it
is essentially effort-free to construct interactions between larger groups of agents. Examples include
adding an email address to the “cc” field or introducing participants to thread on a forum. In such
cases, triangles composed of distinct edges are energetically unnecessary, and may reflect redundant
information flow. We therefore hypothesize that these systems have a tendency to absorb potential
triangles into higher-dimensional interactions. This results in lower levels of clustering than would
be expected under polyadic nulls. These considerations hint toward the importance of studying
edge correlations via natively polyadic metrics as we do in

4.2. Degree-Assortativity. A network is degree-assortative when nodes of similar degrees pref-
erentially interact with each other. Early studies found that different categories of social, biological,
and technological networks display different patterns of assortative mixing by degree [36], 35, [13].
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Social networks, for example, are frequently measured to be degree-assortative. In this context,
degree-assortativity is often taken to indicate a tendency for popular or productive agents to in-
teract with each other.

We measure degree-assortativity in hypergraphs via a generalization of the standard Spearman
rank assortativity coefficient to hypergraphs. Importantly, there are multiple possible general-
izations, each of which measures distinct structural information about degree correlations. Let
Ess ={A e E:|A|>2}. Let h: Eso » N? be a (possibly random) choice function that assigns to
each edge A two distinct nodes u,v € A. Three possibilities of interest are:

A
(Uniform) h(A) = (u,v) ~ Uniform( 5 )
(Top-2) h(A) = (u,v) = argmax dy,d,,
ware(2)
(Top-Bottom) h(A) = (u,v) = (argmax dy, argmin dw)
we weA

The Uniform choice function selects two distinct nodes at random. The Top-2 choice function
selects the two distinct nodes in the edge with largest degree. The Top-Bottom choice function
selects the nodes with largest and smallest degree.

Let 7 : N - R be a ranking function on the node set; we will always take r(u) to be the rank
of node u by degree in the hypergraph. For fixed h, let f : E - R? be defined componentwise
by fj(A) = (roh;)(A). Then, the generalized Spearman assortativity coefficient is the empirical
correlation coefficient between f1(A) and fo(A):

(6) Ph = 02 (fl(A)7f2(A))
Vo2 (fL(A), f1(A)) 02 (f2(A), f2(A))

where 02(X,Y) = (XY) - (X)(Y) and brackets express averages over pairs of edges in E.

In the case of dyadic graphs, the three choice functions above are trivially identical, since there
is only one way to pick two nodes from an edge of size two. On polyadic data, however, the
resulting Spearman coefficients capture usefully different classes of information. For example, in
studying coauthorship networks, they may be used to test hypotheses such as the following:

(1) Generic Assortativity: On a given paper, most coauthors will simultaneously be more
or less prolific than average.

(2) Junior-Senior Assortativity: The least profilic author on a paper will tend to be rela-
tively more prolific if the most prolific author is relatively more prolific.

(3) Senior-Senior Assortativity: The two most prolific authors on a paper will tend to be
simultaneously more or less prolific than average.

While the corresponding Spearman coefficients may in general be correlated, substantial variation
manifests across study data sets. shows measurements and significance tests for one
synthetic data set and the six empirical data sets studied in the previous section. The synthetic
data consists of five copies of the hypergraph shown in For each data set, we compute
the dyadic assortativity coefficient on the projected graph (first row), as well as each of the three
polyadic assortativity coefficients defined above.

The synthetic data (first column) illustrates a stark case in which dyadic hypothesis-testing
leads to a finding of statistically-significant assortativity, while polyadic hypothesis-testing finds
statistically-significant disassortativity. In each of the empirical data sets, the dyadic and polyadic
tests show directional agreement. However, the polyadic tests highlight several features of the
data missed by the dyadic tests. In the two email data sets, all four coefficients are positive
and to the right of the null distributions, though projecting (first row) increases the significance
of the coefficients relative to hypergraph randomization (second row). The two forum data sets
(threads-math-sx and tags-ask-ubuntu) are disassortative when compared to vertex-labeled
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FIGURE 2. Significance tests of degree-assortativity in synthetic and empirical
networks. The synthetic data consists of five copies of the illustrative network
shown in In each figure, the dashed line gives the observed Spearman
correlation, and densities give the null distributions under vertex- and stub-labeled
configuration models. In the first row only, the hypergraph was projected down
to an unweighted dyadic graph prior to randomization. Starred* data sets have
been temporally filtered as described in the SI.

