
Eur. Phys. J. B (2012) 85: 352
DOI: 10.1140/epjb/e2012-30301-2

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Multi-resolution modularity methods and their limitations
in community detection

J. Xiang1, X.G. Hu2, X.Y. Zhang1, J.F. Fan1, X.L. Zeng1, G.Y. Fu1, K. Deng3, and K. Hu4,a

1 Department of Basic Sciences, The First Aeronautical Institute of The Air Force, Xinyang 464000, Henan, P.R. China
2 School of Information Engineering, HuangShan University, HuangShan 245021, Anhui, P.R. China
3 Department of Physics, Jishou University, Jishou 416000, Hunan, P.R. China
4 Department of Physics, Xiangtan University, Xiangtan 411105, Hunan, P.R. China

Received 8 April 2012 / Received in final form 26 June 2012
Published online 22 October 2012 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2012

Abstract. Community detection is of considerable importance for understanding the structure and function
of complex networks. Recently, many multi-resolution methods have been proposed to uncover commu-
nity structures of networks at different scales. Here, different multi-resolution methods are derived from
modularity using self-loop assignment schemes, and then a set of multi-resolution modularity methods of
this type are presented. These methods are carefully investigated by theoretical analysis of the transition
points of the multi-resolution processes and experimental tests in model networks. Compared with the
degree-dependent self-loop assignment, the mean-degree-dependent self-loop assignment can quicken the
disconnecting of (small) communities with small vertex degrees, and can slow down the breakup of (large)
communities with large vertex degrees. Moreover, we show that all these methods will encounter a limita-
tion which is independent of the network size: large communities will break up before small communities
are revealed by increasing their resolution parameters when the distribution of community sizes is very
broad. Also, the tolerance of different methods against the limitation is different.

1 Introduction

In recent years, community structure in complex networks,
an important topological property common to many real-
world networks including social, ecological, biological and
technological networks, has attracted much attention in
physics and many interdisciplinary fields [1,2]. Networks
with community structure generally consist of densely
connected groups of vertices (known as communities or
modules) surrounded by sparsely connected regions [2].
Detecting such communities in networks can provide a
useful coarse-grained representation of complex networks,
and will help in understanding their structure and func-
tion of the networks [3–7]. Since the work of Girvan
and Newman [8], a large number of community detec-
tion algorithms have been proposed to detect and ana-
lyze the community structure in complex networks based
on various approaches such as dissimilarity or similar-
ity measures [9–11], spectral analysis [12,13], resistance
models [14], random walk dynamics [15–19], label propa-
gation [20–22], statistical models [23,24] and modularity
optimization [25–29], as well as the combination of various
methods (see Refs. [2,30,31] for reviews).

a e-mail: huke1998@yahoo.cn

It is interesting that most of the popular methods
for community detection in networks often consist of the
optimization of quality functions that can evaluate com-
munity divisions in the networks, such as the famous
modularity function initially proposed by Newman and
Girvan [32]. Given a community division of a network,
the modularity function Q can be written as

Q =
∑

s

kin
s

2M
−
(

ks

2M

)2

, (1.1)

where M is the total number of edges in the network, kin
s

the inner degree of group s, ks the total degree of group s,
and the sum runs over all communities in the given net-
work. For the weighted case, M becomes the total weight
of edges in the network, kin

s the inner weighted degree of
group s and ks the total weighted degree of group s [33].
The modularity evaluates the fraction of edges within
communities in the network minus the expected value in
a random graph with the same degree distribution (i.e. in
the configuration null model). In general, the larger the
modularity, the better the division. In recent years, the
modularity has become one of the most popular quality
functions, is used widely by various community detection
algorithms, and has proven able to give useful and relevant
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results in many complex networks. However, the modular-
ity optimization also suffers from some difficulties [34,35],
such as the resolution limit [36], which can be expressed by

kskt < 2M · est, (1.2)

where ks and kt are the total degrees of communities s
and t, est is the number of edges between them, and M is
the total number of edges in the network. That is to say, if
the inequality is satisfied, the (small) communities s and t
will be put together into one group by modularity-based
methods, even if they are cliques linked only by a single
edge, because this results in greater modularity if so. The
resolution limit means that the modularity optimization
fails to detect communities below a certain characteristic
scale, which is not compatible with the multi-scale struc-
tures in many real-world networks.

