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BIOMETRICS 28, 157-75 
March 1972 

COVARIANCE SELECTION 

A. P. DEMPSTER 

Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, U. S. A. 

SUMMARY 
The covariance structure of a multivariate normal population can be simplified by 

setting elements of the inverse of the covariance matrix to zero. Reasons for adopting such a 
model and a rule for estimating its parameters are given in section 2. It is also proposed to 
select the zeros in the inverse from sample data. A numerical illustration of the proposed 
technique is given in section 3. Appendix A sketches the general theory of exponential 
families which underlies the special results of section 2, and Appendix B describes two 
approaches to computation of the proposed estimator. 

1. INTRODUCTION 

Two main currents of thought underlie the covariance fitting technique 
introduced in this paper. The first is the principle of parsimony in parametric 
model fitting, which suggests that parameters should be introduced sparingly 
and only when the data indicate they are required. The second is the ex- 
ploitation of the powerful and elegant theory of exponential families of 
distributions, as a tool for practical data analysis. These currents come 
together in multivariate analysis because the complexity of even the simplest 
multivariate population models places a premium on the availability of 
both parameter reduction techniques and relatively simple general theory. 

Parameter reduction involves a tradeoff between benefits and costs. 
If a substantial number of parameters can be set to null values, the amount 
of noise in a fitted model due to errors of estimation is substantially reduced. 
On the other hand, errors of misspecification are introduced because the null 
values are incorrect. Every decision to fit a model involves an implicit balance 
between these two kinds of errors, i.e., a decision is made not to complicate 
a model by adding more parameters. However, once a parametric model 
is adopted, the question of whether or not to thin out the parametric structure 
is too often settled by default, especially when optimal estimates of the 
complete set of parameters are easily computed. Such optimality provides 
no protection against the costs of introducing unnecessary parameters. 
For example, it is widely recognized that ordinary least squares for multiple 
regression analysis has many optimal properties, and yet can often be im- 
proved by selecting predictors from a full set, thus effectively reducing 
many regression coefficients to null values of zero. 

In this paper, the covariance structure of an assumed multivariate normal 
157 
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158 BIOMETRICS, MARCH 1972 

population is studied. If the number of variables p becomes moderate, the 
number of parameters 2p(p + 1) in the covariance structure becomes large. 
For a fixed sample size n, the number of parameters per data point increases 
like 2I (p + 1) as p increases. The computational ease with which this abun- 
dance of parameters can be estimated should not be allowed to obscure the 
probable unwisdom of such estimation from limited data. How should the 
data analyst move to reduce the parameter set? One answer comes from 
considering the natural parameters in the representation of the hypothetical 
normal populations as an exponential family. 

An exponential family consists of densities whose logarithms are linear 
in the parameters. In symbols, if x = (x , x2, . * *, X.) denotes a multivariate 
vector of observables, and J(x; 4) denotes a meaningful probability density 
function of x given parameters 4 = ('a, 'P . 'Pr), then the family of 
densities is said to be exponential if it is expressible in the form 

f(x; 4) = exp [O + t(x) + 41t1(x) + 'P2t2(x) + . + 4rt,(x)] (1) 

where t(x), t,(x), t2(x), .** , tr(x) are specific functions of the observable x, 
and ' is a specific function of the parameters ', b, ' P2 'r satisfying 

J f(x; 4)dx =1 (2) 

or 

eo X f exp [t(x) + P1t1(x) + *. + '7t,(x)] dx = 1. (3) 

Note that x can in principle consist of discrete or continuous variables, 
or both, and the notation f ( ... ) dx is being used as a convenient shorthand 
for multiple sums or integrals, or both. 

Exponential families have played a central role in mathematical statistics 
because optimality properties of tests and estimators are readily available. 
For example, if xl , X2, * * *, X. denote a random sample from an unknown 
member of the family (1), then it is obvious that the likelihood of the sample 

xi? al X 2 ***X.a) f(gl + (4) 

depends only on the statistics E ti(x1), E t2(x) , , Z'd tr(x,), which 
are therefore sufficient statistics. 

Efforts to exploit exponential families as population models for multi- 
variate data have been limited mainly to two special cases, the first being 
the family of multivariate normal densities widely used for continuous 
observables. The second instance appears in the recent stress on log linear 
models for multivariate analysis of categorical variables. In the contingency 
table context, log linear means that the log of the density follows a linear 
model, which is equivalent to the definition (1) of an exponential family. 
See Fienberg [1972] and references given there. 

Undoubtedly there is scope for the use of more general exponential 
families in multivariate data analysis. Moreover, the concept of exponential 
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COVARIANCE SELECTION 159 

family is easily generalized by allowing the parameters + to depend linearly 
on fixed variables, as indicated in Dempster [1971]. There are, however, 
problems to be faced in fitting more general models, some being statistical 
problems such as goodness-of-fit assessment or parameter reduction, and 
others being technical difficulties of carrying out the moment calculations 
which the model-fitting process requires. Moments which can be represented 
analytically in the case of normal distributions must be found numerically 
in general. 