nulls. The fact that tags-ask-ubuntu is disassortative despite a positive uniform hypergraph
Spearman coefficient speaks to the importance of carefully specified null hypothesis testing. In-
terestingly, the misspecified stub-labeled randomization would lead to the opposite finding. The
coauthorship network coauth-MAG-Geology is highly assortative in all metrics — including the
top-bottom measure, which is negative. The congress-bills data set is also assortative in all
measures. Unlike the other data sets, the uniform hypergraph coefficient lies farther from the
bulk of its null distribution than does the projected coefficient. We note in passing that, whereas
the stub-labeled and vertex-labeled hypergraph distributions had similar expected rates of triadic
closure[Table 1] their distributions of degree-assortativity coefficients vary substantially, and would
in some cases lead to directionally different study conclusions.

When studying triadic closure, we saw how hypergraph null models could lead us to differently-
contextualize standard graph metrics. When studying assortativity, we gain even more. Use of
hypergraph nulls allows us to forgo the dyadic projection operation, and thereby define rich polyadic
assortativity measures. Hypergraph null models thus enable us to expand our network-analytic
toolboxes by measuring and interpreting novel structural patterns in polyadic data.

4.3. Hyperedge Intersection Profiles. Let A,I' ¢ H. What is the size of their intersection?
In the case of dyadic graphs, the intersection can have size at most two, when A is parallel to
I". In hypergraphs intersections of arbitrary sizes may occur. The existence of large intersections
in a data set may indicate the emergence of polyadic social ties between groups of agents, or
interpretable event sequences such as email threads or series of related scholarly papers. Several
recent papers [0, 40] have studied similar questions by considering the rate at which “holes” in
the hypergraph tend to be “filled in” by higher-order interactions. We take a simpler approach,
defining a measure which is both easily computed and amenable to analytical approximation.
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FIGURE 3. Analysis of intersection profiles in the email-Enron data set. (a):
The average of the intersection size normalized by the expectation (J)gs under
the vertex-labeled configuration model. Positive values indicate that the data
displays larger intersections than expected under the configuration model for the
corresponding values of k and ¢. Colors are shown on a log scale. The missing
value at (k,¢) = (10,10) indicates that no nonempty intersections were observed
between edges of these sizes in the Monte Carlo sampling runs. (b): Marginal
intersection profile (points) of the empirical data, compared to null distributions
under the stub- and vertex-labeled configuration models. The dashed gray line
gives the analytic approximation of Note the logarithmic vertical

axis.

Definition 8 (Intersection Profile). For fized k,{ € Z,, the conditional intersection profile of a
hypergraph H € H is the distribution

Tre(G1H) = (LA AT = 5))ke

where ()¢ denotes the empirical average over all hyperedges A of size k and T' of size £. The
marginal intersection profile is

r(j|H) = (I(|AnT]= 7)),
with the average taken over all pairs of distinct edges in E.

Large values of 7¢(j|H) indicates that edges of size k and ¢ frequently have intersections of size
4 in H. Empirical data sets may possess complex patterns of correlation between edges of various
sizes. Evaluating whether an observed conditional or marginal intersection profile is noteworthy
requires comparison to appropriately-chosen null models.

demonstrates the use of hypergraph configuration models to study the intersection
profile of the email-Enron data set. In a), we compare the empirical average intersection
size (J)re = Y520 rke(jIH) to its average (J)re under the vertex-labeled configuration model.

2;;“ indicate the presence of denser intersections between edges of sizes
ke
k and /. Notably, the empirical averages are not uniformly higher than the null model averages,

even on the diagonal. There is apparent block structure, indicating that edges of certain sizes
tend to correlate most strongly with certain other sizes. Edges of dimension 3 through 6 tend to
interact strongly with each other, as do edges of dimension 7 and 8. However, edges in the smaller
group interact more weakly with edges in the larger group than would be expected by chance.
Further, more detailed study may be able to shed light on the groups of agents involved in these
overlapping communications.