To attack the resolution problem, various methods
have been proposed, such as the recursive partitioning of
networks [37] or the recursive re-weighting methods of the
inter- and intra-community edges [38,39]. In particular,
it has been shown that various multi-resolution methods
with tunable resolution parameters can help to discover
community structures at different scales [23,40–44]. For
example, Zhang et al. [42] proposed a method with tunable
resolution by seeding the kernel in graphs. Li et al. [43]
investigated community detection based on Potts model
and the network’s spectral characterization, and showed
that the local, uniform behavior of spins in Potts model
can naturally reveal the hierarchical community struc-
tures in networks. From the Potts-spin-model point of
view, Reichardt and Bornholdt (RB) [23] proposed a gen-
eral ansatz for the quality function, and discussed their
multi-resolution modularity functions as special cases.
This scheme was also applied recently by Ronhovde and
Nussinov [45] and by Traag et al. [46]. Arenas, Fernández
and Gómez (AFG) [44] also proposed a multi-resolution
modularity method by providing each vertex with a self-
loop of the same magnitude r, which is equivalent to mod-
ifying the modularity function by the parameter r. In
this paper, we will focus on these multi-resolution meth-
ods that can directly adjust the resolution of modularity,
though there have been few discussions about them to
date [47]. We will present a critical analysis of the ap-
plicability of the methods to the problem of community
detection. It maybe provides valid guidelines for the de-
sign of new effective methods in practical applications.
Also, we believe that these methods are worthy of more
thorough investigation before being applied to community
detection problems in the real world.

The paper is organized as follow. In Section 2, differ-
ent multi-resolution modularity methods (AFG and RB)
will be derived using self-loop assignment scheme, i.e. by
providing each vertex with a suitable self-loop, and then
a set of methods of this type will be proposed based on
that scheme. In Section 3, we will focus on the transition
points where small communities become visible and where
large communities begin to break up, and we will compare
the general processes of these multi-resolution methods
by theoretical analysis and experimental tests on model

networks. In Section 4, a kind of intrinsic contradiction in
the methods will be highlighted and discussed – increas-
ing the values of the resolution parameters may in some
cases cause large communities to break up before small
communities become apparent. Finally, we will come to
our conclusion.

2 Multi-resolution modularity methods

In this section, we will introduce multi-resolution modu-
larity methods. These methods can be derived from the
Potts spin model [46], and are closely related to the time
scales of random walks on networks [48]. Here, we intro-
duce these methods using self-loop assignment schemes,
i.e. by providing each vertex with a suitable self-loop, and
then, based on this scheme, a set of multi-resolution modu-
larity methods of this type will be presented. The self-loop
assignment scheme makes the multi-resolution modular-
ity functions mathematically very similar to the modular-
ity, and thus these can be optimized directly by the ex-
isting modularity optimization algorithms with minimum
code development. Of course, the multi-scale modularity
functions can also be optimized by other methods such as
Potts-model-based heuristics [23].

2.1 AFG method

The multi-resolution modularity method proposed by
Arenas, Fernández and Gómez (AFG) is a representation
based on the self-loop assignment scheme [44]. Using a
tunable parameter, it rescales the topology of the network
by directly assigning a self-loop of the same magnitude to
each vertex. Here, we will instead provide each vertex with
a self-loop of strength k̄r, where k̄ is the mean degree of
vertices in the network and r is a tunable parameter. We
refer to this method as the Mean-Degree-Dependent Self-
loop Assignment scheme (MDD-SA). With the introduc-
tion of the self-loop k̄r, the multi-resolution modularity
function in the AFG method can be written as

QAFG(r) =
∑

s

(
kin

s + nsk̄r

2M + Nk̄r
−
(

ks + nsk̄r

2M + Nk̄r

)2
)

=
∑

s

(
kin

s + k̄sr

2M(1 + r)
−
(

ks + k̄sr

2M(1 + r)

)2
)

=
r

(1 + r)
+

1
(1 + r)

×
∑

s

⎛

⎝ kin
s

2M
− (1 + r)

(
ks(r)
2M

)2
⎞

⎠, (2.1)

where kin
s is the inner degree of the group s, ks is the to-

tal degree of the group s, ns is the number of vertices in
the group s, N is the number of vertices in the network,
k̄s = nsk̄, 2M = Nk̄, and the effective total degree of the
group ¯̄ks = ks(r) = (ks + k̄sr)

/
(1 + r) is a function of r,

which can be regarded as the r-weighted average value

http://www.epj.org


Eur. Phys. J. B (2012) 85: 352 Page 3 of 10

of ks and k̄s. Ignoring the constant term and multiplier
before the summation, which are independent of commu-
nity divisions in networks, we can see that it is similar
to the modularity (2.3). In contrast, MDD-SA simultane-

ously changes the form of the null model to
(
ks(r)/2M

)2

and adds a pre-factor (1 + r) which tunes the contribu-
tion of the null model by the parameter r. According to
the above modularity function, the resolution inequality
becomes

(ks + k̄sr)(kt + k̄tr) < 2M(1 + r)ets

or ks(r) × kt(r) < 2Mets/(1 + r). (2.2)

