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Networks describe a variety of interacting complex systems in
social science, biology, and information technology. Usually the
nodes of real networks are identified not only by their connec-
tions but also by some other characteristics. Examples of char-
acteristics of nodes can be age, gender, or nationality of a per-
son in a social network, the abundance of proteins in the cell
taking part in protein-interaction networks, or the geographical
position of airports that are connected by directed flights. Inte-
grating the information on the connections of each node with
the information about its characteristics is crucial to discriminat-
ing between the essential and negligible characteristics of nodes
for the structure of the network. In this paper we propose a
general indicator Θ, based on entropy measures, to quantify the
dependence of a network’s structure on a given set of features.
We apply this method to social networks of friendships in U.S.
schools, to the protein-interaction network of Saccharomyces cere-
visiae and to the U.S. airport network, showing that the proposed
measure provides information that complements other known
measures.
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N etworks have become a general tool for describing the struc-
ture of interaction or dependencies in such disparate systems

as cell metabolism, the internet, and society (1–5). Loosely speak-
ing, the topology of a given network can be thought of as the
byproduct of chance and necessity (6), where functional aspects
and structural features are selected in a stochastic evolutionary
process. The issue of separating “chance” from “necessity” in
networks has attracted much interest. This entails understand-
ing random network ensembles (i.e., chance) and their inherent
structural features (7–9) but also developing techniques to infer
structural and functional characteristics on the basis of a given
network’s topology. Examples go from inference of gene function
from protein-interaction networks (10) to the detection of com-
munities in social networks (11, 12). Community∗ detection, for
example, aims at uncovering a hidden classification of nodes, and
a variety of methods have been proposed relying on (i) structural
properties of the network [betweenness centrality (13), modularity
(14), spectral decomposition (15), cliques (16), and hierarchi-
cal structure (17)], (ii) statistical methods (18), or (iii) processes
defined on the network (9, 19). Implicitly, each of these methods
relies on a slightly different understanding of what a community
is. Furthermore, there are intrinsic limits to detection; often the
outcome depends on the algorithm and a clear assessment of the
role of chance is possible in only a few cases (see, e.g., refs. 9
and 20).

As a matter of fact, in several cases, a great deal of additional
information, beyond the network topology, is known about the
nodes. This comes in the form of attributes such as age, gender,
and ethnic background in social networks or annotations of known
functions for genes and proteins. Sometimes this information is
incomplete, so it is legitimate to attempt to estimate missing infor-
mation from the network’s structure. But often, the empirical data
on the network are no more reliable or complete than those on the
attributes of the nodes. In such cases, it may be more informative

to ask what the functions or attributes of the nodes tell us about
the network than the other way around. In this article we propose
an indicator Θ that quantifies how much the topology of a network
depends on a particular assignment of node characteristics. This
provides an information bound that can be used as a benchmark
for feature-extraction algorithms. This exercise, as we shall see,
can also reveal statistical regularities that shed light on possible
mechanisms underlying the network’s stability and formation.

In the following, we first define Θ, and then we investigate sep-
arately the case in which node characteristic assignment induces
a community structure on the network and the case in which the
assignment corresponds to a position of the nodes in some metric
space. We will calculate Θ for benchmarks and for examples of
social, biological, and economics networks.

Definition of Θ

We shall first give a description of our indicator Θ in a simple case
study and then give a general abstract definition.

Let us consider the specific problem of evaluating the sig-
nificance of the network community structure �q = (q1, . . . , qN )
induced by the assignment of a characteristic qi ∈ {1, . . . , Q}, to
each node i ∈ {1, . . . , N} of a network of N nodes. Individual
nodes are characterized by their degree ki, which is the number
of links they have to other nodes in the network. The network g
is fully specified by the adjacency matrix taking values gi,j = 1 if
nodes i and j are linked and 0 otherwise. The community struc-
ture induced by the assignment qi on the network is described
by a matrix A of elements A(q, q′) indicating the total number of
links between nodes with characteristics q and q′. A natural mea-
sure of the significance of the induced community structure �q on
the network g is provided by the number of graphs g′ between
those individual nodes (characterized by the degree sequence �k)
that are consistent with A. The logarithm of this number is the
entropy Σ�k,�q (21, 22) of the distribution that assigns equal weight

