
PHYSICAL REVIEW E 96, 032310 (2017)

Efficient method for estimating the number of communities in a network

Maria A. Riolo,1 George T. Cantwell,2 Gesine Reinert,3 and M. E. J. Newman1,2

1Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

3Department of Statistics, University of Oxford, 24–29 St. Giles, Oxford OX1 3LB, United Kingdom
(Received 16 June 2017; published 14 September 2017)

While there exist a wide range of effective methods for community detection in networks, most of them require
one to know in advance how many communities one is looking for. Here we present a method for estimating
the number of communities in a network using a combination of Bayesian inference with a novel prior and an
efficient Monte Carlo sampling scheme. We test the method extensively on both real and computer-generated
networks, showing that it performs accurately and consistently, even in cases where groups are widely varying
in size or structure.

DOI: 10.1103/PhysRevE.96.032310

I. INTRODUCTION

Many networks of interest in the sciences display commu-
nity structure, meaning that their nodes divide naturally into
clusters, modules, or groups, such that there are many network
connections within groups but few between groups [1–3]. The
decomposition of networks into their constituent communities
is one of the primary tools used for interpreting the structure
of large network data sets, allowing us to break systems apart
into manageable pieces and hence make sense of data that can
otherwise defy analysis.

Community detection—the process of identifying good
community divisions of a given network—has been the subject
of a vigorous research effort since the early 2000s, and many
different approaches have been proposed. A fundamental
shortcoming of most of them, however, is that they require us to
know in advance how many communities a network contains.
We do not usually know this number a priori, meaning we need
some way to estimate it from the data. Recently, a number
of authors, including ourselves, have proposed methods for
making such estimates using Bayesian inference applied to fits
of network models to observed network data [4–12]. In these
approaches, one defines a generative random-graph model of
a network with community structure and then fits it to the
data to obtain a Bayesian posterior probability distribution
over possible divisions of the network into groups, along with
the associated number of groups, which we denote k. Then
one averages over this distribution in some way to produce an
estimate of the relative probability of different values of k for
the network in question.

In this paper, which builds on our previous work in [10],
we do a number of things. First, we give a detailed derivation
of a practical method for computing the number of groups
or communities in real-world network data. Many of the
previous approaches have developed useful formal ideas,
but not practical algorithms for real data, because they are
based on unrealistic network models—most often the so-called
stochastic block model, which is known to be a poor model
for calculations of this kind [13]. In this paper we employ
a more sophisticated model, the degree-corrected stochastic
block model, which gives substantially superior results.

Second, we look carefully at the prior probability distribu-
tion over divisions of a network into groups, and particularly

at generative processes for priors with nonempty groups. As
in many Bayesian approaches, the choice of prior turns out to
be crucial to performing useful inference, and in particular we
point out that various types of uniform (maximum-entropy)
priors, including ones used in previous work, give poor results
and should be avoided. We propose a new prior based on a
queueing-type process that appears to give excellent results in
our tests.

Third, we describe an efficient Monte Carlo algorithm that
exploits specific features of our proposed prior to perform
rapid calculations on large networks.

Finally, we give the results of extensive tests of our method
on both real and synthetic benchmark networks, which indicate
that the method is able to recover known values for the number
of communities under real-world conditions. In networks with
particularly large numbers of groups and purely assortative
structure, the method does display a tendency to underestimate
the number of communities, although our results suggest
that performance might be improved by the use of standard
techniques for exploring likelihood surfaces with multiple
local optima.

II. DEGREE-CORRECTED STOCHASTIC BLOCK MODEL

The method we propose for estimating the number of
communities in a network is based on techniques of statistical
inference, in which observed network data are fitted to a
generative model of network structure. The parameters of the
fit tell us about the aggregate properties of the data in much
the same way that the fit of a straight line through a set of data
points can tell us about their slope.

The network model we employ in our calculations is the
degree-corrected stochastic block model [13]. The traditional
(non-degree-corrected) stochastic block model, first proposed
in the 1980s [14], is a simple model for networks with
community structure that has been widely studied in the
statistics, sociology, and physics literature. Recently, however,
it has been recognized that this model has serious shortcomings
[13] because the networks it generates have a Poisson degree
distribution within each community, making them very unlike
most empirically observed networks, which typically have
highly right-skewed degree distributions. In practice, this

2470-0045/2017/96(3)/032310(12) 032310-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.032310

RIOLO, CANTWELL, REINERT, AND NEWMAN PHYSICAL REVIEW E 96, 032310 (2017)

means that the model is often unable to fit observed network
data well for any choice of parameter values. The degree-
corrected stochastic block model remedies this problem by
introducing additional mechanisms that allow for arbitrary,
non-Poisson degree distributions and is found in practice to
give much better fits to real-world network data.

In the degree-corrected stochastic block model n nodes are
divided into some number k of groups, labeled 1 . . . k, with gi

denoting the group to which node i is assigned. Then edges are
placed between nodes with probabilities that depend on group
membership. There are several variants of the model in use
that employ slightly different strategies for placing edges, but
the most common strategy, and the one we use here, is to place
between any node pair i,j a number aij of edges that is Poisson
distributed with mean θiθjωgigj

, where {θi} and {ωrs} are sets
of parameters whose values we choose. The numbers of edges
aij form the elements of the adjacency matrix A of the network,
the standard mathematical representation of network structure.
Although these numbers are Poisson distributed, the expected
degrees of the nodes can follow any distribution—within each
group they are proportional to the values of the parameters θi ,
which we are at liberty to choose in any way we please.

The use of a Poisson distribution for the numbers of
edges means that the network generated can in theory have
multiedges, i.e., pairs of nodes connected by more than one
edge, which is not usually realistic—most real-world networks
do not have multiedges. Most networks of scientific interest,
however, are very sparse, meaning that the values of θiθjωgigj

are very small and the probability of having two edges between
the same pair of nodes is smaller still. Multiedges are, as
a result, few enough in number that they can usually be
neglected. One also normally allows self-edges in the network
(edges that connect a node to itself), placing at each node i a
Poisson distributed number of self-edges with mean 1

2θ2
i ωgigi

.
Again this is not realistic but in practice the number of
self-edges is small, so they can be neglected. (By convention,
the number of self-edges at node i is denoted 1

2aii and not
aii , i.e., aii is twice the number of self-edges. The factor of
1
2 in the mean number of self-edges 1

2θ2
i ωgigi

is included for
consistency with this definition—it makes the expected value
of aij equal to θiθjωgigj

for all i,j .)
The description above does not completely specify the

degree-corrected block model because there remains an ar-
bitrary normalization of the parameters θi that has yet to be
fixed. We can increase the values of all the θi in group r by any
factor we please and, provided we simultaneously decrease
ωrs by the same factor, the value of θiθjωgigj

, and hence also
the model itself, will not change. We can fix the values of the
parameters by choosing a specific normalization for the θi . A
number of choices are possible, all of which are ultimately
equivalent, but for our purposes here a convenient choice is to
fix the mean of the θi to be 1 in each group:

1

nr

n∑
i=1

θiδr,gi
= 1, (1)

where δij is the Kronecker delta and nr = ∑
i δr,gi

is the
number of nodes in group r .