The covariance fitting technique of this paper involves the exponential 
family of normal distributions with unknown covariance structure, repre- 
sented by the family of continuous densities 

whr ) (deIi) exp (-2 lx'),(5) 
where Y; and its inverse 7-' are both p X p positive definite symmetric 
matrices. The (i, i) element o-i of 1, is the familiar covariance of xi and xi , 
or variance of xi when j = i. The (i, j) element aid of '-1 is the less familiar 
concentration of xi and xi (cf. Dempster [1969]). Note that the vii play the 
role of the 0l in (1), and therefore beg consideration as natural parameters 
of the model. Specifically, (5) can be written in the form (1) where 

r = 2P(P + 1) 

t1(x) = -2,1 t2(X) = X1X2 , * * tr(X) = (6) 

t(x) = 0, and 

0= -2P log 2w- log det Z. 

The representation (6) suggests that parameter reduction may reasonably 
be attempted by setting certain vi" to 0. More detailed theoretical reasons 
for the attractiveness of this special type of parameter reduction will be 
spelled out below. Having decided on a basis set of parameters, there re- 
mains a fundamental choice between setting parameters to zero on a priori 
grounds or on grounds that the data provide no evidence that individual 
,i differ from 0. In this paper I follow the latter approach which is more 

appropriate when a priori knowledge is weak. 

2. COVARIANCE SELECTION: THEORY 

Suppose that S is an estimated p X p sample covariance matrix on m 
D.F., typically computed from a sample of m + 1 p-variate observation 
vectors xi , x2 * , x,+1 using the formula 

1 n+1 
S _ (XI (xl-)T(Xi ,(7) 

where 
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160 BIOMETRICS, MARCH 1972 

= m 1 m+1 

Suppose that I denotes a subset of the index pairs (i, j) with 1 < i < j < p 
and J denotes the remaining set of pairs (i, j) with 1 < i < j < p. For 
example, the array of pairs 

(1, 1) (1, 2) (1, 3) (1, 4) 

(2, 2) (2, 3) (2, 4) 

(3, 3) (3, 4) 

(4, 4) 
corresponding to the distinct elements of S or X or so' could be partitioned 
into 

I = (1, 2), (1, 3), (3, 4)} and 

J = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 4), (2, 3), (2, 4)}. 

I will represent in general the indices of the subset of o" parameters to be 
set to 0. To begin the discussion, it will be assumed that I is fixed. 

The following simple recipe is proposed for defining an estimate ? of X 
and a corresponding estimate ?-" of '-1: 

Rule: Choose X to be the positive definite symmetric matrix such that S and 
i are identical for index pairs (i, j) in J while ?-1 is identically 0 for index 
pairs (i, j) in I. 
The estimation rule possesses three basic properties (a), (b), (c) which enhance 
its attractiveness. These properties are now described, with some explanatory 
remarks. Since it is easier to prove theorems in the setting of a general ex- 
ponential family, the derivation of the properties (a), (b), (c) is deferred 
to Appendix A. 
(a) Existence and uniqueness. If there is any positive definite symmetric matrix 
which agrees with S in the positions (i, j) in J, then there is exactly one such 
matrix i with the additional property that ?-' is 0 in positions 1. For example, 
S itself is usually a positive definite symmetric matrix which agrees with S 
in positions J, so that according to property (a) the existence and uniqueness 
of the estimate X is guaranteed for such S. 
(b) Maximum entropy model. Among all normal models (5) such that I 
agrees with S over the indices J, the special choice ?; has maximum entropy. 
In general, the entropy of a distribution specified by the density f(x; +) 
is defined to be 

f f(x; P) log f (x; A) dx. (9) 

Entropy is a measure of smoothness or simplicity in a distribution. For 
example, among all discrete distributions over a finite number of cells, the 
uniform distribution has maximum entropy, or among all continuous distri- 
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butions with a given mean and variance, the normal distribution has maxi- 
mum entropy (cf. Rao [1965]). These are good examples of smooth and simple 
distributions characterized by maximizing entropy. Thus (cf. Good [1963]), 
the principle of seeking maximum entropy is a principle of seeking maximum 
simplicity of explanation. In the normal covariance example, the integration 
(9) can be carried out analytically on the density (5) to yield 

2p log 22r + 2 log det T; + 2p, (10) 

so that entropy is essentially log det ;. Since 

det 2; = [011022 ... a,,] X det R, (11) 

where R is the correlation matrix, and since all, O22, * * * X a,, are held fixed 
at s8l , 822 , ... , Sm, in the estimation procedure, the principle of maximum 
entropy asserts that the choice of 2; which produces zeros in the elements 
I of I` is also the 2; which maximizes det R. Since det R is a measure of 
overall correlation (cf. Dempster [1969]), the principle is also a principle of 
minimum overall correlation. 
(c) Maximum likelihood (ML) estimation. Among all normal models (5) 
such that the elements of ;-' in positions I are all 0, the special choice ?E is 
the ML estimate of a. By writing down the likelihood it is trivial to see that 
the elements of S in the J positions are sufficient statistics for the restricted 
estimation problem. Property (c), which is less trivial, shows how to use 
these sufficient statistics to produce ML estimates. 

