
Articles
https://doi.org/10.1038/s42256-022-00468-6

1Amazon Quantum Solutions Lab, Seattle, WA, USA. 2AWS Intelligent and Advanced Compute Technologies, Professional Services, Seattle, WA, USA.
3AWS Center for Quantum Computing, Pasadena, CA, USA. ✉e-mail: maschuet@amazon.com; johbruba@amazon.com; katzgrab@amazon.com

Optimization is ubiquitous across science and industry.
Specifically, the field of combinatorial optimization—the
search for the minimum of an objective function within a

finite but often large set of candidate solutions—is one of the most
important areas in the field of optimization, with practical (yet noto-
riously challenging) applications found in virtually every industry,
including both the private and public sectors, as well as in areas such
as transportation and logistics, telecommunications and finance1–5.
Although efficient specialized algorithms exist for specific use
cases, most optimization problems remain intractable, especially
in real-world applications where problems are more structured and
thus require additional steps to make them amenable to traditional
optimization techniques. Despite remarkable advances in both algo-
rithms and computing power, substantial yet generic improvements
have remained elusive, generating an increased interest in new opti-
mization approaches that are broadly applicable and radically dif-
ferent from traditional operations research tools.

In the broader physics community, the advent of quantum
annealing devices such as the D-Wave Systems Inc. quantum
annealers6–9 has spawned a renewed interest in the development of
heuristic approaches to solve discrete optimization problems. On
the one hand, recent advances in quantum science and technol-
ogy have inspired the development of novel classical algorithms,
sometimes dubbed nature-inspired or physics-inspired algorithms
(for example, simulated quantum annealing10,11 running on con-
ventional CMOS hardware), that have raised the bar for emerg-
ing quantum annealing hardware (for example, refs. 12–15). On the
other hand, in parallel to these algorithmic developments, substan-
tial progress has been made in recent years in the development of
programmable special-purpose devices based on alternative tech-
nologies, such as the coherent Ising machine based on optical para-
metric oscillators16,17, digital MemComputing machines based on
self-organizing logic gates18,19, and the ASIC-based Fujitsu digital
annealer (ASIC, application-specific integrated circuit)20–22. Some
of these approaches face severe scalability limitations. For example,

in the coherent Ising machine there is a trade-off between preci-
sion and the number of variables, and the Fujitsu digital annealer—
baked into an ASIC—can currently handle, at most, 8,192 variables.
It is thus of great interest to find new alternative approaches to tackle
large-scale combinatorial optimization problems, going far beyond
what is currently accessible with quantum and nature-inspired
approaches alike.

In the deep learning community, graph neural networks (GNNs)
have seen a burst in popularity over the past few years23–30. In essence,
GNNs are deep neural network architectures specifically designed
for graph structure data, with the ability to learn effective feature
representations of nodes, edges or even entire graphs. Prime exam-
ples of GNN applications include classification of users in social
networks31,32, the prediction of future interactions in recommender
systems33 and the prediction of certain properties of molecular
graphs34,35. As a convenient and general framework to model a vari-
ety of real-world complex structural data, GNNs have been applied
successfully to a broad set of problems, including recommender
systems in social media and e-commerce36,37, the detection of mis-
information (fake news) in social media38, and various domains of
natural sciences including event classification in particle physics39,40,
to name a few. Although several specific implementations of GNNs
exist29,41,42, at their core, GNNs typically iteratively update the fea-
tures of the nodes of a graph by aggregating the information from
their neighbours (often referred to as message passing43), thereby
iteratively making local updates to the graph structure as the train-
ing of the network progresses. Because of their scalability and inher-
ent graph-based design, GNNs present an alternative platform on
which to build large-scale combinatorial heuristics.