to each graph g with the same �q and �k. This number also depends
on the degree sequence �k and the relative frequency of differ-
ent values of q across the population. These systematic effects
are removed considering the entropy Σ�k,π(�q) obtained from a ran-
dom permutation π(�q) : i → qπ(i) of the assignments, where
{π(i), i = 1, . . . , N} is a random permutation of the integers
i ∈ {1, . . . , N}. Theindicator Θ is obtained as the standardized
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deviation of Σ�k,�q from the entropy Σ�k,π(�q) of networks with
randomized assignments:

Θ�k,�q = Eπ

[
Σ�k,π(�q)

]−Σ�k,�q√
Eπ

[(
Σ�k,π(�q) − Eπ

[
Σ�k,π(�q)

])2] , [1]

where Eπ[. . .] stands for the expected value of over random uni-
form permutations π(�q) of the assignments. In words, Θ measures
the specificity of the network g for the particular assignment �q, with
respect to assignments obtained by a random permutation.

The indicator Θ can be similarly defined in a much more general
setting, with the following abstract definition: Let g ∈ GN be the
network we are interested in, where N is the number of vertices
and gi,j is the adjacency matrix. GN is the set of all graphs of N
vertices. An assignment is a vector �q, such that for each node i,
qi ∈ Q is defined on a set Q of possible characteristics, given by
the context. Call Q = QN the set of all possible such vectors on
Q. A feature is a mapping φ : GN × Q → Φ, which associates to
each graph g and assignment �q a graph feature φ(g, �q) ∈ Φ. As will
become clear, we do not need any assumption about the topology
of the set of features Φ.

A simple example of features is those which do not depend on
any assignment [φ(g, q) = φ(g)], such as the number of edges or
the degree sequence. Instead, the previously introduced commu-
nity structure A is an example of a feature depending both on
the degree sequence �k and on the assignment �q, i.e. φ(g, �q) =
{�k, A(q, q′), q, q′ ∈ Q}.∗

In order to assess the relevance of a feature φ(g, �q), we make use
of the entropy Σφ(g,�q) of randomized network ensembles (21, 22).
The entropy of the ensemble of graphs with feature φ(g, �q) is
defined as the normalized logarithm of the number of possible
graphs, consistent with φ(g, �q) and normalized by N :†

Σφ(g,�q) = 1
N

log |{g′ ∈ GV : φ(g′, �q) = φ(g, �q)}|. [2]

This quantity evaluates the level of randomness that is present
in the ensemble of networks with a given feature. The numerical
evaluation of the entropy Σφ(g,�q) is a very challenging problem.
On the contrary, this quantity can be theoretically calculated by
introducing a partition function in a statistical mechanics for-
malism and evaluating it by saddle point approximation [see
supporting information (SI) Text for the equations and the codes
for the evaluation of Σ]. Finally, with the same notations used
above, the indicator Θ is defined as

Θ
φ(�k,�q) = Eπ

[
Σ

φ(�k,π(�q))

]−Σ
φ(�k,�q)√

Eπ

[(
Σ

φ(�k,π(�q)) − Eπ

[
Σ

φ(�k,π(�q))

])2] . [3]

The quantity Θ provides a measure of the relevance of a given fea-
ture φ(g, q) for the structure of the network. Although Σφ(g,q) can
be obtained in analytic form, the average and the standard devi-
ation over permutations require a random sampling of the space
of possible permutations of the characteristics. In practice, Nsamp
random permutations are drawn in order to estimate the expected
value and the variance of Σ

φ(�k,π(�q)) in Eq. 3. Furthermore, the max-
imal deviation of Σ

φ(�k,π(�q)) from the expected value provides an
estimate of the confidence interval at probability p = 1/Nsamp.‡

∗To be precise, here ki = Σjgi,j is the degree and A(q, q′) = Σi,jgi,jδqi ,qδqj ,q′ is the number

of links between nodes with attribute q and q′.
† In other words, Σφ(g,�q) is the Gibbs–Boltzmann entropy of the ensemble of graphs which

assigns equal weight to each graph g satisfying the constraints, which is equivalent to
the usual Shannon entropy of the distribution of graphs in this ensemble.

