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Abstract

We derive an asymptotic formula for the number of graphs with n vertices all of degree at

least k; and m edges, with k fixed. This is done by summing the asymptotic formula for the

number of graphs with a given degree sequence, all degrees at least k: This approach requires

analysis of a set of independent truncated Poisson variables, which approximate the degree

sequence of a random graph chosen uniformly at random among all graphs with n vertices, m

edges, and a minimum degree at least k: Our main result generalizes a result of Bender,

Canfield and McKay and of Korshunov, who treated the case k ¼ 1 using different methods.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

It is a quite fundamental question to ask for the number of graphs with n vertices,
all of degree at least k: We call such a graph a k-core. This is only a slight abuse of
the usual convention, in which a k-core is defined for a particular graph as the
maximal subgraph which has minimum degree at least k: For the purposes which
motivate us, we require an asymptotic formula for the number Ckðn;mÞ of k-cores
with n vertices and m edges, with k fixed. The only interesting range of m is
Oðn log nÞ; since for larger m it is well known that the proportion of graphs with any
vertices of degree less than k is exceedingly small.
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We do not consider the trivial case k ¼ 0: The 1-cores are precisely the graphs with
no isolated vertices. For this case, such asymptotic formulae were found
independently by Korshunov [8] and Bender et al. [5], the latter obtaining bounds
on the remainder term. The approach in [5] was based on a recurrence equation for
the number of such graphs. Extending this appealing idea to k41 is quite
problematic. There were several approaches in [8], one of which studied this problem
by considering the distribution of the number of isolated vertices in a random graph

with n vertices and m edges. Another, which applied for mon=2þ n2=3=log n; was to
show that such a graph is with high probability a forest with maximum tree size at
most 4. Again, these methods look very difficult to extend beyond k ¼ 1:
In [13, Proposition 2] (see also [14, Proof of Theorem 3.1]), an entirely different

method was used which is much simpler to implement than either of these, and the
results apply to the more general problem of arbitrary k: This method is to sum the
well known asymptotic formula for the number of graphs with given degree
sequence, over the appropriate degree sequences. The result in [13] permits an
additional number of vertices to have specified degrees less than k: However, it does
not cover the cases that m=n-N or 2m � kn ¼ oðnÞ: The latter is more delicate
computationally than 2m � kn ¼ cn; but is especially interesting for transitional
effects, since when 2m � kn ¼ 0 the graphs are k-regular. Our aim here is to use this
method to give a formula for the complete interesting range of m:
Our main result is Theorem 2, the desired asymptotic formula for the number of k-

cores with a given number of vertices and edges, stated below. After this, we make
some observations which indicate the flavor of our proof, and provide some upper
bounds on the numbers which are useful in work to appear later. Our later work will
include asymptotic enumeration of 2-connected graphs by vertices and edges
(particularly in the interesting case when the graphs are quite sparse). It will also
include (again in the sparse case) results on the distribution of random variables
relating to the 2-cores of random graphs, properties of random connected graphs
(such as the distribution of short cycles), and a simpler derivation of the asymptotic
formula given by Bender et al. [4] for the number of connected graphs with n vertices
and m edges. The same method also forms the basis for results on directed graphs.

Łuczak [9] showed that a random graph with given degree sequence, with all

degrees between 3 and n0:02; has connectivity equal to its minimum degree with
probability asymptotic to 1. It follows that for kX3; a random k-core with n vertices
and m edges is k-connected with probability tending to 1 as n-N: Hence, our main
result gives, for kX3; an asymptotic formula for the number of k-connected graphs
with a given number of vertices and edges. (We have a cutoff m ¼ Oðn log nÞ; but it is
well known that above this range, almost all graphs are k-connected; this was shown
by Erd +os and Rényi [7].)