Given a decision to fit a covariance matrix 2: using only a subset J of 
the elements of S, it might at first appear more natural to propose as an 
estimate the matrix I; which agrees with S in positions J and whose re- 
maining elements are simply zero. x suffers the disadvantage that it may 
not be positive definite, meaning that it may not be a valid covariance 
matrix. Second, although ?; reduces certain estimated correlation coefficients 
to null values, it does not minimize the overall correlation measure det R. 
Finally, the elements of S corresponding to indices in J are not in general 
sufficient statistics for the model in which 2; is 0 in positions I, so that 2: 
is not an efficient estimate for the corresponding model. None of this proves 
that the model with 0 in positions I of I is not empirically more correct 
than the model with 0 in positions I of 2:-l, but in the absence of firm prior 
knowledge favoring the former, the theoretical advantages of the latter 
suggest it be given priority. 

Extensive iterative computations are required to produce i from S, 
and several alternative approaches are available. One tack is to pass through 
a sequence S = S(0) -* S" > S - 

(2) , where each S(k) agrees with S 
and ? in the positions J and is such that the elements of S(k)1' in positions I 
are being driven to 0 as k increases. An alternative is to pass through a 
sequence in which the I elements of the inverse are held constant at 0 while 
the J elements of the covariance matrix are driven to the corresponding 
values in S. Within each of these approaches there is a choice among shifting 
one, several, or all variable elements in a single iteration. More detail on 
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computational theory, much of it applicable to exponential families generally, 
will be given in Appendix B. 

Data-based rules for selecting the subsets I and J can be defined in 
various ways analogous to the various forward and backward procedures 
used for selecting predictor variables in multiple regression analysis (cf. 
Draper and Smith [1966]). A forward approach means beginning with I 
empty and successively adding pairs (i, j) to I until such time as a larger 
I appears not to improve fit significantly. A backward approach means 
beginning with ? = S, corresponding to I consisting of all off-diagonal 
elements, and then dropping pairs (i, j) from I one at a time as long as the 
decrease in fit is not significantly large. Exact tests of significance are not 
available, but several approximate tests are easily devised. For example, 
the change in 2 log likelihood when another parameter is added can be 
regarded as roughly a x2 variable on 1 D.F. Alternatively, the estimate &" 
of an added exponential parameter can be divided by an estimate of its 
standard deviation and treated as a standard normal deviate. The two tests 
are asymptotically equivalent. 

3. COVARIANCE SELECTION: EXAMPLE 

The technique proposed in section 2 will now be illustrated numerically 
on the 6 X 6 covariance matrix S: 

14.029 5.6635 1.9866 2.733 4.867 2.0744 
5.6635 14.537 0.1271 1.347 0.206 1.5747 
1.9866 0.1271 2.068 0.294 -0.5446 0.644 
2.733 1.347 0.294 17.11 5.42 0.885 
4.867 0.206 0.5446 5.42 7.87 1.933 
2.0744 1.5747 0.644 0.885 1.933 3.552 

used for different illustrative purposes in Cochran [1938] and Dempster 
[1969]. The data refer to a nocturnal insect trap. The 6th variable is the log 
of an insect count plus 1, while the other 5 variables measure weather con- 
ditions. S has 72 D.F. coming from successive days after removal of certain 
linear cycle effects. 

The estimation procedures of section 2 use the sample variance of each 
of the p variables to estimate the corresponding population variance, what- 
ever the choice of the subsets I and J. Moreover, the procedures produce 
equivalent results under linear changes of scale of the p variables. Accordingly, 
there is no loss of generality in working with the correlation matrix R: 

1 0.396583 0.368826 0.176401 -0.463192 0.293861 
0.396583 1 0.023181 -0.0854093 0.0192594 0.219141 
0.368826 0.023181 1 0.049425 -0.134994 -0.237615 
0.176401 -0.0854093 0.049425 1 0.467075 0.113522 
0.463192 0.0192594 -0.134994 0.467075 1 -0.365602 
0.293861 0.219141 -0.237615 0.113522 -0.365602 1 

computed from S. 
A forward selection procedure was used which started with J consisting 

only of the diagonal elements, and successively added off-diagonal elements 
to J one at a time. At each stage in the selection procedure the correlation 
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matrix was re-estimated using the direct Newton-type algorithm described 
in Appendix B. The starting point in the iterations was taken to be the 
fitted correlation matrix from the previous stage. The decision rule for 
choosing the next off-diagonal element for inclusion in J was to carry out 
the first iteration of the fitting procedure for all of the candidates, and to 
compute a crude t statistic for each candidate as indicated in Appendix B. 
The selected parameters and corresponding approximate x2 from 2 log 
likelihood are shown in Table 1. 