‡A more precise estimate of the probability of occurrence of a given value of Θ would
entail the study of large deviation properties of the entropy distribution. This goes
beyond our present purposes.

Besides the value of Θ, our approach also provides more
detailed information. Technically, this is extracted from the saddle
point values of the Lagrange multipliers introduced in the calcu-
lation of Σφ(g,q) in order to enforce the constraints (see SI). In
the examples discussed below, this information is encoded in the
probability that a node i is linked to a node j in an ensemble with
a given feature φ(g, �q). This is given by

pij = zizjW (qi, qj)
1 + zizjW (qi, qj)

. [4]

The value of the “hidden variables” �z and the statistical weight
W (q, q′) can be inferred from the real data (21, 22). Therefore
the function W (qi, qj) can shed light on the dependence of the
probability of a link between nodes i and j, on their assignments
qi and qj.

Application to Networks with a Community Structure
In the following, we will describe how to measure Θ for assess-
ing the relevance of a community structure. First, we analyze
the behavior of Θ on synthetic datasets. These have been used
as benchmarks for community detection algorithms (9, 14). For
these benchmarks, we find that Θ increases with the number N of
vertices, reflecting the intuitive idea that larger graphs can resolve
finer information on the global architecture of the network. We
shall see that even in the region where community detection algo-
rithms fail, there is a detectable influence of community structure
on the topology of the network. Next, we apply this tool to a social
network and a biological network. In particular, we will consider
a dataset of friendship networks in U.S. schools and a network of
high-confidence protein–protein interaction (23). The dataset of
friendship networks in U.S. schools, which includes 84 schools, is
particularly suitable for contrasting the information gained from
Θ to that derived from other indicators, such as modularity (14).
We will show that, at least in this case study, the information pro-
vided by Θ is of a different nature and more detailed than that
provided by other measures.

As discussed above, in this section, we shall take qi ∈ {1, . . . , Q}
to be the label of the class which node i belongs to, with Q <

√
N .§

The feature φ(g, �q) = {�k, A(q, q′)} specifies the degree sequence �k
and the number A(q, q′) of links between nodes in communities q
and q′. Finally, we calculate the indicator Θ defined in Eq. 3 for
the different cases.

Evaluation of Θ on Benchmarks. We evaluate Θ on the bench-
mark random networks, originally proposed in refs. 9 and 14, of
N = 128,256,512 nodes divided into 4 communities of equal size
with fixed average connectivity k̄ = 16, varying the average degree
k̄out towards different communities.

The results are shown in Fig. 1. This shows that,for a fixed struc-
ture, Θ for different values of N nicely collapses on a single curve
when rescaled by the factor

√
N . This suggests that the size depen-

dence of Θ results from the random fluctuations of the intensive
quantity Σφ(g,π(�q)). Hence the same scaling is expected in general,
in not too heterogeneous systems.

¶

§This limitation is imposed by the fact that the saddle point method we use to evaluate
the entropy is reliable only if the number of imposed constraints N + Q2 is of the same
order of magnitude of N.

¶
A plausibility argument for the scaling behavior is the following: Consider a particular
permutation π and imagine making a small number n � N of further perturbations by
exchanging assignments on pairs of randomly chosen nodes. Each such perturbation is
likely to affect a different part of the network, which means that the associated changes
in the entropy can be considered as uncorrelated. Hence, we expect a change in the
entropy density of the order of

√
n/N. This is expected to hold true also for n/N finite

but small suggesting that, as N increases, the difference between the entropies of 2
random permutations—and hence the denominator in Eq. 3—is of order 1/

√
N.
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Fig. 1. The dependence of Θ on kout in random networks of N =
128,256,512 nodes with 4 equal size communities and average connectiv-
ity k̄ = 16 (each point is obtained as an average over 10 realizations). To be
compared with Figure 7 in ref. 14 and Figure 10 in ref. 9.