For a sequence ~dd ¼ ðd1;y; dnÞ; put 2m ¼
Pn

j¼1 dj and dmax ¼ maxifdig: Let Gð~dd Þ
be the set of graphs with degree sequence ~dd (which is only nonempty if m is an

integer), and put gð~dd Þ ¼ jGð~dd Þj: The formula we require is the following, shown first
by Bender and Canfield [3] for dmax bounded, and later by McKay [10] in the
generality we require.
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Theorem 1. Let ~dd be a function of n such that m ¼ mðnÞ-N and dmax ¼ oðm1=4Þ as

n-N; and m is an integer for all n. Then

gð~dd Þ ¼ ð2m � 1Þ!!Qn
j¼1 dj !

exp �Zð~dd Þ
2

� Z2ð~dd Þ
4

þ O
d4
max

m

� � !
; ð1Þ

where

Zð~dd Þ :¼ 1

2m

Xn

j¼1
djðdj � 1Þ: ð2Þ

In this theorem, as with all our asymptotic statements in which the setting is not
explicitly stated, we follow the convention that the implicit error function is uniform

over all possibilities for ~dd ; and any variables defined directly from it, subject to
whatever constraints have been explicitly imposed to be in force at the time, provided
n-N:
In fact, there is a sharper formula by McKay and Wormald [11], under the weaker

condition dmax ¼ oðm1=3Þ: The proofs use the pairing model, which is a probabilistic

space valid for any nonnegative integer sequence ~dd with even sum. (See [6] or [15] for
more details.) The basic element is a random pairing, and, by the multivariate
analogue of [15, equation (2)],

Uð~dd Þ ¼
gð~dd Þ

Qn
j¼1 dj!

ð2m � 1Þ!! ð3Þ

is the probability that this random pairing corresponds to a simple graph. As it is a
probability, we may immediately conclude the useful bound

gð~dd Þpð2m � 1Þ!!Qn
j¼1 dj !

ð4Þ

for all ~dd : For dmax ¼ oðm1=4Þ; Uð~dd Þ is evaluated asymptotically by the exponential
factor in (1).
Stating our main result requires some preliminaries. We begin by introducing a

family of random variables basic for this work. Denote by Y ¼ Y ðk; lÞ a random
variable which has a k-truncated Poisson distribution with a parameter l; that is

PðY ¼ jÞ ¼ PðYðk; lÞ ¼ jÞ ¼
lj

j!fkðlÞ
; jXk;

0; jok;

8><
>: ð5Þ

where

faðlÞ ¼ el �
Xa�1
i¼0

li

i!
¼
X
iXa

li

i!
:
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In particular, f0ðlÞ ¼ el; and we will find it convenient to define fcðlÞ ¼ el for all
cp0: Let

c ¼ 2m

n

and let lc denote the root of the equation

lfk�1ðlÞ
fkðlÞ

¼ c; ð6Þ

or equivalently

EY ¼ c: ð7Þ

It is easily seen that lc minimizes fkðlÞn=l2m: It follows (see the comments after the

statement of Theorem 2) that lc maximizes Pð
Pn

j¼1 Yj ¼ 2mÞ as well, where

Y1;y;Yn are independent copies of Y : Also define

%Zc ¼ lcfk�2ðlcÞ=fk�1ðlcÞ; ð8Þ

and for convenience define

r ¼ ðc � kÞn ¼ 2m � kn:

These definitions apply throughout this paper.
We now state our asymptotic formula for the number of k-cores. For the

statement of this theorem, write l ¼ lc and %Z ¼ %Zc:

Theorem 2. Let kX1 be fixed. Suppose n;m-N in such a way that rX0 and m ¼
Oðn log nÞ:

(a) If r-N:

Ckðn;mÞ ¼ ð1þ Oðr�1 þ r1=2n�1þeÞÞ ð2m � 1Þ!!fkðlÞn

l2me%Z=2þ%Z2=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pncð1þ %Z� cÞ

p
for any e40;

(b) for r ¼ Oðn2=5Þ:

Ckðn;mÞ ¼ ð1þ Oðr5=2n�1 þ bÞÞ ð2m � 1Þ!!fkðlÞn
rr

l2me%Z=2þ%Z2=4þrr!

where, for any e40;

b ¼
minfe�re ; n�1=2þeg; k ¼ 1;

minfe�re ; r1=2n�2=3g; kX2:

(

Note 1. The factor ð2m � 1Þ!! can be replaced by
ffiffiffi
2

p
ð2m=eÞm since the error Oðm�1Þ

in Stirling’s formula for m! is subsumed by the other error terms.

