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The collocation of individuals in different environments is an important prerequisite for exposure to
infectious diseases on a social network. Standard epidemic models fail to capture the potential complexity
of this scenario by (1) neglecting the higher-order structure of contacts that typically occur through
environments like workplaces, restaurants, and households, and (2) assuming a linear relationship between
the exposure to infected contacts and the risk of infection. Here, we leverage a hypergraph model to
embrace the heterogeneity of environments and the heterogeneity of individual participation in these
environments. We find that combining heterogeneous exposure with the concept of minimal infective dose
induces a universal nonlinear relationship between infected contacts and infection risk. Under nonlinear
infection kernels, conventional epidemic wisdom breaks down with the emergence of discontinuous
transitions, superexponential spread, and hysteresis.

DOI: 10.1103/PhysRevLett.127.158301

Mathematical models of epidemics play an increasingly
important role in public health efforts and pandemic
preparedness [1]. By providing insights on the interplay
of the biological and sociological aspects of epidemics,
models can test potential interventions in silico and suggest
potential outcomes [2]. However, large-scale forecasting
comparisons show that statistical models often outperform
mechanistic models that make assumptions about spreading
dynamics [3].
In this Letter, we look at the interplay of two commonly

used assumptions in disease models: Random mixing and
the linearity between infection risk and exposures to
infected individuals. In almost all disease models, doubling
the number of contacts between susceptible and infectious
individuals doubles the risk of infection for the susceptible
individuals. Some past work in mathematical biology has
considered nonlinear infection rates [4,5], but these models
are rarely used in practice. Other fields such as sociology
do often consider generalized contagion models, often
dubbed complex contagions [6,7]. In these complex con-
tagions, having a nonlinear relationship between infection
rate and sources of infection allows the model to consider
mechanisms such as social reinforcement [8], where a set of
multiple exposures can have more impact than the mere
sum of unique exposures.
The mathematical convenience of assuming random

mixing when modeling infectious diseases comes at the
price that all contacts between susceptible and infectious

individuals are effectively equivalent. This assumption has
often been lifted using heterogeneous mathematical models
where individuals are distinguished by some individual
features such as their intrinsic susceptibility or reaction to
the infection [9,10], relaxing the mass-action assumption
directly [11,12], or by specifying an underlying contact
network [13,14].
Moreover, the linearity assumption says that all incre-

ments in the total exposure to infectious individuals
(measured for example as a viral inoculum) are equivalent.
Evidence associated with the minimal infective dose of
different infectious diseases shows that not all exposures
are equal and that some minimal dose might be required for
an infection to likely occur. More precisely, the ID50 value
is a measure of the dose needed to cause an infection in
50% of individuals. These concepts are needed because our
immune system is usually able to handle microscopic
challenges from viruses and bacteria alike. While an
infective dose of tuberculosis might only require between
1 and 5 bacteria [15], some enterics might require up to 109

pathogenic particles [16], and others like common respi-
ratory infections still require further study [17]. There are
indeed multiple different physical mechanisms behind
immune evasion—for example some airborne viruses
need to find their receptors on lung epithelial cells, while
some bacteria might instead require interaction with the
immune system [18]. These mechanisms are reviewed in
Refs. [18–22], and all of them combine to determine the
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ID50 of specific pathogens. Likewise, the decay or clearing
rates of pathogens in noninfectious courses can also vary a
lot, potentially requiring days for bacteria to hours for
airborne viral infections. For example, mathematical mod-
els for the pathogenesis of SARS-CoV-2 or influenza A use
decay rates of the order of 7–18 hours but empirical
estimates vary wildly (see Refs. [23,24] and references
therein).
To study the effect of simultaneously relaxing these two

assumptions, we consider a social structure where individ-
uals attend a certain number of environments such as work
places, gyms, or supermarkets. This division of contact
structure in environments is motivated by the known role of
superspreading events, which are, for example, critical to
the ongoing spread of COVID-19 [25–32]. While variations
at the individual level are often used to explain super-
spreading [33], we focus here on the variability of envi-
ronments and of temporal patterns [34–40] at the group
level, which undoubtedly affects epidemics [27], especially
when a certain exposure within a certain time window is
needed to confidently spark an infection. Interestingly,
available case data highlight how there is no expected size
or duration for such events. Transmission is highly context
dependent on the settings (e.g., ventilation) and activity
(e.g., singing or shouting) such that the resulting super-
spreading events are heterogeneous in size, duration, and
attack rate, as shown in Fig. 1(a). Higher-order contact
structures and heterogeneous temporal patterns are there-
fore key ingredients for more realistic models of spreading
dynamics.