In this Article we present a highly scalable GNN-based solver
to (approximately) solve combinatorial optimization problems with
up to millions of variables. The approach is schematically depicted
in Fig. 1, and works as follows. First, we identify the Hamiltonian
(cost function) H that encodes the optimization problem in terms
of binary decision variables xν ∈ {0, 1} and we associate this variable

Combinatorial optimization with physics-inspired
graph neural networks
Martin J. A. Schuetz   1,2,3 ✉, J. Kyle Brubaker   2 ✉ and Helmut G. Katzgraber   1,2,3 ✉

Combinatorial optimization problems are pervasive across science and industry. Modern deep learning tools are poised to solve
these problems at unprecedented scales, but a unifying framework that incorporates insights from statistical physics is still
outstanding. Here we demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our
approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization prob-
lems, such as maximum cut, minimum vertex cover, maximum independent set, as well as Ising spin glasses and higher-order
generalizations thereof in the form of polynomial unconstrained binary optimization problems. We apply a relaxation strategy
to the problem Hamiltonian to generate a differentiable loss function with which we train the graph neural network and apply a
simple projection to integer variables once the unsupervised training process has completed. We showcase our approach with
numerical results for the canonical maximum cut and maximum independent set problems. We find that the graph neural net-
work optimizer performs on par or outperforms existing solvers, with the ability to scale beyond the state of the art to problems
with millions of variables.

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell 367

mailto:maschuet@amazon.com
mailto:johbruba@amazon.com
mailto:katzgrab@amazon.com
http://orcid.org/0000-0001-5948-6859
http://orcid.org/0000-0002-6439-5270
http://orcid.org/0000-0003-3341-9943
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-022-00468-6&domain=pdf
http://www.nature.com/natmachintell

Articles NaTure MaCHIne InTellIgenCe

with a vertex ν ∈ V for an undirected graph G = (V , E) with vertex
set V = {1, 2, …, n} and the edge set E = {(i, j) : i, j ∈ V} cap-
turing interactions between the decision variables. We then apply a
relaxation strategy to the problem Hamiltonian to generate a differ-
entiable loss function, with which we perform unsupervised train-
ing on the node representations of the GNN. The GNN follows a
standard recursive neighbourhood aggregation scheme43,44, where
each node ν = 1, 2, …, n collects information (encoded as feature vec-
tors) of its neighbours to compute its new feature vector hkν at layer
k = 0, 1, …, K. After k iterations of aggregation, a node is represented
by its transformed feature vector hkν, which captures the structural
information within the node’s k-hop neighbourhood28. For binary
classification tasks we typically use convolutional aggregation steps,
followed by the application of a nonlinear softmax activation func-
tion to shrink down the final embeddings hKν to one-dimensional
soft (probabilistic) node assignments pν = hKν ∈ [0, 1]. Finally, once
the unsupervised training process has completed, we apply a pro-
jection heuristic to map these soft assignments pν back to integer
variables xν ∈ {0, 1}, using, for example, xν = int(pν). We numerically
showcase our approach with results for canonical NP-hard optimi-
zation problems such as maximum cut (MaxCut) and maximum
independent set (MIS), showing that our GNN-based approach
can perform on par or even better than existing well-established
solvers, while being broadly applicable to a large class of optimiza-
tion problems. The scalability of our approach also opens up the
possibility of studying unprecedented problem sizes with hun-
dreds of millions of nodes when leveraging distributed training
in a mini-batch fashion on a cluster of machines, as demonstrated
recently in ref. 45.

The Article is structured as follows. In the next section we pro-
vide some context for our work, discussing recent developments
at the cross-section between machine learning and combinatorial
optimization. We then summarize the basic concepts underlying
our approach, as well as information on the class of problems that
this approach can solve. An outline of the implementation of the
proposed GNN-based optimizer follows, then numerical experi-
ments. We next discuss potential real-world applications in indus-
try. Finally, we draw conclusions and give an outlook on future
directions of research.

Related work
In this section we briefly review the relevant existing literature,
with the goal to provide a detailed context for our work. Broadly
speaking, our work makes a physics-inspired contribution to the
emerging cross-fertilization between combinatorial optimization
and machine learning, where the development of novel deep learn-
ing architectures has sparked a renewed interest in heuristics for
solving NP-hard combinatorial optimization problems using neural

networks, as extensively reviewed in refs. 46,47, for example. Leaving
alternative, non-graph-based approaches aside (as presented,
for example, in ref. 48), in the following short survey we focus on
graph-based optimization problems—where modern deep learn-
ing architectures such as sequence models, attention mechanisms
and GNNs provide a natural tool set46—and we primarily distin-
guish between approaches based on supervised learning, reinforce-
ment learning or unsupervised learning. This categorization can be
refined further with respect to the typical size of a problem solved
by a specific approach and the scope of the solver (special-purpose
versus general-purpose).

