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Bipartite networks are a common type of network data in which there are two types of vertices, and only
vertices of different types can be connected. While bipartite networks exhibit community structure like their
unipartite counterparts, existing approaches to bipartite community detection have drawbacks, including implicit
parameter choices, loss of information through one-mode projections, and lack of interpretability. Here we solve
the community detection problem for bipartite networks by formulating a bipartite stochastic block model, which
explicitly includes vertex type information and may be trivially extended to k-partite networks. This bipartite
stochastic block model yields a projection-free and statistically principled method for community detection that
makes clear assumptions and parameter choices and yields interpretable results. We demonstrate this model’s
ability to efficiently and accurately find community structure in synthetic bipartite networks with known structure
and in real-world bipartite networks with unknown structure, and we characterize its performance in practical
contexts.
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I. INTRODUCTION

The defining feature of a bipartite network is that there are
two types of vertices a and b, and only vertices of different
types may be connected; there are no edges connecting vertices
of the same type. For example, if type-a vertices represent
flowers and type-b vertices represent pollinating insects, two
vertices i and j are connected if flower i is pollinated by insect
j ; two flowers will never be connected, nor will two insects.
Bipartite networks appear specialized but are remarkably
common. Examples include networks of plants and pollinators
[1], as well as documents and words [2,3], genes and genetic
sequences [4], actors and movies [5–7], social network users
and mobile access locations [8], and scientific papers and their
authors [9–12].

As with unipartite networks, a common task is to find
groups or communities of vertices that connect to the rest
of the network in similar ways. Finding this underlying group
structure has many uses, including dividing a heterogeneous
network into more homogeneous subgraphs for subsequent
analysis or modeling. However, communities in bipartite
networks do not fit the commonly used definitions. Such
definitions are usually motivated by assortative community
structure in social networks [11], where vertices in the same
community are more likely to be connected than vertices
of different communities. In a bipartite network, however,
two vertices of the same type can never be connected, and
thus assortativity-based definitions of communities are ill
suited. In this paper, we present a bipartite formulation of the
popular stochastic block model, which provides a statistically
principled solution to the community detection problem for
bipartite networks and defines a community as a group of
vertices with similar connectivity patterns to other groups.

Common approaches to community detection in bipartite
networks include applying standard community-detection
algorithms to a one-mode projection [13]. In a one-mode

projection, two type-a vertices are connected if they share
a common type-b neighbor. By eliminating all type-b vertices,
this procedure effectively reduces the dimensionality of the
network by discarding information. Often, projections are
created implicitly, without first constructing the bipartite
network. For instance, in a scientific coauthorship network,
a pair of authors are connected if they ever wrote a paper
together [9–11], which is a one-mode projection of the larger
bipartite network of all papers and authors. Measures like the
Erdős number [12] or Bacon number [7] are, in fact, counting
path lengths on projections of bipartite networks.

Using projections creates both practical and principled
issues. Projections are necessarily composed only of overlap-
ping cliques, which are extremely low probability under most
community detection null models, including Girvan-Newman
modularity Q [14], and tend to inflate measures such as
assortativity and the clustering coefficient. Moreover, reducing
the effective dimensionality of the data almost always requires
a loss of information; not only can structurally different
bipartite networks exhibit identical one-mode projections [13],
but even the projection of a highly structured bipartite network
can appear unstructured, which we demonstrate in our results.

To avoid these issues, two bipartite extensions of Girvan-
Newman modularity [14] have been proposed. Broadly
speaking, one approach formulates a null model for vertices
connected to each other in the projection [15], while the other
formulates a null model for vertices connected to each other
in the bipartite network [16]. Both express implicit modeling
restrictions and assumptions in their outputs: maximizing the
modularity of Guimera et al. partitions one type of vertex at a
time so that each type’s partition is independent of the other
[15], while maximizing Barber’s modularity yields mixed-type
groups (i.e., groups that consist of vertices of both types)
[16]. Other methods find pure-type groups while using the
full bipartite network, and are sometimes called coclustering
or copartitioning methods [2].
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Stochastic block models (SBMs) are elegant probabilistic
models of group structure in networks [5,6,17–22] that have
been used to identify community structure in biological
networks [4,23], product recommendation systems [24], and
directed social cooperation networks [25]. SBMs are of-
ten capable of community detection in bipartite networks
[5,6,20,22], and some SBM-based schemes have been devel-
oped for the specific case of bipartite networks with multiple
nonoverlapping edge types [24,25].

Generally, however, SBMs are generative models for
networks with block or community structure, meaning one can
partition the vertices into K groups, specify the connectivity
parameters among groups, and then generate network data. In
this way, the SBM defines a parametric probability distribution
over all networks. When given a network, community detec-
tion becomes a form of inference, in which we aim to find the
parameters that best explain observed network data, which is
equivalent to finding configurations that minimize the system’s
free energy. Relative to many other community-detection
techniques, stochastic block models have the advantage of
explicitly stating the underlying assumptions, which improves
the interpretability of the results.

In fact, we may specify parameters for a SBM that will
produce bipartite networks, and for this reason, community
detection in bipartite networks is possible by directly applying
the SBM to bipartite data. We may also apply the SBM to
one-mode projections of bipartite networks. However, we will
show later that, even though the SBM is flexible enough to
accommodate both of these cases, the bipartite formulation of
the SBM exhibits both improved speed and improved quality
of community detection.

In the following sections we formulate the bipartite stochas-
tic block model (biSBM) and describe an algorithm that
searches for a maximum likelihood partition of a network
into communities. We first show that the biSBM can correctly
extract a planted network partition from a noisy background,
particularly in a case where the one-mode projection is
uninformative. We then apply the biSBM to several empirical
networks, showing that the biSBM outperforms its nonbipartite
SBM counterpart.

II. THE BIPARTITE STOCHASTIC BLOCK MODEL

Our approach to the bipartite stochastic block model,
hereafter biSBM, builds on recent work of Karrer and Newman
[20], who described a simple SBM that generates networks
with a fixed expected degree sequence. This degree-corrected
SBM is substantially more effective at finding a correct
partition when vertex degrees are heterogeneous, as in many
real-world networks. We first introduce the simple case, and
then extend it to include degree correction.

We begin by dividing the Na vertices of type a into Ka

groups and the Nb vertices of type b into Kb groups. In this
way, each group or community contains vertices of a single
type. We use the N × N adjacency matrix A rather than the
Na × Nb bipartite adjacency matrix B; they are related as

A =
(

0 B

B� 0

)
.