Note 2. We can compare to the result in [5] for the case k ¼ 1; which was treated
there. For this case, the leading term of our estimates agrees with that in [5], as our lc
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is equal to 2xy in [5]. Our error bound improves that in [5] for all n1=2þeor ¼
Oðn log nÞ: It is suggested in [5] that the true correction term to the leading term in
the form given in [5] ðk ¼ 1Þ is actually Oð1=mÞ: Not contradicting this, we believe

that the error bound for our result in (a) cannot be lower than Oðr�1Þ for any k

(see (22)).

To explain the appearance of truncated Poisson variables in presenting the
formulae, note that the right-hand side of the bound (4) (see (1) too) leads us to
consider

Qkðn;mÞ ¼
X

d1;y;dnXk
d1þ?þdn¼2m

Yn

j¼1

1

dj!
: ð9Þ

With Y1;y;Yn defined as independent copies of Y ðk; lÞ as in (5),

P
Xn

j¼1
Yj ¼ 2m

 !
¼

X
d1;y;dnXk

d1þ?þdn¼2m

Yn

j¼1

ldj

dj!fkðlÞ
¼ l2m

fkðlÞn



X

d1;y;dnXk
d1þ?þdn¼2m

Yn

j¼1

1

dj!

and thus

Qkðn;mÞ ¼ f ðlÞn

l2m
P
Xn

j¼1
Yj ¼ 2m

 !
: ð10Þ

We may take this as an alternative definition of Qkðn;mÞ: Although it is in terms of
the local probability in the sum of independent copies of Y ðk; lÞ; by its original
definition (9), it does not depend on l: Since by (4), ð2m � 1Þ!! Qkðn;mÞ is an upper

bound for
P

~dd
gð~dd Þ; it is natural to choose l ¼ lc; the minimum point of this

fraction. Of course, that same lc must be the maximum point for Pð
P

j Yj ¼ 2mÞ:
The fact that for the minimum point lc we must have EðYðk; lcÞÞ ¼ 2m=n; as
determined by (6) and (7), makes this ‘‘coincidence’’ even less mysterious.
The next result is a more precise version of Theorem 2.

Theorem 3. Let e40 and kX0 be fixed. For any rX0;

Ckðn;mÞ ¼ ð1þ OðxÞÞð2m � 1Þ!! Qkðn;mÞ
e%Z=2þ%Z2=4

; ð11Þ

where

x ¼
minfe�re þ r1=2n�1þe; n�1=2þeg; kp1;

minfe�re þ r1=2n�1þe; r1=2n�2=3g; kX2:

(
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Note. For Qkðn;mÞ one can use (10) with l ¼ lc: Then the local probability in (10) is
estimated in Theorem 4(a).

Theorem 3 enables one to estimate Ckðn;mÞ=Ckðn0;m0Þ; with n0 and m0 close to n

and m; with high accuracy. Using (11), for both numerator and denominator, leads
to estimating the ratio of local probabilities, which can lead to a considerably more
accurate result than by use of Theorem 2.
Some preliminary investigation will reveal the relevance of a conditional

expectation examined in the next section. With x as a formal variable, (3) gives

X
2mXkn

x2m
X

d1;y;dnXk
d1þ?þdn¼2m

gð~dd Þ
ð2m � 1Þ!! ¼

X
d1;y;dnXk

Uð~dd Þ
Yn

j¼1

xdj

dj!
;

so that

Ckðn;mÞ ¼
X

d1;y;dnXk
d1þ?þdn¼2m

gð~dd Þ

¼ ð2m � 1Þ!! � ½x2m�
X

d1;y;dnXk

Uð~dd Þ
Yn

j¼1

xdj

dj!
: ð12Þ

Picking l40; the probability generating function of Yðk; lÞ is

EðxYðk;lÞÞ ¼ 1

fkðlÞ
X
dXk

xdld

d!
¼ fkðlxÞ

fkðlÞ
:

So, considering the independent copies Y1;y;Yn of Yðk; lÞ; (12) is (‘‘magically’’)
transformed into

Ckðn;mÞ ¼ ð2m � 1Þ!! fkðlÞn

l2m
� ½x2m�

X
d1;y;dnXk

Uð~dd Þ �
Yn

j¼1

ðlxÞdj=dj!

fkðlÞ

¼ ð2m � 1Þ!! fkðlÞn

l2m
E Uð~YY ÞI P

j
Yj¼2m

n o
0
@

1
A

¼ð2m � 1Þ!! fkðlÞn

l2m
E Uð~YY Þ

Xn

j¼1
Yj ¼ 2m

�����
 !

