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We study networks that display community structure—groups of nodes within which connections are

unusually dense. Using methods from random matrix theory, we calculate the spectra of such networks in

the limit of large size, and hence demonstrate the presence of a phase transition in matrix methods for

community detection, such as the popular modularity maximization method. The transition separates a

regime in which such methods successfully detect the community structure from one in which the

structure is present but is not detected. By comparing these results with recent analyses of maximum-

likelihood methods, we are able to show that spectral modularity maximization is an optimal detection

method in the sense that no other method will succeed in the regime where the modularity method fails.
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The problem of community detection in networks has
attracted a substantial amount of attention in recent years
[1,2]. Communities in this context are groups of vertices
within a network that have a high density of within-group
connections but a lower density of between-group connec-
tions. The challenge is to find such groups accurately and
efficiently in a given network—the ability to do so would
have applications in the analysis of observational data,
network visualization, and complexity reduction and par-
allelization of network problems.

In this Letter we focus onmatrix methods for community
detection, which are based on the properties of matrix
representations of networks such as the adjacency matrix
or the modularity matrix. While significant effort has been
devoted to the development of practical algorithms using
these methods, there has been less work on formal exami-
nation of their properties and implications for algorithm
performance. Here we give an analysis of the spectral
properties of the adjacency and modularity matrices using
random matrix methods, and in the process uncover a
number of results of practical importance. Chief among
these is the presence of a sharp transition between a regime
in which the spectrum contains clear evidence of commun-
ity structure and a regime in which it contains none. In the
former regime, community detection is possible, and cur-
rent algorithms should perform well; in the latter, any
method relying on the spectrum to perform structure detec-
tion must fail. A similar phase transition has been reported
recently in an analysis of a different class of detection
methods, based on Bayesian inference [3]. By comparing
the two analyses, we are able to demonstrate that methods
such as modularity maximization are optimal, in the sense
that no other method will succeed where they fail.

For the formal analysis of community structured net-
works, we must define the particular network or networks
we will study. In this paper we focus on the most widely
studied model of community structure, the stochastic block

model, although our methods could be applied to other
models as well. The stochastic block model, in its simplest
form, divides a network of n vertices into some number q
of groups denoted by r ¼ 1 . . . q and then places undir-
ected edges between vertex pairs i, j with independent
probabilities prs, where r, s are, respectively, the groups
to which vertices i, j belong. In other words, the probabil-
ity of an edge between two vertices in this model depends
only on the groups in which the vertices fall. If the diagonal
elements of the matrix of probabilities prs are greater than
the off-diagonal elements, then the network displays clas-
sic community structure with a greater density of edges
within groups than between them. Particular instances of
the stochastic block model are commonly used as test beds
for assessing the performance of community detection
algorithms—especially in the ‘‘four groups’’ test [1] and
the planted partition model [4].
Let us first demonstrate our argument for the simplest

possible case of a network with q ¼ 2 groups of equal size
1
2n each and just two different probabilities pin and pout for

connections within and between groups. We focus particu-
larly on the case of sparse networks, those for which the
fraction of possible edges that are present in the network
vanishes in the limit of large n, which appears to be
representative of most networks observed in the real world,
although our results apply in principle to dense networks as
well.
The adjacency matrix A of an undirected network is the

n� n symmetric matrix with elements Aij ¼ 1 if vertices i

and j are connected by an edge and 0 otherwise. If we
average the adjacency matrix over the ensemble of our
stochastic block model, the resulting matrix hAi has ele-
ments equal to pin for vertices in the same group and pout

for vertices in different groups. Defining cin ¼ npin and
cout ¼ npout, this matrix can be written in the form

hAi ¼ 1
2ðcin þ coutÞ11T þ 1

2ðcin � coutÞuuT; (1)
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where 1 and u are the unit vectors 1 ¼ ð1; 1; 1; . . .Þ= ffiffiffi
n

p
and

u ¼ ð1; 1; . . . ;�1;�1; . . .Þ= ffiffiffi
n

p
, the �1 elements in the

latter denoting the members of the two communities.
Now the full adjacency matrix can be written in the form

A ¼ hAi þXwhere the matrixX is the deviation between
the adjacency matrix and its average value. By definition,
X is a symmetric random matrix with independent ele-
ments of mean zero.