Similarly, we express the matrix of group interrelationships ω

as a K × K matrix (where K = Ka + Kb), instead of a Ka ×
Kb matrix, as is sometimes chosen. We will set to zero any
entries of A and ω that would connect vertices of the same type,
thereby enforcing bipartite structure. This notation is more
easily extended to k-partite or more complicated networks, is
less cumbersome, and is consistent with previous work on the
SBM [20].

Let vertex i be of type ti and belong to group gi . Let Tr be
the type of group r , imposing the constraint

ti = Tgi
, (1)

which indicates that vertex types and group types must match
and ensures that groups will be of pure type. With this common
set of definitions, we develop the biSBM without and with
degree correction.

A. biSBM without degree correction

The block structure of the biSBM network is defined by
a K × K matrix ω. Let ωrs be the expected value of the
adjacency matrix entry Aij for vertices i and j belonging
to groups r and s, respectively. Let the number of actual edges
between i and j be drawn from a Poisson distribution with the
corresponding mean. Although most real-world networks do
not have multiedges, we allow them here because the Poisson
distribution makes calculations easier, and because for sparse
networks in which ωrs is small, multiedges are highly unlikely
and corrections to the simpler Bernoulli probabilities become
vanishingly small. Enforcing the bipartite constraint of Eq. (1)
produces a restriction on ω:

ωrs = 0 when Tr = Ts. (2)

This equation restricts the model to bipartite networks only,
in both generation and inference. When presented with a
bipartite network, the lack of edges between vertices of the
same type is not informative to the biSBM; it is taken as a
given. The SBM, on the other hand, makes no such assumption.
The lack of edges between subsets of vertices is informative
to the SBM, and so it must discover bipartite structure from
the data and weigh a bipartite partition against nonbipartite
alternatives. We discuss this point in more detail in Sec. III.

Given parameters g, T , and ω, we can write down
the probability of generating a network G with adjacency
matrix A:

P (G | g,ω,T ) =
∏
i < j

ti �= tj

(ωgigj
)Aij

Aij !
exp(−ωgigj

). (3)

By using the symmetry of A and ω, this can be rewritten as

P (G | g,ω,T ) =
∏
i < j

ti �= tj

1

Aij !

×
∏
r s

Tr �= Ts

ωmrs/2
rs exp

(
−1

2
nrnsωrs

)
, (4)

where nr is the number of vertices in group r and mrs is the
number of edges between groups r and s, defined using the

012805-2



EFFICIENTLY INFERRING COMMUNITY STRUCTURE IN . . . PHYSICAL REVIEW E 90, 012805 (2014)

Kronecker δ function as

mrs =
∑
ij

Aij δgi ,r δgj ,s . (5)

Given a bipartite network G with adjacency matrix A and
vertex types t [26], we seek the parameters that maximize
Eq. (4). In practice, it is easier to maximize its logarithm,
since this changes only the value of the maximum but not its
location in parameter space. Neglecting constants, taking the
logarithm yields

ln P (G | g,ω,T ) =
∑
r s

Tr �= Ts

mrs ln ωrs − nrnsωrs . (6)

Following Ref. [20], we maximize this sum first with respect
to ω and then with respect to g. Taking a derivative of Eq. (6)
with respect to ωrs and setting it equal to zero yields

ω̂rs = mrs

nrns

. (7)

A variable with caret denotes a maximum likelihood parameter
estimate, while one without denotes a model parameter.
Substituting this expression into Eq. (6) yields

ln P (G | g,ω̂,T ) =
∑
r s

Tr �= Ts

mrs ln
mrs

nrns

− mrs, (8)

where the latter term sums to twice the number of edges in
the network, regardless of the partition. We therefore drop it,
yielding

L(G | g) =
∑
r s

Tr �= Ts

mrs ln
mrs

nrns

, (9)

which we now maximize over all group assignments g, subject
to the constraint of Eq. (1) which requires that any partition g

must divide vertices into pure-type communities.

B. Degree-corrected biSBM

Both the motivation for and derivation of the degree-
corrected biSBM parallel those of the degree-corrected SBM:
real-world networks tend to have broad degree distributions in
addition to community structure, but the uncorrected biSBM
finds edge bundles between communities with Poisson degree
distributions, which in practice tends to sort vertices by degree.
The degree-corrected model explicitly models the observed
degree sequence before finding community structure, allowing
it to be applied to empirical networks with broad degree
distributions.

As before, we consider a network of N vertices, indexed by
i, each with type ti , divided into Ka type-a groups and Kb type-
b groups, with gi denoting the group to which vertex i belongs.
Let θi control the expected degree of vertex i, and let ωrs again
be a K × K symmetric matrix of parameters to control the
number of edges between groups r and s. Following [27],
we let the number of edges between vertices i and j follow
a Poisson distribution with mean θiθjωgi

ωgj
. To enforce the

bipartite structure of the network, Eqs. (1) and (2) must hold,

and the probability of observing a network G with adjacency
matrix A is

P (G | g,θ,ω,T ) =
∏
i < j

ti �= tj

(
θiθjωgigj

)Aij

Aij !
exp

(−θiθjωgigj

)
.

(10)

The parameters θ are arbitrary to within a multiplicative
constant that can be absorbed into ω, so we choose the
normalization ∑

i

θiδgi ,r = 1, (11)

which means that θi is the probability that an edge connected
to the community to which vertex i belongs lands on i itself.
This constraint allows Eq. (10) to be rewritten as

P (G | g,θ,ω,T ) =
∏

i θ
ki

i∏
i < j

ti �= tj

Aij !
×

∏
r s

Tr �= Ts

ωmrs/2
rs exp

(
−1

2
ωrs

)
,

(12)

where ki is the observed degree of vertex i and mrs is the
number of edges between groups r and s, as before [Eq. (5)].
We again seek to maximize this probability by maximizing its
logarithm. After dropping constants and multiplying by 2, we
have

ln P (G | g,θ,ω,T ) = 2
∑

i

ki ln θi +
∑
r s

Tr �= Ts

mrs ln ωrs − ωrs.

(13)

Taking partial derivatives with respect to ωrs and setting them
equal to zero gives the maximum likelihood parameters

ω̂rs = mrs. (14)

The maximum likelihood θ̂i can be found via the constrained
maximization of Eq. (13) subject to Eq. (11) using Lagrange
multipliers, yielding

θ̂i = ki

κgi

, (15)

where κr is the sum of the degrees in group r , κr = ∑
s mrs .