Supervised learning. The majority of neural-network-based
approaches to combinatorial optimization are based on supervised
learning, with the goal to approximate some (typically complex,
nonlinear) mapping from an input representation of the problem
to the target solution, based on the minimization of some empiri-
cal, handcrafted loss function. Early work was based on pointer
networks, which leverage sequence-to-sequence models to pro-
duce permutations over inputs of variable size, as is relevant for the
canonical travelling salesman problem (TSP)49. Since then, numer-
ous studies have fused GNNs with various heuristics and search
procedures to solve specific combinatorial optimization problems,
such as quadratic assignment50, graph matching51, graph colour-
ing52 and the TSP53,54. As pointed out in ref. 55, however, the viabil-
ity and performance of supervised approaches critically depends
on the existence of large, labelled training datasets with previ-
ously optimized hard problem instances, resulting in a problematic
chicken-and-egg scenario that is further amplified by the fact that
it is hard to efficiently sample unbiased and representative labelled
instances of NP-hard problems56.

Reinforcement learning. The critical need for training labels can
be circumvented with reinforcement learning (RL) techniques that
aim to learn a policy with the goal of maximizing some expected
reward function. Specifically, optimization problems can typically
be described with a native objective function that can then serve
as a reward function in an RL approach46. Motivated by the chal-
lenges associated with the need for optimal target solutions, Bello
and colleagues extended the pointer network architecture49 to an
actor-critic RL framework to train an approximate TSP solver, using
a recurrent neural network encoder scheme and the expected tour
length as a reward signal57. Using a general RL framework based on
a graph attention network architecture42, notable improvements in
accuracy on a two-dimensional Euclidean TSP have subsequently
been presented in ref. 58, getting close to optimal results for prob-
lems with up to 100 nodes. Moreover, TSP variants with hard con-
straints have been analysed in ref. 59, with the help of a multi-level
RL framework in which each layer of a hierarchy learns a different
policy, and from which actions can then be sampled. Finally, while
the majority of RL-based approaches have focused on the TSP or
variants thereof, ref. 60 proposes a combination of RL and graph
embedding to learn efficient greedy meta-heuristics to incremen-
tally construct a solution, showcasing this approach with numerical
results for minimum vertex cover, MaxCut and TSP as test prob-
lems, for graphs with up to ~1,000–1,200 nodes.

Unsupervised learning. Conceptually, our work is most simi-
lar to those that aim to train neural networks in an unsupervised,
end-to-end fashion, without the need for labelled training sets55.
Specifically, Toenshoff and colleagues have recently used a recur-
rent GNN architecture—dubbed RUN-CSP—to solve optimization
problems that can be framed as maximum constraint satisfaction
problems61. For other types of problem, such as the maximum
independent set problem, the model relies on empirically selected
handcrafted loss functions. Using the language of constraint

νhν
k

hu
k –1 hν

k −1

Fig. 1 | Schematic of the GNN approach for combinatorial optimization
presented in this work. Following a recursive neighbourhood aggregation
scheme, the graph neural network is iteratively trained against a custom
loss function that encodes the specific optimization problem (for example,
maximum cut). At training completion, we project the final values for
the soft node assignments at the final graph neural network layer back
to binary variables xi = 0, 1, providing the solution bit string x = (x1, x2, …).
Further details are given in the main text.

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell368

http://www.nature.com/natmachintell

ArticlesNaTure MaCHIne InTellIgenCe

satisfaction problems, where the system size is expressed in terms
of both the number of variables and the number of constraints,
the authors solve problem instances of Maximum 2-satisfiability,
3-colourability, MaxCut and maximum independent set with up
to 5,000 nodes, showing that RUN-CSP can compete with tradi-
tional approaches like greedy heuristics or semidefinite program-
ming. Finally, by either optimizing a smooth relaxation of the cut
objective or applying a policy gradient, Yao and colleagues trained
a GNN to specifically solve the MaxCut problem, albeit at relatively
small system sizes with up to 500 nodes62, and without any details
on runtime.