P
Xn

j¼1
Yj ¼ 2m

 !

Ckðn;mÞ ¼ ð2m � 1Þ!! Qkðn;mÞ E Uð~YY Þ
Xn

j¼1
Yj ¼ 2m

�����
 !

ð13Þ

by (10). The last factor denotes the expected value of Uð~YY Þ; conditional on the
indicated event. This is studied in Theorem 4.
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We close this section with two upper bounds. First, combining (10) with (4) gives
an upper (Chernoff-type) bound

Ckðn;mÞpð2m � 1Þ!! fkðlÞn

l2m
; 8 l40: ð14Þ

Of course, to get the most out of this bound one would want to use l ¼ lc; since this
is the minimum point of the function in question. Comparing this bound with (11),
we see that the main difference is absence of the square root factors in (14). Their

total product is of order
ffiffiffiffiffiffiffi
nlc

p
: With a bit of extra work, based on the Cauchy

integral formula and an inequality

jfkðzÞjpfkðjzjÞ exp � jzj �Re z

k þ 1

� �
;

(see [12]), the bound (14) can be improved to

Ckðn;mÞpað2m � 1Þ!! fkðlÞn

l2m
ffiffiffiffiffi
nl

p ; 8 l40; ð15Þ

where a is an absolute constant.
The next section gives the required properties of the joint distribution of the Yj;

and the third section then proves Theorem 2.

2. Properties of truncated Poisson variables

For later use we compute here

EðYðY � 1ÞÞ ¼ 1

fkðlcÞ
X
jXk

jðj � 1Þ l
j
c

j!
¼ l2cfk�2ðlcÞ

fkðlcÞ
¼ c%Zc ð16Þ

and, using (6), (7),

VarðYÞ ¼E½ðYÞ2� þ EðYÞ � E2ðYÞ

¼ l2cfk�2ðlcÞ
fkðlcÞ

þ lcfk�1ðlcÞ
fkðlcÞ

� lcfk�1ðlcÞ
fkðlcÞ

� �2

ð17Þ

¼ cð1þ %Zc � cÞ: ð18Þ

Lemma 1. The root lc of (6) exists uniquely, and

(a) if 2m=n-k then lc ¼ ðk þ 1Þðc � kÞ þ Oððc � kÞ2Þ;
(b) lcp2m=n always,
(c) if m=n-N then lcB2m=n:
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Proof. We first observe that EYðk; lÞ is monotonically increasing in l: Perhaps the
simplest way to see this is to note that, by (6), (17), and f 0

cðlÞ ¼ fc�1ðlÞ;

dEðY ðk; lÞÞ
dl

¼ d

dl
lfk�1ðlÞ

fkðlÞ
¼ 1

l
VarðYðk; lÞÞ40;

a relation used substantially by Pittel et al. [13] and Aronson et al. [1].
Note that for l-0;

lfk�1ðlÞ=fkðlÞ ¼ k þ l=ðk þ 1Þ þ Oðl2ÞBk; ð19Þ

and for l-N; fk�1ðlÞBfkðlÞ: These facts together with the monotonicity mentioned
above show that (6) has a unique root. Then (a) and (c) follow also from the equality
in (19). Finally, from (6), lcpc; which gives (b). &

We also note in the following lemma that VarðY Þ (see (18) is of exact order l; just
like the usual PoissonðlÞ; whose variance simply equals l:

Lemma 2. Uniformly for all lAð0;NÞ;

VarðYðk; lcÞÞ ¼ cð1þ %Zc � cÞ ¼ YðlcÞ ¼ Yðc � kÞ:

Proof. The first equality is (18). If c-k then by Lemma 1(a), lc-0: Apply (19) to
(8) with k replaced by k � 1 (unless k ¼ 1; in which case use %Zc ¼ lc), to obtain

cð1þ %Zc � cÞ ¼ c
lc

k
� ðc � kÞ þ Oðl2cÞ

� �
Bcðc � kÞ=kBc � k ð20Þ

by Lemma 1(a). The lemma follows in this case.
On the other hand, suppose that c is bounded away from k: Then by (19), l is

bounded away from 0. Lemma 1(b) and (c) then give lc ¼ Yðc � kÞ: Also, since Y

has the distribution of PoissonðlÞ with a few values omitted, it follows that
VarðY ðk; lcÞÞ is at least a positive constant times l: Finally, VarðYðk; lcÞÞ ¼ OðlÞ
since