The maximum likelihood parameter estimates preserve not
only the expected numbers of edges between groups, but also
the expected degree sequence of the network [20]. They may be
substituted into Eq. (13), and after manipulation and dropping
constant terms, we have

L(G | g) =
∑
r s

Tr �= Ts

mrs ln
mrs

κrκs

, (16)

which we maximize over all partitions g.
As in the case of nonbipartite networks, the differences

between the uncorrected and corrected log-likelihood func-
tions, Eqs. (9) and (16) respectively, appear to be a simple
substitution of nr for κr , but their effect on optimal partitions
can be drastic when degrees are heterogeneous, which we will

012805-3



LARREMORE, CLAUSET, AND JACOBS PHYSICAL REVIEW E 90, 012805 (2014)

demonstrate in Sec. IV. Both formulations of the model will
find K pure-type groups, Ka within the vertices of type a and
Kb within the vertices of type b.

C. A biSBM algorithm

To maximize Eqs. (9) or (16) over all partitions g, we
present an algorithm adapted from Karrer and Newman’s
algorithm [20], which is a variation on the classic Kernighan-
Lin algorithm [28]. Our algorithm takes as inputs the adjacency
matrix A and the vertex types ti , and then assigns vertices
of type ti = a uniformly at random to Ka groups, indexed
{1, . . . ,Ka}, and vertices of type ti = b uniformly at random
to Kb groups, indexed {Ka + 1, . . . ,Ka + Kb}. This means
Tr = a for the first Ka groups and Tr = b for the remaining Kb.

The algorithm searches the likelihood surface by proposing
to move a vertex from one group r to another group s, provided
their types match, Tr = Ts . After proposing all such moves,
across all vertices and eligible groups, it selects the move that
will most increase the likelihood function. If no improvement
is possible, the algorithm chooses the move that least decreases
the likelihood function, because forcing the vertices to move
helps escape local optima [29]. We allow each vertex to move
only once, and when all vertices have moved, the states through
which the system has passed are evaluated and the state with
the highest objective score is used as a starting point for the
next search iteration. When a full iteration passes with no
improvement in objective score, the algorithm exits.

Finally, as is usual with stochastic optimization techniques,
the algorithm should be run many times and the highest
score from among these independent replicates selected. This
algorithm may be used equally well for the degree-corrected
or uncorrected models.

III. COMPARISON OF THE biSBM AND SBM

Before demonstrating that the bipartite stochastic block
model correctly extracts community structure from bipartite
network data, we first examine the relationship between the
biSBM and the SBM. Most SBM community-detection meth-
ods can be naturally applied to bipartite networks [5,6,20,21],
so it may not be clear why a specialized bipartite model is
necessary. In this section, we characterize the relationship
between the biSBM and the SBM both theoretically and in
application, showing that the models are related but do not
perform equivalently. In particular, the SBM often overfits
bipartite data by mixing vertices of different types within
communities and it is nearly always substantially less efficient.

A. Relationship to the nonbipartite stochastic block model

The derivation of the biSBM requires that there be no con-
nections between any vertices of the same type. We expressed
this in Eqs. (1) and (2), and formulated the biSBM equations
accordingly. We now show that if these two constraints are
applied a posteriori to the SBM and degree-corrected SBM,
the resulting equations will be numerically equal to the biSBM;
any network that is generated by the (degree-corrected) biSBM
can be generated with equal probability by the properly
constrained (degree-corrected) SBM. Indeed, it is well known
that stochastic block models are capable of producing bipartite

networks, in addition to general multipartite networks [20,21]
and networks with more complicated rules about which types
of vertices may be connected to which other types, so this
equivalence of generative models comes as no surprise.

The biSBM and degree-corrected biSBM likelihood func-
tions are numerically equivalent to their nonbipartite counter-
parts, provided that (i) the partition g does not mix vertices of
different types in the same group, and (ii) there are no edges
between vertices of the same type. To see this, we reproduce
the probability of generating a graph G with adjacency matrix
A using the SBM from Ref. [20]:

P (G |ω,g) =
∏
i<j

(ωgigj
)Aij

Aij !
exp (−ωgigj

)

×
∏

i

(
1
2ωgigi

)Aii/2

(Aii/2)!
exp

(
−1

2
ωgigi

)
. (17)

If there are no edges between groups of the same type,
then ωgigi

= 0, so every term in the second product is equal
to 1 and may be disregarded. Moreover, ωgigj

= 0 when i

and j are of the same type, so all terms of the remaining
product equal 1, except those for which ti �= tj , which reduces
numerically to Eq. (3). However, these equations, while
numerically equivalent, are not identical due to their meanings
and behaviors.

The ability of the SBM to generate the same ensemble of
bipartite networks as the biSBM does not imply that they will
find identical partitions when presented with real data. There
are two reasons for this, one principled and one algorithmic.
The key to both is understanding the way that each model
makes use of the data presented to it. Equation (2) means
that the lack of edges between vertices of the same type is
uninformative to the biSBM because it is taken as a given. On
the other hand, to the SBM, the lack of edges between vertices
of the same type is informative to the model, which uses such
information for inference.

In other words, the likelihood function for both models
is determined by the density of observed edges between the
communities of the partition, and this function is maximized
whenever the density parameter is close to 1 or 0. Thus,
the SBM prefers to find either very assortative or very
disassortative groups, or some mixture thereof, while the
biSBM can find only disassortative groups, by definition. Thus,
when applied to bipartite data, the SBM must learn that all
groups are in fact disassortative, while the biSBM does not.

The structure of the objective function produces a strong
incentive for the SBM to find disassortative structure in
bipartite networks, but this incentive is not sufficient to always
find pure-type partitions in bipartite data. As we show below,
for many simple bipartite networks, a mixed-type partition in
which vertices of different types are placed in the same group
yields a higher likelihood than pure-type (bipartite) partitions
for the SBM. (After all, the biSBM and SBM are nested
models, and thus the SBM can always find a parametrization
at least as good as that of the biSBM.)