Mathematically, we represent the contact structure as a
hypergraph [53–55] where each environment is described
by a hyperedge connecting m nodes (individuals) and
where each node is incident to k hyperedges. All
hyperedges of a same size m are considered equivalent,
although this assumption is relaxed in the Supplemental
Material [43] to consider additional sources of hetero-
geneity. To model heterogeneous temporal patterns, we
consider a discrete-time process, where at each time step
t ¼ 1; 2;…, we draw for each individual a participation
time τ ∈ ½1; τmax� for each environment to which they are
connected [Fig 1(b)]. The time steps correspond to fixed
temporal windows of size τmax, during which susceptible
individuals can get infected through their participation to
environments.
We first study the impact of the spatiotemporal collo-

cation patterns on the infection kernel θmðρÞ, the proba-
bility of getting infected in an environment of size m
when a fraction ρ of the other participants are infectious
[Fig. 1(c)]. We then analyze the properties of the resulting
contagion process.
Universal infection kernel from heterogeneous

exposure.—Let us consider a susceptible individual par-
ticipating to an environment of size m for a duration τ,
where a fraction ρ of the other participants are infectious.
During this exposure period, some of the other m − 1
individuals might participate to the environment as well.
We assume that the considered individual receives an
infective dose κ ∈ ½0;∞Þ from the infectious indivi-
duals, distributed according to πðκ; λÞ, where λ≡ hκi.

(a) (b) (c)

FIG. 1. Modeling contagions and superspreading events through higher-order networks. (a) Scatter plot of superspreading events of
COVID-19 where the number of people involved (size), the duration of the event, and the resulting proportion of infected individuals
(attack rate) are all available (extracted from Refs. [41,42]; see the Supplemental Material [43]). (b),(c) Framework for contagions on
hypergraphs [52], where the size m of the hyperedges (environment), the hyperdegree k of the nodes (individuals), and the participation
time to the environment τ are all heterogeneous, distributed according to P̂ðmÞ, P̃ðkÞ, and PðτÞ, respectively. For the sake of simplicity,
we assume the same distribution PðτÞ for all environments. (b) At each time step t, an individual participates for a time τ (drawn
independently) to each environment. (c) An individual gets infected with probability θmðρÞ in the environment at time step t, which
depends on the size m and the fraction infected ρ.
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A reasonable assumption is that the mean dose received is
proportional to the time spent in the environment and to the
proportion of infectious people, λ ¼ βfðmÞτρ, where β is a
rate of dose accumulation and fðmÞ, unitless, modulates
the typical number of contacts in environments frequented
by m individuals.
While this is not a strict requirement for our results to

hold (see the Supplemental Material [43]), we further
assume that the random variable for the dose can be written
as κ ¼ λu, where u is a random variable that is independent
of λ. In this case, u can be seen as an intrinsic property
of the contagion process—determined by rates of viral
shedding, diffusion in the environment, variability of
human interactions, etc.—while λ acts as a scale parameter,
i.e., πðκ; λÞ ¼ πðκ=λ; 1Þ=λ≡ πðκ=λÞ=λ.
To incorporate the concept of minimal infective dose, we

assume that an individual develops the disease if κ > K,
a perspective analogous to standard threshold models
[56–58] and related to the assumption that successful host
invasion necessitates multiple attempts by the pathogen
[59]. The probability of getting infected in the environment
is then

Π̄ðK=λÞ ¼
Z

∞

K=λ
πðκÞdκ: ð1Þ

The infection kernel θmðρÞ is calculated by averaging
Π̄ðK=λÞ over PðτÞ. We focus here on the case of hetero-
geneous exposure periods modeled with a Pareto distribu-
tion PðτÞ ¼ Cατ