Second, Fig. 1 shows that Θ vanishes only when there is no dis-
tinction in linking probabilities: With 4 groups this occurs when
k̄out 	 3

4 k̄ = 12, which is larger than the value (k̄out ≈ 8) where
community detection algorithms fail (9, 14). Indeed, community
detection can be seen as the inverse problem to that addressed
here. In this spirit, Θ provides an a priori bound on the possibil-
ity of detecting communities in networks, as well as a universal
indicator of the performance of different algorithms.

Dataset of Friendship Networks in U.S. Schools. We apply our
method to a dataset of 84 U.S. schools in which students were
asked to provide information about themselves (among other
things specifying in particular sex, age, and ethnic background)
together with the names of up to 5 of their female friends and up
to 5 of their male friends. Although the networks are directed in
origin, in our analysis, in order to simplify study, we consider them
as undirected, where each undirected link is present if at least 1 of
the 2 students has indicated the linked one as his/her friend. The
maximal connectivity of these networks is k = 16, reached only in
rare cases. This dataset is particularly interesting for the study of
homophily in American schools (24–26).

We have measured the value of Θ associated with the com-
munity structure induced by the self-reported ethnic background
(there were 6 possibilities in the questionnaire: Q = 6) in all the 84
schools of the dataset. Loosely speaking, in this case Θ measures
the extent to which ethnic background shapes the social network
of friendship in U.S. schools.

For 25% of the schools we find that Θ is not significant, at the
5% confidence level. For the rest of the dataset, Θ takes widely
scattered values across schools (up to Θ 	 532). In order to asses
how much the variation in Θ correlates with ethnic diversity, we
take, as a measure of diversity in the assignment �q, the Shannon
entropy

S = −
Q∑

q=1

xq log(xq), [5]

where xq is the fraction of nodes with qi = q. We remark that
the Shannon entropy S of a partition measures the diversity in
the population but does not contain any information on the social
network.

In Fig. 2 we report the dependence of Θ on S. We observe
that the value of Θ/

√
N is small and not statistically significant

Fig. 2. Relation between Θ/
√

N, which captures the relevance of ethnic
background for friendship networks, and the Shannon entropy S, indicat-
ing the ethnic diversity of the student population. Each point corresponds
to a different U.S. school in the dataset. Error bars indicate 5% confidence
intervals.

in ethnically uniform schools (S < 0.3) but it grows larger and
significant for schools with a stronger diversity. The largest values
of Θ, as well as the largest spread, occur for intermediate values
of S (0.4 ÷ 0.5), suggesting a nontrivial dependence. In order to
asses the statistical relevance of this result, we have studied the
dependence of Θ on S in benchmark synthetic networks, such as
the ones presented above, where the fraction of links within the
community of each individual is kept constant, but the relative
sizes of communities are varied. A much weaker, barely signifi-
cant increase of Θ with S was found in synthetic networks, hinting
that a nontrivial interplay between homophily and diversity might
be responsible for the features observed in Fig. 2.

A popular measure for community structure, frequently used in
the literature, is modularity, which is closely related to inbreed-
ing homophily indices in social sciences (27) and the F-statistic in
genetics (28).

Modularity M measures how densely connected the nodes that
belong to the same partition are. It is defined as

M =
Q∑

q=1

[
lq
L

−
(

kq

2L

)2
]

, [6]

where Q is the total number of communities or classes, L is the
total number of links, lq is the total number of links joining nodes
of community q and kq is the sum of the degrees of the nodes in
the community q.

Fig. 3 reports the value of Θ/
√

N versus the value of the mod-
ularity M for each school, suggesting that the 2 indicators are not
simply correlated. The 2 indicators provide different information:
loosely speaking, whereas M provides an absolute measure of the
excess of inward or outward links in a community assignment,
Θ measures how much the biases in the community assignment
is correlated with the network topology. In order to substantiate
this statement in a visual manner, we identify 2 schools with dif-
ferent values of Θ/

√
N but similar values of N , modularity M ,

and Shannon entropy S. Fig. 4 reports the friendship networks in
the 2 schools, strongly suggesting that significant differences in Θ
imply different degrees of separation between the different com-
munities, an effect which is not captured by M . This shows that
a community assignment with a given value of the modularity, is
more informative on the network topology when the network is
strongly clustered in groups, than when the network has a less
pronounced cluster structure.

