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A new field of research is rapidly expanding at the crossroad between statistical physics, information the-
ory and combinatorial optimization. In particular, the use of cutting edge statistical physics concepts and
methods allow one to solve very large constraint satisfaction problems like random satisfiability, color-
ing, or error correction.

Several aspects of these developments should be relevant for the understanding of functional complex-
ity in neural networks. On the one hand the message passing procedures which are used in these new
algorithms are based on local exchange of information, and succeed in solving some of the hardest com-
putational problems. On the other hand some crucial inference problems in neurobiology, like those gen-
erated in multi-electrode recordings, naturally translate into hard constraint satisfaction problems.

This paper gives a non-technical introduction to this field, emphasizing the main ideas at work in mes-
sage passing strategies and their possible relevance to neural networks modelling. It also introduces a
new message passing algorithm for inferring interactions between variables from correlation data, which
could be useful in the analysis of multi-electrode recording data.

� 2009 Published by Elsevier Ltd.
1. Introduction: constraint satisfaction problems

Engineers often encounter problems with many degrees of free-
dom (‘variables’) but also many constraints. The problem is to find
a value of the variables which satisfies all constraints, or the most
probable configuration of a variable given the constraints and some
a priori measure. Obvious applications are scheduling (classes, air-
planes, . . .), or job assignment. But similar problems occur in vari-
ous branches of scientific activity, and are crucial in several
domains. To be short we shall focus here on four of them. The sat-
isfiability problem is at the core of the theory of computational
complexity in computer science. Error-correcting codes are one
of the main topic of information theory. Learning from examples
is a basic process in cognitive neuroscience. Reconstruction of neu-
ron interactions from multi-electrode recording is a problem
which is becoming more and more important.

All these problems can be formulated in a common language
(Mézard and Montanari, 2009), and have a strong relationship to
fundamental issues in statistical physics like the existence of phase
transitions, and the possibility of glassy phases. They can also be
cast into a somewhat generic formalism, based on a graphical rep-
Elsevier Ltd.
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resentation of the topology of constraints (Kschischang et al.,
2001), which allows to apply a general ‘message passing’ strategy
to all of them. Some of these message passing algorithms have
actually shown strikingly good performance, solving some prob-
lems in satisfiability or perceptron learning that are unreachable
by any other algorithms. It is interesting in itself to understand
how fundamental issues in computational complexity and infor-
mation processing can be formulated in the same language as rel-
evant problems in neuroscience, the main aim of this paper is to
give some clues on these connexions.

2. Satisfiability

The problem of satisfiability involves N Boolean variables
xi 2 fT; Fg. There exist thus 2N possible configurations of these
variables. The constraints take the special form of ‘clauses’, which
are logical ‘OR’ functions of the variables. For instance the clause
x1 _ x2 _ �x3 is satisfied whenever x1 ¼ T or x2 ¼ T or x3 ¼ F (the
bar means negation: T ¼ F and F ¼ T). Therefore, among the eight
possible configurations of x1; x2; x3, the only one which is forbid-
den by this clause is x1 ¼ x2 ¼ F; x3 ¼ T . An instance of the satis-
fiability problem is given by the list of all the clauses it
contains. The problem is to find a choice of the Boolean variables
(called an’assignment’) such that all constraints are satisfied.
When there exists such a choice the corresponding instance is

http://dx.doi.org/10.1016/j.jphysparis.2009.05.013
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Fig. 2. Tanner graph representation of a parity check code. Here there are seven bits
related by three parity check equations. Each square represents a parity check: it
enforces the constraints that the sum of bits connected to it must be even.
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said to be ‘SAT’, otherwise it is ‘UNSAT’, and one typically seeks a
configuration of variables which violates the smallest number of
constraints.

Satisfiability plays an essential role in the theory of computa-
tional complexity, because many other difficult problems like the
traveling salesman, the coloring of graphs, scheduling, protein
folding, can be mapped ‘polynomially’ to it. It was the first problem
which has been shown to be ‘NP-complete’ (Cook, 1971). This
means that if one could find an algorithm that solves satisfiability
in a ‘polynomial’ time (growing like a power of N), one could also
solve all these other problems in polynomial time: life would be
much easier, in particular the life of scientists. . . This is generally
considered unlikely, but the corresponding mathematical problem
(whether the NP class is distinct or not from the ‘P’ class of prob-
lems which are solvable in polynomial time) is an important open
problem in mathematics.