In this Article we present a highly scalable, physics-inspired
framework that uses deep-learning tools in the form of GNNs to
approximate solutions to hard combinatorial optimization prob-
lems with up to millions of variables. Our GNN optimizer is based
on a direct mathematical relation between prototypical Ising spin
Hamiltonians63, the quadratic binary unconstrained optimiza-
tion (QUBO) and polynomial binary unconstrained optimiza-
tion (PUBO) formalism and the differentiable loss function with
which we train the GNN, thereby providing one unifying frame-
work for a broad class of combinatorial optimization problems, and
opening up the powerful toolbox of statistical physics to modern
deep-learning approaches. Fusing concepts from statistical phys-
ics with modern machine learning tooling, we propose a simple,
generic and robust solver that does not rely on handcrafted loss
functions. Specifically, we show that the same GNN optimizer can
solve different QUBO problems, without any need to change the
architecture or loss function, while scaling to problem instances that
are orders of magnitude larger than what many traditional QUBO
solvers can handle6,12,64,65.

Preliminaries
To set up our notation and terminology we start out with a brief
review of both combinatorial optimization and graph neural
networks.

Combinatorial optimization. The field of combinatorial optimiza-
tion is concerned with settings where a large number of yes/no deci-
sions must be made and each set of decisions yields a corresponding
objective function value, like a cost or profit value, that is to be opti-
mized1. Canonical combinatorial optimization problems include,
among others, the maximum cut problem (MaxCut), the maximum
independent set problem (MIS), the minimum vertex cover prob-
lem, the maximum clique problem and the set cover problem. In all
cases, exact solutions are not feasible for sufficiently large systems
due to the exponential growth of the solution space as the number
of variables n increases. Bespoke (approximate) algorithms to solve
these problems can typically be identified, at the cost of limited
scope and generalizability. Conversely, in recent years, the QUBO
framework has resulted in a powerful approach that unifies a rich
variety of these NP-hard combinatorial optimization problems1–3,66.
The cost function for a QUBO problem can be expressed in com-
pact form with the Hamiltonian

HQUBO = x⊤Qx =
∑

i,j
xiQijxj, (1)

where x = (x1, x2,…) is a vector of binary decision variables and
the QUBO matrix Q is a square matrix of constant numbers that
encodes the actual problem to solve. Without loss of generality, the
Q matrix can be assumed to be symmetric or in an upper triangu-
lar form1. We have omitted any irrelevant constant terms, as well as
any linear terms as these can always be absorbed into the Q matrix
because x2i = xi for binary variables xi ∈ {0, 1}. Problem constraints,
which are relevant for many real-world optimization problems,
can be accounted for with the help of penalty terms entering the

objective function (rather than being explicitly imposed), as detailed in
ref. 1. The significance of QUBO problems is further illustrated
by the close relation to the famous Ising model, which is known
to provide mathematical formulations for many NP-complete
and NP-hard problems, including all of Karp’s 21 NP-complete
problems66. As opposed to QUBO problems, Ising problems are
described in terms of binary spin variables zi ∈ {−1, 1}, which can
be mapped straightforwardly to their equivalent QUBO form,
and vice versa, using zi = 2xi − 1. By definition, both the QUBO
and the Ising models are quadratic, but can be naturally gen-
eralized to higher-order PUBO problems, as described by the
N-local Hamiltonian

HPUBO =

N∑

k=0

∑

⟨i1 , i2 , …, ik⟩
Qi1i2···ik xi1xi2 · · · xik , (2)

with real-numbered coefficients Qi1i2···ik for some N ≥ 3, and
⟨i1, i2, …, ik⟩ indicating a group of k binary variables (or spins in
the Ising formulation). Terms containing a product of k variables,
of the form Qi1i2···ik xi1xi2 · · ·xik, are commonly referred to as k-local
interactions, with Qi1i2···ik being the coupling constant. As we exem-
plify below for some canonical problems, graph (hypergraph)
problems can be naturally framed as QUBO (PUBO) problems. To
this end, given an undirected graph G = (V , E), we simply asso-
ciate a binary variable xi with every vertex i ∈ V, and then express
the (node classification) objective as a QUBO problem, where
the specific assignment x can be visualized as a specific two-tone
(for example, light and dark) colouring of the graph (with colour-
ing of the graph we refer to a specific node classification as given
by the assignment vector x, taking for example xi = 0 as red node
colouring and xi = 1 as blue node colouring; we do not refer to
the well-known vertex colouring problem, which seeks to colour
the vertices of a graph such that no two adjacent vertices are of
the same colour) (Fig. 1).