The first 5 selected parameters appear to be clearly significant, while 
the 6th is borderline. Note that at stage 6, the choice is made among 10 
possible parameters, so that an overall significance level of 0.05 would require 
very roughly that the largest x2 be significant at level 0.05 + 10. By this 
standard, the 6th and later stages are introducing estimates which cannot 
be judged to differ from random noise. 

The first 8 fitted correlation matrices are reproduced overleaf. 
Note that by stage 5 all 15 of the estimated correlation coefficients 

are nonzero, even though only 5 parameters are in the model. 
The above procedure is presented here as a speculative technique meriting 

further study. Simulation studies will be required to check out the improve- 
ment in estimating correlation coefficients and regression coefficients which 
can be achieved from covariance selection. If, as seems likely from preliminary 

TABLE 1 
SELECTED OFF-DIAGONAL ELEMENTS IN ORDER, WITH CORRESPONDING INCREASES IN 2 LOG 

LIKELIHOOD 

Stage Selected pair (ij) X2 

1 (4 ,5) 17.72 

2 (1,5) 17.39 

3 (1,2) 12.32 

4 (1,3) 10.53 

5 (5,6) 10.33 

6 (3,6) 7.10 

7 (1,6) 6.40 

8 (2,5) 4.63 

9 (2,6) 2.88 

10 (2,3) .843 

11 (2 ,4) .540 

12 (4 ,6) .182 

13 (3,5) .116 

14 (3,4) . 0 7O2 

is _ (1 ,4) .00004 
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studies, the improvement can be substantial, the question may be raised: 
is it ever wise to simply use a sample correlation matrix or a sample co- 
variance matrix as an estimate of the corresponding population quantity? 
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SELECTION DE COVARIANCE 

RESUME 

La structure de la covariance d'une population normale multivariate peut se simplifier 
en imposant a des e16ments de l'inverse de la matrice de covariance d'6tre 6gaux A z6ro. Des 
raisons pour adopter un tel modele et une regle pour estimer ses parametres sont donn6es 
dans la section 2. 

On propose aussi de selectionner les z6ros de l'inverse A partir des donn6es de 1'6chan- 
tillon. A la section 3 on donne une illustration num6rique de la technique propose. L'ap- 
pendice A esquisse la th6orie generale des families exponentielles sous-jacentes aux resultats 
particuliers de la section 2, et l'appendice B d6crit deux approches pour calculer l'estimateur 
propose. 
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APPENDIX A: STATISTICAL THEORY 

Several basic properties of the general exponential family (1) will now 
be derived and the usefulness of these properties will be illustrated by ap- 
plication to the special family (5). 

Alongside the exponential parameters 4+ = (012, 021 0 * i) of the family 
(1), it is convenient to consider the moment parameters 0 = (01 , 02 , * * Or) 

defined by 
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= I tj(x)f(x;+) dx. (Al) 

It will be assumed further that the variances of and covariances among 
t1(x), t2(x) , * , tr(x), namely the 

i; = f [ti(X) - i][ti(x) - Oj]f(x;4) dx, (A2) 

are all finite, and that the r X r covariance matrix F with (i, j) element 'yj 
is positive definite throughout the family. The positive definiteness assures 
that no linear combination of t1(x), t2(x) , * * *, t,(x) is constant and therefore 
that distinct + determine distinct members of the family. Similarly, the 
positive definiteness of F is sufficient to assure, as implied by Lemma A 
below, that distinct members of the family determine distinct 0. The expres- 
sion (1) may be integrable, and therefore a valid density, only for a restricted 
set of vectors +, and similarly only certain vectors 0 may result from the 
definition (Al). Accordingly, the positive definiteness of r implies one-to-one 
correspondences among the points of three mathematical spaces, namely 
the restricted set of valid +, the restricted set of possible 0, and the exponential 
family (1) itself. It is easily checked that the set of 4+ vectors and the set of 0 
vectors are both convex sets. 