The result of Cook is a worst case analysis of the satisfiability
problem. However it appears more and more important to study
‘typical case’ complexity of satisfiability problems by introducing
some classes of instances. A much studied class is the random
‘3-SAT’ problem. Each clause contains exactly three variables
chosen randomly in fx1; . . . ; xNg, and each variable is negated ran-
domly with probability 1/2. This problem is particularly interest-
ing because its difficulty can be tuned by varying one single
control parameter, the ratio a ¼ M

N of constraints per variable.
One expects intuitively that for small a most instances are SAT,
while for large a most of them are UNSAT. Numerical experiments
have confirmed this scenario, but they indicate actually a more
interesting behavior. The probability that an instance is SAT exhib-
its a sharp crossover, from a value close to 1 to a value close to 0, at
a threshold ac which is around 4.3. When the number of variables
N increases, the crossover becomes sharper and sharper (Kirkpa-
trick and Selman, 1994; Selman and Kirkpatrick, 1996), as shown
in Fig. 1. It has been shown that it becomes a staircase behavior
at large N (Friedgut, 1999): almost all instances are SAT for
a < ac , almost all instances are UNSAT for a > ac . This threshold
behavior is nothing but a phase transition as one finds in physics,
and has been analyzed using the methods of statistical physics
(Kirkpatrick and Selman, 1994; Monasson et al., 1999; Mézard
et al., 2003).

A very interesting observation illustrated in Fig. 1 is that the
algorithmic difficulty of the problem, measured by the time taken
by the algorithm to answer if a typical instance is satisfiable, also
depends strongly on a: the problem is easy when a is well below
or well above ac , and is much harder when a is close to ac . There-
fore the region of phase transition is also the region which is diffi-
cult from the computational point of view.
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Fig. 1. Left: probability that a formula generated from the random 3-SAT ensemble is sati
N ¼ 100 (dashed), N ¼ 200 (dotted). The transition between satisfiable and unsatisfiable
computer time (in arbitrary units) required to find a solution, or prove that there is no
3. Error correction

One of the fundamental problems in information theory con-
sists in correcting transmission errors that always occur when a
message is sent through a communication channel (Richardson
and Urbanke, 2006; Montanari and Urbanke, 2007). This is done
by adding redundancy. In codes based on parity constraints, the
message which is sent is chosen in a pool of ‘codewords’. A code-
word is a set of N bits x1; . . . ; xN , where xi 2 f0;1g, which satisfies
M parity check equations taking the form:

xi1ðaÞ þ � � � þ xiK ðaÞ ¼ even ð1Þ

For each a 2 f1; . . . ;Mg there is one such equation, character-
ized by the set of bits i1ðaÞ; . . . ; iKðaÞ which are involved in it. So
the codebook, i.e. the set of codewords, is the set of solutions to
these M constraints. It is conveniently represented graphically as
in Fig. 2. Because the code is based on a system of linear equations,
if they are designed to be independent, which is usually the case,
the number of codewords will be 2N�M: the code transmits N �M
effective bits of information, the extra M bits are used to introduce
redundancy and possibly correct errors.

How does one correct errors? Imagine for simplicity that a
codeword x ¼ x1; . . . ; xN is sent through a ‘binary symmetric chan-
nel’, which flips each bit independently with probability p < 1=2.
The received message is y ¼ y1; . . . ; yN , where yi ¼ xi with probabil-
ity 1� p, and yi ¼ 1� xi with probability p. Decoding means trying
to infer the sent codeword x given the received one y. For this we
write the probability that the sent message was a set of bits
x0 ¼ x01; . . . ; x0N:
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sfied, plotted versus the clause density a. The curves correspond to N ¼ 50 (full line),
formulas becomes sharper as N increases. Right: computational effort. Plotted is the
solution, versus the clause density a. From bottom to top: N ¼ 50, 100, 150, 200.