GNNs. On a high level, GNNs are a family of neural networks
capable of learning how to aggregate information in graphs for
the purpose of representation learning. Typically, a GNN layer is
composed of three functions35: (1) a message passing function that
permits information exchange between nodes over edges, (2) an
aggregation function that combines the collection of received mes-
sages into a single, fixed-length representation and (3) a (typically
nonlinear) update activation function that produces node-level
representations given the previous layer representation and the
aggregated information. Although a single-layer GNN encapsu-
lates a node’s features based on its immediate or one-hop neigh-
bourhood, by stacking multiple layers, the model can propagate
each node’s features through intermediate nodes, analogous to the
broadening of the receptive field in downstream layers of convolu-
tional neural networks. Formally, at layer k = 0, each node ν ∈ V
is represented by some initial representation h0ν ∈ R

d0, usually
derived from the node’s label or given input features of dimen-
sionality d0 (ref. 67). Following a recursive neighbourhood aggre-
gation scheme, the GNN then iteratively updates each node’s
representation, in general described by some parametric function fkθ,
resulting in

hkν = fkθ
(
hk−1

ν , {hk−1
u |u ∈ Nν}

)
, (3)

for the layers k = 1, …, K, with Nν = {u ∈ V|(u, ν) ∈ E} referring
to the local neighbourhood of node ν, that is, the set of nodes that
share edges with node ν. The total number of layers K is usually
determined empirically as a hyperparameter, as is the intermediate
representation dimensionality dk. Both can be optimized in an outer

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell 369

http://www.nature.com/natmachintell

Articles NaTure MaCHIne InTellIgenCe

loop. Although a growing number of possible implementations for
GNN architectures30 exists, here we use a graph convolutional net-
work (GCN)29 for which equation (3) reads explicitly as

hkν = σ



Wk
∑

u∈N (ν)

hk−1
u

|N (ν)|
+ Bkhk−1

ν



, (4)

with Wk and Bk being (shared) trainable weight matrices, the
denominator |N (ν)| serving as a normalization factor (with other
choices available as well) and σ(⋅) being some (component-wise)
nonlinear activation function such as sigmoid or ReLU. Although
GNNs can be used for various prediction tasks (including node clas-
sification, link prediction, community detection, network similarity
or graph classification), here we focus on node classification, where,
usually, the last (Kth) layer’s output is used to predict a label yν for
every node ν ∈ V. To this end, we feed the (parametrized) final
node embeddings zν = hKν (θ) into a problem-specific loss function
and run stochastic gradient descent to train the weight parameters.

Combinatorial optimization with GNNs
We now detail how to use GNNs to solve combinatorial optimiza-
tion problems, as schematically outlined in Fig. 2. To this end, we
frame combinatorial optimization problems as unsupervised node
classification tasks, without the need for any labelled data. Because
the nodes do not carry any inherent features, in our set-up the node
embeddings h0ν are initialized randomly. Warm-starting the train-
ing process with pre-training (transfer learning) will be left for
future research. The Hamiltonians belonging to the class described
above are not differentiable and cannot be used straightforwardly
within the GNN training process. Therefore, for a given problem
Hamiltonian H and graph G, we generate a differentiable loss func-
tion L(θ), as required for standard backpropagation, by promoting

the binary decision variables xi ∈ {0, 1} to continuous (parame-
trized) probability parameters pi(θ) with the following (heuristic)
relaxation approach:

xi −→ pi(θ) ∈ [0, 1]. (5)

The soft assignments pi can be viewed as class probabilities. They
are generated by our GNN Ansatz as final node embeddings
pi = hKi ∈ [0, 1] at layer K, after the application of a nonlinear soft-
max activation function. They are then used as input for the loss
function L(θ). In particular, for QUBO-type problems

HQUBO −→ LQUBO(θ) =
∑

i, j
pi(θ)Qijpj(θ), (6)

which is differentiable with respect to the parameters of the GNN
model, θ, and similarly for PUBO problems on hypergraphs with
higher-order terms of the form pipjpk and so on, thereby establish-
ing a straightforward, general connection between combinatorial
optimization problems, Ising Hamiltonians and GNNs. For training
with gradient descent, standard ML optimizers such as Adam can be
used. Once the (unsupervised) training process has completed, we
apply projection heuristics to map these soft assignments pi back to
integer variables xi = 0, 1, using, for example, simply xi = int(pi). The
application of other, more sophisticated projection schemes will be
left for future research. Note that any projection heuristics can be
applied throughout training after every epoch, thereby increasing
the pool of solution candidates, at no additional computational cost.
With the GNN guiding the search through the solution space, one
can then book-keep all solution candidates identified throughout
training and simply pick the best solution found.