In the special case of the family (5), the exponential parameters defined 
in (6) are the distinct elements o-' of '-1. The ti(x) explicitly displayed in (6) 
have easily computed expected values, namely 

o = (-2 ?11 O-?12 i . . . 
i-1p X-2 ?O22 - 023 X 

. . . 
0-2p y 

. . . 
12 Ode) (A3) 

Thus 0 consists of the distinct elements of the covariance matrix X except 
that the variances have the factors -2 and the covariances have the factors 
-1. The covariance -yi of ti(x) and t,(x) can be deduced easily from the 
standard formula (cf. Dempster [1969] p. 318): 

COV (XiXj , XkXL) = o'ik0_i1 + 0oijk f (A4) 

where again the factors - 2 and -1 must be applied in various combinations. 
The family (5) is defined for all positive definite symmetric X, or equivalently 
for all + such that the associated symmetric matrix with (i, j) element oft 
is positive definite. The restriction on 0 is then simply the positive definiteness 
of I. The one-to-one correspondences among '-1, I, and the family (5) 
are well known for the case of normal distributions. Moreover, it is easily 
checked that r is positive definite within the family (5), for example, because 
no quadratic function of xl , x2, X, . is constant under any distribution 
in the family. 

An important property of the general model is that F provides the partial 
derivatives of the 0 parameters with respect to the + parameters, i.e. 

ii = 90i/ap0. (A5) 

To see this, differentiate (2) and (Al) after substituting from (1), to obtain 
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do + [f t1(x)f(x; ) dx] dq5 + * * + [f tr(x)f(x;;) dx] dq, = 0 (AG) 

and 

[f t1(x)f(x; 4) dx] do + [f ti(x)t1(x)f(x; 4) dx] date + 

+ [I ti(x)t7(x)f(x; ) dx] d4). = do., (A7) 

Substituting from (AG) into (A7) yields 

dGi = Yi d41 + Yi2 d02 + + Tir dO4r (A8) 

which is equivalent to (A5). Note that, because r is symmetric, 

aoi/aoi = a0o/a0o. (A9) 

The fitting procedure described in section 2 suggests that the theory 
of exponential families be developed in relation to a partition of the pa- 
rameter set into two classes. In general, suppose that 1 = (12, y2 ... * * r) 

is written as 

4)= (41 4)2) (A10) 

where 4)i = (41, 02 y 4*8) and 42 = (48+1 , 4s+2 , * * *tr), and corre- 
spondingly suppose that 

0 = (01, 02), (All) 

where 0? and 02 are 1 X s and 1 X (r - s) vectors. The estimation rule of 
section 2 depends on a solution of the following type of problem: 

Find a member of the family (1) whose exponential parameters have a pre- 
specified 4)2 and whose moment parameters simultaneously have a prespecified 01 . 

For example, in section 2 the fitted member of the family (5) was made to 
agree with the moment parameters of the sample covariance in positions 
I and to have exponential parameters 0 in positions J. A general version 
of this fitting procedure, based on a sample xi , x2 * , X, from the density 
(1), would be to match 01 with the estimates 

01= [ E tI(x)) > A (X), ... t(xl) (A12) 

while setting 4)2 0, where 0 denotes a vector of zeros. Although this type 
of estimate is of greater practical importance, it is of interest to note that 
there exist situations of a reverse type where 42 is specified from observed 
data and 01 is fixed on a priori grounds. See Ireland and Kullback [1968] 
for a discussion of the latter type in the context of contingency tables, where 
exponential interaction parameters of an observed table are held constant 
while the observed table is modified into a fitted table with prespecified 
margins. Here margins are moment parameters. 
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The problem of simultaneously matching 61 and 42 gives rise to important 
mathematical theory which will be summarized in three lemmas related to 
the properties (a), (b), and (c) of section 2. The following notation will be 
used: g(x) denotes a member of the family (1) which has a prespecified 42; 
h(x) denotes a member of the family (1) which has a prespecified 01 and is 
distinct from g(x); k(x) denotes a member of the family (1) which possesses 
both Pa and 01. 

Lemma A. Under fairly general circumstances k(x) exists given g(x) and 
h(x). When k(x) exists, it is unique. 

Lemma B. When k(x) exists, 

f k(x) log g(x) dx > h(x) log g(x)dx, (A13) k~~~x) ~h (x) 

i.e., among all members h*(x) of the family (1) with the given 61, a unique 
maximum of 

I h*(x) log [g(x)/h*(x)] dx (A14) 

is attained when h*(x) = k(x). 

Lemma C. When k(x) exists, 

f h(x) log lc(x) dx > h(x) log g(x) dx, (A15) h~~x)J ~~ h(x) 

i.e., among all members g*(x) of the family (1) with the given 4)2 , a unique 
maximum of 

f h(x) log [g*(x)/h(x)] dx (A16) 

is attained when g*(x) = k(x). 