M. Mézard, T. Mora / Journal of Physiology - Paris 103 (2009) 107–113 109
Pðx0jyÞ ¼ 1
Z

Y
i

ð1� pÞdx0
i
;yi
þ pdx0

i
;1�yi

h iYM
a¼1

II x0i1ðaÞ þ � � � þ x0iK ðaÞ ¼ even
� �

ð2Þ

where the first terms come from our knowledge of the channel, and
the last ones enforce the fact that the sent codeword is known to
satisfy the parity check equations (IIðAÞ is an indicator function
equal to one if the statement A is true, equal to 0 if it is not true).
Decoding amounts to finding the most probable codeword given
the received message, i.e. finding the set of bits x0 which maximizes
Pðx0jyÞ. This is in general another difficult, NP-complete, problem.
But we will see that it can done efficiently with a message passing
procedure called Belief Propagation (BP) if the noise level p is not
too large.

Low Density Parity Check (LDPC) codes are based on random
constructions in which the parity check equations are generated
randomly (Gallager, 1963). For instance in regular ðl; kÞ codes one
generates equations such that each equation contains k variables,
and each variable appears in l equations. In the large code limit
N !1 one finds two phase transitions when one varies p. The first
one is the threshold for decoding through BP: it works almost al-
ways when p < pd, it fails almost always if p > pd. The second
one is the threshold for decoding through exact inference (comput-
ing the true maximum of Pðx0jyÞ). It works almost always when
p < pc , it fails almost always if p > pc . For instance in a
ðl ¼ 3; k ¼ 6Þ regular LDPC codes, the two thresholds are
pd ¼ 0:084 and pc ¼ 0:101, while Shannon’s theorem states that
perfect decoding should be possible up to p ¼ 0:110, and impossi-
ble above. In practice the relevant threshold is pd. This is because
BP decoding is fast (it typically takes a time that grows linearly
with N), while exact inference is much too slow (its time grows
exponentially with N). Optimized LDPC codes can have a threshold
pd which gets quite close to the Shannon limit (Richardson and Ur-
banke, 2006; Montanari and Urbanke, 2007).
4. Two problems in neuroscience

4.1. Supervised learning

Learning and memory tasks are believed to occur in neural sys-
tems through changes of synaptic strengths. Despite years of ef-
forts, the precise way these changes are implemented in the
brain for specific tasks is poorly understood. In the scenario of
supervised learning, synaptic changes are monitored by a feedback
signal carrying information about the success of the intended
task. The perceptron classification problem is the prototypical
example of supervised learning: given a set of training patterns
ðn1; . . . ; nMÞ, where each na is a vector of N binary variables
ðna

i ¼ �1; i ¼ 1; . . . ;NÞ, we want to learn the correct synaptic
weights wi leading to the classification of these inputs into two
classes, Cþ and C�, using a feed-forward network called perceptron:
Fig. 3. Left: a perceptron is a feed-forward network that takes a pattern n as an input, and
satisfaction problem (factor graph representation, see further). Weights are variables (c
for each a ¼ 1; . . . ;M; sign
XN

i¼1

win
a
i

 !
¼ ra ð3Þ

where we require that ra ¼ þ1 if na belongs to class Cþ, and
ra ¼ �1 if na belongs to class C�.

Interestingly, this problem can be formulated as a constraint
satisfaction problem, whose graph representation is given by the
right panel of Fig. 3. The weights wi are the unknown variables,
and each pattern defines a constraint through Eq. (3).

Efficient algorithms for solving this problem are known in the
case of analog synaptic strengths (real wi) (Rosenblatt, 1962). How-
ever, recent experimental studies have shown that some synapses
undergo changes in the form of jumps between a finite number of
stable states (Petersen et al., 1998; O’Connor et al., 2005). Unfortu-
nately, this discreteness makes the classification problem much
harder: for instance, the task of learning binary weights wi ¼ �1
is NP-complete (Blum and Rivest, 1992). Although it has been
known for years that a perceptron with binary synapses can in
principle be trained to classify up to M ¼ acN random patterns in
the limit of large N, with ac � 0:83 (Krauth and Mézard, 1989), un-
til recently no algorithm was known that could even perform this
task for an extensive number of patterns (i.e. M ¼ aN with N !1
and a fixed), emphasizing the difficulty of the problem.