2.2 RB method

Reichardt and Bornholdt (RB) [23] have shown that the
problem of community detection can be mapped onto find-
ing the ground state of an infinite range Potts spin glass,
where the spin states correspond to the community in-
dices. Similarly to the modularity, the RB Potts model
makes use of a null model as a comparison. The larger the
deviation from the null model, the better the community
divisions. The classical null model is the configuration null
model used in the modularity (1.1), preserving the degree
distribution of the corresponding networks. The RB mod-
ularity with the configuration null model, which has the
modularity (1.1) as a special case, can be written as

QRB =
∑

s

kin
s

2M
− γ

(
ks

2M

)2

, (2.3)

where γ is the pre-factor for tuning the contribution of
the null model, and the remaining notation is the same as
in modularity (1.1). Accordingly, the resolution inequality
becomes

kskt < 2M · est/γ, (2.4)

where the notation is the same as for inequality (1.2).
While the RB method was not designed to study the reso-
lution of modularity, it still provides a workaround for the
issue.

Interestingly, the RB method can be obtained by the
Degree-Dependent Self-loop Assignment scheme (DD-SA),
i.e. by assigning to each vertex a self-loop proportional to
its degree. Specifically, we are to provide each vertex with
a self-loop of strength kir, where ki is the degree of the
vertex i in the network and r is a tunable parameter. As
a result, the modularity (1.1) can be re-written as

QRB(r) =
∑

s

(
kin

s + ksr

2M + 2Mr
−
(

ks + ksr

2M + 2Mr

)2
)

=
r

1 + r
+

1
1 + r

∑

s

(
kin

s

2M
− (1 + r)

(
ks

2M

)2
)

,

(2.5)

where the remaining notation is the same as in modular-
ity (1.1). Clearly, the modularity (2.5) is equivalent to the

modularity (2.3) and the relation γ = 1 + r applies to all
divisions in networks as the factors before the summation
do not change the results of the optimization. It suggests
that the optimization of the RB modularity can also be
done by the existing optimization algorithms if we rescale
the network topology using the self-loop scheme. Unlike
MDD-SA, however, we see that DD-SA only adds a pre-
factor which tunes the contribution of the null model by
the parameter r and does not change the form of the null
model.

2.3 General methods based on self-loop assignment

Based on the above observation, we here introduce a set of
general multi-resolution modularity methods by assigning
each vertex a self-loop of strength [k̄(1−μ)+kiμ]r, where k̄
is the mean degree of vertices in network, ki the degree
of the vertex i, r a parameter tuning the resolution of
modularity, and μ (0 � μ � 1) a parameter to control
the contributions of k̄ and ki (i.e. the contributions of
MDD-SA and DD-SA) to the null model. As a result, the
modularity can be re-written as

Q(μ, r) =
∑

s

(
kin

s + [k̄s(1 − μ) + ksμ]r
2M + 2Mr

−
(

ks + [k̄s(1 − μ) + ksμ]r
2M + 2Mr

)2
)

=
r

1 + r
+

1
1 + r

∑

s

(
kin

s

2M
− (1 + r)

×
(

ks + [k̄s(1 − μ) + ksμ]r
2M(1 + r)

)2
)

=
r

1 + r
+

1
1 + r

∑

s

(
kin

s

2M
− (1 + r)

×
(

ks(μ, r)
2M(1 + r)

)2)
, (2.6)

and the resolution inequality accordingly becomes

ks(μ, r) × kt(μ, r) < 2Mets/(1 + r),

where ¯̄̄
ks = ks(μ, r) =

ks + [k̄s(1 − μ) + ksμ]r
1 + r

.

(2.7)

Clearly, both the inequalities (2.2) and (2.4) are contained
within it.

By tuning the value of the parameter μ, we can ob-
tain the multi-resolution methods from AFG to RB. For
μ = 0, it corresponds to AFG, while RB corresponds to
μ = 1. With regards to the general multi-resolution meth-
ods (including AFG and RB as special cases), modular-
ity (2.6) is the same as modularity (1.1) for r = 0. When
r < 0, we can find the superstructures above those at
r = 0. When r > 0, we can obtain the substructures
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under those at r = 0. All the multi-resolution methods
will give the same results on their initial iteration (the
whole network is regarded as one group) and on their fi-
nal iteration (the whole network is separated into a set of
single-vertex groups). However, results from intermediate
iterations generally differ from each other.

Moreover, note that all these multi-resolution methods
are equivalent in homogeneous networks where all the ver-
tices have the same degree and must therefore produce the
same results. In the following sections we will analyze the
processes of these methods on non-homogeneous networks
with hierarchical community structures.