−α−1, whereCα is a normalization constant,
α > 0, and τ ∈ ½1; τmax�. However, for our dose mechanism
to be well defined, we can only average over participation
times τ ∈ ½1; T �, where T ≤ τmax is the “clearing window,”
i.e., the characteristic time for the immune system to get rid

of any dose κ < K. If we assume that this clearing window
is sufficiently large compared to τc ≡ K=βfðmÞρ, the
characteristic time to get infected in the environment, we
can neglect events where τ ≥ T as they do not contribute
significantly to the infection kernel [43]. We therefore
redefine our support as τ ∈ ½1; T � and the infection kernel is

θmðρÞ¼
Z

T

1

Π̄ðτc=τÞPðτÞdτ

¼Cα

α

�
Π̄ðτcÞ− Π̄ðτc=T ÞT −αþτ−αc

Z
τc

τc=T
πðyÞyαdy

�
:

ð2Þ

When 1 ≪ τc ≪ T and πðyÞ decreases faster than y−α−1,
then the integral on the right converges to a constant, the
term in T −α can be neglected, and Π̄ðτcÞ ≪ τ−αc , which
implies

θmðρÞ ∼Dατ
−α
c ∝ ρα; ð3Þ

where Dα is some constant. This form of infection kernel is
universal, driven by temporal patterns, and does not depend
on the value of K (given K > 0) or on the particular form of
π. We illustrate it in Fig. 2(a) using an exponential for the
dose distribution—other cases such as the Weibull and the
Fréchet distribution are presented in the Supplemental
Material [43].
Let us stress that the condition 1 ≪ τc ≪ T is not

restrictive. On the timescale on which we measure the
exposure periods, τc ≫ 1 implies that the contagion does
not spread too fast because otherwise the whole population
would be rapidly infected, while T ≫ τc suggests that it is
transmissible before the immune system is able to clear the
dose received.

(a) (b) (c)

FIG. 2. Properties of contagions with nonlinear infection kernels induced by heterogenous exposure. We use an exponential dose
distribution πðκ; λÞ ∝ e−κ=λ with a power-law distribution of participation time PðτÞ ∝ τ−α−1, a clearing window T → ∞, and fðmÞ ¼ 1.
(a) Effective infection kernel using β ¼ 0.1. The infection probability has a power law scaling θmðρÞ ∝ ρα. (b),(c) We use Poisson
distributions for both P̃ðkÞ and P̂ðmÞ, with hki ¼ 5 and hmi ¼ 10, and set μ ¼ 0.05. We use Eqs. (4)–(6) to evolve the system.
(b) Supralinear kernels ν > 1 lead to a superexponential growth for the global prevalence IðtÞ. We use β ¼ 5 × 10−4, β ¼ 0.025, and
β ¼ 0.077 for ν ¼ 0.5, ν ¼ 1, and ν ¼ 1.5, respectively. τ̄ is the median exposure period. (c) The phase diagram for stable solutions in
the stationary state ðt → ∞Þ can be continuous or discontinuous with a bistable regime. Sublinear and linear kernels ν ≤ 1 lead to a
continuous phase transition, and the invasion threshold βc vanishes for ν → 0. Supralinear kernels ν > 1 can lead to a discontinuous
phase transition with a bistable regime.
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More broadly, we do not need to assume that πðyÞ
decreases faster than y−α−1 or that λ is a scale parameter for
κ. In fact, πðκ; λÞ does not even need to be a continuous
distribution and PðτÞ could be asymptotically power law
for large τ. In this more general context, we still recover a
universal infection kernel θmðρÞ ∝ ρν in most cases, but ν is
not always directly equal to α [43]. Linear infection kernels
(ν ¼ 1) are recovered only in some specific cases—for
instance, when α ¼ 1 or when we use a Poisson distribution
for κ and K ¼ 1. From now on, we make abstractions of the
underlying distributions πðκ; λÞ and PðτÞ and focus on the
resulting effective model parameterized by ν.
Epidemic spreading with nonlinear infection kernel.—