Like for error-correcting codes, message passing procedures
provide a viable solution to this hard problem. The learning task
can be handled approximately by algorithms derived from Belief
Propagation (Braunstein and Zecchina, 2006). Somewhat surpris-
ingly, these techniques perform well for large random problems,
even relatively close to the theoretical threshold M=N ¼ ac. An
on-line, biologically relevant variant of BP, which can still classify
an extensive number of patterns, has also been showcased as a
plausible learning mechanism for realistic neural networks (Bald-
assi et al., 2007).

4.2. Inferring neuronal couplings from multi-electrode recordings

Recent experimental studies indicate that correlations play an
important role in the retinal code (Schneidman et al., 2006). In
these experiments, many cells from a retinal ganglion patch are re-
corded simultaneously by a dense electrode array. It was shown
that individual cells do not carry independent pieces of informa-
tion, but rather respond cooperatively through effective pairwise
interactions. This suggests that the stimulus is represented in a
redundant manner reminiscent of error-correcting codes. We will
see that the problem of learning effective pairwise interactions be-
tween neurons from the observed data can also be formulated in
our common statistical physics language.

Formally, the neural response of a retinal patch can be binned and
represented by a string of binary variables. For each time bin of size
dt (with e.g. dt ¼ 20 ms), labelled by t, the neuronal response is coded
by a binary word xt , where xt

i ¼ þ1 if neuron i has fired in that time
bin, and xt

i ¼ �1 otherwise. The neuronal response is stochastic in
outputs a binary variable r. Right: training of the perceptron viewed as a constraint
ircles), and each pattern to be classified defines a constraint (squares).
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Fig. 4. Factor graph representation of satisfiability: a variable is represented by a
circle. A constraint is represented by a square, connected with a full (resp. dashed)
line to a variable when this variable appears as such (resp. negated) in the clause.
Left hand side: the clause �x1 _ x2 _ �x3. Right hand side: the factor graph representing
the formula: ð�x1 _ �x2 _ �x4Þ ^ ðx1 _ �x2Þ ^ ðx2 _ x4 _ x5Þ ^ ðx1 _ x2 _ �x5Þ ^ ðx1 _ �x3 _ x5Þ.
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nature and can be described by a probability distribution PðxÞ, which
accounts for both stimulus and noise fluctuations. Beside its interest
for itself, a correct estimation of PðxÞ is also important for the brain,
as it may be used downstream the retina to evaluate the likelihood of
spiking events, which in turn can be used to detect ‘abnormal’ stim-
uli, or to perform classification tasks.

In the limit of a large integration time T, the probability distri-
bution can in principle be measured through direct sampling:

PðxÞ � 1
T

XT

t¼1

dx;xt ð4Þ

In practice however, neither we nor the brain itself can handle
such a large amount of data. If N � 200 is the number of cells in
a patch, the number of pattern probabilities to be stored is
2N � 1060, much more than any realistic integration time or stor-
age capacity. One must thus recourse to simplifying assumptions.
The simplest one is the independent approximation, which for-
mally corresponds to factorizing the probability: PðxÞ ¼

QN
i¼1ð1þ

ximiÞ=2. One then just needs to measure the average mi :¼ hxii of
each neuron activity in order to reconstruct the full probability dis-
tribution (brackets denote expectations with respect to PðxÞ).
Unfortunately, this approximation fails to correctly render some
important statistical properties of the collective response, includ-
ing the law governing the total number of spikes in the population.
This prompts us to take into account the correlative structure of
the response.

The first step beyond independence is to consider pairwise cor-
relation functions:

vij ¼ hxixji � hxiihxji; ð5Þ

These numbers measure the propensity of pairs of neurons to
spike cooperatively rather than independently. An approximate
probability distribution, that reproduces these correlations as well
as the average firing probabilities ð1þmiÞ=2 with minimal con-
straints, can be constructed using the principle of maximum entro-
py (Jaynes, 1949; Schneidman et al., 2003). We look for a
distribution Pð2ÞðxÞ of maximum entropy

S :¼ �
X

x

Pð2ÞðxÞ log Pð2ÞðxÞ ð6Þ

that matches the one and two-point correlation functions of the ob-
served response:

vð2Þij ¼ vij; mð2Þi ¼ mi: ð7Þ

This distribution, which is uniquely defined, has been shown to
account for most (90%) of the correlative structure of as many as 40
neurons recorded simultaneously in the retina (Schneidman et al.,
2006).