For the case of a given number of groups k and group
assignments g this completes the specification of the model.

With the model specified we can now write down the
probability that any particular network with adjacency matrix
A = {aij } is generated:

P (A|ω,θ,g,k) =
∏
i<j

(θiθjωgigj
)aij e

−θi θj ωgi gj

×
∏

i

(
1
2θ2

i ωgigi

)aii /2
e−θ2

i ωgi gi
/2

=
∏

i

θ
di

i

∏
r<s

ωmrs

rs e−nrnsωrs

∏
r

ωmrr

rr e−n2
r ωrr /2,

(2)

where we have made use of Eq. (1) in the second equality,
di = ∑

j aij is the observed degree of node i, and

mrs =
{∑

ij aij δgi ,r δgj ,s when r �= s,
1
2

∑
ij aij δgi ,r δgj ,r when r = s,

(3)

is the number of edges running between groups r and s. We
have also discarded an overall multiplying constant in Eq. (2),
which has no effect on our results.

The parameters θ and ω are irrelevant to the questions we
are interested in and can be integrated out. To do this we need
to fix the prior probabilities on the parameters θ and ω. We
assume the priors to be independent (conditioned on g,k), so
that P (ω,θ |g,k) = P (ω|k)P (θ |g,k), and

P (A|g,k) =
∫∫

P (A|ω,θ,g,k)P (θ |g,k)P (ω|k) dθ dω.

(4)

We employ maximum-entropy (i.e., least informative) priors
on both θ and ω. For θ this means a uniform prior over the
regular simplex of values specified by Eq. (1). For ω the
situation is more complex. We note that the expected number
of edges between groups r and s is

∑
ij

θiθjωgigj
δr,gi

δs,gj
= ωrs

∑
i

θiδr,gi

∑
j

θj δs,gj

= ωrsnrns, (5)

where we have made use of (1) again. But the total number
of places one can place an edge between groups r and s is
nrns , which means that the average probability of an edge is
simply ωrs .

As mentioned above, most of the networks we look at in
practice are very sparse—the average probability of an edge
is much less than one. For this reason a uniform prior on ωrs

is not appropriate. Rather, we need a prior that favors values
of ωrs in the vicinity of the average probability of an edge
in the network as a whole, which is p = 2m/n2, where m is
the total number of edges in the network. Here, as previously
[10], we use a maximum-entropy prior conditioned on fixing
the expected value of ωrs to be equal to p, which yields the
exponential distribution P (ω) = (1/p)e−ω/p.

032310-2

EFFICIENT METHOD FOR ESTIMATING THE NUMBER OF . . . PHYSICAL REVIEW E 96, 032310 (2017)

With these choices of priors on θ and ω, the integrals in
Eq. (4) can be completed and we get

P (A|g,k) =
∏

r

nκr

r

(nr − 1)!

(nr + κr − 1)!

×
∏
r<s

mrs!

(pnrns + 1)mrs+1

∏
r

mrr !(
1
2pn2

r + 1
)mrr+1 ,

(6)

where

κr =
∑

i

diδr,gi
(7)

is the sum of the degrees of the nodes in group r , and we have
again discarded an overall multiplying constant.

III. PRIOR ON GROUP ASSIGNMENTS

Our goal is to use this model as the basis for a Bayesian
model selection procedure to estimate the correct value of k for
a given network. To do this, we need to specify a prior on the
group assignments, meaning a joint probability distribution
P (g,k) on the group labels and the number of groups. This
then allows us to write

P (g,k|A) = P (g,k)P (A|g,k)

P (A)
, (8)

where P (A|g,k) is given by Eq. (6). Given this distribution,
we can either sum over k to get the posterior distribution on g,
which allows us to do community detection, or sum over g to
get the posterior distribution on k, which allows us to choose
a value for k. It is the latter computation that is our primary
focus in this paper. In practice, we cannot perform the sum
over g exactly, but we can approximate it using Markov chain
Monte Carlo.

As is often the case with Bayesian methods, the tricky
part of the calculation (or one of the tricky parts) is choosing
the prior P (g,k). It turns out that in the present case this
choice can have a substantial impact on the results, making the
difference between a method that works well in most cases and
a method that does not. Moreover, some obvious choices of
prior, including ones in common use elsewhere in the literature,
result in methods that work poorly, so it is not a matter of
simply grabbing a well-understood prior off the shelf.

A. Dirichlet prior

Suppose for the moment that the number of groups k is
known and let us then ask what the prior P (g|k) on group
assignments should be. (This is not a very realistic assumption,
since our whole purpose here is to estimate k, but the exercise
is nonetheless instructive, as we will see.) Our first guess at
P (g|k) might be to choose a flat probability distribution: all
assignments g are equally likely, or equivalently every node is
equally likely to be in each of the k groups. This approach
is used, for example, in Ref. [15], but, as pointed out by
Peixoto [12], it is unlikely to give good results. If nodes are
distributed with equal probability among the groups then when
n is large (as it usually is) the sizes of the groups will be sharply
peaked around n/k. Any state with group sizes significantly

different from n/k will occur rarely. This is strongly at odds
with the observed situation in real-world networks, where we
commonly encounter heterogeneous group sizes.

An alternative approach, therefore, and the one that is most
commonly adopted in the literature, is to assume a uniform
distribution not over assignments g but over the sizes of the
groups nr . That is, all possible sets of sizes are equally likely,
subject only to the constraint that they sum to the size of the
whole network:

∑
r nr = n. The standard way to achieve this

is to specify the expected fraction γr ∈ [0,1] of the network
occupied by each group r , such that

∑
r γr = 1, then assign

nodes to groups independently at random, with probability γr

of being assigned to group r . If the γr are themselves drawn
from a uniform distribution, then this makes the distribution of
the sizes of the groups uniform. (It is obvious that this makes
the expected sizes of the groups uniform, since the expected
sizes are proportional to γr , but it is not entirely obvious that
the sizes themselves are also uniform. However, the results
given in Sec. III B provide a proof that they are.)

The probability of generating a particular group assignment
g using this process is

P (g|γ,k) =
n∏

i=1

γgi
=

k∏
r=1

γ nr

r . (9)

Since
∑

r γr = 1, the points defined by the values γr fall
on a regular (k − 1)-dimensional simplex, which has volume
1/(k − 1)!. So a uniform distribution over values of γ has
probability density P (γ |k) = (k − 1)! and integrating (9) over
the simplex then gives [8–10]

P (g|k) =
∫

P (g|γ,k)P (γ |k) dγ = (k − 1)!