3 Comparison of multi-resolution processes

For convenience of analysis, we construct a type of simple
model network with two types of pre-defined communities
of different sizes (see Fig. 1a). Specifically, the networks
consist of cliques (fully-connected sub-graphs) of two sizes.
The numbers of the large cliques and the small cliques in
the networks are respectively m and 2m (m is equivalent
to the number of clique-sets with one large clique and two
small cliques), and the sizes of them are denoted respec-
tively by nl and ns(nl > ns). The cliques are connected
one by one with single edges, generating a simple, ring-like
configuration, and the large cliques are evenly spaced with
two small cliques separating them. Here, we discuss un-
weighted and un-directed networks, and the small cliques
are invisible for the modularity Q. As an example, we
generated a network of this type with m = 6, nl = 16
and ns = 6 (see Fig. 1). The mean degree of the net-
work (5 < k̄ < 15) is clearly between the vertex degrees
of the large cliques and the small cliques. This important
property will be used in the following theoretical analy-
sis. Moreover, in the following experimental tests, we will
detect the optimal community divisions of the networks
corresponding to different values of resolution parameters,
by using the fast greedy algorithm of Blondel et al. [29],
and check the results by using extremal-optimization al-
gorithm [26].

3.1 RB process (DD-SA)

From simplicity to complexity, we first study the processes
of the RB and AFG methods (i.e. μ = 1 and 0) by focus-
ing on several of their transition points, and then discuss
the general methods (0 � μ � 1). The RB method cor-
responds to the multi-resolution method with μ = 1. For
simplicity, we define γ = r + 1. When γ = 1, we can ob-
tain the same result as the modularity Q. By tuning the
γ-value, we can adjust the resolution of the modularity.
Here, we focus on γ > 1. As shown in Figure 1b, the small
communities become detectable with increasing γ. Thus
we can find 18 cliques, i.e. all the predefined communities.
The exact point at which this occurs is when the value of
γ = r + 1 satisfies

γ > γa1 = ra1 + 1 =
2Mest

kskt
, (3.1)

where the notation is the same as in the inequality (2.4).
γa1 is the first transition point of the RB process in the
network. (See the dotted γ1-line for γa1 in Fig. 1b)

After the small communities become detectable, we
can see a stable community division in the network which
is not affected by increasing γ, untilthe large communi-
ties begin to be broken up. Here, we consider bi-partitions
of the communities [49,50]. The expected γ-value for the
equal-sized bi-partition of the large community l as a ran-
dom sub-graph can be denoted as (see Appendix)

γa2 = ra2 + 1 � 2M
4EAB

k2
l

, (3.2)

where M is the total number of edges in the network,
EAB is the expected number of edges between two equally-
sized parts A and B of the community, and kl is the to-
tal degree of the community. γa2 is the second transition
point of the RB process in the network. (See the dot-
ted γ2-line for γa2 in Fig. 1b). Finally, when the γ-value
(γ > γmax = 2M

/
k2
min, kmin is the minimal degree of

vertices in the network) is large enough, the whole net-
work will be separated into a set of single-vertex groups
by maximizing the multi-resolution modularity.

3.2 AFG process (MDD-SA)

The multi-resolution method with μ = 0 corresponds to
the AFG method. We will apply it to the above example
network, and compare with the RB process. Again, we
define γ = r + 1. As γ increases, the small cliques are
disconnected first, and thus we can find all the predefined
communities (see the dotted γ1-line in Fig. 1c), when the
value of γ satisfies

γ > γb1 = rb1 + 1 =
2Mets

ks × kt

, (3.3)

where ks = ks(rb1) = (ks + k̄srb1)
/
(1 + rb1) is the effec-

tive total degree of the clique s when r = rb1, which can
be regarded as the rb1-weighted average value of ks and
k̄s(k̄s = nsk̄), and the remaining notation is the same as
in equation (2.2). It is not difficult to obtain the exact
solution of the inequality. For the sake of comparison, we
have formatted the expression similarly to equation (3.1).

Comparing with equation (3.1), we can infer that
γb1 < γa1, because there are ks < ¯̄ks and kt < ¯̄kt for the
small cliques in this network. In other words, γb1 < γa1

because the vertex degree in small cliques (s and t) is
less than that of the whole network. This is proved by
the γ1-lines in Figures 1b−1c. As a result, compared with
DD-SA (RB), MDD-SA (AFG) can quicken the discon-
necting of small communities in which the degree of ver-
tices is less than the mean degree of the whole network.
Therefore, Figure 1 shows that these small communities
can be found earlier by AFG than RB when the γ-value is
increased (note that MDD-SA will delay the disconnecting
of the small communities if the vertex degree inside them
is larger than the mean degree of the whole network).
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Fig. 1. (Color online) (a) Network with m = 6, nl = 16 and ns = 6, described in text. (b) and (c) the curves of the γ-value and
the number Nc of groups found by maximizing the RB and AFG modularity in the network. The bold solid lines between γ1

and γ2 corresponds to all the cliques being revealed simultaneously, (b) by RB and (c) by AFG.