%Zc ¼
ðk � 2Þlk�1

c =ðk � 1Þ!þ cfkðlcÞ
lk�1

c =ðk � 1Þ!þ fkðlcÞ
pc; ð21Þ

and so the expression in (18) is OðcÞ ¼ OðlÞ: &

We require some facts involving the event that the sum of a set of independent
truncated Poisson variables has a given sum. In the rest of this section, we drop the
subscripts c on l and %Z; so l is the root of (6) and %Z is the quantity %Zc in (8). Recall
that k is fixed, and recall Z defined in (2).
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Theorem 4. Let kX0 be fixed. Suppose n;m-N in such a way that m ¼ Oðn log nÞ:
Let Y1;y;Yn be independent copies of Yðk; lÞ as in (5). Then

(a) for r-N

P
Xn

j¼1
Yj ¼ 2m

 !
¼ 1þ Oðr�1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pncð1þ %Z� cÞ
p ; ð22Þ

whilst for r ¼ Oðn2=5Þ

P
Xn

j¼1
Yj ¼ 2m

 !
¼ ð1þ Oðr5=2n�1ÞÞe�rr

r

r!
: ð23Þ

(b)

E e�Zð~YY Þ=2�Z2ð~YY Þ=4
Xn

j¼1
Yj ¼ 2m

�����
 !

¼ ð1þ tÞe�%Z=2�%Z2=4;

where for all r and k and any e40

t ¼ Oðn�1=2þeÞ; ð24Þ

for r ¼ Oðn1�eÞ and any k and e40

t ¼ Oðe�re þ r1=2þen�1Þ; ð25Þ

whilst for r ¼ oðnÞ and kX2

t ¼ Oðr1=2n�2=3Þ: ð26Þ

Note 1. The approximate size of the expression in the square root in (22) can be
obtained from Lemma 2, and more precisely from (20) in the case l-0:

Note 2. Estimate (22) blends with (23) since, by (20), VarðYðk; lÞÞBr=n for

r-N; r ¼ oðnÞ: The domains r-N and r ¼ Oðn2=5Þ overlap, and the approxima-

tion (23) becomes sharper than (22) once r falls below n2=7:

Proof of Theorem 4. For (a), first let r-N: One can easily obtain the main term in
(22) (i.e. without the specific bound on the rate of convergence of the error term) as
follows. The Berry-Esseen inequality establishes asymptotic normality of

P
Yj; and

then [2, Lemma 2] implies a local limit theorem (since the truncated Poisson
distribution is log-concave, and the convolution of log-concave sequences is log-

concave). The usual way to express the main term is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnVarY ðk; lÞ

p
; which by

(18) is equal to the stated term. The more precise statement in (22), with the error
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term, was proved in [1] for k ¼ 2; under the condition nVarðYÞ-N; which is
satisfied by Lemma 2. The argument used there extends with virtually no changes to
any kX0:

Suppose now that r ¼ Oðn2=5Þ: Consider r40; as the case r ¼ 0 is obvious. As
r ¼ oðnÞ; we have

lB
ðk þ 1Þr

n
¼ Oðr=nÞ;

see Lemma 1(a). Introducing Y 0
j ¼ Yj � k; we can write

P
X

j

Yj ¼ 2m

 !
¼ P

X
j

Y 0
j ¼ r

 !
:

Now

PðY 0
j ¼ 1Þ ¼ lkþ1=ðk þ 1Þ!

fkðlÞ
¼ l

k þ 1
ð1þ OðlÞÞ;

and PðY 0
jX2Þ ¼ Oðl2Þ; so by Lemma 1(a)

p :¼ PðY 0
jX1Þ ¼ r=n þ Oðr2n�2Þ

and X
j

PðY 0
jX2Þ ¼ Oðnl2Þ ¼ Oðr2n�1Þ-0:

Therefore, introducing Y0
j ¼ minfY 0

j ; 1g;

P
X

j

Y 0
ja
X

j

Y0
j

 !
¼ Oðr2n�1Þ:

Consequently

P
Xn

j¼1
Yj ¼ 2m

 !
¼Oðr2n�1Þ þ

n

r

 !
prð1� pÞn�r

¼Oðr2n�1Þ þ e�rr
r

r!
ð1þ Oðr2n�1ÞÞ;

which gives (23), as the explicit term in the last expression is of order r�1=2:
We will have occasion to use a very rough bound on the upper tail probability

for Y :

PðYXj0Þ ¼
X
jXj0

lj

j!fkðlÞ
¼ Oðexpð�j0=2ÞÞ for j042el: ð27Þ

This follows because the ratio of consecutive terms is at most 1=e for j4j0=2; and
also because each term is a probability (so at most 1).

We now turn to part (b). We will show that for the purpose of estimating Z ¼ Zð~YY Þ
by its expected value, the concentration of its distribution is sufficiently strong to
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overpower conditioning on the relatively ‘‘thin’’ event f
P

j Yj ¼ 2mg as in (37). Set

S ¼ Zð~YY Þ=2 ¼ 1

4m

Xn

j¼1
YiðYi � 1Þ: ð28Þ

Then, using (16),

ES ¼ n

4m
EðYðY � 1ÞÞ ¼ %Z=2 ¼ Oðlog nÞ ð29Þ

by (21), and therefore

S þ S2 � ES � ðESÞ2 ¼ðS � ESÞ2 þ ðS � ESÞð1þ 2ESÞ

¼OðjS � ESj2 þ jS � ESj log nÞ: ð30Þ

Let Zi ¼ YiðYi � 1Þ � EðYiðYi � 1ÞÞ; and put z ¼ log6 n: Then (for n large)

PðjZijXzÞpPðY 2
XzÞ ¼ PðYX

ffiffiffi
z

p
Þpexpð�Yðlog3 nÞÞ

by (27) and Lemma 1(b). Virtually the same argument, using an obvious analogue of
(27), gives

jEðZi IjZi jXzÞjpexpð�Yðlog3 nÞÞ: ð31Þ

Now set Zn
i ¼ Zi IjZi joz; so that jZn

i joz: By the Azuma–Hoeffding inequality

P
X

i

ðZn

i � EZn

i Þ
�����

�����Xa

 !
p2 expð�a2=8z2nÞ ð32Þ

for all a40: Since EZi ¼ 0;

X
i

EZn

i

�����
����� ¼ �

X
i

EðZi IjZi jXzÞ
�����

�����p expð�Yðlog3 nÞÞ

by (31). So (32) implies that for t ¼ n1=2 log8 n

P
X

i

Zi

�����
�����Xt

 !
p
X

i

PðjZijXzÞ

þ P
X

i

ðZn

i � EZn

i Þ
�����

�����Xt=2

 !
þ
X

i

jEZn

i j

p expð�Yðlog3 nÞÞ þ 2 expð�nðlog4 nÞ=32nÞ

p expð�Yðlog3 nÞÞ:

Consequently,

PðjS � ESjXn1=2m�1 log8 nÞpexpð�Yðlog3 nÞÞ: ð33Þ

Notice also that on the event fjS � ESjpm�1=2 log8 ng;
jS þ S2 � ES � ðESÞ2j ¼ Oðm�1=2 log9 nÞ
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by (30), and the fact that SX0 always. So (33) implies

E expð�S � S2Þ
Xn

j¼1
Yj ¼ 2m

�����
 !