Higher values of the ratio
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Figure 3|(b) gives a global view of the data using the marginal intersection profile. The observed
profile (points in b)) is nearly linear on semilog axes through j = 6, suggesting that the
decay in the intersection size is roughly exponential. In order to evaluate whether this behavior
indicates nonrandom clustering between edges, we again turn to hypergraph configuration models.
The expectation #(j) = E, [r(j|H)] of the marginal intersection profile under a configuration model
v € {ida k,Nax} measures the typical behavior of a comparable random hypergraph. The solid
lines in b) give these expected profiles under both stub- and vertex-labeled models, which
directionally agree. The observed data shows fewer intersections on single vertices than would be
expected by chance. On the other hand, for j > 3, r(j|H) exceeds 7#(j) by an order of magnitude
or more, suggesting substantial higher-order correlation in the data. These results likely reflect
the passing of multiple messages between the same sets of users.

Some data sets may be too large to practically estimate 7#(j) by Monte Carlo methods. In such
cases, it is possible to approximate 7#(j) under the stub-labeled configuration model analytically,
using the following asymptotic result.

Theorem 3. Fix {, k, and j. Let D € Z% be a vector of i.i.d. copies of positive, discrete random
variable D € Z. such that D < dyax almost surely for some dmax. Let K € ZT" be any vector of edge
dimensions configurable with D. Let H ~ up k, and let A and I' be uniformly random edges of H.
Then, with probability approaching unity as n grows large,

) (R (0\ (1 E[D?]-E[D]Y
7 ; :1+01!()()f7.
7) ) = =0 () (C) (5 E oy
Proof. Let (d) = % Y uen dy denote the empirical mean degree of a given degree sequence d. Assume
without loss of generality that A = {d1,...,d0x} and T' = {~q,...,v¢} are the first two hyperedges
formed by |Algorithm 1] conditioned on nondegeneracy. There are (I;) ways to choose the j elements

of A contained in AnTI', and similarly (f) ways to choose the elements of I'. There are then j! ways
to place these two sets in bijective correspondence. Define the event A = {0, = v, h=1,...,7}.
Then, 7s(j) = j!(’;)(lz)uD’K(A). To compute up k(A4), we may explicitly enumerate

s
weN~{u,v}

with a total of j sums appearing. In each summation, the first factor gives the probability that
01 = u and the second that ; = u. Consider the innermost summation, which may be written

d d,-1

(8) SR — z z
zs]%:\R n<d> - ZyER dy n(d) - ZyER dy -1
for a set R of size j — 1. Since D < dpax a.s., we may employ Chebyshev’s inequality to find
that (n{d))™* Yyerdy = O(n™') wh.p. We may therefore w.h.p. expand both factors within
IEquation (8)} obtaining the expression

d,(d,-1)

zeN\R n2<d>2

Using Chebyshev’s inequality again, we also obtain asymptotic behavior on the other expressions
appearing above. {d) = (1+0 (n™'))E[D] and ¥.cy g 2% = (1+0(nY)) (E[D?] - E[D)),
both w.h.p. We have therefore shown that

dy dy-1 d d, — 1
A) = e ; -
1D K (A) U;VT)‘(CZ) n(d) - 1 e} n{d) = dy n{d) —d, -1

(1+ O(n_l)) .

©) S (1+o(n1))(iW)

w.h.p. This argument may be repeated inductively for each of the remaining j — 1 sums, each of
which contributes the same factor appearing in [Equation (9)| proving the theorem. O
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FIGURE 4. Points give the observed intersection profile for six large polyadic data
sets. The solid line gives the null intersection profile of In this visual-
ization, full data sets were used — the temporal filtering described in

was not performed.

shows the resulting approximation for 7, as a dashed line, finding excellent qualitative
agreement. This approximation may be used to study intersection profiles in data sets of arbitrary
size. [Figure 4/shows the use of this approximation to study intersection profiles in hypergraph data
sets of arbitrary size. The top set of panels shows four data sets in which the approximate null
intersection profile consistently underestimates the rates of large intersections by several orders
of magnitude, clearly indicating the presence of correlation structure over and above what would
be expected under hypergraph randomization. The lower panels show four additional data sets in
which the approximate null profile more closely-approximates the observed data.