After the small communities become visible, as shown
in Figure 1c, a stable community division of the net-
work that is not affected by an increase in γ can be
found, until the large communities begin to be broken up.
Similarly, the expected γ-value for the equally-sized bi-
partition of the community l as a random sub-graph can
be denoted as (see Appendix)

γb2 = rb2 + 1 � 2M
4EAB(
¯̄kl

)2 , (3.4)

where M is the total number of edges in the net-
work, EAB is the expected number of edges between the
two equally-sized parts A and B, and ¯̄kl = kl(rb2) =
(kl + k̄lrb2)

/
(1 + rb2) is the effective total degree of the

community l when r = rb2, which is the rb2-weighted av-
erage value of kl and k̄l (k̄l = nlk̄). (See the dotted γ2-line
for γb2 in Fig. 1c.) For the sake of comparison, we give an
expression for γb2 that is similar to equation (3.2). When
γ > γb2, the large community will break up. When the
value of γ is large enough, the whole network will be sep-
arated into a set of single-vertex groups by AFG.

Comparing with equation (3.2), we can find γa2 < γb2,
because kl > ¯̄kl for large cliques in this network (or be-
cause the vertex degree in the community l is larger than
that of the whole network). This is proved by the γ2-lines
in Figures 1b−1c. With regards to disconnecting small
communities, MDD-SA (AFG) differs from DD-SA (RB)
in that it will slow down the breakup of the large com-
munities in which the vertex degree is greater than the
mean degree of vertices in the whole network. Therefore,
we can see in Figure 1 that the large cliques break up first
in the RB method, before this occurs in the AFG method
(note that MDD-SA will quicken the breakup of the large

communities if the vertex degree in them is less than the
mean degree of the whole network).

3.3 General processes (0 � µ � 1)

In this section, we will test the multi-resolution methods
with 0 � μ � 1 on the model network above. We will
still focus on the two transition points of γ1 and γ2. It is
easy to give the expressions of γ1 and γ2, similar to (3.3)
and (3.4),

γ1(μ) = r1(μ) + 1 =
2Mets

¯̄̄
ks

¯̄̄
kt

, (3.5)

γ2(μ) = r2(μ) + 1 = 2M
4EAB(¯̄̄
kl

)2 , (3.6)

where the notation is the same as in (2.7) and (3.4). In
the clique-ring network, as shown in Figure 2a, the real
and expected values of γ1 are accurately consistent, and
the real and expected values of γ2 are very close as an-
ticipated (the expected values of γ2 can be estimated by
different approaches, see Appendix). Generally, the values
of γ1 and γ2 will vary with μ. In Figure 2a, we can see
that γ1(γb1 � γ1 � γa1) increases with increasing values
of μ, while γ2(γa2 � γ2 � γb2) decreases with increasing
values of μ, which can be obtained by theoretical analysis
of equations (3.5) and (3.6) in this test network. Conse-
quently, the length of the plateau from γ1 to γ2 decreases
when μ is increased. We highlight that the parameter μ
can adjust the contributions of MDD-SA and DD-SA to
the null model in the modularity (2.6). Comparing the
multi-resolution methods from μ = 0 to μ = 1, espe-
cially AFG and RB, we can find a phenomenon of inter-
est: MDD-SA tends to lengthen the plateau from γ1 to γ2
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Fig. 2. (Color online) (a)–(b) Critical parameters γ1 and γ2 as a function of μ in the clique-ring networks described in the text:
(a) with m = 6, n1 = 16 and n2 = 6 and (b) with m = 6, n1 = 36 and n2 = 6. The real values for γ1 and γ2 are denoted by γreal

1

and γreal
2 respectively. γexpect

1 is the theoretical line for γ1. γexpect
2 is the theoretical estimate for γ2 by the Simple estimate,

and γ2 (LF estimate) and γ2 (LF clique-estimate) are the theoretical estimates for γ2 using the LF estimate (see Appendix).
(c)–(d) Critical parameters γ1 and γ2 as a function of m (which is proportional to the size of the networks) by the RB and AFG
methods in the clique-ring networks in text, preserving the difference in community size: (c) with n1 = 16 and n2 = 6 and (d)
with n1 = 36 and n2 = 6.

in the networks. In general, it is believed that the length
of the plateau is related to the stability of the community
division found, while these results clearly indicate that
it is also closely related to the multi-resolution methods
themselves.

3.4 Further analysis

3.4.1 Effect of network size

Further, we study the two transition points of γ1 and γ2

by increasing the size of the networks, preserving the
difference between the sizes of the small cliques and of
large cliques. In Figure 2c, we can see that the inequali-
ties γb1(AFG) < γa1(RB) and γa2(RB) < γb2(AFG) re-
main valid when the network size is increased. For other
μ-values, the γ1-lines will be between γb1 and γa1, while
the γ2-lines will be between γa2 and γb2. These results can

be obtained by analyzing the self-loop assignment rule in
the modularity (2.6). Moreover, as shown in Figure 2c,
both γ1 and γ2 (for AFG and RB) will increase with the
size of the network, which is to be expected according to
equations (3.1)−(3.4), and the intervals between γ1 and γ2

will increase with the size of the network for both RB
and AFG. These can be extended to other multi-methods
(0 � μ � 1).