Before deriving these results, the details of their application to the normal 
family (5) will be spelled out. Lemma A is intentionally vague, because 
detailed conditions on the existence of k(x) vary from example to example. 
In Appendix B, however, it will be shown by a computing algorithm that 
k(x) always exists for the family (5) whenever there exists any positive- 
definite T which agrees with S in positions J. The second part of Lemma A 
then assures uniqueness. It is worth noting in passing that the derivation 
of mathematical conditions for the existence of k(x) is of relatively little 
practical importance, because in practice the standard computing algorithms 
are guaranteed to find k(x) when it exists and one knows immediately when 
k(x) has been found by checking out 01 and P: . The failure of k(x) to exist 
is generally an indication that the proposed model cannot fit the data, so 
that some other analysis is desirable on scientific grounds. 

The expression (A14) can be written 
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-f h*(x) log h*(x) dx + f h*(x) log g(x) dx. (A17) 

The second term does not vary as h*(x) varies provided 42 = 0 and t(x) = 0, 
because log g(x) involves terms in tj(x), * , t8(x) but not terms in 
t8+1(x) ... , t'(X), or t(x), and the expectations of tj(x) , * * * , t8(x), namely 
01 , ,.. 0, , are constant as h*(x) varies. Thus, to maximize (A14) is to 
maximize the first term which is entropy. This explains how Lemma B 
implies property (b) of section 2. Similarly, when (A16) is written 

f h(x) log g*(x) dx - f h(x) log h(x) dx, (A18) 

it is evident that the first term is log likelihood divided by m, while the 
second term does not depend on g*(x), so that Lemma C implies the property 
(c) of section 2. 

The first part of Lemma A can be proved by defining a path through 
densities with the prespecified 01 beginning at h(x) and ending at the desired 
k(x). The condition that 01 is constant along the path implies from (A5) 
that the differential d- = (d41 , d42) along the path satisfies 

=~1 d(2Jr21l], (A19) 
where 

r [rlj r21 (A20) 
r2l r22, 

denotes the partition of (A2) into s + (r - s) rows and columns. If a curve 
is defined from the initial +2 associated with h(x) to the desired 42 associated 
with k(x), and the corresponding motion in + implied by (A19) remains 
within the space of permissible 4, then k(x) has been demonstrated to exist. 
As already remarked, such existence cannot be proved in complete generality, 
but is shown for the normal family (5) in Appendix B. To prove the 
uniqueness of k(x) when it exists, suppose to the contrary that distinct k(x) 
and E(x) possess the given 01 and 42 but different 41 vectors, say 41 and 4, . 
Differential motion along the line segment from ( 1, 4)2) to (4i , 4)2) implies 
a nonzero d41 of constant direction, which in turn implies that the elements 
of dO1 = di~jr11 have constant signs and are not all zero which in turn implies 
that some of the elements of 01 must be different at different ends of the line 
segment, a contradiction. 

Lemmas B and C are both simple corollaries of the familiar inequality 
(cf. Rao [1965]) 

I h(x) log h(x) dx < -f h(x) log h*(x) dx (A21) 

for any two distinct densities h(x) and h*(x), so that for fixed h(x) the ex- 
pression -f h(x) log h*(x) dx achieves a unique minimum when h*(x) = 
h(x). Lemma B follows from the relations 
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f h(x)[log h(x) - log g(x)] dx > f h(x)[log k(x) - log g(x)] dx 

- f k(x)[log k(x) - log g(x)] dx. (A22) 

The inequality in (A22) is an application of (A21) while the equality follows 
because log k(x) -log g(x) has nonzero coefficients along the constant term 
and tj(x), t2(x), *., t.(x) whose expectations 01 are identical under both 
h(x) and k(x). To prove Lemma C, a different application of (A21) is required, 
namely 

-f k(x) log k(x) dx < - c(x) log g(x) dx. (A23) 

Using the equality in (A22), the inequality (A23) is expressible as 

- h(x) log k(x) dx < - h(x) log g(x) dx (A24) 

which in turn is equivalent to (A15), as required. 
The maximizations in Lemmas B and C can be corroborated by computing 

derivatives of the quantities (A14) and (A16). Suppose that (A14) is denoted 
B* and the parameters associated with h*(x) are denoted 4*, 0*, and r*. 
If h*(x) undergoes differential motion obeying d* = as in 
(A19) to keep 6* constant, it is easily checked that 

dB* =-d*[r]i -F -*](42-2*) 
(A25) 

where 42 is the fixed parameter set associated with g(x). From (A25) it is 
seen that B* has zero derivatives when 4)2 = 4,*, i.e. at the maximum indi- 
cated by Lemma B. Similarly, if (A16) is denoted C* and the parameters 
associated with g*(x) in Lemma C are denoted 4*, 0*, and r*, then dif- 
ferential changes in g*(x) keeping 4A constant at the prespecifled 42 yield 

dC* = d4*l (01 - 0*)T (A26) 

which shows that dC* = 0 when 61 = 01, i.e. at the maximum indicated 
by Lemma C. 