With the help of Lagrange multipliers one can show that the
Maximum Entropy distribution takes the form:

Pð2ÞðxÞ ¼ 1
Z

exp
X

i

hixi þ
X
i>j

Jijxixj

 !
ð8Þ

where Z is a normalization constant. In physics terms this is a dis-
ordered Ising model. Usually, physicists face the problem of solving
direct Ising problems, which typically consist in inferring thermody-
namical quantities, as well as magnetizations mi and correlation
functions vij, from the external fields hi and couplings Jij. This prob-
lem is computationally very hard in general, and there exist no sim-
ple relation between ðhi; JijÞ on the one hand, and ðmi;vijÞ on the
other: an exact estimate requires summing over the 2N possible
configurations x. Here we have to deal with the inverse Ising prob-
lem (inferring the couplings from the correlation functions), which
is even harder.
This learning problem and its variants have become increas-
ingly important recently. Besides its relevance to neural decoding,
it is also useful for thinking about inference in protein interaction
networks (Tkacik, 2007), the correlative structure of some catalytic
proteins (Socolich et al., 2005; Russ et al., 2005), and even the sta-
tistical properties of four-letters words in English (Stephens and
Bialek, 2007).

A number of algorithmic strategies, mostly based on Monte-
Carlo sampling, have been proposed to learn the couplings from
the correlation functions (Ackley et al., 1987; Broderick et al.,
2007). Very little is known, however, about possible neural imple-
mentations of this learning task. We will see that strategies based
on message-passing ideas may provide leads on that question.

5. The message passing strategy

All the problems we have seen so far can be formulated in a
common language. We have N variables ðx1; . . . ; xNÞ, taking value
in some space X, and they are linked by constraints of probabilistic
nature: each constraint wa links the variables with labels
i1ðaÞ; . . . ; iKðaÞ, in the form of a probabilistic factor waðxi1ðaÞ; . . . ;

xiK ðaÞÞ. In the case of hard constraints like parity checks the hard
constraint takes value 1 if the check is satisfied, 0 otherwise. In
other cases it can take intermediate values, like for instance the

factors ð1� pÞdx0
i
;yi
þ pdx0

i
;1�yi

h i
due to the received message in cod-

ing. The problem is defined by a probability distribution

PðxÞ ¼ 1
Z

Y
a

waðxi1ðaÞ; . . . ; xiK ðaÞÞ ð9Þ

Our goal is twofold. On the one hand we want to study the prop-
erties of one given instance: compute the marginal distributions
PðxiÞ, or find the x which maximizes PðxÞ. On the other hand when
P is generated from an ensemble which allows to consider the large
N limit one would like to understand the phase diagram of the prob-
lem, like the thresholds pd and pc that we defined in decoding.

Eq. (9) is not the most general probability distribution between
N variables: the crucial point is that each wa involves only a finite
number of variables. When N is very large, P induces a topological
structure in the space of variables that we shall exploit. The factor
graph representation is a very convenient way of characterizing
this structure. Each constraint wa is represented by a function node
(square), connected to the various variables (circles) which appear
in the constraint (Kschischang et al., 2001). An example for satisfi-



Fig. 5. Factor graph representation of the Ising model Eq. (8).

Fig. 6. Mean error r2 ¼ N
J2 hðJ0ij � JijÞ

2i of the susceptibility propagation reconstruc-
tion algorithm presented in the text, compared against that of two mean-field
schemes (Kappen and Rodriguez, 1998) (Weiss: naive mean-field, TAP: mean-field
with back-reaction term).
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ability is described in Fig. 4. The Tanner graph of a code is nearly a
factor graph: one just needs to add to it degree 1 function nodes
connected to each variables, accounting for the factor
ð1� pÞdx0

i
;yi
þ pdx0

i
;1�yi

h i
. The factor graph of the perceptron learning

problem is shown on Fig. 3.
If the factor graph were a tree, it would be easy to solve our