To illustrate this point, consider a simple network consisting
of a ring of small “clumps,” each of which is a perfectly
bipartite structure (Fig. 1). Whenever K is odd, the SBM will
overfit by finding a partition that mixes vertex types but which
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FIG. 1. (Color online) The global-maximum partitions of the
biSBM and SBM are not necessarily the same. When K is even,
the SBM and biSBM find identical partitions, but when K is odd,
the SBM finds a higher likelihood partition by creating a mixed-type
community. Log-likehoods are plotted, and partitions are displayed
as colors, with the mixed-type partition vertices (red) enlarged.

also has a higher objective score than the best bipartite partition
under the biSBM. Whenever K is even, the SBM and biSBM
find identical partitions. While this illustrates the point that the
maximum likelihood partition under the SBM may be better
than that under the biSBM, the SBM finds a bipartite partition
for as much of the network as possible until it is forced to break
symmetry by the K = 5 specification. These results hold for
both degree-corrected and uncorrected models.

B. Performance relative to SBM

Since we have just established that it is possible for the
SBM to find higher likelihood partitions than the biSBM
without providing t , the vertex type information, one might
prefer community detection using the SBM because it requires
less information and is more flexible. However, we now
demonstrate that for even moderate N or K , the biSBM
finds better solutions, faster. This occurs because the biSBM
simultaneously solves two smaller problems, one for each
vertex type, and because the ruggedness of the likelihood
surface presents the SBM with many more local optima in
which it can become lodged.

We compare our biSBM algorithm with the SBM algorithm
on which it was based, provided by Karrer and Newman [20].
They describe the change in likelihood �L of moving a vertex
i from community r to community s, and explain that this
quantity can be evaluated for the degree-corrected model in
time O(K + 〈k〉) per vertex on average, where 〈k〉 is the mean
degree. Thus, finding the community s that is the very best
move for vertex i takes O(K(K + 〈k〉)) time. Overall, the
time complexity of the SBM is

O(NK(K + 〈k〉)). (18)

The biSBM algorithm separates N searches over K commu-
nities into Na searches over Ka communities and Nb searches
over Kb communities. The time complexity of each biSBM
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FIG. 2. (Color online) The biSBM outperforms the SBM in
speed, log-likelihood score, and the ability to find partitions that
do not mix vertices of different types (pure type). The inset magnifies
the shaded region of the main plot which includes all eight pure-type
partitions (of 2000 total replicates) found by the SBM. Times to
convergence for each replicate were 5.33 and 1.64 s for the SBM and
biSBM, respectively. Tests were conducted using the malaria data set
(see text) and Ka,Kb = 3,3 and K = 6.

iteration is therefore roughly

O(NaKa(Ka + 〈k〉)) + O(NbKb(Kb + 〈k〉)). (19)

By using K = Ka + Kb, N = Na + Nb, and the fact that (x +
y)2 � x2 + y2 for x,y � 0, one can show that the biSBM is
always faster than the SBM, in large part because the biSBM’s
search space is predivided by vertex type into two smaller
problems.

Applying the degree-corrected SBM and biSBM algorithms
to a data set from the genes of the malaria parasite (described
in detail in Sec. IV B 2), we plot the final log-likelihood scores
for each of 2000 iterations as histograms for each method in
Fig. 2. The results show that the biSBM tends to find better
partitions than the SBM in each iteration, and the SBM rarely
finds pure-type partitions (eight of 2000 replicates). Moreover,
we find that the biSBM converges 3.25 times faster than the
SBM, which took 5.33 s per replicate.

The difference in times arises from Eqs. (18) and (19),
while the difference in outcomes is due to the high-dimensional
ruggedness in the SBM’s likelihood function. On this function,
most random initializations lie within the basin of attraction of
a local optimum corresponding to a mixed-type partition with
a lower log-likelihood. In contrast, by eliminating all mixed-
type partitions, the biSBM restricts the search and guides the
optimization to generally higher-quality solutions. We note
that the popular modularity score Q for assortative community
detection exhibits a qualitatively similar rugged structure, with
many local optima and a complex distribution of basins of
attraction [30].

As a final test, we examined the stability of biSBM
partitions under the SBM algorithm to determine whether
the SBM’s additional flexibility in parameter space would
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allow for an improved partition. In all cases considered, when
initialized at a partition found by the biSBM, this partition was
also a local optimum for the SBM. This behavior suggests that
the biSBM’s smaller parameter space provides a significant
speed advantage over the SBM, without any trade-off in
partition quality, i.e., good optima of the biSBM are also good
optima of the SBM.

IV. RESULTS

In this section, we show that the biSBM can recover the
correct partition in synthetic networks with known planted
structure and then apply the biSBM to study three empirical
networks. For the synthetic networks, we consider two forms,
an easy and a hard case, which illustrate the biSBM’s
performance under different general conditions and against
alternative techniques. Of the empirical data sets, the first is the
Southern Women network [31], which consists of 18 women
who attended 14 social events. This network is commonly used
as a benchmark for bipartite network community detection
algorithms, much like the Zachary karate club for unipartite
community detection algorithms. Past work in this direction,
while agreeing broadly on a partition of the women [15,32],
says little about a partition of events (except [16]). The
biSBM provides both. The second is the malaria network,
which consists of genetic sequences from the malaria parasite
Plasmodium falciparum [4,33]. Its vertices correspond to
297 genes and their 806 shared amino acid substrings, and
projections of similar networks have been previously analyzed
[4,34]. The third network is a subset of the Internet Movie
Database (IMDb) network of actors and movies, consisting of
53 158 actors and the 39 768 movies in which they appear.

A. Synthetic networks

We examine the ability of the algorithm to extract planted
structure ωplanted that has been obscured by various levels
of uniformly random noise. Empirically observed networks
are often noisy, with missing or spurious edges, and a
good community-detection algorithm must be able to extract
structure despite such a noisy background.

We describe two forms of synthetic network, each of
which illustrates a different aspect of community detection
in bipartite networks. The first form is easy, because it consists
of four equally sized, unambiguous, and nonoverlapping
components, each made up of one type-a and one type-b
community. In this case, community structure is obvious in
both the bipartite network and its one-mode projection. The
second form is difficult because, in addition to Ka �= Kb, its
degrees and community sizes are heterogeneous. Moreover,
its one-mode projection is ambiguous and difficult to resolve,
even in the absence of noise. Here, only the degree-corrected
biSBM correctly finds the planted community structure. These
two forms are not exhaustive but rather illustrate the practical
behavior of the biSBM.