(n + k − 1)!

k∏
r=1

nr !

(10)

The uniform distribution over values of γ is a special case
of the so-called Dirichlet prior, a general prior on a simplex
that includes this choice but also includes a spectrum of non-
uniform choices as well.

B. Nonparametric prior

The derivation in the previous section is a standard one, but
in a sense it is needlessly complicated. If our goal is simply
to choose group sizes such that all choices are equally likely
then assign nodes to those groups at random, why not just do
so directly, without introducing other parameters? There are
(n+k−1

k−1) possible choices of k groups such that their sizes sum
to n. Let us choose uniformly among these, then the number
of ways of placing the nodes in the groups is given by the
multinomial coefficient n!/

∏
r nr !, so the probability of any

given assignment g of nodes to groups is

P (g|k) = 1(
n+k−1
k−1

)
n!/

∏
r nr !

= (k − 1)!

(n + k − 1)!

k∏
r=1

nr ! (11)

which recovers Eq. (10) without the need for the parameters
γr . (See Ref. [12] for an alternative derivation of the same
result.)

A corollary of this result is that the Dirichlet process of
Sec. III A does indeed generate a uniform distribution over

032310-3

RIOLO, CANTWELL, REINERT, AND NEWMAN PHYSICAL REVIEW E 96, 032310 (2017)

possible group sizes, as claimed, since the distributions (10)
and (11) are identical.

C. Nonempty groups

A possible objection to these methods for generating
assignments g (widely used though they are) is that they allow
groups to be empty. It is unclear what the meaning is of an
empty group. If someone were to hand you a network with two
clear groups in it, and then tell you that really there are three
groups but one of them is empty, then you might justifiably
say that this is not a meaningful statement.

One advantage of the nonparametric formulation of
Sec. III B is that it generalizes easily to the case where groups
are required to be nonempty. One need simply replace the
binomial coefficient for the number of ways of generating the
group sizes with the corresponding coefficient for nonempty
groups, which is (n−1

k−1). Then

P (g|k) = 1(
n−1
k−1

)
n!/

∏
r nr !

. (12)

D. Choice of the number of groups

We turn now to the choice of prior P (k) on the number
of groups itself. Again one’s first guess at a prior might be a
flat distribution with all choices equally likely. For nonempty
groups as in Sec. III C, the possible choices for number of
groups range from 1 to n, so a flat prior would have P (k) = 1/n

in this range and zero for all other values of k. This choice
has been made in some previous work [9], but we find it to
give poor results, placing too much weight on high values of
k and significantly overestimating the number of groups in
well-understood test cases. In practice one must use a strongly
decreasing prior on k to achieve consistent results. Previous
authors have given qualitative arguments in favor of a prior
going as 1/k! [8] or even steeper [16].

In this paper we take a somewhat different approach and
do away with an explicit prior on k, instead employing a
generative process for group assignments g that automatically
incorporates the choice of the number of groups in a simple
way. The process we use, a queueing-type mechanism which
is a variant on the “restaurant” processes of traditional
probability theory, is as follows. Take the n nodes in random
order and place the first one in group 1. Then for each
subsequent node either (a) with probability 1 − q place it in
the same group as the previous node or (b) with probability q

make it the first node in the next group. Note that this process
never generates an empty group. All groups contain at least
one node.

The number of possible orders of the nodes in this process
is n!, with each one occurring with equal probability 1/n!.
If the process generates k groups in total then there must be
k − 1 new groups started and, since every node except the first
has equal chance q of starting a new group, the probability of
generating k groups with sizes n1 . . . nk is

(1 − q)n1−1q(1 − q)n2−1q . . . q(1 − q)nk−1

= qk−1(1 − q)n−k, (13)

where we have made use of the fact that
∑

r nr = n. Further-
more, there are

∏
r nr ! ways of rearranging the nodes within

each group that give rise to the same assignment g. Hence
the probability of generating any given assignment under our
proposed process is

P (g,k) = 1

n!
qk−1(1 − q)n−k

k∏
r=1

nr ! (14)

Given that P (g,k) = P (k)P (g|k) and comparing with
Eq. (12), we see that this process is equivalent to the process of
Sec. III C if one chooses a prior P (k) on the number of groups
thus:

P (k) = P (g,k)

P (g|k)
=

(
n − 1

k − 1

)
qk−1(1 − q)n−k, (15)

with 1 � k � n. In other words,
the number of new groups k − 1
created in the generating process has a binomial distribution
(as one can easily derive by considering the process directly).

For our purposes it will be convenient to parametrize the
probability q by q = μ/(n − 1), so that μ is the expected
number of new groups started during the assignment process,
which is one less than the total number of groups. Then

P (g,k) = (1 − q)n

qn!

μk

(n − μ − 1)k

k∏
r=1

nr ! (16)

The leading factor of (1 − q)n/qn! is independent of both g

and k and will cancel out of subsequent calculations.

E. Choice of parameter value

Our prior on g,k now has just one parameter μ, whose
value we have yet to choose. One way to proceed is to
take the Bayesian approach a step further and place a prior
on the prior—a so-called hyperprior, meaning a probability
distribution on μ. In principle, one could go even further and
place a hyperhyperprior on the hyperprior too, and so forth
ad infinitum. This process usually yields diminishing returns,
however, and one normally stops at some point, simply fixing
a value for the parameters. In the present case, we choose to
halt the process at the level of the parameter μ. In our tests, we
have found that a value μ = 1 works well, so that, neglecting
constants

P (g,k) = (n − 2)−k

k∏
r=1

nr ! (17)

although other values around 1 give basically the same results,
so the method does not seem sensitive to the precise choice
we make. No doubt a hyperprior centered roughly around 1,
such as a suitably sized normal distribution, would also give
similar results, but we do not see any advantage to taking this
approach.

It is interesting to note that when q = μ/(n − 1) with μ =
1, and taking the limit of large n, the prior on k, Eq. (15),
becomes

P (k) = e−1

(k − 1)!
. (18)

032310-4

EFFICIENT METHOD FOR ESTIMATING THE NUMBER OF . . . PHYSICAL REVIEW E 96, 032310 (2017)

In other words, this choice is essentially equivalent to the 1/k!
prior proposed previously on heuristic grounds [8].

IV. MONTE CARLO ALGORITHM

Given the prior, Eq. (17), on g,k, we can now write down
the complete posterior distribution (8) on the same quantities.
Then by summing over all values of g we can find the
probability distribution P (k|A) and hence deduce the most
likely value of k. Unfortunately the sum over g is hard to
do: it has kn terms, which is a very large number in most
cases, making exhaustive numerical evaluation impossible,
and no simple scheme presents itself for performing the sum
analytically. Instead, therefore we estimate the distribution
over k by Markov chain Monte Carlo sampling.