Our general GNN approach features several hyperparame-
ters, including the number of layers K, the dimensionality of the

! !

0

1
2

3 4

1
2

Problem set-up

Problem encoding

Maximum cut Maximum independent set

Input graph

GNN training

Loss function

1
2

3 4

0 k =1

k =2

Training strategy

• GNN Ansatz (GCN, GAT, …)
• Hyperparameters
• ML optimizer (Adam, SGD, …)

Projection scheme

1
2

Final evaluation

 QUBO (θ) =

i,j

pi (θ)Qijpj (θ)HQUBO = xTQx =

i,j

xiQijxj

A =

0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

Q = Q =−

–2 2 2 0 0
0 –2 0 2 0
0 0 3 2 2
0 0 0 –3 2
0 0 0 0 –2

–1 P P 0 0
0 –1 0 P 0
0 0 –1 P P
0 0 0 –1 P
0 0 0 0 –1

a c d

e

b

3

0

4

3 4

0

Fig. 2 | Flow chart illustrating the end-to-end workflow for the proposed physics-inspired GNN optimizer. a, The problem is specified by a graph G with
associated adjacency matrix A, and a cost function as described (for example) by the QUBO Hamiltonian HQUBO. Within the QUBO framework the cost
function is fully captured by the QUBO matrix Q, as illustrated for both MaxCut and MIS for a sample (undirected) graph with five vertices and six edges.
b, The problem set-up is complemented by a training strategy that specifies the GNN Ansatz, a choice of hyperparameters and a specific ML optimizer
(for example, Adam, stochastic gradient descent (SGD)). c, The GNN is iteratively trained against a custom loss function LQUBO(θ) that encodes a relaxed
version of the underlying optimization problem as specified by the cost function HQUBO. Typically, a GNN layer operates by aggregating information within
the local one-hop neighbourhood (as illustrated by the k = 1 circle for the top node with label 0). By stacking layers one can extend the receptive field of
each node, thereby allowing distant propagation of information (as illustrated by the k = 2 circle for the top node with label 0). d,e, The GNN generates
soft node assignments, which can be viewed as class probabilities. Using some projection scheme (d), we then project the soft node assignments back to
(hard) binary variables xi = 0, 1 (as indicated by the binary black/white node colouring), providing the final solution bit string x (e).

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell370

http://www.nature.com/natmachintell

ArticlesNaTure MaCHIne InTellIgenCe

embedding vectors hki and the learning rate β, with details depend-
ing on the specific architecture and optimizer used. These can be
fine-tuned and optimized in an outer loop, using, for example,
standard techniques such as grid search or more advanced Bayesian
optimization methods.

Our GNN-based approach can be readily implemented with
open-source libraries such as PyTorch Geometric68 or the Deep
Graph Library69. The core of the corresponding code is displayed
in the Supplementary Information for a GCN with two layers and a
loss function for any QUBO problem. For illustration, an example
solution to the archetypal MaxCut problem (as implemented with
this Ansatz) for a 3-regular graph with n = 100 vertices is shown in
Fig. 3. Here, the cut size achieved with our GNN method amounts
to 132. Further details are provided in the following.

Numerical experiments
We perform numerical experiments using MaxCut and MIS
benchmark problems. Before providing details on these numerical
experiments, we first describe our GNN model architecture as it is
consistent across the d-regular MaxCut and MIS problem instances
described below. It is certainly possible that better solutions can be
found by fine-tuning the hyperparameters for every given prob-
lem instance. However, one of our goals is to design a robust and
scalable solver that is able to solve a large sample of instances effi-
ciently without the need for hand-tuning the parameters on an
instance-by-instance basis.