Our analysis will focus on the spectrum of eigenvalues z
of the adjacency matrix, which we calculate in several
steps. We start by calculating the spectral density �ðzÞ of
the matrix X alone, whose average value in the random
ensemble can be written in terms of the imaginary part of
the Stieltjes transform:

�ðzÞ ¼ � 1

�
ImhTrðzI�XÞ�1i; (2)

where h. . .i indicates the ensemble average. The average of
the trace can be expanded in powers of X as

hTrðzI�XÞ�1i ¼ 1

z

X1
k¼0

TrhXki
zk

; (3)

where the individual terms take the form

Tr hXki ¼ X
i1...ik

hXi1i2Xi2i3 . . .Xiki1i: (4)

Since the elements of X have mean zero, any term in this
sum that contains any variable just once will average to
zero. Moreover, terms containing any variable more than
twice become negligible when the average degree of the
network is much greater than one, so that the only terms
remaining are those for which k is even and which contain
each variable exactly twice. Geometrically, the sequence of
indices in these terms takes the form of a Euler tour of a
rooted plane tree, with a factor of hX2

iji on each edge,

whose average value is 1
2 ðpin þ poutÞ ¼ ðcin þ coutÞ=2n.

Writing k ¼ 2m with m integer, there are nmþ1 ways to
choose the mþ 1 vertices of the tree and the number of
topologically distinct rooted plane trees with this many
vertices is equal to the Catalan number Cm. Thus

TrhX2mi ¼ nmþ1

�
cin þ cout

2n

�
m
Cm

¼ n

�
1

2
ðcin þ coutÞ

�
m
Cm: (5)

Combining this result with Eq. (3), we have

hTrðzI�XÞ�1i ¼ n

z

X1
m¼0

�
1

2
ðcin þ coutÞ

�
m
Cm=z

2m

¼ n

cin þ cout

�
z�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2ðcin þ coutÞ

q �
:

(6)

Then the spectral density, Eq. (2), is

�ðzÞ ¼ ðn=�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcin þ coutÞ � z2

p
cin þ cout

; (7)

which is a modified form of the classic Wigner semicircle
law for random matrices. Note that the density of eigen-
values increases with n, which implies that the fluctuations
in the values vanish as n ! 1.
Armed with this result we can now calculate the spec-

trum of the adjacency matrix A ¼ hAi þX, but again we
take the calculation in stages, starting with the simpler
exercise of calculating the spectrum of the matrix

B ¼ 1
2ðcin � coutÞuuT þX ¼ A� 1

2ðcin þ coutÞ11T: (8)

Note that 1
2 ðcin þ coutÞ11T is the uniform matrix with all

elements equal to 1
2 ðpin þ poutÞ, which is the average

probability p of an edge in the entire network. Hence the
elements of B are Bij ¼ Aij � p. This matrix is of interest

in its own right. It is the so-called modularity matrix, which
forms the basis for the modularity maximization method of
community detection. The modularity matrix is usually
defined by Bij ¼ Aij � Pij, where Pij is the expected value

of the adjacency matrix element in a null model containing
no community structure. The most commonly used null
model is the configuration model, a random graph with
specified degree distribution, but in the present case, for
which all vertices have the same expected degree, the null
model is just a standard Erdős–Rényi random graph with
Pij ¼ p for all i; j, leading to the definition in Eq. (8). Thus

our calculation will in this case give us also the spectrum of
the modularity matrix.
The general form of the matrix B is that of a rank-1

matrix uuT plus a random perturbation, a form that has
been studied in the mathematical literature. Following an
argument of [5,6], let z be an eigenvalue of this matrix and
v be the corresponding normalized eigenvector, so that

½12ðcin � coutÞuuT þX�v ¼ zv: (9)