Finally, the first derivative relation (A25) and (A26) can be differentiated 
trivially to show that the matrix of second partial derivatives of B* with 
respect to the elements of 4A is 

- (i,* - r*Fr lr*), (A27) 

and the matrix of second partial derivatives of C* with respect to the elements 
of 4* is 

F rl* . (A28) 

It is an interesting property of exponential families that r* provides both 
first derivatives of 0* with respect to 4* as shown by (A5) and second de- 
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rivatives C* as shown by (A28). One application of this coincidence is given 
in Appendix B. Another important application of (A28) is to ML estimation. 
As remarked above, the estimation rule of section 2 illustrates ML estima- 
tion within the subfamily of (1) with 42 = 0 where 61 is a vector of sufficient 
estimators. Since mC* is log likelihood, it follows that -mrF is the matrix 
of second derivatives of log likelihood with respect to the parameters 4*. 
Thus (1/m)rF; calculated at the ML estimates provides an estimate of the 
asymptotic covariance matrix of the estimated 41, which in turn implies 
from (A5) that (1/m)r11 is an approximate asymptotic covariance matrix 
for the estimated 01 . The latter result can also be verified directly, for if 
rJ2 could be calculated at the true parameter values, it would give exactly 
the sampling covariance matrix of t1(x), t2(x) , *r, t.(x), so that (1/m)F11 
defines the covariance matrix of the sufficient estimates (1//m) E t, (xl), *** 
(1/m) 1 t.(X,) of 06 

After carrying out the fitting procedure matching 01 with the sufficient 
estimates and matching 42 with 0, any element of the fitted 4q can be tested 
approximately for significant difference from zero by dividing by the square 
root of the corresponding diagonal element of (1/m)Frlr and comparing to a 
standard normal deviate. An asymptotically equivalent test is to treat twice 
the reduction in log likelihood when adding the parameter to the model as 
ax on 1 D.F. Either of these tests can be used as a basis for parameter selec- 
tion. 

APPENDIX B: COMPUTATIONAL THEORY 
Two specific iterative procedures of the form 40) > 401) P> (2) )** 

will be described which converge to the + defining a member of the family 
(1) specified by given 06 and 42 as in (A10) and (All). In the first procedure, 
the partitions 4)() = (Mi), 4)i') are characterized by holding 4(i' at the 
desired 42 , so that only 4)" changes with i in such a way that the corre- 
sponding 0' = (O), 0i')) has 0") converging to the desired 01 . In the 
second procedure 06' is held fixed at the desired 01 which means that both 
4)" and 4<') change with i as 4)") converges to the desired 42. 

The first procedure is most simply regarded as a straightforward applica- 
tion of Newton's method for solving implicit equations. With 4+2 fixed, 01 
can be regarded as a function 01(k') and the problem is to solve the equations 
01 = 0,(41) for 4l given 01 . Having 0") = 01(4(i`) at stage i, one expands 0O 
in a Taylor series about 4' to obtain 

01 = 01 + ( - I + ... (Bi) 

where Ir") denotes the F11 part of (A20) calculated at 4(i'. Newton's method 
says one should define )i+1) by solving the first term equation (Bi) to obtain 

+(i+i) = 4(0 + (o1 - (i)),0(132) 

The process (B2) may also be regarded as an ascent procedure based on a 
quadratic approximation to the log likelihood. Denoting log likelihood at 
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P and i by mC and mC0", respectively, it follows from (A26) and (A28) 
that a two-term Taylor series expansion of mC about 4~" is given by 
mc = m[CO + (1- _ -(i) _ ))T - (i))T + 

(B3) 

It is easily checked that the maximum of the quadratic expression (B3) 
occurs when 4l = 4(") as defined in (B2). The process (B2) is not guaranteed 
to converge as it stands, but from (B3) it follows that the change vector 
+U+0)- _ (i' does set out in a direction such that the likelihood is increasing 
in a neighborhood of +';. Consequently, even if the full step (B2) should 
reduce likelihood, a shortened step in the same direction will increase likeli- 
hood. Thus, a minor modification of the process (B2) yields a monotone 
sequence of increasing likelihoods which must converge to the unique maxi- 
mum when it exists. 