To vary the amount of noise, we specify g and ωplanted but
create networks using g and ω = λωplanted + (1 − λ)ωrandom,
letting the mixing parameter λ take values between 0 (all
noise) and 1 (all planted structure). The construction of
ωrandom depends on whether we use the degree-corrected or

uncorrected model. In the uncorrected model, we preserve
the expected number of edges in the network but remove
all structure, and thus ωrandom

rs = nrns/2m, where m is the
total number of edges in the network. In the degree-corrected
model, we preserve both the expected number of edges in the
network and the expected degrees of the vertices θ , and thus
ωrandom

rs = κrκs/2m.
To further illustrate the point that one-mode projections

induce practical issues for community detection in bipartite
networks, we also compare partitions of one-mode projections
of our synthetic networks with the performance of the biSBM.
There are two types of such projections. An unweighted projec-
tion of a bipartite network onto its type-a vertices is obtained
by letting two type-a vertices i and j be connected if they share
any type-b neighbor k. Each edge of a weighted projection has
weight equal to the number of such shared neighbors. Given
an adjacency matrix A, the weighted projection matrix P is
given by

P = A2, (20)

where the diagonal blocks of size Na × Na and Nb × Nb

correspond to the projections onto types-a and -b vertices,
respectively. The matrix P is equivalent to a “two-step”
adjacency matrix, with each entry weighted by the number
of length-2 paths between each pair of vertices.

In our experiments, performance is evaluated by specifying
parameters to the biSBM, drawing network instances from
that ensemble, and then testing a method’s ability to recover
the correct partition of type-b vertices. This allows a direct
comparison of the biSBM (which partitions all vertices) and
the SBM (which partitions only type-b vertices). Accuracy is
measured by the normalized mutual information between the
inferred and correct partitions [35]. We treat each partition as
a random variable X. Since the only information we have
about X is what we observe, let Pr(X = r) = Nr/N , the
fraction of vertices observed in group r . Similarly, let the
joint distribution of two partitions X and Y be defined as
Pr(X = r,Y = s) = Nrs/N , the fraction of vertices that we
observe in group r of the first partition and group s of the
second partition. Then the normalized mutual information
of the partitions is Inorm(X,Y ) = 2I (X,Y )/ [H (X) + H (Y )],
where H (X) is the Shannon entropy of X, and I (X,Y ) is the
mutual information. As the name implies, Inorm takes on values
between 0 and 1, with Inorm(X,Y ) = 1 if and only if X = Y ,
and Inorm = 0 when X and Y are uncorrelated. Intuitively,
Inorm(X,Y ) measures the degree to which knowledge of one
partition allows us to predict the other partition.

1. An easy case

In this easy case, we define the mixing matrix to have easily
identifiable community structure

ωplanted =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · α 0 0 0
· · · · 0 β 0 0
· · · · 0 0 γ 0
· · · · 0 0 0 δ

α 0 0 0 · · · ·
0 β 0 0 · · · ·
0 0 γ 0 · · · ·
0 0 0 δ · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)
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FIG. 3. (Color online) As the level of noise is decreased (λ → 1), Inorm between inferred and correct partitions varies by method. Each
point shows the median of 100 replicates, and shaded regions show 10%–90% quantiles. (a) In the easy case, all methods are able to find the
correct partition. The degree-corrected SBM applied to projections performs slightly better for small λ and the biSBM performs slightly better
for moderate and large λ. (b) In the difficult case, only the degree-corrected biSBM is able to reliably find the correct partition; SBM methods
applied to projections failed. (c) For the same projections as (b), fast modularity maximization is moderately accurate but inconsistent. When
initialized at the correct partition, the degree-corrected SBM remains nearby in parameter space for large λ but the uncorrected SBM does not.

where the variables α,β,γ,δ are positive constants. This
produces a network with four components, each consisting
of a pair of communities. We let N = 1000 for each type
and divide these vertices evenly across the four components.
Finally, we do not specify vertex degrees θ , and thus create
networks using ωrandom for the uncorrected SBM.

For this test, we compare the performance of the biSBM on
bipartite data to the performance of the SBM on both weighted
and unweighted one-mode projections, which simulates the
common practice of converting bipartite data into a form
amenable to standard unipartite detection methods. Figure 3(a)
shows the normalized mutual information between the inferred
partitions of type-a vertices and the correct partition of type-a
vertices. The biSBM always extracts the correct communities
when λ = 1, with performance falling off sharply as the
network approaches the detectability limit [21] where no
algorithm can recover the planted structure. In this case,
because the structure is unambiguous, projection methods also
work well.

2. A difficult case

In this difficult case, we define the mixing matrix to
have less easily identifiable community structure by creating
partially overlapping communities, Ka �= Kb, and a broad
degree distribution. Moreover, we illustrate this in a network
whose one-mode projection is relatively uninformative about
its community structure,

ωplanted =

⎛
⎜⎜⎜⎝

· · · ε 0
· · · 0 ε

· · · γ γ

ε 0 γ · ·
0 ε γ · ·

⎞
⎟⎟⎟⎠. (22)

In this construction, the third type-a community connects
equally with both type-b communities. When the network is
projected onto its type-b vertices, this equality masks much
of the structure created by the other, nonoverlapping type-a
communities, making the projection difficult to partition,
even when γ ∼ ε. We make this test even more difficult for
the biSBM by choosing different sizes for the communities

[36,37], with 300 type-a vertices, divided {100,150,50}, and
700 type-b vertices divided evenly {350,350}. Finally, we
impose heterogeneous degrees by giving half the vertices in
each community twice the preferred degree θ of the others [38].
As such, we use ωplanted corresponding to a random network
with fixed degree sequence. To clearly illustrate the planted
structure of the bipartite adjacency matrix, we plot one such
matrix for λ = 1 in Fig. 4, and show its type-b projection.

Figure 3(b) shows the normalized mutual information
between the inferred partitions of type-b vertices alone.
The degree-corrected biSBM exhibits the classic detectability
phase transition [21], with a critical point at λ ≈ 0.33. In
contrast, the uncorrected biSBM finds the planted structure
only for λ ≈ 1, but as shown by the 10% and 90% quantiles
(shaded regions), its partitions are either extremely accurate or
extremely inaccurate.

When using either weighted or unweighted projections, the
SBM (with or without degree correction) is unable to find any
community structure. Ordering the adjacency matrix by the
planted partition, however, shows clear community structure
(Fig. 4), which the SBM algorithm is unable to find. Initializing
the SBM algorithm with the correct partition does lead to
better performance [Fig. 3(c)] for the degree-corrected SBM,
which remains near the correct partition when λ ≈ 1, while
the uncorrected SBM fails completely. This indicates that the
correct partition of the projection is not a local optimum under
the uncorrected SBM.