A rearrangement gives ðzI�XÞv ¼ 1
2 ðcin � coutÞuuTv,

where I is the identity. Multiplying by uTðzI�XÞ�1

and canceling a factor of uTv, we find that

2

cin � cout
¼ uTðzI�XÞ�1u ¼ Xn

i¼1

ðuTxiÞ2
z� �i

; (10)

where �i is the ith eigenvalue of X and xi is the corre-
sponding eigenvector.
The solutions of this equation, which give the eigenval-

ues z of the modularity matrix, are represented graphically
in Fig. 1(a). The right-hand side of the equation has poles at
z ¼ �i for all i and, as the figure shows, this means that the
eigenvalues must satisfy z1 � �1 � z2 � �2 � . . . �
zn � �n, where both sets of eigenvalues are numbered in
order from largest to smallest. These inequalities place
bounds on the eigenvalues z2 . . . zn that become tight as
n ! 1, meaning that the spectrum of the modularity
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matrix is asymptotically identical to that of the random
matrix X.

The only exception is the highest eigenvalue z1, which is
bounded below by �1 but unbounded above. To calculate
this eigenvalue we note that sinceX is a random matrix, its
eigenvectors are also random, so that cross terms cancel in
the quantity ðuTxiÞ2 and the average value is simply
jxij2=n ¼ 1=n. Taking the average of (10) over the random
matrix ensemble in the limit of large n then gives

2

cin � cout
¼ 1

n

�Xn
i¼1

1

z� �i

�
¼ 1

n
hTrðzI�XÞ�1i

¼ z� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 2ðcin þ coutÞ

p
cin þ cout

; (11)

where we have used Eq. (6). Rearranging for z, we get our
expression for the leading eigenvalue z1:

z1 ¼ 1

2
ðcin � coutÞ þ cin þ cout

cin � cout
: (12)

We can use the same method to deduce the spectrum of
the full adjacency matrix also. From Eq. (8) we see that the
adjacency matrix takes the form A ¼ 1

2 ðcin þ coutÞ11T þ
B, which is again a rank-1 matrix plus a random perturba-
tion. By the same argument as before, we can show that this
matrix has all eigenvalues the same (to within tight bounds)

as those of the modularity matrix, except again for the
leading eigenvalue, whose value can be calculated from a
relation of the form (10). The end result is that the lower
n� 2 eigenvalues of the adjacency matrix have the same
spectrum as the randommatrixX, and the top two have the
values z1, Eq. (12), and

z2 ¼ 1
2ðcin þ coutÞ þ 1: (13)

With this result, we now have the complete spectrum for
both the adjacency matrix and the modularity matrix.
Let us focus on the modularity matrix. The spectrum is

depicted in Fig. 1(b) and consists of the continuous semi-
circular band of eigenvalues, Eq. (7), plus the single ei-
genvalue z1, Eq. (12). If the network contained no
community structure, then z1 would not be separated
from the continuous band as it is here. So long as it is
well separated the spectrum shows clear evidence of the
existence of community structure and one can reasonably
say that a calculation of the spectrum constitutes positive
‘‘detection’’ of that structure. Moreover, the signs of the
elements of the leading eigenvector provide a good guide
to the community division of the network, and indeed this
particular method for community identification can be
derived directly as a spectral version of the standard
method of modularity maximization [7]. If, however, the
position of the leading eigenvalue passes the edge of the
continuous band, the spectrum no longer shows evidence
of community structure and spectral algorithms based on
the corresponding eigenvector will fail. One might imagine
that this point would arrive when cin ¼ cout, which is the
point at which the network contains no community struc-
ture at all, but this is not the case. From Eq. (7) we see that

the end of the continuous band falls at z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcin þ coutÞ

p
and, setting z1 from Eq. (12) equal to this value, we find
that we lose the ability to detect community structure at an
earlier point, when

cin � cout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðcin þ coutÞ

q
: (14)

This value sets a detectability threshold beyond which
the communities are present but cannot be detected. For
cin � cout smaller than this value, but greater than zero,
community structure is present in the network in the sense
that the average probability of edges within groups is
measurably higher than that between groups, but we none-
theless fail to find the communities using our spectral
method. One can generalize the calculation to networks
with a larger number q of communities and we find that a
similar transition happens at the point

cin � cout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q½cin þ ðq� 1Þcout�

q
: (15)

The existence of a transition of this kind, though not its
precise location, was demonstrated previously using differ-
ent methods by Reichardt and Leone [8], and there are also
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FIG. 1 (color online). (a) The solid curves represent the right-
hand side of Eq. (10) while the dashed horizontal line represents
the left-hand side. The points at which the two cross, indicated
by the dots, are the solutions zi of the equation, which neces-
sarily fall between the eigenvalues �i of the matrix X (vertical
dashed lines). (b) The spectrum of the modularity matrix is
the same of that of the random matrix X (semicircle), except
for the highest eigenvalue z1, which is separate from the rest of
the spectrum above the transition point given in Eq. (14).
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close connections between our calculation and the theory
of disordered systems [9].