3.4.2 Effect of community size difference

In Figure 3, we show that the critical parameters γ1

and γ2 will vary when the difference in community sizes
is increased. Similarly, the inequalities γb1 < γa1 and
γa2 < γb2 are always satisfied in all the networks. We
can see that γ1 increases with increasing community size
difference, while γ2 decreases with increasing community
size difference. This results in reduced intervals between γ1
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Fig. 3. (Color online) Critical parameters γ1 and γ2 as a func-
tion of n1 in the clique-ring networks described in the text,
by the RB and AFG methods. γa1 and γa2 correspond to the
real values for γ1 and γ2 by RB, γb1 and γb2 by AFG. γexpect

1

and γexpect
2 are the theoretical lines for γ1 and γ2 respectively

by the Simple estimate, and γ2(LF) is the theoretical estimate
for γ2 by the LF estimate (see Appendix).

and γ2. This is true for both AFG and RB, and can easily
be extend to all the multi-resolution methods of this type.
Furthermore, for other μ-values, we can also infer that
the γ1-lines will be between γb1 and γa1 while the γ2-lines
will be between γa2 and γb2. Interestingly, when the com-
munity size difference is large enough (i.e. γ2 < γ1) it will
be impossible to simultaneously reveal the small and large
communities in the networks, e.g. by the RB method. This
will be discussed in the following section.

4 Contradiction in multi-resolution modularity
methods

It is worth noticing that when the difference in size
between communities is very large, the multi-resolution
methods will encounter a kind of limitation due to the
existence of an intrinsic contradiction in them [49], which
indicates a characteristic scale of these multi-resolution
methods. That is to say, if γ1 > γ2, as shown in Fig-
ure 2b, for some values of μ, especially for μ = 1 (i.e. RB
method), the large communities will break up before the
small communities can be found by the multi-resolution
methods. In the clique-ring networks, the authors have
concluded that ks <

√
kl (ks and kl are the total degrees

of the small and large communities) is a sufficient condi-
tion that the RB method suffers from the limitation on the
networks. This can be regarded as a characteristic scale
of RB in the networks [49]. The limitation is independent
of the size of the whole network, but instead depends on
the degree of interconnectedness of the small communities
and the difference in community sizes [49]. For the other

multi-resolution methods, it is not easy to give general for-
mulas similar to that of RB due to their special self-loop
assignment rules. Therefore we will study the limitation
by experimental tests.

4.1 Effect of network size

We have investigated the two transition points γ1 and γ2

by increasing the size of the networks while preserving
the difference in community size. Because the limitation
is independent of the network sizes, the inequality γ1 < γ2

or γ1 > γ2 will be satisfied in all the larger networks if it
is satisfied in small networks (as shown in Figs. 2c−2d).
Further, we can see γ1 < γ2 for both AFG and RB in
Figure 2c, while γb1 < γb2 for AFG and γa1 > γa2 for RB
in Figure 2d. Clearly, the limitation is closely related to
the multi-resolution methods.

4.2 Effect of community size difference

In general, the larger the difference in the community
size, the more likely it is that the multi-resolution meth-
ods will encounter the limitation. As we see in Figure 3,
the RB method frequently suffers from the limitation,
while the AFG method seems robust in the tests.This can
be explained by their special self-loop assignment rules,
which indicates that the AFG method’s tolerance against
the limitation is stronger than the RB method. This can
explain the perfect performance of AFG in some tests
such as the toy model in [44]. But it does not mean that
the AFG method never suffers from the above limitation
in any network. For example, in network containing large
communities as random sub-graphs (not cliques), the lim-
itation appears much more easily than in the clique-ring
networks for all the methods.

4.3 Communities as random sub-graphs

We further generate a community-ring network with
m = 6, n1 = 36 and n2 = 6 by retaining the commu-
nity structure of the clique-ring network while making
vertices in large communities have the same degree of 9,
and vertices in small communities have the degree of 6
(see Fig. 4a). In this network, small communities are still
cliques (fully-connected sub-graphs), but the small cliques
nearby are connected by five edges. The large communities
are random sub-graphs (not cliques) with a vertex degree
of 9, so random fluctuation can take effect [51]. In Fig-
ure 4b, we can see that γreal

1 > γreal
2 for all values of μ.

