Volume 63, Issue 2, April 1983, Pages 157–172

On the critical behavior of the general epidemic process and dynamical percolation


Abstract

Scaling laws are formulated for the behavior of a space-dependent fluctuating general epidemic process near the critical point. Restricted to stationary properties, these laws describe also the critical behavior of random percolation. Monte Carlo calculations are used to estimate the critical exponents and the universal shape of the propagating wave, in the case of 2-dimensional space.

Reference

    • 1
    • D. Mollison
    • J. Roy. Statist. Soc. Ser. B, 39 (1977), p. 283

    • N.T.J. Bailey
    • The Mathematical theory of Infectious Diseases

    • Griffin, London (1975)

    • 2
    • A.A. Hana and K. Showalter, talks at conference on “nonlinear phenomena in chemical dynamics,” Bordeaux, Sept. 1981
    • 3
    • H.E. Stanley
    • Introduction to Phase Transitions and Critical Phenomena

    • (2nd ed.)Oxford U.P., London (1971) in preparation

    • ,in: C. Domb, M.S. Green (Eds.), Phase Transitions and Critical Phenomena, Vols. 1–6Academic, London (1972)

    • 9
    • D.G. Kendall
    • J. Roy. Statist. Soc. Ser. A, 120 (1957), p. 64

    • 11
    • L. Jacobs, M. Creutz, C. Rebbi
    • Phys. Rev. Lett., 42 (1979), p. 1390

    • 16
    • D. Griffeath
    • Springer Lecture Notes in Mathematics, Vol. 724 (1979)