The Monte Carlo scheme we propose employs steps of two
types:

Type 1. Moving a single node from group to group. This
type of move includes processes that decrease the number of
groups (if the node moved is the last of its group) and processes
that keep the number of groups constant (if the node moved is
not the last of its group).

Type 2. Moving a single node to a newly created group,
thereby increasing the value of k by one.

A sufficient condition for a correct Monte Carlo algorithm
is that the algorithm satisfy the requirements of ergodicity
and detailed balance [17]. The requirement of ergodicity says
that every state of the system must be accessible from every
other by a finite sequence of Monte Carlo steps. It is trivial to
show that this condition can be satisfied by steps of the kind
described above that move individual nodes from one group
to another.

More demanding is the requirement of detailed balance,
which in the present situation says that the rate R(g,k → g′,k′)
to go from a state (g,k) to another state (g′,k′) and the rate
R(g′,k′ → g,k) to go back again must satisfy

R(g,k → g′,k′)
R(g′,k′ → g,k)

= P (g′,k′|A)

P (g,k|A)
= P (g′,k′)

P (g,k)
× P (A|g′,k′)

P (A|g,k)
,

(19)

where we have used Eq. (8). From Eq. (17) we have

P (g′,k′)
P (g,k)

= (n − 2)k−k′
∏k′

r=1 n′
r !∏k

r=1 nr !
, (20)

where n′
r are the sizes of the groups for group assignment g′.

We use a traditional accept-reject Monte Carlo scheme in
which we repeatedly propose a potential move then either
accept or reject that move with probabilities chosen to satisfy
the detailed balance condition. Thus the rate R(g,k → g′,k′)
divides into the product of the probability π of proposing
the move in question and the probability α of accepting it:
R(g,k → g′,k′) = π (g,k → g′,k′) α(g,k → g′,k′). Then

R(g,k → g′,k′)
R(g′,k′ → g,k)

= π (g,k → g′,k′)
π (g′,k′ → g,k)

× α(g,k → g′,k′)
α(g′,k′ → g,k)

.

(21)

The algorithm we propose is as follows:
(1a) On each step of the algorithm, with probability 1 −

1/(n − 1) we propose a move of type 1. Specifically, if k = 1

we do nothing (because there are no possible moves that move
a node from one group to another). Otherwise, when k > 1, we
choose a pair of distinct group labels r,s uniformly at random
from the set of all such pairs in the range 1 . . . k, then choose
a single node uniformly at random from group r and move it
to group s.

(1b) If, in the process, we remove the last remaining
node from group r , leaving that group empty, we relabel the
nonempty groups so that their labels run from 1 . . . k − 1, and
we decrease k by 1. In practice, the most efficient way to do the
relabeling is just to change the current group k to have label r

(unless r = k, in which case no relabeling is necessary).
(2a) Otherwise, with probability 1/(n − 1) we propose a

move of type 2. Specifically, we choose a pair of distinct group
labels r,s uniformly at random from the set of all such pairs
in the range 1 . . . k + 1, relabel group r as group k + 1, and
create a new empty group r (unless r = k + 1, in which case
we simply create a new empty group k + 1 and no relabeling
is necessary). Then we choose a node uniformly at random
from group s and move it to the newly created group r .

(2b) If, in the process, we remove the last remaining node
from group s, leaving that group empty, we change group k + 1
to have label s. Otherwise we increase k by 1. (Note that k can
never become greater than n during this process, since doing
so would always involve removing the last node from group s,
which precludes increasing k any further.)

(3) Once we have proposed our move from state (g,k) to
state (g′,k′), we accept it with acceptance probability

α(g,k → g′,k′) = min

[
1,

P (A|g′,k′)
P (A|g,k)

]
. (22)

If the move is accepted, then g′,k′ becomes the new state of
the system. Otherwise, the system remains in the old state
g,k. Note, crucially, that the probabilities appearing on the
right-hand side of (22) are of the form P (A|g,k), and not
P (g,k|A) as you might expect if you are familiar with standard
(Metropolis-Hastings) Monte Carlo methods.

(4) Repeat from step 1.
To see that that this algorithm does indeed satisfy the

condition of detailed balance, Eq. (19), consider first a move
of type 1 that moves a node from group r to group s, where
nr > 1 so that the node moved is not the last node in group r

and the value of k does not change. Thus k′ = k and Eq. (20)
simplifies to

P (g′,k′)
P (g,k)

=
k∏

t=1

n′
t !

nt !
= n′

s

nr

, (23)

with the terms for all groups other than r and s canceling.
Moves of type 1 are performed with probability 1 − 1/(n − 1),
there are k(k − 1) possible choices of distinct groups r,s, and
nr nodes to choose from in group r , so the total probability of
proposing a specific move of a specific node is

π (g,k → g′,k′) =
(

1 − 1

n − 1

)
1

k(k − 1)

1

nr

= n − 2

(n − 1)k(k − 1)nr

. (24)

032310-5

RIOLO, CANTWELL, REINERT, AND NEWMAN PHYSICAL REVIEW E 96, 032310 (2017)

Similarly, the probability of proposing the reverse move, in
which the same node is moved from group s to group r , is

π (g′,k′ → g,k) = n − 2

(n − 1)k(k − 1)n′
s

. (25)

And the ratio of the two is

π (g,k → g′,k′)
π (g′,k′ → g,k)

= n − 2

(n − 1)k(k − 1)nr

(n − 1)k(k − 1)n′
s

n − 2

= n′
s

nr

, (26)

which is precisely equal to Eq. (23).
We can also demonstrate an equivalent result for moves that

change the value of k. Consider a move of type 1 that removes
the last node from group r and moves it to group s, thereby
reducing the number of groups by 1, so that k′ = k − 1. For
such a move, Eq. (20) becomes

P (g′,k′)
P (g,k)

= (n − 2)n′
s . (27)

The probability of proposing such a move is again given by
Eq. (24), except that in this case nr = 1, so the expression
simplifies to

π (g,k → g′,k′) = n − 2

(n − 1)k(k − 1)
. (28)

The reverse of such a move is a move of type 2, in which a
node in group s becomes the founding member of new group
r . Moves of type 2 are performed with probability 1/(n − 1),
there are (k′ + 1)k′ = k(k − 1) ways of choosing the labels
r,s, and n′

s ways of choosing the node to be moved. Thus the
total probability of proposing such a move is

π (g′,k′ → g,k) = 1

(n − 1)k(k − 1)n′
s

. (29)

Taking the ratio of (28) and (29), we get

π (g,k → g′,k′)
π (g′,k′ → g,k)

= n − 2

(n − 1)k(k − 1)
(n − 1)k(k − 1)n′

s

= (n − 2)n′
s , (30)

which is equal to (27).
Finally, there is one further class of moves that have to be

considered separately, namely moves of type 2 that remove the
last node from group s and make it the initial node in a new
group r . By contrast with other moves of type 2, these moves
do not change the value of k. Moreover they don’t change the
product

∏
r nr ! either, so Eq. (20) is simply

P (g′,k′)
P (g,k)

= 1. (31)

At the same time, the probability of proposing such a move
is the same in both directions, equal to 1/[(n − 1)k(k + 1)],
and hence the ratio of the forward and backward proposal
probabilities is 1, which is equal to (31).