¼ expð�ES � ðESÞ2 þ Oðm�1=2 log9 nÞÞ þ expð�Yðlog3 nÞÞ
P
Pn

j¼1 Yj ¼ 2m
� �

¼ expð�%Z=2� %Z2=4þ Oðm�1=2 log9 nÞÞ þ expð�Yðlog3 nÞÞ ð34Þ

by (22), (29) and Lemma 2. This implies (b) with x given in (24) since mXn:

For (25) we have that r ¼ Oðn1�eÞ; and hence l ¼ Oðn�eÞ by Lemma 1(a). Put

T ¼ J1=en; so that n�4Te ¼ Oðn�4Þ; and put z ¼ ð4T þ kÞ2 (noting that z is now

bounded). Define Zi as above, and note that PðY4
ffiffiffi
z

p
Þ ¼ Oðn�4TeÞ ¼ Oðn�4Þ using

(5). Hence the argument leading to (31) now produces

jEðZi IjZi jXzÞj ¼ Oðn�4Þ: ð35Þ

Define Zn
i ¼ Zi IjZi joz as before, and set

Wi ¼ Zn

i � EZn

i :

For sharp concentration of the sum of Wi; we use a common approach for large
deviation inequalities. In this case, Wi takes on only a finite set of values fu0;y; ucg
where u0 ¼ kðk � 1Þ � EðYðY � 1ÞÞ � EZn

i ; and uj � u0 is a positive integer less than

z for all 0ojpc: Letting pj ¼ PðWi ¼ ujÞ; we have

p0 ¼ 1� OðlÞ; hence
X
j40

pj ¼ OðlÞ; and u0 ¼ OðlÞ: ð36Þ

From these equations and Taylor’s theorem, it follows that for h ¼ oð1Þ (to be
chosen shortly)

EðehWiÞ ¼
X

j

pje
huj ¼ 1þ h

X
j

pjuj þ
1

2
h2
X

j

pju
2
j þ Oðh3lÞ:

The first summation is EWi ¼ 0: Letting V denote the second summation (which

happens to be EW 2
i ), we have V ¼ YðlÞ; and so

log EðehWiÞ ¼ h2V=2þ Oðh3lÞ:
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Thus for any a40; using Markov’s inequality for the second step,

P
Xn

i¼1
WiXa

 !
¼P e

h
Pn

i¼1
Wi

Xeha

0
@

1
A

p e�haE e
h
Pn

i¼1
Wi

0
@

1
A

¼ e�ha EðehWiÞ
� �n

¼ expð�haþ nh2V=2þ Oðnh3lÞÞ:

Selecting h ¼ a=Vn to minimize the quadratic, this bound becomes

expð�a2=2Vn þ Oðnh3lÞÞ ¼ expð�a2=2Vn þ Oða3=r2ÞÞ

since h ¼ Yða=rÞ and l ¼ Yðr=nÞ: To satisfy the requirement h ¼ oð1Þ; we shall
restrict a to oðrÞ: For such a we now have

P
Xn

i¼1
WiXa

 !
pexpð�Yða2=rÞÞ:

The same argument clearly bounds Pð
Pn

i¼1 Wip� aÞ by an identical quantity, since
it applies when all the values uj are negated. Applying this with a ¼ r1=2þe say, gives

P
X

i

ðZn

i � EZn

i Þ
�����

�����Xr1=2þe

 !
¼ Oðexpð�r3e=2ÞÞ

for any fixed e40: Using this in place of (32), and (35) in place of (31), the earlier
argument now yields, instead of (33),

PðjS � ESjX2m�1r1=2þeÞpexpð�Yðlog3 nÞÞ þ Oðexpð�r3e=2ÞÞ:

Since in this case ES ¼ Oð1Þ; in place of (30) we use S þ S2 � ES � ðESÞ2 ¼
OðjS � ESj2 þ jS � ESjÞ: The right-hand side of (34) becomes

expð�%Z=2� %Z2=4þ Oðm�1r1=2þeÞÞ þ Oðexpð�reÞÞ

and we have (b) with the form of x in (25). Note that other bounds are obtained with
different choices of a; our choice here is motivated by the type of bound which will
eventuate in Theorem 2.
For (26), consider r ¼ oðnÞ and assume kX2: As l-0 we may calculate

%Z ¼ k � 1þ l=k þ Oðl2Þ; c ¼ k þ l=ðk þ 1Þ þ Oðl2Þ

so that by (16)

EðYðY � 1ÞÞ ¼ c%Z ¼ kðk � 1Þ þ 2lk=ðk þ 1Þ þ Oðl2Þ
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and

VarðYðY � 1ÞÞ ¼ 1

fkðlÞ
X
jXk

ðjðj � 1Þ � kðk � 1Þ þ OðlÞÞ2l
j

j!
¼ YðlÞ:

Thus from the definition (2) of Z;