Corroborating a result for bipartite modularity
maximization [15], the weighted projection outperforms
the unweighted projection in this experiment. Figure 3(c)
also shows that fast modularity maximization [39] is able to
partially extract structure from the projection, but with high
variability. This suggests that the projection’s communities
for λ > 0.5 are not below the detectability limit [21], but that
they are nevertheless very difficult to find, highlighting a case
in which applications of community detection to projections
are outperformed by the biSBM.

While this bipartite network was designed to produce a
relatively uninformative projection, it represents a common
type of bipartite network in which some vertices have a very
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FIG. 4. (Color online) (Top) The bipartite adjacency matrix B

for the planted structure Eq. (22). (Bottom) The b-mode projection
exhibits visible community structure when correctly sorted, which is
undetectable by the SBM [see Fig. 3(b)].

high degree. Such networks arise in document classification,
when words are connected to the documents in which they
are found, because some words, such as up, again, and
which, appear frequently, and without any correlation to topics.
Bipartite coclustering methods have been shown to succeed
even when such “stop words” are included [2], but projection-
based methods require removal of these words because they
effectively mask the true structure in uncorrelated noise [3].
Bipartite methods will therefore be particularly useful in
contexts where the list of stop words is not known a priori.

B. Empirical networks

1. The Southern Women data set

Our first empirical network is the Southern Women data
set, a common benchmark for bipartite community-detection
algorithms [15,16]. It reflects attendance at 14 social events
by 18 women in Natchez, MS, USA in the 1930s, and the data
were collected by ethnographers to examine the roles of race
and class in dictating social interactions [31,32].

The biSBM and degree-corrected biSBM identified the
same partition, shown in Fig. 5. The partition of women
perfectly matched the literature consensus [32] and that of

People
Events Attended

FIG. 5. (Color online) The bipartite SBM correctly classifies the
women (circles) of the Southern Women data set [31]. Vertex area
is proportional to degree, and colors label the partition, with black
outlines corresponding to women and white outlines corresponding
to events (squares). Degree correction does not have an effect on
the maximum likelihood partition for this network. The dashed line
corresponds to the two-community partition found in Ref. [15], which
separately partitioned women and events.

Guimera et al. [15]. The partition of events found by Guimera
et al., shown as the dashed line in Fig. 5, split events into
two groups, largely matching the three-group partition that we
show. Barber’s modularity was maximized with four mixed-
type communities [16], although the consensus partition noted
above has only a slightly worse modularity. Our partition is
listed explicitly in Appendix B.

In this example, the biSBM performs well and is able to
find the literature consensus partition of the women while
simultaneously partitioning events. However, this data set
serves as a minimal benchmark: although 21 different methods
were reviewed in Ref. [32], a majority produced identical
partitions, with many of the others differing by a single vertex
label. Therefore, in the next section, we present the biSBM
with a more challenging empirical network.

2. Malaria data set

Our second empirical network comes from the malaria
parasite P. falciparum. The parasite evades the human immune
system via a protein camouflage, which is encoded in var
genes [40]. In order to create novel camouflages, var genes
frequently recombine, which amounts to the constrained splic-
ing and shuffling of genetic substrings, giving rise naturally
to community structures [4,34]. Vertex types correspond to
genes and their constituent substrings, and each substring
connects to every gene in which it is present. The network,
consisting of 297 genes and 806 substrings, is somewhat like
a set of documents and words, but with partially overlapping
words, and covers a subset of the known var genes. Degree
distributions for both types of vertices are broad, which makes
it an exemplar for the degree-corrected biSBM.

Sample partitions using Ka = 3, Kb = 3 are shown in a
force-directed layout in Fig. 6. The degree-corrected biSBM
recovers communities of different sizes, as shown in the plotted
adjacency matrix, Fig. 7. One group of genes corresponds
nearly exclusively to one group of substrings, while the other
two groups of genes and substrings are partially overlapping.
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FIG. 6. (Color online) The force-directed layout of the malaria bipartite network is shown twice, with gene vertices enlarged (left) and with
substring vertices enlarged (right). Numbers and colors indicate the partition found by the degree-corrected biSBM for Ka = 3, Kb = 3. The
paired communities on the right sides of the figures (3 and 6) are almost nonoverlapping with the others, which are partially overlapping. The
corresponding bipartite adjacency matrix is shown in Fig. 7.

Community sizes and degrees vary by community but are
easily accommodated by the degree-corrected biSBM. A
superset of these data were analyzed previously [4], finding a
similar partition of the genes, but no partition of the substrings.
See Appendix A for the data and partition.

To illustrate the difference between degree-corrected and
uncorrected models, we also applied the uncorrected biSBM to
the malaria data set, and found that connected vertices tended
to group by degree, corroborating analogous findings for the
nonbipartite SBM [20]. Moreover, the maximum likelihood
partition, which we plot in Fig. 8, does not correspond well to
biological classifications of the genes [4]. As with the synthetic
networks in the previous section, when networks have broad
or heterogeneous degree distributions, the degree-corrected
model is able to find the correct partition while the uncorrected
model is not.

3. IMDb data set

Our third empirical network comes from the Internet Movie
Database, from which we built a bipartite network of actors
and the movies in which they acted. Data were downloaded
directly from IMDb [41] and parsed into a network in which

substrings

ge
ne

s

1

2

3

4 5 6

FIG. 7. (Color online) The bipartite adjacency matrix B of the
malaria network, sorted by the degree-corrected biSBM partition,
with Ka = 3,Kb = 3. Numbers and colors on the matrix border
correspond to those in Fig. 6.

an edge exists between an actor and a movie if the actor was in
the movie in any role. We removed all serial television shows
included in the database, restricted the network to movies
released between 1995 and 2000, and then removed any actor
or movie with degree equal to 1, as in other studies [5,6]. From
this, we extracted the largest connected component, resulting
in a single-component network of 53 158 actors and 39 768
movies. Degree distributions for both vertex types were broad,
with mean degrees of 7.6 and 5.7, and maximum degrees of
120 and 552, for movies and actors, respectively.