GNN architecture. We use a simple two-layer GCN architecture
based on PyTorch GraphConv units. The first convolutional layer
is fed the node embeddings of dimension d0 and outputs a repre-
sentation of size d1. Next, we apply a component-wise, nonlinear
ReLU transformation. The second convolutional layer is then fed
this intermediate representation and outputs the output layer of size
d2, which is then fed through the component-wise sigmoid trans-
formation to provide a soft probability pi ∈ [0, 1] for every node
i ∈ V. We find that the following simple heuristic for determining
the hyperparameters d0 and d1 works well: if the number of nodes is
large (n ≥ 105), then we set d0 = int(

√
n), else we set d0 = int(3√n),

and we take d1 = int(d0/2). Because we solve for binary classifica-
tion tasks, we set the final output dimension as d2 = 1. However, for
multi-colour problems this could be extended to C > 2 classes by
passing the output layer through a softmax transformation (instead
of a sigmoid) and taking the argmax. Note that as the graph size

scales beyond ~105 nodes, memory becomes a concern, so we fur-
ther reduce the representations to allow the GNN to be trained on a
single graphics processing unit (GPU). Distributed training leverag-
ing a whole cluster of machines will be discussed in the ‘Conclusion
and outlook’ section. With the GNN’s output depending on the ran-
dom initialization of the hidden feature vectors, there is a risk of
becoming stuck in a local optimum where the GNN stops learning.
To counter this issue, one can take multiple shots (that is, run the
GNN training multiple times for different random seeds and choose
the best solution), thereby boosting the performance at the cost of
extended runtime. In our numerical experiments we limited the
number of shots per instance to five, only re-running the training
when an obviously sub-optimal solution was detected. Finally, we
set the learning rate to β = 10−4 and allow the model to train for up
to ~105 epochs, with a simple early stopping rule set to an absolute
tolerance of 10−4 and a patience of 103.

Maximum cut. MaxCut is an NP-hard combinatorial optimization
problem with practical applications in machine scheduling70, image
recognition71 and electronic circuit layout design72. In the current
era of noisy intermediate-scale quantum devices, with the advent
of novel hybrid quantum-classical algorithms such as the quantum
approximate optimization algorithm (QAOA)73, the MaxCut prob-
lem has recently attracted considerable attention as a potential use
case of pre-error-corrected quantum devices74–79. MaxCut is a graph
partitioning problem defined as follows: given a graph with vertex
set V and edge set E, we seek a partition of V into two subsets with
maximum cut, where a cut refers to edges connecting two nodes
from different vertex sets. Intuitively, this means we score a point
whenever an edge connects two nodes of different colours. To for-
mulate MaxCut mathematically, we introduce binary variables sat-
isfying xi = 1 if vertex i is in one set and xi = 0 if it is in the other set.
It is then easy to verify that the quantity xi + xj − 2xixj = 1 if the edge
(i, j) has been cut, and 0 otherwise. With the help of the adjacency
matrix Aij with Aij = 0 if edge (i, j) does not exist and Aij > 0 if a (pos-
sibly weighted) edge connects node i with j, the MaxCut problem is
described by the quadratic Hamiltonian

HMaxCut =
∑

i<j
Aij(2xixj − xi − xj), (7)

which falls into the broader class of QUBO problems described by
equation (1). We provide the explicit Q-matrix for a sample MaxCut
problem in Fig. 2. Up to an irrelevant constant, the MaxCut problem
can equivalently by described by the compact Ising Hamiltonian
HMaxCut = ∑i < jJijzizj with Jij = Aij/2, favouring antiferromagnetic
ordering of the spins for Jij > 0, as expected intuitively based on the
problem definition. As our figure of merit, we denote the largest cut
found as cut⋆ = −HMaxCut(x⋆), with x⋆ referring to the corresponding
bit string.

The complexity of MaxCut depends on the regularity and con-
nectivity of the underlying graph. Following an existing trend in the
community75, we first consider the MaxCut problem on random
(unweighted) d-regular graphs, where every vertex is connected to
exactly d other vertices. We perform the benchmarks as follows. For
graphs with up to a few hundred nodes, we compare our GNN-based
solver to the (approximate) polynomial-time Goemans–Williamson
(GW) algorithm80, which provides the current record for an approx-
imate answer within some fixed multiplicative factor of the opti-
mum (referred to as approximation ratio α), using semidefinite
programming and randomized rounding. Specifically, the GW algo-
rithm achieves a guaranteed approximation ratio of α ~ 0.878 for
generic graphs. This lower bound can be raised for specific graphs
such as unweighted 3-regular graphs where α ~ 0.9326 (ref. 81).
Our implementation of the GW algorithm is based on the open-
source CVXOPT solver, with CVXPY as the modelling interface.