Thus for all moves of all types we have

π (g,k → g′,k′)
π (g′,k′ → g,k)

= P (g′,k′)
P (g,k)

. (32)

Equating Eqs. (19) and (21) and making use of (32), we then
find that the detailed balance condition becomes

α(g,k → g′,k′)
α(g′,k′ → g,k)

= P (A|g′,k′)
P (A|g,k)

. (33)

If we can choose the acceptance ratios to satisfy this relation,
then Eq. (19) will be obeyed. But the choice in Eq. (22)
trivially satisfies (33), hence detailed balance is obeyed and the
proposed algorithm will sample correctly from the distribution
P (g,k|A).

A. Implementation

Implementation is a relatively straightforward translation
of the algorithm described above into computer code. We
maintain not only a record of the group assignment gi of
each node but also a separate, unordered list of the members
of each group, which allows us to choose a random member
of a group rapidly, and to efficiently relabel all members of a
group when required. We calculate the logarithm of the ratio
P (A|g′,k′)/P (A|g,k), rather than the ratio itself, to avoid
numerical problems with powers and factorials (which can
become large) and only take the exponential at the end to
determine the acceptance ratio, Eq. (22). We also employ a
look-up table of log-factorials to speed their calculation, and a
running record of the nr and mrs , updated after every accepted
move, so as to avoid recalculating these values repeatedly.

As a practical matter, the relabeling process for moves of
type 2 can be slow if group r contains many nodes, so in our
implementation we always give new groups label k + 1, which
frees us from having to relabel any nodes other than the one
node that is placed in the newly created group. Technically,
this means that our Monte Carlo algorithm does not sample
labelings g with the true probability of Eq. (17): Group k

will typically be the newest group and therefore smaller on
average than the others. However, the algorithm does still
sample divisions of the network into groups and values of
k with the correct probability, and these are the only physical
quantities we care about. The group labels themselves have
no meaning—they exist only as a mathematical convenience
for the purposes of notation. The only meaningful quantities
are the value of k and the division into groups, and these are
correctly generated. (And if one were concerned to sample
labelings g correctly, one could do so easily by taking the
labelings generated by the algorithm and randomly permuting
the labels.)

The initial assignment of nodes to groups is drawn at
random from the prior distribution defined in Sec. III D. In
order to avoid any bias in the results, instead of just setting
μ = 1 we use a value of μ that is itself chosen randomly. In the
example calculations presented in Sec. V, the value of μ for
the initial assignment is chosen uniformly in the interval from
0 to 100, meaning in practice the initial number of groups lies
approximately uniformly in this range. (In the actual Monte
Carlo calculation, however, we always use μ = 1, as described
in Sec. III E.)

Our code is implemented in C, and performs about a million
Monte Carlo steps per second on a typical desktop computer
(circa 2017), which puts the analysis of large networks, up to

032310-6

EFFICIENT METHOD FOR ESTIMATING THE NUMBER OF . . . PHYSICAL REVIEW E 96, 032310 (2017)

hundreds of thousands of nodes or more, within reach. Our
code is available for download on the web—see Ref. [18].

B. Relation to previous approaches

In a previous paper [10] we proposed a slightly different
algorithm for determining the number of communities, based
on the same principles used here but different in detail. We
expect the present algorithm to be more efficient than the ear-
lier one, primarily because of the way it incorporates the prior
on group assignments P (g,k) into the proposal probability π

rather than the acceptance probability α. However, we also
believe the derivation given here is more appropriate than that
given in the previous paper, particularly in its focus on the
prior P (g,k) on group assignments.

The argument given in the previous paper differs from
that given here in two ways. First, in the previous paper we
advocated using a flat prior P (k) on the number of groups,
whereas in this paper we argue for a decreasing prior going
as 1/k!. On the other hand, the probability P (g|k) given in
the previous paper omits a factor of k!, equal to the number
of ways the labels on a given partition of the network can be
permuted without changing the partition. These two factors of
k! cancel, leaving the equations essentially unchanged. Thus
the formulas and algorithm given in the previous paper are
essentially equivalent to those given here, but the motivation
differs, with the arguments given here being, in our opinion,
the correct ones.

V. EXAMPLE APPLICATIONS

In this section we apply our method to a wide range of
networks and find it to give good results in most cases. To
evaluate performance under controlled conditions, we test the
method on several large sets of computer-generated networks,
created using both the stochastic block model and the widely
used LFR benchmark. To test the method under real-world
conditions we have also applied it to a range of observed
networks, including a number of staples of the community
detection canon, as well as a large example network with over
300 000 nodes.

A. Computer-generated networks

In order to explore the performance of our method
systematically we have tested it on a range of computer-
generated (“synthetic”) networks. These are networks with
known community structure planted within them, generated
using random graph models. Using synthetic networks allows
us to vary the number of planted communities and quantify
the extent to which our algorithm is able to correctly recover
that number.

In our first set of tests, we use networks generated using
the standard (non-degree-corrected) stochastic block model
[13,14]. Figures 1(a) and 1(b) show results for two different
sets of networks. Each panel shows the number of communities
k inferred by our method plotted against the known number
planted in the network as the latter is varied (blue circles in
the plots). In Fig. 1(a) the size of the network is held fixed
as the number of communities in increased, while in Fig. 1(b)
the size of the communities is held fixed, so that the size

of the network increases with the number of communities.
As the figures show, in both cases the algorithm infers the
correct number of communities with high accuracy for values
of k up to about 20. For higher values, as mentioned in the
introduction, our algorithm has a tendency to underestimate
the number of communities when community structure is
purely assortative. (For disassortative networks the effect
is much smaller—see Fig. 1(c) and the discussion below.)
These calculations, however, are for runs of the Monte Carlo
algorithm that start with a random assignment of nodes to
groups, as described in Sec. IV A. Also shown in the figures
are the results of runs on the same networks in which the
Monte Carlo algorithm was started with group assignments
corresponding exactly to the planted ground-truth community
division (yellow triangles). As the figures show, for this choice
of initialization the algorithm finds the correct number of
communities for the entire range of values of k explored,
and indeed we observe that the correct group assignment
consistently has a higher likelihood than the assignments with
fewer groups.