Bianconi et al. PNAS July 14, 2009 vol. 106 no. 28 11435



Fig. 3. The value of Θ/
√

N versus the modularity M for the dataset of
friendship networks in American Schools. Each point is a school.

Dataset of a Protein–Protein Interaction Network. We apply the
proposed method to the study of the relevance of the protein
abundance on the protein interacting map of Saccharomyces cere-
visiae. The dataset, published in ref. 23, is a subset of the protein-
interaction network of S. cerevisiae formed by N = 1,740 proteins
with known concentrations xi and 4,185 interactions, indepen-
dently confirmed in at least 2 publications. The abundance of a
protein varies between 50 molecules per cell up to 1,000,000 mol-
ecules per cell with a median of 3,000 molecules per cell. The
abundance of a protein is not correlated with simple local struc-
tural features of the protein interaction map, such as the degree
(R = 0.13) or the clustering coefficient (R = 0.005). This raises
the question of whether the concentration of proteins has any rel-
evance to the interaction network and if so, what information it
provides.

We bin the abundance x into 20 logarithmically spaced intervals
given by the ordered vector �x = (x0, x1, . . . , x20). Next, we assign to
each protein i the corresponding coarse-grained abundance qi = k
if xi ∈ [xk−1, xk). The features of the network that we consider are
again the connectivity of each protein together with the number of
links between proteins of different abundance A(qi, qj). We find
a value of Θ = 21.76, well beyond the 1% confidence interval
Θ < 2.7, showing that the abundance of the protein encodes rel-
evant information on the network structure. In Fig. 5 we report
the value of the statistical weight W (x, x′) in Eq. 4 as a function
of the (log–) abundance of each pair of proteins in the network.
The value of W (x, x′) is normalized to the value WR(x, x′) found
in networks where the protein abundance is randomized in order
to highlight features of the specific concentration assignments in
the dataset. The maximum of W (x, x′)/WR(x, x′) along the diago-
nal suggests that proteins of a given concentration tend to interact
preferentially with proteins with a similar concentration, therefore
showing some “assortativity” of the interaction map in the plane
of the abundance x, x′.

Application to Spatial Networks
The role of the space in which networks are embedded, and its
implications on navigability and efficiency, has attracted consid-
erable interest (29–32). Here, we show how the proposed indicator
Θ can be used for assessing how relevant the spatial position of
the nodes in some geographical or abstract metric space is.

In this case, each node can be characterized by its degree ki and
by its position in space qi. We first define a set d ∈ {d1, . . . , dD}
(D = O(N)) of fixed increasing distance values. We then consider
the ensemble of networks with given feature φ(g, �q) = {�k, B(d)},

where B(d) = (b1, . . . , bD) is the vector of the total number b� of
links between nodes at distance d = |qi − qj| ∈ [d�−1, d�] (d0 = 0).
Finally, we calculate the entropy of this ensemble Σφ(g,�q) and the
indicator Θ from the definition of Eq. 3.

Dataset of U.S. Airport Networks. Here, we apply the proposed
method to the network of U.S. airports studied in ref. 33. We
find that, as it occurs for the internet (29), also the airport net-
work is consistent with a power-law dependence of the linking
probability between 2 nodes with their distance. The network con-
tains N = 675 airports and 3,253 connections, each of which is
a regular flight between 2 airports. In this case, with each air-
port is associated a geographical location qi. We bin the distances
into D = 20 logarithmically spaced intervals, and we consider
as features of our graph the degree sequence �k together with
B(d), as discussed above. We find a high value of Θ = 1.1 × 103,
showing high significance of space in the structure of airport con-
nections, as expected. In this case, W (q, q′) = W (d(q, q′)) is a
function of the distance only. In Fig. 6, we report the shape of
the function W = W (d), depending on the distance d between
any 2 airports i and j, together with the shape of WR(d) in the

Fig. 4. The case of 2 schools with similar modularity and Shannon entropy
but very different value of Θ. (Upper) The friendship network of a school
of N1 = 1,461 students, average connectivity 〈k〉 = 5.3, Shannon entropy
S1 = 0.41, modularity M1 = 0.64, and Θ1/

√
N = 1.69. (Lower) The friend-

ship network of a school of N2 = 1,147 students, average degree 〈k〉 = 8.8,
Shannon entropy S2 = 0.48, modularity M2 = 0.66, and Θ2/

√
N = 15.71.