This clearly shows that all the multi-resolution methods
encounter the above limitation problem – the large com-
munities will break up in the network before the small
communities become visible. Moreover, comparing γexpect

2
and γreal

2 in Figure 4b, we can find that the large commu-
nities break up earlier than expected by γexpect

2 . So it is
certain that the limitation will appear in networks when
γexpect
2 < γ1 (or γexpect

1 ) [49].
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Fig. 4. (Color online) (a) Network described in the text. (b) Critical parameters γ1 and γ2 as a function of μ in the network
described in the text. The real values for γ1 and γ2 are denoted by γreal
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2 respectively. γexpect

1 is the theoretical line
for γ1. γexpect

2 and γ2(LF estimate) are the theoretical estimates for γ2 by the Simple estimate and the LF estimate respectively
(see Appendix).

4.4 Discussion

Concerning the above limitation problem of the multi-
resolution modularity, Lancichinetti and Fortunato [50]
also had an interesting discussion recently. When the dif-
ference in community size is large enough, the merger and
breakup of the planted communities in the networks will
appear simultaneously, which is independent of the net-
work sizes. In this case, no suitable γ-values can be found.
The limitation may exist in various multi-resolution meth-
ods based on global optimization, because of the existence
of an intrinsic and irreconcilable conflict – the (large) com-
munities as a whole prefer small resolution parameters,
while the disconnecting of (small) communities requires
an increase in the resolution parameter [49,50], even if
they have perfect performance in some tests. After all, it
is very difficult to simultaneously see the details of ants
and elephants as a whole on a limited viewfinder [52] (the
size of which may be related to the length of the interval
from γ1 to γ2), though the resolution may be adjustable
by resolution parameters. (It is interesting that the size of
the “viewfinder” of the AFG method is larger than RB in
our tests.)

In consideration of this problem, Granell et al. recently
presented a new hierarchical multi-resolution method ac-
cording to the AFG method [52]. The idea of the method
is to split the multi-resolution method for optimal sub-
graphs of the network, focusing the analysis on each part
independently. Moreover, the method makes use of the ex-
tension definition of modularity that can deal with nega-
tive weights better [53,54], though in the original AFG
method the “resistance” parameter may take negative
values. One may notice that the hierarchical method is
only suitable for hierarchical networks. Indeed, the limita-
tion mentioned above is often shown through hierarchical

networks, but the limitation as well as the multi-scale
community structures are not restricted to networks of
this type. However, we believe that it is still interest-
ing and will encourage further investigation of multi-
resolution methods to avoid the implicit limitation.

5 Conclusion

In this paper a set of multi-resolution modularity meth-
ods using the self-loop assignment scheme (i.e. providing
each vertex with a suitable self-loop) was introduced and
analyzed. All the schemes in the set are equivalent in ho-
mogeneous networks (where all the vertices have the same
degree), and RB & AFG are included as special cases.
We hope that the study in the paper can help further
understand these multi-resolution methods in community
detection.

Focusing on the transition points where small com-
munities become visible and where large communities be-
gin to break up, we analyzed the general processes of
these multi-resolution methods, both by theoretical anal-
ysis and by experimental tests on model networks. Com-
paring the multi-resolution methods, we show that the
mean-degree-dependent self-loop assignment can quicken
the disconnecting of the (small) communities with small
vertex degrees, and can delay the breakup of the (large)
communities with large vertex degrees. As a result, the
length of the plateau from γ1 to γ2, which is considered to
be related to the “stability” of the corresponding commu-
nity division, is clearly confirmed to be closely related to
these multi-resolution methods themselves, e.g. AFG can
enlarge the plateau.

We also show that all the multi-resolution methods
may encounter a kind of intrinsic limitation (or contra-
diction) regardless of the size of the whole network: when
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increasing the values of the resolution parameters, large
communities may break up before small communities
become visible in some cases. Interestingly, the AFG
method’s tolerance against the limitation is clearly
stronger than the RB method in our tests due to the differ-
ence in their self-loop assignment rules. However, similarly
to RB, the AFG method still suffers from the above limi-
tation because of an intrinsic and irreconcilable conflict –
the (large) communities as a whole prefer small resolution
parameters, while the disconnecting of (small) communi-
ties requires larger resolution parameters.

It may be possible to design new multi-resolution
methods with stronger tolerances against these limita-
tions, but similar difficulties may still be encountered due
to the reasons discussed above. To solve the problem, one
of the solutions may be to pin the natural communities
without inner sub-communities, for example, by the theo-
retical or experimental evaluation of the statistical signif-
icance of the communities. As we see, the Simple estimate
is only suited to fully-connected sub-graphs, while the LF
estimate also prefers dense sub-graphs. In the future, bet-
ter theoretical methods are expected which may be closely
related to the minimal cut-size problem of classical graph
partitioning [51].

This work has been supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 11147121), the Scientific
Research Fund of Education Department of Hunan Province
of China (Grant Nos. 11B128), Scientific research project of
Huangshan University (Grant No. 2011xkj007) and partly by
the Doctor Startup Project of Xiangtan University (Grant
No. 10QDZ20).