5. DiscussioON

Configuration models of random hypergraphs preserve the first moments of the data — the
degree and edge-dimension sequences — while remaining maximally ignorant about additional data
structure. These models extend the widely-used configuration models for dyadic graphs, and serve
as natural null models for polyadic network data analysis. We have demonstrated how to define,
sample from, analyze, and apply these models. We have seen that the choice between nulls can
greatly impact the directional findings of studies of empirical polyadic data. The analyst faced
with such a choice must therefore carefully consider whether dyadic simplification will lead to data
representations and null spaces that are relevant for their application area. Second, employing
polyadic nulls often allows the analyst to define novel measures that can illuminate higher-order
structure in data. We have illustrated this with extended assortativity measures and intersection
profiles, but many more extensions are possible. We hope that the introduction of statistically-
grounded hypergraph nulls will encourage analysts to design, measure, and carefully interpret
many novel measures of polyadic network structure.

There are several directions of future work on configuration models of random hypergraphs.
Beginning with theory, many classical asymptotic results on dyadic configuration models invite
generalization. These include probabilistic characterization of component sizes; cycles and parallel
edges; and the diameter of the connected component in various regimes. We also highlight two
applications of potential interest. The first is motif analysis. A network motif is a subgraph
that appears with higher-than-expected frequency in a given network [31], relative to a given null
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model. Considering the explicit dependence of this definition on the null, we conjecture that
motif-discovery algorithms based on polyadic nulls may highlight importantly distinct structure
when compared to dyadic nulls. A second promising application is in hypergraph clustering and
community detection. A recent paper [25] offers a definition of modularity — a common quality
function for network partitioning — based on a polyadic generalization of the Chung-Lu model
[12]. In this case, the modularity of a given partition may be computed analytically. The same
calculations used to prove can also be used to show that the stub-labeled configuration
model will give an asymptotically equivalent expression. However, for the large class of data
sets more appropriately modeled by vertex-labeled nulls, other methods may be necessary. We
anticipate that pursuing these tasks will pose interesting theoretical and computational challenges.
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lowship under award number 1122374.
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Software. A hypergraph class, written in Python 3.5, is available at
https://github.com/PhilChodrow/hypergraph.

This class includes implementations of Monte Carlo sampling for both stub- and vertex-labeled
configuration models.

Data. The data sets used in this paper were prepared by the authors of [6] and accessed from
https://www.cs.cornell.edu/ arb/data/.

APPENDIX A. DATA PREPARATION

The data sets used in this paper were prepared by the authors of [6] and accessed from
https://www.cs.cornell.edu/ arb/data/. Some data sets have been filtered to exclude edges
prior to a temporal threshold 7 in order to promote practical compute times on triangle counting
and mixing of vertex-labeled models in projected graph spaces. Notably, in no cases was sampling
from hypergraph configuration models the computational bottleneck. Thresholds were chosen to
construct data with edge sets of approximate size m ~ 10%, but are otherwise arbitrary. Temporal
data subsets were used in the generation of [Table 1] and [Fig. 2} [Table 2| gives the node and edge
counts of both the original data and the data after temporal subsetting when applicable.

Original Filtered

n m T n m
email-Enron 143 10, 886 - - -
email-Eu 1,006 235,264 1.105 x 10? 817 32,117
congress-bills [I7, 18] 1,719 260, 852 7.315 x 10° 537 6,661
coauth-MAG-Geology [44] 1,261,130 1,591,167 2017 73,436 23,434
threads-math-sx 201, 864 719,793 2.19 x 1012 11,880 22,786
tags-ask-ubuntu 200,975 192,948 2.6 x 1012 2,120 19,338

TABLE 2. Summary of data preparation. When 7 is given, the filtered data set
consists in all edges that occurred after time 7.
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