problem (for instance find marginals). The idea of BP is to write
‘mean-field’ like equations that would be exact on a tree, and try
to use them also in more general (and more interesting) cases.
BP equations are self-consistency relations between two types of
‘messages’, gi!a and ga!i. On trees, gi!a can be interpreted as the
probability measure on xi when the factor node a has been re-
moved, while ga!i is the probability measure on xi when all factors
neighboring i, expect a, have been removed. Denoting
@a ¼ fi1ðaÞ; . . . ; iKðaÞg the neighborhood of i, and @i the neighbor-
hood of a, BP equations read (Mézard and Montanari, 2009):

ga!iðxiÞ ¼
1

za!i

X
x@ani

waðxi1ðaÞ; . . . ; xiK ðaÞÞ
Y

j2@ani
gj!aðxjÞ ð10Þ

gi!aðxiÞ ¼
1

zi!a

Y
b2@ina

gb!iðxiÞ ð11Þ

where the z’s are normalization constants. In practice, these equa-
tions are solved by iteration (with parallel or random update sched-
ules) until a fixed point is reached. Convergence is typically met in
linear time. This makes BP a very fast algorithm. At the fixed point,
the probability measure on xi is given by:

PiðxiÞ ¼
1
zi

Y
a2@i

ga!iðxiÞ ð12Þ

Thermodynamical quantities such as the free-energy � log Z can
also be derived (Mézard and Montanari, 2009) from the messages
ðgi!a;ga!iÞ.

Note that while convergence and accuracy are guaranteed when
the graph is a tree, BP equations sometimes fail to find the correct
fixed point or provide a poor approximation of the probability
measure when the graph is loopy. This can happen when there
are many small loops, or when correlations build up across the
graph. To overcome the first issue, generalized Belief Propagations
(GBP) schemes have been proposed (Yedidia et al., 2001). The sec-
ond issue, which is related to the partition of the measure P into a
multiplicity of disconnected ‘states’, can be handled by an exten-
sion of BP called Survey Propagation (SP) (Mézard and Zecchina,
2002; Braunstein et al., 2005).

As we mentioned earlier, BP is the best known solver for LDPC
codes, provided that the channel noise is not too high. While BP
can also handle random satisfiability problems for small enough
clause densities a, SP becomes necessary as one gets to higher a,
where problems become hard. SP can find solutions to 3-SAT in-
stances for up to 107 variables at a ¼ 4:25, very close to the satis-
fiability threshold ac (Mézard and Zecchina, 2002).

Beside their efficiency, the appeal of message passing proce-
dures like BP resides in their local nature: information is propa-
gated along the edges of the graph, and each message is
updated using only other messages coming into the same node.
This makes them highly amenable to parallelization. It is also
tempting to make the connection with learning mechanisms in
the brain, whereby synaptic strengths change only according to
the activity of its neighboring neurons. And indeed, the engineer-
ing of BP/SP-inspired algorithms for the perceptron show that
learning rules using only post and pre-synaptic activities, as well
as error signals, suffice to implement efficient learning (Baldassi
et al., 2007).
6. An application: the inverse Ising problem

We now study a novel application of message passing to the in-
verse Ising problem introduced in Section 4.2. As in the perceptron,
the proposed method relies on local exchanges of information be-
tween variables.

Let us start with the direct problem, whose factor graph is rep-
resented in Fig. 5. BP can be used to compute probability measures
on single variables (i.e. local magnetizations mi), but it does not
give information on the two-point correlation functions vij. To ac-
cess this information we will need to go a bit further. We shall
make use of the fluctuation–dissipation relation, which offers a
convenient way to estimate pairwise correlation functions using
the derivatives of magnetizations:

vij ¼ vji ¼
@mi

@hj
¼ @mj

@hi
: ð13Þ

But first we need to adapt the language of BP to the Ising model.
The binary nature of Ising variables allows us to reduce BP mes-
sages to single numbers:

gi!aðxiÞ ¼
1þ ximi!a

2
; ga!iðxiÞ ¼

1þ xima!i

2
: ð14Þ

These messages mi!a and ma!i are called ‘cavity’ magnetiza-
tions, as they are defined on amputed graphs. Note that when fac-
tor a is just a field contribution ehixi , the message is trivial. When
factor a is an interaction contribution eJijxixj , we rewrite for conve-
nience mi!j :¼ mi!a.