One might imagine this transition to be a particular
property of the spectral method we have considered.
Perhaps a different modularity maximization algorithm,
one not based on spectral techniques, or a different type
of community detection method altogether, would be able
to get past this detectability threshold. This, however, is
also not the case.

In recent work, Decelle et al. [3] have used arguments
based on the cavity method of statistical physics to dem-
onstrate the existence of a transition akin to the one above
in another community detection method, a Bayesian
maximum-likelihood method based on directly fitting the
stochastic block model to a network. Moreover, their tran-
sition falls at the same position as that of Eq. (15). The
importance of this result stems from the fact that if we
know the model from which a network is drawn, then
fitting directly to that model is provably the optimal way
of recovering the parameters of the model used to generate
the network—including, in this case, the community
structure. Thus, as Decelle et al. have pointed out, their
maximum-likelihood method is an optimal method in the
sense that no method can detect communities in the regime
where their method fails. Unfortunately, fitting to the sto-
chastic block model turns out to be a poor method of
community detection for real-world networks [3,10], but
its optimality in the present case is a useful result none-
theless. It implies, given that the detectability transition
falls in the same place as for the spectral modularity
method, that the modularity method is also optimal in the
same sense: no other method will detect communities in
the network when the modularity method does not [11].

We can take these calculations further. For instance, we
can calculate the expected fraction of vertices classified
correctly by the spectral algorithm. We can show that the
elements of the leading eigenvector v of the modularity
matrix are equal to ��=

ffiffiffi
n

p
plus Gaussian perturbations

with variance ð1� �2Þ=n, where

�2 ¼ ðcin � coutÞ2 � 2ðcin þ coutÞ
ðcin � coutÞ2

: (16)

Then the fraction of elements that retain the correct sign
and hence give correct classifications of the corresponding

vertices is 1
2 ½1þ erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2=2ð1� �2Þp �, where erfx is the

Gaussian error function.
Figure 2 shows a plot of this quantity as a function of

cin � cout for networks with several different values of the
average degree, along with results for the same quantity
from actual applications of the spectral modularity algo-
rithm to networks generated using the stochastic block
model. As the figure shows, the agreement between the
two is excellent, except in the immediate vicinity of the
phase transition, where finite-size effects produce some
rounding of the threshold. The fraction of correctly

classified vertices (minus 1
2 ) plays the role of an order

parameter for the detectability transition. Since it is con-
tinuous at the transition point, we have a continuous phase
transition.
The calculations presented here could be extended in a

number of additional directions. For instance, the results
given are accurate for networks with large average degree
but for networks with smaller degree there are additional
corrections that correspond to additional terms in the trace,
Eq. (5). A calculation of these subleading terms would help
to complete the picture for low-degree networks. Also our
calculations all use the standard stochastic block model,
and although this is the model most widely used for bench-
mark calculations and synthetic tests, other models have
been proposed, such as the degree-corrected block model
[10] or more exotic models such as the LFR benchmark
networks [12]. It would be useful to know if results similar
to those described here can be derived for these more
complex models.
The authors thank Cris Moore and Lenka Zdeborova for

useful comments. This work was funded in part by the
National Science Foundation under Grant Nos. CCF-
1116115 and DMS-1107796 and by the Office of Naval
Research under Grant No. N00014-11-1-0660.

[1] M. Girvan and M. E. J. Newman, Proc. Natl. Acad. Sci.

U.S.A. 99, 7821 (2002).
[2] S. Fortunato, Phys. Rep. 486, 75 (2010).
[3] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová,
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the algorithm fails is clearly visible in each curve.
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