The computations reported in section 2 were developed from (B2). The 
computation of 4"("+) - 4" given 01 - 0O' and r(') is formally identical 
to the computation of a vector of regression coefficients from normal equa- 
tions in least squares. For the latter, there are many variants on detailed 
calculations, and the one used in section 2 was Beaton's SWP operator as 
discussed in Dempster [1969]. This process is not one of inverting r8i) and 
then multiplying by 01 - O"). Rather, it carries out both processes simul- 
taneously, and gradually modifies 01 - 0O'" into 4 -+ 

Under the second computing procedure, the stage of passing from 4';' 
to 4('+') consists of a finite sequence of operations 0, for j = s + 1, s + 2, 
... , p, where the operation O0 is the modification of any current 4* which 
leaves all of the elements of 0* constant except Olk and simultaneously adjusts 
4* to the desired 0i . In other words, each 0, is an example of the general 
computing problem, but with the partition p = s + (p -s) replaced by 
p = (p-1) + 1.AfterapplyingOjforj = s+ 1,s+2, , pitisclear 
that 01 = (01 , 02 X * 0.) is unchanged, but unfortunately the 4A are not 
in general all at their desired values because the adjustment O0 generally 
alters all 4* and, while matching q* to its desired value 4j, it destroys any 
matches on the remaining 4. . Nevertheless, each O does produce an increase 
in the expression (A14), as follows from applying Lemma B to the partition 
p = (p - 1) + 1. Thus the sequence of operations 4(`) _ 2) * ... does 
produce an increasing sequence of values of (A14) which only stops increasing 
in the limit when 42 attains its desired values. Thus, provided there is any 
solution, the process as defined will. converge to it. 

The second computing process is of interest only if the individual opera- 
tions O are simple, as happens in the case of the covariance fitting example 
of section 2. It is also easy to see in this case that each operation Oj produces 
a resulting I which remains within the class of positive-definite matrices, 
and that the criterion (A14) which is essentially log det I is bounded above 
because 

log det I < log (of11 022, o* * ,P) (B4) 
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Thus the iterative procedure produces a monotone increasing sequence 
of log det X values which are bounded above and therefore converge to a 
finite limit. This limit must occur when the subset of o-" for pairs (i, j) in 
I match the desired values 0, because otherwise the next cycle would produce 
another finite increase in log det N. In this way the existence of the estimator 
? defined in section 2 is proved. 

To understand why the O0 in the covariance fitting example are simple, 
one needs some facility with various different parametrizations of positive- 
definite symmetric matrices. Specifically, the information in X is equivalent 
to the information in SWP [il. i, , , i ]Y, where {il. i, , , X it} is a 
subset of {1, 2, * , p} and SWP denotes the Beaton sweep discussed in 
Dempster [1969]. In particular, consider the equivalent representations 
given by 

5X11 Y-121 (B5) 

SWP [1, 2,*. , p-2] I RSW [1,9,.* * ,p- 2] 

Y"21 122_ 
SW [ W2yPyp -l 2] T RSW [I.p-l ..Yp -2 

-_ 11 _X12] (B7) 

21 22j 

where the partitions refer to p = (p - 2) + 2, (B5) defines the partition 
of A, (B7) defines the partition of -v, and (B6) is an intermediate repre- 
sentation, where -ill = a, i12 = X 112, and i22 = 22 - 211 112 

With this background consider the O-type operation which leaves all of the 
elements ki- of X intact except p-,P and which changes the (p - 1, p) 
element &-' 1 of - 1 to 0. A simple prescription for carrying out this operation 
given v is (i) pass from (B5) to (B6), (ii) set the (p - 1, p) element in (B6) 
to 0, and (iii) pass from the new (B6) back to a new (B5). Alternatively, 
one can accept the w-1 parametrization as basic and (i) pass from (B7) to 
(B6), (ii) alter (B6) as above, (iii) return to (B7). The latter is computationally 
more desirable since sweeping on only 2 indices rather than p - 2 is required. 
It is easy to check from the definitions of SWP and RSW in Dempster [1969] 
that the prescriptions satisfy the requirements. In addition, stage (ii) modifies 
I22 in such a way as to leave it positive-definite, so that the new X and I`' 
are also positive-definite. Finally, it can be checked that det X is increased 
by the factor (1 -r2) ', where r2 is the squared correlation coefficient com- 
puted from 22x 

Besides its mathematical use as a tool to prove the existence of i, the 
second process can be developed into a practical computing tool for finding 
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x from S. The steps (i), (ii), (iii) above can be streamlined for this purpose. 
It is planned to report elsewhere on precise algorithms. 

Experience has shown, however, that the Newton-type algorithm is 
generally much faster than the second algorithm. In addition, the Newton- 
type algorithm produces r-1 as a by-product, thus allowing approximate 
tests of significance to be carried out on estimated 4j parameters, here non- 
zero elements of i-. For the purposes of selecting a new o-" parameter to 
put into the fitted model, it is likely to be impractical to fit all possible 
choices by an iterative calculation. 

Received August 1971 

Key Words: Exponential families; Covariance estimation; Parameter selection; Maximum 
likelihood computation; Maximum entropy. 
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