The iteration of BP equations, along with Eq. (12), allows to
compute the mi’s. We now define a new type of messages, called
cavity susceptibilities, and defined as:

vi!j;k :¼ @mi!j

@hk
: ð15Þ



Fig. 7. Reconstruction of a small linear chain. Knowing only the correlation functions, and with no prior knowledge on the topology of the graph, the algorithm can infer both
the structure and the numerical values of the interaction strengths. Here is shown the progress of the algorithm. The gray level of each edge codes for the couplings strength
Jij . The algorithm is started with random initial conditions (leftmost graph). Next are shown, from left to right, the couplings after 3, 6, 9 and 20 iterations.
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These messages are tied by a new set of self-consistency equa-
tions, called ‘susceptibility propagation’ equations, simply ob-
tained as the derivatives of BP Eqs. (10) and (11) with respect to
fhkg. They reflect how small local perturbations can propagate
through the graph to remote variables, even when these variables
and the perturbation are not directly linked. As in BP, these equa-
tions can be solved iteratively. When convergence is reached, the
total susceptibilities vij are given by derivatives of Eq. (12) with re-
spect to fhkg.

This susceptibility propagation algorithm has the same advan-
tages and downsides as BP. While being relatively fast, it relies
on the assumption that the behavior of the model is not far from
that of a tree factor graph. This can be true if the graph is sparse
and locally tree-like, or if the interactions are small enough.

Susceptibility propagation (approximately) solves the direct Is-
ing problem ðhi; JijÞ ! ðmi;vijÞ. How can we use it to solve the in-
verse problem? The key is to realize that although susceptibility
equations are self-consistency equations on the messages, they
can also be viewed as self-consistency equations on the ‘inputs’
ðhi; JijÞ by simply extracting them from the belief and susceptibility
propagation equations. The susceptibility propagation iteration
equations remain essentially unchanged, with the notable differ-
ence that now ðmi;vijÞ are treated as constants, while ðhi; JijÞ be-
come the unknown variables to be updated.

We have tested our algorithm on synthetic data. First we have
considered a spin glass with random gaussian couplings Jij of zero
mean and variance J2=N, with no magnetic fields, hi ¼ 0. This is the
Sherrington-Kirkpatrick model. Small problems ðN ¼ 10;15;20Þ
are drawn at random and solved exactly by exhaustive enumera-
tion. Then our algorithm tries to reconstruct the couplings Jij from
the correlation functions. Its performance is shown on Fig. 6, and is
contrasted with other mean-field methods (Kappen and Rodriguez,
1998). Interestingly, all mean-field schemes fail for J > 1, where
the system notoriously becomes ‘glassy’, with the onset of meta-
stable states.

Perhaps the power of susceptibility propagation is better shown
on examples where it is supposed to be exact, namely, when the
underlying topology is a tree. For simplicity we have tested our
algorithm on linear chains. Provided that the couplings are not
too large, we can reconstruct both the topology of the linear chain
(i.e. the order of variables on the chain), and the exact strength of
interactions between neighbors (see Fig. 7). When the couplings
are too large, the exact solution becomes unstable. This can par-
tially be remedied, however, by making zero couplings more
attractive in the equations, thus stabilizing sparse topologies.

A more systematic method for treating sparse networks is how-
ever needed. With it, susceptibility propagation could be used as a
comprehensive network reconstruction algorithm, with possible
applications to the inference of Bayesian networks, Markov chains
with arbitrary topologies, or population genetics.

7. Conclusions

The message passing strategy often provides the most efficient
algorithms for solving hard constraint satisfaction problems, or for
inference in graphical models. This is especially true when the fac-
tor graph representing the problem has a local tree-like structure.
It is particularly remarkable that some very difficult problems,
which cannot be solved by other methods, are solved by proce-
dures of local exchange of messages between the variables and
constraints. It is likely that recent developments in this domain
can have some impact in neuroscience, in at least two directions.
First of all because some major challenges in neuroscience, linked
to the analysis of experimental data, can themselves be formulated
in terms of graphical or constraint satisfaction problems. Secondly
because the mere fact that distributed local information exchange
systems achieve this task is very appealing in the perspective of
information processing by the brain.
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