These results suggest that the underestimation of k arises
not because the correct group assignment fails to maximize
the posterior probability P (k|A), but rather because the
Monte Carlo algorithm has not run for long enough to find
the maximum. That is, the method is theoretically sound
but the numerical calculation becomes too demanding as k

becomes large. Possibly this problem could be solved with
a more efficient Monte Carlo sampling scheme, although it
seems likely that some similar issue will eventually arise
no matter what sampling scheme is used. The fundamental
problem is that the number of possible group assignments
kn increases very rapidly with k, so it becomes unfeasible to
explore the space of assignments effectively when k is very
large. On the other hand, since, as Figs. 1(a) and 1(b) show,
the method only underestimates the value of k and does not
overestimate, the algorithm gives a lower bound on the number
of communities in the network, which may well have some
utility even when the exact value of k is not found. Note that
the fact that the algorithm underestimates k does not appear
to be a result of the initial conditions. As described in Sec.
IV A, the algorithm starts with an initial number of groups
anywhere up to 100, so the initial conditions are at least as
likely to overestimate k as underestimate. It seems likely,
therefore, that the underestimates we see in the final results
are a consequence of the Monte Carlo sampling method and
not of the initial conditions.

The examples in Figs. 1(a) and 1(b) assume so-called
assortative network structure, meaning that there are more
in-group edges than between-group edges in the network.
Our method, however, should in principle be just as good at
finding the number of communities in disassortative cases,
where there are more between-group edges, or in mixed
assortative-disassortative cases. Figure 1(c) shows results from
tests on networks of mixed type, generated again using a
stochastic block model but now taking a diagonally dominant
matrix of edge probabilities and permuting the rows and
columns to move some of the large matrix entries off the
diagonal. As the figure shows, the algorithm does indeed
perform well in this case, indeed it appears to perform better
than in the purely assortative case of Figs. 1(a) and 1(b). A

032310-7

RIOLO, CANTWELL, REINERT, AND NEWMAN PHYSICAL REVIEW E 96, 032310 (2017)

1 10 20 30 40
True k

1

10

20

30

40

E
st

im
at

ed
 k

1 10 20 30 40
True k

1

10

20

30

40

E
st

im
at

ed
 k

1 10 20 30 40
True k

1

10

20

30

40

E
st

im
at

ed
 k

(a)

Ground truth
initial conditions
Random
initial conditions

1 10 20 30 40
True k

1

10

20

30

40

E
st

im
at

ed
 k

(b)

(c) (d)

FIG. 1. Tests of the method on synthetic networks. In each panel, circles represent results derived from Monte Carlo runs with random
initial assignments of nodes to groups, while triangles represent runs started with the known correct assignments (the “ground truth”).
(a) Networks generated using the stochastic block model with n = 1000 nodes, mean degree 30, and equally sized groups with 90% of
connections within groups and 10% between groups. (b) Networks generated using the stochastic block model with groups of fixed size 250
nodes (so that network size varies with the number of groups k), and each node having an average of 16 in-group connections and 8 out-group
connections. (c) Networks generated using the same stochastic block model as in (a) but with the rows and columns of the matrix of edge
probabilities permuted to produce a mixed assortative-disassortative structure. (d) Networks generated using the LFR benchmark model of
[19], which is parametrized by its maximum and minimum group sizes. In these tests we used minimum group sizes between 10 and 80 nodes,
and maximum group size equal to five times the minimum. Ten Monte Carlo runs were performed for each network of 2000 steps per node
each, with the distribution over k being calculated from the final 1000 only.

possible explanation is that in the purely assortative case one
can (erroneously) join together groups and produce another
assortative network with strong community structure, but in a
disassortative or mixed case joining groups is not guaranteed
to produce another network with strong structure.

The parameter values used in each of these examples mean
that the networks generated have quite prominent community
structure—the number of communities varies from network to
network but all have strong structure that should be relatively
straightforward to detect. It is interesting to ask how the
method fares if we make the structure weaker. Figure 2
shows the results of a set of tests on networks with varying
difference between the number of in-group and between-group
connections. The horizontal axis is normalized to place the
so-called detectability threshold at ±1. This is the point

at which communities become formally undetectable in the
network because the structure is too weak [20–22]. As the
figure shows, our method gets the value of k correct virtually
all of the time outside of the undetectable region (marked
by the vertical dashed lines in the figure), except again for
assortative networks with very large numbers of communities
(such as the right-hand portion of the curve for k = 32).

Widely used though it is, one could argue that the stochastic
block model is not a very realistic model. The networks
it generates have Poisson degree distributions within each
community, for instance, and in the cases studied here
we have also limited ourselves to communities of uniform
size. An alternative model that avoids these limitations is
the LFR benchmark model of Lancichinetti, Fortunato, and
Radicchi [19]. This model is essentially a special case of

032310-8

EFFICIENT METHOD FOR ESTIMATING THE NUMBER OF . . . PHYSICAL REVIEW E 96, 032310 (2017)

-6 -4 -2 0 2 4 6
Normalized mixing

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
co

rr
ec

t

2 groups
4 groups
8 groups
16 groups
32 groups

FIG. 2. Fraction of runs on which the algorithm correctly es-
timates the number of groups k in tests on networks generated
using the stochastic block model, as a function of the normalized
mixing parameter (cin − cout)/

√
c. Networks have n = 1000 nodes,

average degree c = 30 and k = 2, 4, 8, 16, 32, with mixing varying
from perfect assortativity (right-hand side of the plot) to perfect
disassortativity (left-hand side). The dashed gray lines at ±1 denote
the theoretical detectability thresholds. Fifty Monte Carlo runs were
performed for each network of 2000 steps per node each, with the
distribution over k calculated from the final 1000 only.

the degree-corrected stochastic block model of Sec. II, with
both the degrees and the sizes of the communities drawn from
power-law distributions, giving the networks similar features
to those seen in many real-world examples.

Figure 1(d) shows the results of tests of our method on LFR
networks generated with the same model parameters as those
used by Lancichinetti and Fortunato [23] in a widely cited
study. The results are similar to those for the stochastic block
model: The method performs well for smaller values of the
number of groups k but tends to underestimate as the value
of k gets larger. If, however, the Monte Carlo algorithm starts
with an initial group assignment equal to the planted structure,
then it reliably finds the correct number of groups for all values
of k, again suggesting that the problem is in the time available
for equilibration and sampling, rather than any fundamental
issue with the approach. If one were able to sample from the
entire distribution P (g,k|A) in reasonable time, one should
find the correct number of groups.

B. Real-world networks

As a complement to the synthetic tests of the previous
section, we have also tested our method on a range of
real-world networks. There exist a number of well-studied
example networks in the literature that have widely agreed
upon ground-truth community divisions, based in part on
knowledge of the specific systems the networks describe and
in part on consensus derived from repeated analyses with many
different community detection algorithms. Figure 3 shows
results for four such networks.