We now illustrate the consequences of nonlinear infec-
tion kernels for contagion on hypergraphs. To simplify
the mathematical analysis, we consider a susceptible-
infectious-susceptible (SIS) model. At each time step, an
infected node becomes susceptible with probability μ, while
a susceptible node gets infected through a hyperedge of size
m with probability θm. If a node is part of multiple
hyperedges, we assume that the probability of infection
through each hyperedge is independent. This is reasonable
if kmaxT ≤ τmax for a maximal hyperdegree kmax. For
instance, if T is of the order of a few hours, τmax a week,
and an individual participates to an environment once a
day, the night allows the immune system to clear any dose
κ < K accumulated the day before.
To obtain some analytical insights, we introduce a

degree-based mean-field theory [14], an approximation
equivalent to consider an infinite size annealed hypergraph,
where at each time step, the connections between nodes and
hyperedges are shuffled. We validate our approach with
Monte Carlo simulations on quenched hypergraphs in the
Supplemental Material [43].
With the mean-field approximation, the marginal prob-

ability for a node to be infected at time t only depends on its
hyperdegree, which we note ρkðtÞ. The global prevalence is
then simply IðtÞ ¼ P

k ρkðtÞP̃ðkÞ, and the evolution of the
system is described by [14]

ρkðtþ 1Þ ¼ ð1 − μÞρkðtÞ þ ½1 − ρkðtÞ�Θkðρ̄Þ; ð4Þ

where Θkðρ̄Þ ¼ 1 − ½1 − θ̄ðρ̄Þ�k is the probability for a
susceptible node of hyperdegree k to get infected. ρ̄ðtÞ is
the probability that a node belonging in any hyperedge is
infected, and θ̄ðρ̄Þ is the probability for a susceptible node
to get infected in any hyperedge,

ρ̄ðtÞ ¼
X
k

ρkðtÞ
kP̃ðkÞ
hki ; θ̄ðρ̄Þ ¼

X
m

θ̄mðρ̄Þ
mP̂ðmÞ
hmi ; ð5Þ

where θ̄mðρ̄Þ is the probability for a node to get infected in a
hyperedge of size m. Because of the annealed structure,
θ̄mðρ̄Þ is just the average of θmðρÞ with ρ ¼ i=ðm − 1Þ over
a binomial distribution,

θ̄mðρ̄Þ ¼
Xm−1

i¼0

�
m − 1

i

�
ρ̄ið1 − ρ̄Þm−1−iθm

�
i

m − 1

�
; ð6Þ

with θmðρÞ defined at Eq. (2).
Figure 2(b) shows a first consequence of the nonlinear

kernel: The appearance of superexponential growth for the
global prevalence IðtÞ when ν > 1. Note that the growth is
approximately exponential until a sufficiently high preva-
lence. For ν ≤ 1, we instead have a standard exponential
growth until saturation is reached.
In the steady state of the epidemic dynamics, we obtain a

self-consistent solution,

ρ�k ¼
Θ�

k

μþ Θ�
k
; ρ̄� ¼

X
k

P̃ðkÞ k
hki

Θ�
k

μþ Θ�
k
≡Gðρ̄�Þ; ð7Þ

since Θk is a function of ρ̄.
For contagions with a nonlinear infection kernel, the

phase transition associated with the order parameter I� can
be continuous or discontinuous with a bistable regime.
Consequently, we define the invasion threshold βc such that
for all β > βc, the absorbing state I� ¼ 0 is unstable
[dashed line in Fig. 2(c)]. We also define the persistence
threshold βp such that for all β < βp, the absorbing state
I� ¼ 0 is globally attractive [dotted line in Fig. 2(c)]. For
continuous phase transitions, βc and βp coincide, and this is
called the epidemic threshold; for a discontinuous phase
transition, βp < βc, and for all β ∈ ðβp; βcÞ, there exists
typically three solutions: I�1 ¼ 0 and I�2; I

�
3 > 0, with I�1 and

I�3 locally stable.
The invasion threshold βc can be found by imposing

G0ð0Þ ¼ 1. The persistence threshold βp is obtained by
imposing both ρ̄� ¼ Gðρ̄�Þ and G0ðρ̄�Þ ¼ 1 for ρ̄� > 0, and
any tricritical point can be found by imposing G0ð0Þ ¼ 1
and G00ð0Þ ¼ 0.
In the Supplemental Material [43], we obtain an exact

self-consistent expression for the invasion threshold, and
using again an asymptotic approximation, we find