In order to interpret the output of the biSBM, we down-
loaded genre and language information from IMDb for each
movie. This information, when compared with the partition
provided by the model, shows clearly that the existence of
an edge is associated with a match between the actor’s and
the movie’s genre and language. Figure 9 shows the bipartite
network adjacency matrix B, sorted by a degree-corrected
partition using Ka = 6, Kb = 6, and labeled by defining
characteristics of each group of movies. Groups 5 and 6 are
predominantly English movies, while groups 1, 2, and 3 are
foreign films, separated by language. Group 4, on the other
hand, is defined not by language, but by genre, consisting
of adult films across many languages. In the framework
of generative models, this correspondence between genre,
language, and inferred blocks provides insight into the multiple
mechanisms responsible for the existence of edges.

V. CONCLUSIONS

In this paper we have described a stochastic block model for
bipartite networks and demonstrated its ability to create and
infer bipartite community structure in both degree-corrected
and uncorrected regimes. Moreover, we have shown that for
bipartite network data, the biSBM is able to find higher like-
lihood solutions more efficiently than the SBM. Importantly,
this bipartite community structure is found without reliance on
one-mode projections, and outperforms one-mode projections
in all cases tested.
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FIG. 8. (Color online) Without degree correction, the biSBM
tends to find groups that have a similar degree, leading to unexpected
and unintuitive partitions of networks with broad or heterogeneous
degree distributions (as in Ref. [20]). The maximum likelihood
partition without degree correction is shown above for the malaria
network, with vertex sizes corresponding to degree. The networks
plotted in both panels are identical except for the type of vertices
highlighted. The degree-corrected partition is shown in Fig. 6.
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FIG. 9. (Color online) The bipartite adjacency matrix B of the
IMDb network [41], sorted by the degree-corrected biSBM partition
with Ka = 6,Kb = 6. Language labels indicate that over 90% of
movies in the indicated language are in that group. Group 4 is
best characterized by the adult genre, and features a much larger
number of movies per actor in the dense block than other groups.
Groups 5 and 6 showed similar language and genre profiles, but their
separation suggests the existence of an additional variable governing
the probability of edge existence.

There are two problems with community detection in
one-mode projections, both of which are avoided by the
biSBM. First, projections discard information, and second,
they create networks composed of overlapping cliques, which
often violate the assumptions of the null model underlying
the detection method. Using a community-detection model
that is misspecified for the type of data being analyzed
is problematic. The method can fail, or worse, produce a
high-scoring partition under the misspecified model. Because
methods provide no warnings of either outcome, not only
are their results then impossible to correctly interpret, but
they may also be misleading, suggesting the presence of
strong community structure where there is, in fact, none [30].
Whenever possible, the use of one-mode projections should be
avoided, with communities instead inferred directly from the
original bipartite data.

This point was most evident under our class of synthetic
networks which were designed to have ambiguous projections.
In these numerical experiments, there existed a community of
type-a vertices with a high probability of connection to all
type-b vertices, and the biSBM substantially outperformed
all projection-based methods [Fig. 3(b)]. These results are
likely very general, in part because many real-world systems,
e.g., a network of documents and the words they contain,
contain ubiquitous stop words that must be removed by hand
or heuristically in order for existing methods to work well [3].
In contrast, the biSBM automatically identifies and classifies
such vertices, producing high-quality partitions despite the
ubiquitous connectivity of such vertices.

As a brief aside, one-mode projections may be problematic
for more than just community detection. For example, it is
commonly known that social networks are assortative by
degree while most other networks are not, yet the social
networks first used to demonstrate this point were all implicitly
one-mode projections, such as coauthorship networks [10].
Subsequently, social networks that were not projections were
shown to be less assortative or even disassortative [11]. This
raises the questions of whether assortativity is due to properties
of social networks or due to implicitly projecting from bipartite
data, and whether other measures, such as centralities, may
also be affected.

The biSBM, in either its degree-corrected or uncorrected
form, is mathematically equivalent to a constrained version of
the SBM, which allowed for a direct comparison of the two
methods. The SBM is a more general model for community
detection in networks, but this increased flexibility comes
at a cost: when applied to bipartite data; it must learn that
these data are bipartite, which causes it to be less efficient
at inference, more prone to overfitting, and more likely to
produce mixed-type partitions. If the bipartite nature of the
network is known ahead of time, this information can and
should be utilized. Our results for the biSBM demonstrate that
using this information leads to substantially more efficient and
more accurate inference.

A subtle point when using the biSBM is the choice of the
parameters Ka and Kb, which may be chosen independently.
This explicit selection of parameters is both an opportunity
and a burden, as the increased flexibility allows for modeling
imbalanced bipartite networks in which Ka �= Kb, but also
requires these parameters to be specified. The choice of
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these values can be framed as a question of model selection,
which compares the likelihoods for different choices while
controlling for the added flexibility associated with extra
parameters. For SBM-type models, this question is related
to, but distinct from, the question of choosing the number
of communities. [For instance, if K = Ka + Kb, the number
of communities in the SBM and biSBM is the same, but
the number of free parameters is (K2 ) > KaKb for K > 2.]
Techniques for model selection for generative network models
like the SBM remain an area of active research. The central
difficulty is that the likelihood function’s ruggedness makes the
standard limiting assumptions inapplicable [42] and common
approaches to comparing models, e.g., Akaike Information
Criterion and Bayesian Information Criterion, can produce
incorrect decisions. Recent work using likelihood ratio statis-
tics, however, shows promising results [43], and Minimum
Description Length-based approaches have also been recently
developed [5,6,22].

The biSBM, and generative models more broadly, fall into
a growing set of models in which the generative hypothesis is
clear and principled. A strong advantage of such methods is the
interpretability of the inferred parameters, as the matrix ω is
informative about hypothetical mechanisms of the underlying
processes that generated the data in the first place; e.g., Ref. [4].
Mixed-membership stochastic block models [44,45], which
assign each vertex a probability distribution over communities,
have not yet been formulated for bipartite networks but
represent an interesting direction for future work, as do models
of edge-weighted networks [46] and nonoverlapping edge
types [24]. Similarly, hierarchical methods [6,47] could also be
adapted to bipartite, k-partite, or more complex formulations.
Other models have explored structural regularities beyond
community structure, where additional model parameters
capture intergroup centrality [22]. Given the ubiquity of
bipartite and other forms of structured networks, we look
forward to the development of more sophisticated generative
models the naturally incorporate such auxiliary vertex and
edge information.
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APPENDIX A: CODE AND DATA AVAILABILITY

Southern Women and Malaria data sets and their maximum
likelihood partitions, and an implementation of the biSBM
inference code, written by the authors, are freely available
[48]. IMDb data sets are also available [41].