The first column in Fig. 3 shows results for tests on the
“karate club” network of Zachary [24], perhaps the best known

and most widely used benchmark of community detection.
This small social network is universally agreed to contain
two clear communities, and when applied to the network our
method firmly favors k = 2. The top panel in the figure shows
a histogram of the values of k sampled by the Monte Carlo
algorithm on this network, and the probability shows a clear
peak for two communities.

It could be argued, however, that looking directly at the
values of k generated by the Monte Carlo algorithm has the
potential to be misleading in some cases. Imagine, for instance,
that a network breaks apart into two large groups that occupy
most of the network, plus a third group with only a very few
nodes in it. In this situation one might be justified in saying
that the network really only contains two groups, not three.
One can capture this kind of situation by defining an effective
number of groups

keff = eS, S = −
k∑

r=1

nr

n
log

nr

n
. (34)

Here S is the entropy of the group assignment, which has a
maximum value of log k when the groups are equally sized,
so that keff = eS = k in this case. On the other hand, if there
are a few small groups in the network and the remainder are
large and equally sized then the measure will ignore the small
groups to a great extent and keff will be roughly equal to the
number of large groups only.

The second panel in column 1 of Fig. 3 shows results for
this alternative measure of group number, as calculated using
our Monte Carlo algorithm on the karate club network. It is
straightforward to show that keff � k strictly, so by necessity
the distribution in the second panel is to the left of that in the
top panel. There are three clear peaks visible in the distribution
of keff, corresponding to states with one, two, and three groups,
so it seems reasonable to assume that these are “real” divisions
of the network. The peak for keff = 1 is the highest, but the area
under the peak for keff = 2 is greater, so two groups, which is
the widely accepted number, still seems to be preferred overall.

The third panel in column 1 shows the group assignment g

with the maximum likelihood out of all sampled assignments
that have the chosen value of k. In this case, the resulting
assignment corresponds closely to the accepted community
structure of the karate club network. The fourth panel shows
an alternative visualization of the community structure, a plot
of the adjacency matrix of the network where the rows and
columns have been ordered so as to put the two groups in
contiguous blocks. As we can see, this places most edges
within blocks and only a few between blocks, as we would
expect for a network with strong community structure. Finally,
in the bottom panel of the column, we show a visualization
of the group structure itself, a “meta-network” in which the
nodes represent the groups and edges represent connections
between groups. In this simple case the meta-network does
not offer much insight, since it consists of just two meta-nodes
and a single edge, but in more complicated situations with
larger numbers of groups—including some of the others in
Fig. 3—it can be a useful tool.

The remaining three columns of Fig. 3 show corresponding
analyses for three further networks: the American college
football network studied in Ref. [1], the network of fictional

032310-9

RIOLO, CANTWELL, REINERT, AND NEWMAN PHYSICAL REVIEW E 96, 032310 (2017)

Karate club American football Les Misérables Word adjacency

1 2 3 4 5 6 7

N umber of g roups

0.0

0.1

0.2

0.3

0.4

F
re

q
u
en

cy

9 10 11 12 13

N umber of g roups

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u
en

cy
3 4 5 6 7 8

N umber of g roups

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
re

q
u
en

cy

1 2 3 4 5 6

N umber of g roups

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F
re

q
u
en

cy

1 2 3 4 5 6 7
E ffective k

0.0

0.5

1.0

P
ro

b
ab

il
it

y
 d

en
si

ty

9 10 11 12 13
E ffective k

0.0

0.5

1.0

1.5

2.0

P
ro

b
ab

il
it

y
 d

en
si

ty

3 4 5 6 7 8
E ffective k

0.0

0.5

1.0

P
ro

b
ab

il
it

y
 d

en
si

ty

1 2 3 4 5 6
E ffective k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
ro

b
ab

il
it

y
 d

en
si

ty

0 1

0

1

0 1 2 3 4 5 6 7 8 9 10

0
1
2
3
4
5
6
7

8
9

10

0 1 2 3 4 5

0

1
2

3

4

5

0 1

0

1

FIG. 3. Results for four real-world networks. Each column shows results for one network, as indicated. From top to bottom the results
shown are the posterior probability distribution of the number of groups, the distribution of the effective number of groups calculated using the
entropy measure of Eq. (34), the maximum likelihood community structure, the adjacency matrix, and the “meta-network” representation of
the communities and their pattern of connectivity.

032310-10

EFFICIENT METHOD FOR ESTIMATING THE NUMBER OF . . . PHYSICAL REVIEW E 96, 032310 (2017)

10−7

10−6

10−5

10−4

10−3

D
en

si
ty

FIG. 4. A plot of the matrix ωgigj
of connection parameters for

a large network of copurchased products on Amazon.com. In this
network nodes represents products and edges join pairs of products
frequently purchased by the same buyer. In this calculation we
performed ten runs of 10 000 Monte Carlo steps per node each and
we display results from the run with the highest average likelihood
during the last 1000. The calculation found 81 groups in total. Color
is on a log scale for clarity.

character interactions in the novel Les Misérables by Victor
Hugo [25], and a disassortative example, the network of
word adjacencies of adjectives and nouns in the novel David
Copperfield by Charles Dickens [26]. In each case the
algorithm finds the accepted number of communities—6, 11,
and 2, respectively. The distributions of keff largely agree with
those for k, though for the Les Misérables and college football
networks they favor 5 and 10 groups respectively, one less
than the peak in the distribution of k in each case, perhaps
suggesting that these networks have one group that is small
enough to be neglected.

These examples are all relatively small networks, up to
around a hundred nodes in the larger cases, but our method
is applicable in principle to much larger networks. As an
example, Fig. 4 shows results for a network of e-commerce
data, a copurchasing network of items sold by the online
retailer Amazon.com [27]. In this network, which comes
from the Stanford Large Network Dataset collection, the
nodes represent 334 863 products for sale on the Amazon
web site and edges between them indicate products that were

frequently purchased by the same buyer. The figure shows
a visualization of the inferred values of the edge probability
parameters ωgigj

, again with the columns ordered so as to make
the groups contiguous. As we can see, there appears to be
strong assortative structure in the network, with the algorithm
finding 81 groups in this case. It is worth noting, however, that
this figure puts us well within the regime where our tests on
assortative synthetic networks underestimated the number of
groups (Fig. 1), so it might be prudent to regard it as a lower
bound, with the identified groups potentially containing one
or more communities lumped together.

VI. CONCLUSIONS

In this paper we have described a method for determining
the number of communities in a network with community
structure. The method relies on a combination of Bayesian
inference applied to the degree-corrected stochastic block
model and a novel Monte Carlo algorithm. Much of the
method’s success turns on the appropriate choice of prior
probability for the number of groups and we describe a
variation on the “restaurant” processes of traditional model
selection that appears to work well. We have illustrated the
performance of the method with applications to a wide range
of networks, including a diverse set of synthetic test networks
and a number of real-world examples, one with over 300 000
nodes.