Appendix

Here, we discuss the theoretical estimate of the param-
eter γ2 at the transition point where the communities
break up by using the multi-resolution modularity meth-
ods. Given a community l with nl vertices, the total degree
and its inner degree are denoted kl and kin

l respectively.
The ratio between them is denoted αl = kin

l

/
kl.

Take the RB method as an example and consider the
community as a random sub-graph. Now we randomly
divide it into two parts A and B, where the degrees
of the two parts are denoted kA and kB respectively
(kl = kA + kB). The community l will break up, when

EAB − γ
kAkB

2M
< 0 or γ > γ2 =

2MEAB

kAkB
=

2MEAB

(kl/2)2
,

(A.1)
where M is the total number of edges in the network
and EAB is the number of edges between the parts A
and B. Clearly, evaluating the value of EAB is the core
of the estimate of γ2. Since the modularity of the bi-
partition in random graphs is optimal when two parts are
of about equal size [50], we here consider the equally-sized
bi-partition of the community, that is, kA ≈ kB ≈ kl/2.

Simple estimate: most simply, we can suppose that
there exists the relation αi ≈ αl for all vertices in the com-
munity l, where αi = kin

i

/
ki is the ratio between the inner

degree kin
i and the degree ki of vertex i in the community.

Statistically, we can obtain the expected value of EAB,

Eexpect
AB =

αlkAkB

(kl − k̄)
=

αlk
2
l

4(kl − k̄)
, (A.2)

where k̄ is the average degree of vertices in the community
and kl minus k̄ is used to exclude the effect of self-links.
Now we can rewrite (A.1) as

γ > γexpect
2 =

2Mαl

kl

nl

nl − 1
≈ 2Mαl

kl
,

whennl is very large. (A.3)

If the inequality is satisfied, then the community l will
break up or have broken up. The tests in text have shown
that (A.2) and (A.3) can give proper estimates of EAB

and γ2 for full-connected sub-graphs (i.e. cliques).
Notice that the inequality (A.3) may be regarded as a

sufficient condition that the community breaks up, but it
is not a necessary one due to the simple hypothesis above,
as well as random fluctuations in communities [51]. For
convenience, we supposed that αi ≈ αl for all vertices in
the community l, however it is also possible that αi < αl

for some parts of the community. These parts are less sta-
ble than those with αi � αl, so they may be separated
from the community before the inequality is satisfied. This
problem also exists in the LF estimate. Moreover, Eexpect

AB
can only give a simple estimate of EAB. The number of
possible equally-sized bi-partitions of the community is
very large. There must exist bi-partitions whose EAB is
much smaller than the expected value, especially in large,
random sub-graphs. This will lead to the breakup of the
sub-graphs before the value of γ approaches γexpect

2 . In
other words, the splitting of random communities will be
much easier than expected by the inequality (A.3).

LF estimate: we can directly make use of the results
in the graph partitioning problem [51]. As Lancichinetti
and Fortunato (LF) showed [50], one can obtain the the-
oretical estimate of EAB by considering the community l
under study as a random sub-graph:

EAB(LF estimate) ≈ Ml

⎛

⎝1
2
− 0.765

〈√
k
〉

l

〈k〉l

⎞

⎠, (A.4)

where Ml = kin
l /2 = αlkl/2 is the number of edges within

the community l, and 〈. . .〉l denotes expectation value over
the ensemble of random graphs with the same degree dis-
tribution as the community. Using (A.4), for example, we
can rewrite (A.1) as

γ > γ2(LF estimate) =
2M2αl

kl

⎛

⎝1
2
− 0.765

〈√
k
〉

l

〈k〉l

⎞

⎠.

(A.5)
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Clearly, if the community is a clique, then EAB ≈ Ml/2.
So the estimate should be corrected: γ > γ2(LF clique −
estimate) = 2Mαl/kl, which is similar to (A.3).

According to the Simple estimate (A.2) or the LF esti-
mate (A.4), one can obtain the theoretical estimates of γ2

for other multi-resolution modularity methods. As shown
in the text, the Simple estimate always provides an over-
estimation of EAB (or γ2), while the LF estimate gives an
underestimation of EAB (or γ2). As shown in Figures 2−3,
the Simple estimate (A.2) and the LF clique-estimate can
give good results in the clique-ring networks, and these es-
timates can improve with increasing community size (see
Fig. 3). Because the Simple estimate is just a simple and
rough calculation and prefers fully-connected sub-graphs,
while the LF estimate is also more valid in large and dense
(sub-) graphs [50,51]. For non-full-connected communities,
such as the one in Figure 4, the results of the Simple
estimate (A.2) and the LF estimate (A.4) have a clear
deviation from the real values of γ2, but they still have
similar qualitative trends.
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