βc ∝
�

μhmihki
hmðm − 1Þ1−ν½fðmÞ�νihk2i

�
1=ν

: ð8Þ

This last expression depends in a intricate manner on both
the moments of P̂ðmÞ and P̃ðkÞ and the nonlinearity of the
infection kernel. As illustrated in Fig. 2(c), the invasion
threshold can become very small for ν < 1 (vanishing for
ν → 0), even for homogeneous P̃ðkÞ and P̂ðmÞ. Note that a
sublinear kernel (ν < 1) typically requires a distribution
PðτÞ ∝ τ−α−1 with α < 1, which implies that the mean
participation time hτi diverges. In the Supplemental
Material [43], we show that if instead we fix hτi while
varying α, there exists an optimal temporal heterogeneity
α� that minimizes the invasion threshold βc and maximizes
early spread.
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The minimal kernel exponent νc leading to a discon-
tinuous phase transition is given by a tricritical point [43].
Although exact solutions require numerical evaluation, we
get three insights from an asymptotic expansion: (1) ν > 1
is necessary in order to have a discontinuous phase
transition, but it is not sufficient: νc depends on the first
three moments of P̃ðkÞ and, in a more complicated manner,
on the distribution P̂ðmÞ. (2) It is necessary to have
environments of size m > 2 to have a discontinuous phase
transition. (3) A more heterogeneous P̃ðkÞ leads to a larger
νc. Similar observations were made in Ref. [60] for m ≤ 3.
Conclusion.—Our framework captures many properties

usually overlooked for the sake of simplicity in epidemic
models: the higher-order structure of contacts, the temporal
heterogeneity of human activity, and the thresholding
effects over the exposure due to the host immune system.
In the Supplemental Material [43], we also demonstrate that
our results are robust to variations in individual infectious-
ness or local transmission in different environments. In
particular, we recover a universal nonlinear infection kernel
that provides a connection between complex contagions
based on nonlinear infection kernels [61] and threshold
models [56–58].
Our results challenge a key assumption of most epidemic

models and ask, “Why assume a linear relationship
between the number of infectious contacts and the risk
of infection?” This question is critical since three of the
basic insights gathered from epidemic models break down
under nonlinear infection kernels: They can lead to a
discontinuous relationship between disease transmission
and epidemic size, to a bistable regime where macroscopic
outbreak and a disease-free state coexist, and to a super-
exponential growth. While the first two are difficult to
assess for real contagions, superexponential spread has
been observed for influenzalike illness [62].
Even though we considered the SIS model to simplify

the analysis, the universal infection kernel θmðρÞ ∝ ρν

could be directly integrated in more realistic models such
as susceptible-exposed-infectious-recovered or susceptible-
infectious-recovered-susceptible where the same phenom-
enology typically carries over.
The phenomenology being drastically different from

standard epidemiological models begs the following ques-
tion: Why do linear models work? Even for a nonlinear
kernel θmðρÞ, the probability of infection θ̄mðρ̄Þ (averaged
over hyperedge configurations) is linear in ρ̄ if ρ̄ ≪ 1 [see
Eq. (6)]. Therefore, linear models are a good approximation
when the prevalence is sufficiently low but breaks down
at higher prevalence, as clearly illustrated in Fig. 2(b)
when ν ¼ 1.5.
The mathematical framework we use to solve the SIS

model hinges on a mean-field or annealed approximation,
as in other studies [60,63–65], thereby suppressing dynami-
cal correlations within hyperedges. As we show in the
Supplemental Material [43], dynamical correlations can be

captured using approximate master equations [44,45,
66–70], which are more complicated but provide similar
results with better agreement to simulations. Future works
could investigate more thoroughly the interplay between
dynamical correlations, nonlinear kernels, and spatio-
temporal heterogeneity.
Altogether, our conclusions stress the need to embrace

heterogeneity in disease modeling—in the infection
dynamics itself, in patterns of temporal activity, and in
the higher-order structure of contact networks. Epidemics
should be seen as the result of a collective process where
higher-order structure and temporal patterns can drive
complex dynamics.
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[39] K. Zhao, J. Stehlé, G. Bianconi, and A. Barrat, Social
network dynamics of face-to-face interactions, Phys. Rev. E
83, 056109 (2011).