The primary limitation of the method as described is that the
Monte Carlo algorithm appears not to equilibrate fully when
the number of groups becomes large. A possible objective
for future work, therefore, would be to find a method or
algorithm that could sample the posterior distribution over
group assignments faster, which would allow us to better apply
the method to networks with large numbers of groups.

ACKNOWLEDGMENTS

The authors thank Tiago Peixoto and Jia-Rong Xie for
helpful conversations. This work was funded in part by the US
National Science Foundation under Grants No. DMS–1107796
and No. DMS–1407207 (M.E.J.N.), the UK Engineering
and Physical Sciences Research Council under Grant No.
EP/K032402/1 (G.R.), the James S. McDonnell Foundation
(M.A.R.), the Simons Foundation (M.E.J.N.), and the Ad-
vanced Studies Centre at Keble College, Oxford (M.E.J.N.
and G.R.).

[1] M. Girvan and M. E. J. Newman, Community structure in social
and biological networks, Proc. Natl. Acad. Sci. USA 99, 7821
(2002).

[2] S. Fortunato, Community detection in graphs, Phys. Rep. 486,
75 (2010).

[3] S. Fortunato and D. Hric, Community detection in networks: A
user guide, Phys. Rep. 659, 1 (2016).

[4] M. S. Handcock, A. E. Raftery, and J. M. Tantrum, Model-based
clustering for social networks, J. R. Statist. Soc. A 170, 301
(2007).

[5] J. J. Daudin, F. Picard, and S. Robin, A mixture model for
random graphs, Stat. Comput. 18, 173 (2008).

[6] P. Latouche, E. Birmelé, and C. Ambroise, Bayesian methods for
graph clustering, in Advances in Data Analysis, Data Handling,
and Business Intelligence (Springer, Berlin, 2009), pp. 229–239.

[7] P. Latouche, E. Birmelé, and C. Ambroise, Variational Bayesian
inference and complexity control for stochastic block models,
Stat. Model. 12, 93 (2012).

[8] A. F. McDaid, T. B. Murphy, N. Friel, and N. Hurley,
Improved Bayesian inference for the stochastic block model

032310-11

https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1111/j.1467-985X.2007.00471.x
https://doi.org/10.1111/j.1467-985X.2007.00471.x
https://doi.org/10.1111/j.1467-985X.2007.00471.x
https://doi.org/10.1111/j.1467-985X.2007.00471.x
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1007/s11222-007-9046-7
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1177/1471082X1001200105
https://doi.org/10.1177/1471082X1001200105

RIOLO, CANTWELL, REINERT, AND NEWMAN PHYSICAL REVIEW E 96, 032310 (2017)

with application to large networks, Comput. Stat. Data Anal.
60, 12 (2013).

[9] E. Côme and P. Latouche, Model selection and clustering in
stochastic block models based on the exact integrated complete
data likelihood, Stat. Model. 15, 564 (2015).

[10] M. E. J. Newman and G. Reinert, Estimating the Number of
Communities in a Network, Phys. Rev. Lett. 117, 078301 (2016).

[11] X. Yan, Bayesian model selection of stochastic block models, in
Proceedings of the 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (Institute
of Electrical and Electronics Engineers, New York, 2016),
pp. 323–328.

[12] T. P. Peixoto, Nonparametric Bayesian inference of the mi-
crocanonical stochastic block model, Phys. Rev. E 95, 012317
(2017).

[13] B. Karrer and M. E. J. Newman, Stochastic blockmodels and
community structure in networks, Phys. Rev. E 83, 016107
(2011).

[14] P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic
blockmodels: Some first steps, Soc. Netw. 5, 109 (1983).

[15] R. Guimerà and M. Sales-Pardo, Missing and spurious interac-
tions and the reconstruction of complex networks, Proc. Natl.
Acad. Sci. USA 106, 22073 (2009).

[16] T. P. Peixoto, Hierarchical Block Structures and High-
Resolution Model Selection in Large Networks, Phys. Rev. X 4,
011047 (2014).

[17] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in
Statistical Physics (Oxford University Press, Oxford, 1999).

[18] Computer code for the algorithm described in this paper
is available for download from the world wide web at
www.umich.edu/∼mejn/communities.

[19] A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark
graphs for testing community detection algorithms, Phys. Rev.
E 78, 046110 (2008).

[20] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference
and Phase Transitions in the Detection of Modules in Sparse
Networks, Phys. Rev. Lett. 107, 065701 (2011).

[21] L. Massoulié, Community detection thresholds and the weak
Ramanujan property, in Proceedings of the 46th Annual ACM
Symposium on the Theory of Computing (Association of Com-
puting Machinery, New York, 2014), pp. 694–703.

[22] E. Mossel, J. Neeman, and A. Sly, Reconstruction and estimation
in the planted partition model, Probab. Theory Relat. Fields 162,
431 (2015).

[23] A. Lancichinetti and S. Fortunato, Community detection algo-
rithms: A comparative analysis, Phys. Rev. E 80, 056117 (2009).

[24] W. W. Zachary, An information flow model for conflict and
fission in small groups, J. Anthropol. Res. 33, 452 (1977).

[25] D. E. Knuth, The Stanford GraphBase: A Platform for Combi-
natorial Computing (Addison-Wesley, Reading, MA, 1993).

[26] M. E. J. Newman, Finding community structure in networks
using the eigenvectors of matrices, Phys. Rev. E 74, 036104
(2006).

[27] J. Yang and J. Leskovec, Defining and evaluating network
communities based on ground-truth, Knowl. Inf. Syst. 42, 181
(2015).

032310-12

https://doi.org/10.1016/j.csda.2012.10.021
https://doi.org/10.1016/j.csda.2012.10.021
https://doi.org/10.1016/j.csda.2012.10.021
https://doi.org/10.1016/j.csda.2012.10.021
https://doi.org/10.1177/1471082X15577017
https://doi.org/10.1177/1471082X15577017
https://doi.org/10.1177/1471082X15577017
https://doi.org/10.1177/1471082X15577017
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevLett.117.078301
https://doi.org/10.1103/PhysRevE.95.012317
https://doi.org/10.1103/PhysRevE.95.012317
https://doi.org/10.1103/PhysRevE.95.012317
https://doi.org/10.1103/PhysRevE.95.012317
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1103/PhysRevE.83.016107
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1073/pnas.0908366106
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
https://doi.org/10.1103/PhysRevX.4.011047
http://www.umich.edu/%7Emejn/communities
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1007/s00440-014-0576-6
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1103/PhysRevE.80.056117
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1103/PhysRevE.74.036104
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z