The different colors represent the self-reported ethnic backgrounds of the
students.

11436 www.pnas.org / cgi / doi / 10.1073 / pnas.0811511106 Bianconi et al.
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Fig. 5. Relevance of protein abundance x for the protein–protein inter-
action network studied in ref. 23. The statistical weight W (x, x ′) describing
the likelihood of links between proteins with concentrations x and x ′ is first
normalized to the analogous function WR(x, x ′), which is obtained in the ran-
domized dataset (with a random permutation of the abundance values xi ).
The density plot reports the dependence of W (x, x ′)/WR(x, x ′) as a function
of the protein abundance x, x ′.

case in which the positions of the airports are randomly reshuf-
fled. The function W (d) indicates that the probability of a con-
nection decays approximately like a power law, with deviations
for airports at distances < 100 km (flights over such small dis-
tances mainly connect places such as islands or remote areas in
Alaska, for which charter flights are the only feasible connec-
tion). A log–log fit yields W (d) ∼ d−α with α = 3.0 ± 0.2 for
d > 100 km.

Networks with a linking probability that depends on a power
law of the distance are of special relevance, both because they
occur in real networks (see, e.g., ref. 29) and, in abstract terms,
for navigability and efficiency (30–32).

A possible interpretation of the reported statistical regularity
is the following. Imagine that flights were designed by a social
planner with the aim of optimizing the network for an uniformly
distributed population of passengers. This task is similar to that of
finding small-world networks with optimal navigability. Following
the pioneering work of Kleinberg (30), it has been shown that opti-
mal navigability can be achieved in small-world networks where
long-range links are drawn from a distribution with α ∈ [2, 3] (32).
If we suppose that airports are uniformly distributed across the
country and that flying costs have a contribution which increases
linearly with distance, then an airline company would face
costs

C(R) ∝ 2π

∫ ∞

R
drr2W (r) ∝ R3−α

to cover distances greater than R � 1. With α < 3, costs would
be dominated by long-distance flights. In a regime of free compe-
tition between airlines, α ≥ 3 is essential in order to maintain
a diversified portfolio of flights over short and long distances.
This suggests that α ≈ 3 corresponds to the optimal com-
promise between networks with optimal navigability and those
which are economically viable in a competitive market of airline
companies.

Fig. 6. The function W (qi , qj) = W (d) in the U.S. airport network, which
(see Eq. 4) encodes the statistical weight of a link between airports at dis-
tance d (in kilometers). For comparison, the same function is shown for the
randomized network in which the geographic locations of the airports have
been reshuffled. The line, which represents an inverse dependence on the
cube of the distance (α = 3), is drawn as a guide to the eye.

Conclusion
In conclusion, we propose a method for assessing the relevance
of additional information about the nodes of a networks using the
information that comes from the topology of the network itself.
The method makes use of a quantity Θ, which is not reducible to
any other quantity already introduced in network analysis. The
method can be generalized to directed or weighted networks.
We test and illustrate this method on synthetic as well as real
networks, such as the social network of friendship interaction in
U.S. schools, the protein interaction map of S. cerevisiae, and the
U.S. airport network. As a byproduct, the method also provides
additional nontrivial information and highlights hidden statistical
regularities.

Data
The networks of American schools come from the National Lon-
gitudinal Study of Adolescent Health. It consists of data from
surveys conducted in 1994 in a sample of 84 American high schools
and middle schools by the University of North Carolina Carolina
Population Center (www.cpc.unc.edu/addhealth).

The protein interaction map that we used is based on the
BioGRID database 2.0.20 (www.thebiogrid.org). It is described in
detail in ref. 23 and is freely available as supplementary material
of ref. 23.

The airport network was recorded by ref. 33 from the 2005 statis-
tics of the International Air Transport Association (www.iata.org)
and is available at http://cxnets.googlepages.com.
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