Var Zð~YY Þ
ðE Zð~YY ÞÞ2

¼
Var

Pn
j¼1 YjðYj � 1Þ

� �
E
Pn

j¼1 YjðYj � 1Þ
� �2 ¼ Oðl=nÞ:

By Chebyshev’s inequality and Lemma 1(c), this implies uniformly for n;m; and
e40;

PðjZð~YY Þ � EðZð~YY ÞÞjXeÞ ¼ O
l

ne2

� �
:

Therefore by (22)

E exp �Zð~YY Þ
2

� Z2ð~YY Þ
4

 !Xn

j¼1
Yj ¼ 2m

�����
 !

¼ Oðl=ne2Þ
P
Pn

j¼1 Yj ¼ 2m
� �þ ð1þ OðeÞÞ exp � %Z

2
� %Z2

4

� �

¼ ð1þ Oðl1=2n�1=6ÞÞ exp � %Z
2
� %Z2

4

� �
;

upon setting e ¼ l1=2n�1=6: This gives the form of x in (26), recalling l ¼ Oðr=nÞ: &

3. Proof of Theorems 2 and 3

We only need to attend to Theorem 3, since Theorem 2 then follows immediately
by Theorem 4(a).

Let ao1=4 be fixed. By definition Unð~YY Þ; defined in (3), is always at most 1, whilst
for max Yjpma; Theorem 1 gives

log Un ¼ � Zð~YY Þ
2

� Z2ð~YY Þ
4

þ Oðm�1þ4aÞ:

Since m ¼ Oðn log nÞ; Lemma 1(b) implies l ¼ Oðlog nÞ: Thus by (27)

P max
j

YjXma

� �
pnPðYXmaÞpe�na0

for any a0oa: So, choosing a ¼ e=4; the conditional expectation in (13) is

Oðe�na0 Þ þ ð1þ Oðn�1þeÞÞE exp � Zð~YY Þ
2

� Z2ð~YY Þ
4

 !Xn

j¼1
Yj ¼ 2m

�����
 !

: ð37Þ

Theorem 3 now follows from Theorem 4(b) and (21). &
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[7] P. Erd +os, A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci.

Hungar. 12 (1961) 261–267.

[8] A.D. Korshunov, On the number of graphs with a fixed number of vertices, edges, and isolated

vertices (translation of Discrete Analysis (Russian), 93, Izdat. Ross. Akad. Nauk Sibirsk. Otdel. Inst.

Mat., Novosibirsk, 1994, pp. 43–93) Siberian Adv. Math. 5 (1995) 50–112.

[9] T. Łuczak, Sparse random graphs with a given degree sequence, in: A. Frieze, T. Łuczak (Eds.),

Random Graphs, Vol. 2, Wiley, New York, 1992, pp. 165–182.

[10] B.D. McKay, Asymptotics for symmetric 0-1 matrices with prescribed row sums, Ars Combin. 19A

(1985) 15–25.

[11] B.D. McKay, N.C. Wormald, Asymptotic enumeration by degree sequence of graphs with degrees

oðn1=2Þ; Combinatorica 11 (1991) 369–382.

[12] B. Pittel, Paths in a random digital tree: limiting distributions, Adv. Appl. Probab. 18 (1986) 139–155.

[13] B. Pittel, J. Spencer, N.C. Wormald, Sudden emergence of a giant k-core in a random graph,

J. Combin. Theory Ser. B 67 (1996) 111–151.

[14] B. Pittel, W.A. Woyczynski, A graph-valued Markov process as rings-allowed polymerization model:

subcritical behavior, SIAM J. Appl. Math. 50 (1990) 1200–1220.

[15] N.C. Wormald, Models of random regular graphs, in: J.D. Lamb, D.A. Preece (Eds.), Surveys in

Combinatorics, 1999, London Mathematical Society Lecture Note Series, Vol. 267, Cambridge

University Press, Cambridge, 1999, pp. 239–298.

B. Pittel, N.C. Wormald / Journal of Combinatorial Theory, Series A 101 (2003) 249–263 263


	Asymptotic enumeration of sparse graphs with a minimum degree constraint
	Introduction
	Properties of truncated Poisson variables
	Proof of Theorems 2 and 3
	Acknowledgements
	References