APPENDIX B: SOUTHERN WOMEN

The bipartite SBM described in the text finds the following
maximum likelihood partition of the Southern Women network
[31]: Group A (red): Mrs Evelyn Jefferson, Miss Laura
Mandeville, Miss Theresa Anderson, Miss Brenda Rogers,
Miss Charlotte McDowd, Miss Frances Anderson, Miss
Eleanor Nye, Miss Pead Oglethorpe, Miss Ruth DeSand.
Group B (blue): Miss Verne Sanderson, Miss Myra Liddell,
Miss Katherine Rogers, Mrs Sylvia Avondale, Mrs Nora
Fayette, Mrs Helen Lloyd, Mrs Dorothy Muchison, Mrs Olivia
Carleton, Mrs Flora Price. Group X (orange): Jun 10, Jan 23,
Apr 07, Nov 21, Aug 03. Group Y (purple): Mar 15, Sep 16,
Apr 08. Group Z (green): Jun 27, Mar 02, Apr 12, Sep 25,
Feb 25, May 19.
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Sci. Rep. 3, 1999 (2013).

[26] Given a bipartite network consisting of a single component,
one can arbitrarily determine vertex types. This is possible but
appropriate only if Ka = Kb. For networks of multiple com-
ponents and unknown types, modified likelihood maximization
approaches are conceivable, but we offer none here.

[27] A. Coja-Oghlan and A. Lanka, SIAM J. Discrete Math. 23, 1682
(2010).

[28] B. W. Kernighan and S. Lin, Bell Syst. Tech. J. 49, 291
(1970).

[29] An exception to this is made when Ka or Kb is equal to 1, in
which case some vertices will have no possible moves and are
accordingly skipped.

[30] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Phys. Rev. E
81, 046106 (2010).

[31] A. Davis, B. B. Gardner, and M. R. Gardner, Deep South
(University of Chicago Press, Chicago, 1941).

[32] L. C. Freeman, in Dynamic Social Network Modeling and
Analysis: Workshop Summary and Papers, edited by R. Breiger,
C. Carley, and P. Pattison (National Academies Press, Washing-
ton DC, 2003), pp. 39–97.

[33] T. S. Rask, D. A. Hansen, T. G. Theander, A. Gorm
Pedersen, and T. Lavstsen, PLoS Comput. Biol. 6, e1000933
(2010).

[34] P. C. Bull et al., Mol. Microbiol. 68, 1519 (2008).

[35] L. Danon, A. Dı́az-Guilera, J. Duch, and A. Arenas, J. Stat.
Mech.: Theory Exp. (2005) P09008.

[36] L. Danon, A. Dı́az-Guilera, and A. Arenas, J. Stat. Mech.:
Theory Exp. (2006) P11010.

[37] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. USA
104, 7327 (2007).

[38] Not unlike other generative network models, there are restric-
tions on allowable parameters. In this case, we fix ω and let θ

vary by some multiplicative constant for each community, so
that we may plant heterogeneous degrees in θ without over- or
misspecifying ω.

[39] A. Clauset, M. E. J. Newman, and C. Moore, Phys. Rev. E 70,
066111 (2004).

[40] This is accurate, but drastically simplified. For biological details
see Refs. [33], [4], and [34].

[41] Original data are available at http://www.imdb.com/interfaces.
IMDb copyright permits redistribution of IMDb data only in
unaltered form.

[42] X. Yan et al., J. Stat. Mech. (2014) P05007.
[43] L. Peel and A. Clauset, arXiv:1403.0989.
[44] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing,

J. Mach. Learning Res. 9, 1981 (2008).
[45] B. Ball, B. Karrer, and M. E. J. Newman, Phys. Rev. E 84,

036103 (2011).
[46] C. Aicher, A. Z. Jacobs, and A. Clauset, arXiv:1305.5782.
[47] A. Clauset, C. Moore, and M. E. J. Newman, Nature (London)

453, 98 (2008).
[48] http://danlarremore.com/bipartiteSBM.

012805-12

http://dx.doi.org/10.1371/journal.pone.0044620
http://dx.doi.org/10.1371/journal.pone.0044620
http://dx.doi.org/10.1371/journal.pone.0044620
http://dx.doi.org/10.1371/journal.pone.0044620
http://dx.doi.org/10.1038/srep01999
http://dx.doi.org/10.1038/srep01999
http://dx.doi.org/10.1038/srep01999
http://dx.doi.org/10.1038/srep01999
http://dx.doi.org/10.1137/070699354
http://dx.doi.org/10.1137/070699354
http://dx.doi.org/10.1137/070699354
http://dx.doi.org/10.1137/070699354
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1002/j.1538-7305.1970.tb01770.x
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1103/PhysRevE.81.046106
http://dx.doi.org/10.1371/journal.pcbi.1000933
http://dx.doi.org/10.1371/journal.pcbi.1000933
http://dx.doi.org/10.1371/journal.pcbi.1000933
http://dx.doi.org/10.1371/journal.pcbi.1000933
http://dx.doi.org/10.1111/j.1365-2958.2008.06248.x
http://dx.doi.org/10.1111/j.1365-2958.2008.06248.x
http://dx.doi.org/10.1111/j.1365-2958.2008.06248.x
http://dx.doi.org/10.1111/j.1365-2958.2008.06248.x
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2005/09/P09008
http://dx.doi.org/10.1088/1742-5468/2006/11/P11010
http://dx.doi.org/10.1088/1742-5468/2006/11/P11010
http://dx.doi.org/10.1088/1742-5468/2006/11/P11010
http://dx.doi.org/10.1073/pnas.0611034104
http://dx.doi.org/10.1073/pnas.0611034104
http://dx.doi.org/10.1073/pnas.0611034104
http://dx.doi.org/10.1073/pnas.0611034104
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/10.1103/PhysRevE.70.066111
http://www.imdb.com/interfaces
http://dx.doi.org/10.1088/1742-5468/2014/05/P05007
http://dx.doi.org/10.1088/1742-5468/2014/05/P05007
http://dx.doi.org/10.1088/1742-5468/2014/05/P05007
http://arxiv.org/abs/arXiv:1403.0989
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://dx.doi.org/10.1103/PhysRevE.84.036103
http://arxiv.org/abs/arXiv:1305.5782
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://dx.doi.org/10.1038/nature06830
http://danlarremore.com/bipartiteSBM