[40] G. Cencetti, F. Battiston, B. Lepri, and M. Karsai, Temporal
properties of higher-order interactions in social networks,
Sci. Rep. 11, 7028 (2021).

[41] K. Swinkels, SARS-CoV-2 superspreading events from
around the world (2020), accessed: 2020-07-02, http://
www.superspreadingdatabase.com/.

[42] Q. J. Leclerc, N. M. Fuller, L. E. Knight, S. Funk, G. M.
Knight, and C. C. W. Group, What settings have been linked
to SARS-CoV-2 transmission clusters? Wellcome Open
Research 5, 83 (2020).

[43] See Supplemental Material, which includes Refs. [41,42,
44–51], at http://link.aps.org/supplemental/10.1103/
PhysRevLett.127.158301 for a broader derivation of the

PHYSICAL REVIEW LETTERS 127, 158301 (2021)

158301-6

https://doi.org/10.1137/0522069
https://doi.org/10.1137/0522069
https://doi.org/10.1137/S0036139998347834
https://doi.org/10.1016/0025-5564(87)90044-7
https://doi.org/10.1016/0025-5564(87)90044-7
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1103/RevModPhys.87.925
https://doi.org/10.1016/0962-8479(94)90002-7
https://doi.org/10.1016/j.jinf.2008.08.013
https://doi.org/10.1371/journal.ppat.1002503
https://doi.org/10.1128/mmbr.61.2.136-169.1997
https://doi.org/10.1128/mmbr.61.2.136-169.1997
https://doi.org/10.1038/ni1102-1033
https://doi.org/10.1038/ni1102-1033
https://doi.org/10.1098/rsif.2007.0229
https://doi.org/10.1098/rsif.2007.0229
https://doi.org/10.1146/annurev.micro.61.080706.093305
https://doi.org/10.1146/annurev.micro.61.080706.093305
https://doi.org/10.1002/jmv.25866
https://doi.org/10.1002/jmv.25866
https://doi.org/10.1186/1471-2458-11-S1-S7
https://doi.org/10.1186/1471-2458-11-S1-S7
https://doi.org/10.1016/S0140-6736(20)30462-1
https://doi.org/10.1016/S0140-6736(20)30462-1
https://doi.org/10.1073/pnas.2018490117
https://doi.org/10.1073/pnas.2018490117
https://doi.org/10.1371/journal.pbio.3000897
https://doi.org/10.1371/journal.pbio.3000897
https://doi.org/10.12688/wellcomeopenres.15842.3
https://doi.org/10.12688/wellcomeopenres.15842.3
https://doi.org/10.1016/S1473-3099(20)30287-5
https://doi.org/10.1016/S1473-3099(20)30287-5
https://doi.org/10.1038/s41467-020-19248-0
https://doi.org/10.1038/s41467-020-19248-0
https://doi.org/10.1073/pnas.2011802117
https://doi.org/10.1073/pnas.2011802117
https://doi.org/10.1103/PhysRevLett.126.118301
https://doi.org/10.1038/nature04153
https://doi.org/10.1038/nature04153
https://doi.org/10.1038/srep00397
https://doi.org/10.1038/srep00397
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1371/journal.pone.0011596
https://doi.org/10.1103/PhysRevE.81.035101
https://doi.org/10.1103/PhysRevE.81.035101
https://doi.org/10.1103/PhysRevE.83.056109
https://doi.org/10.1103/PhysRevE.83.056109
https://doi.org/10.1038/s41598-021-86469-8
http://www.superspreadingdatabase.com/
http://www.superspreadingdatabase.com/
http://www.superspreadingdatabase.com/
http://www.superspreadingdatabase.com/
https://doi.org/10.12688/wellcomeopenres.15889.2
https://doi.org/10.12688/wellcomeopenres.15889.2
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.158301


infection kernel, the consideration of other sources of
heterogeneity, the characterization of the phase transition,
and a treatment of dynamical correlations.

[44] G. St-Onge, V. Thibeault, A. Allard, L. J. Dubé, and L.
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