Fig. 3 | Example solution to MaxCut for a random 3-regular graph with
n = 100 nodes. After training completion, the GNN provides a binary bit
string x that assigns one of two possible colours (for example, black or
white) to each vertex. An edge is said to be cut when it connects two
vertices of different colours. For a given graph, the optimization problem is
to assign the colours in such a way that as many edges as possible can be
cut at the same time (corresponding to the antiferromagnetic ground state
of the system).

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell 371

http://www.nature.com/natmachintell

Articles NaTure MaCHIne InTellIgenCe

For very large graphs with up to a million nodes, numerical bench-
marks are not available, but we can compare our best solution
cut⋆ to an analytical result derived in ref. 82, where it was shown
that with high probability (in the limit n → ∞) the size of the
maximum cut for random d-regular graphs with n nodes is given
by cut⋆ = (d/4+ P∗

√
d/4+O(

√
d))n+O(n). Here, P* ≈ 0.7632

refers to a universal constant related to the ground-state energy of the
Sherrington–Kirkpatrick model83,84, which can be expressed analyti-
cally via Parisi’s formula82. We thus take cutub = (d/4+ P∗

√
d/4)n

as an upper-bound estimate for the maximum cut size in the large-n
limit. We complement this upper bound with a lower bound as
achieved by a simple, randomized 0.5-approximation algorithm
that (on average) cuts half of the edges, yielding a cut size of
cutrnd ≈ (d/4)n for a d-regular graph with |E| = (d/2)n. Our results
for the achieved cut size as a function of the number of vertices n
are shown in Fig. 4. All results are bootstrapped estimates of the
mean, with error bars denoting twice the bootstrapped standard
deviations, sampled across 20 random d-regular graphs for every
data point. For graphs with up to a few hundred nodes, we find
that a simple two-layer GCN architecture can perform on par
with the GW algorithm, while showing a runtime advantage com-
pared to GW starting at around n ≈ 100 nodes. For large graphs
with n ≈ 104 to 106 nodes, we find that our approach consistently
achieves high-quality solutions with cut⋆ ≳ 0.9 × cutub for both d = 3
and d = 5, respectively (that is, much better than any naive random-
ized algorithm). As expected for d-regular graphs, we find cut⋆ to
scale linearly with the number of nodes n, that is, cut⋆ ≈ γdn, with
γ3 ≈ 1.28 and γ5 ≈ 1.93 for d = 3 and d = 5, respectively. Moreover,
utilizing modern GPU hardware, we observe a favourable runtime
scaling at intermediate and large system sizes that allows us to solve
instances with n = 106 nodes in ~10 min (which includes both GNN
model training and post-processing steps). Specifically, as shown in
Fig. 4, we observe an approximately linear scaling of total runtime
with ~n for large d-regular graphs with 105 ≤ n ≤ 106, contrasting
with the observed GW algorithm scaling as ~n3.5 for problem sizes
in the range n ≲ 250, thereby showing the (expected) time complex-
ity Õ(n3.5) of the interior-point method (as commonly used for solv-
ing the semidefinite program underlying the GW algorithm) that
dominates the GW algorithm runtime85,86.

To complement our work on random d-regular graphs, we per-
formed additional experiments on standard MaxCut benchmark
instances, with published results, based on the publicly available
Gset dataset87 that is commonly used for testing MaxCut algo-
rithms. We provide benchmark results for seven different graphs,
with thousands of nodes, including (1) two Erdös–Renyi graphs
with uniform edge probability, (2) two graphs where the connectiv-
ity gradually decays from node 1 to node n, (3) two 4-regular toroi-
dal graphs and (4) one of the largest Gset instances with n = 104. The
results are displayed in Table 1. Here we report cut sizes achieved
with our physics-inspired GNN solver (PI-GNN), together with
results sourced from refs. 61,88–90; the latter include an SDP solver
using dual scaling (DSDP)90, a combination of local search and
adaptive perturbation referred to as breakout local search (BLS)89
(providing the best known solutions for the Gset dataset), a Tabu
Search metaheuristic (KHLWG)88 and a recurrent GNN architec-
ture for maximum constraint satisfaction problems (RUN-CSP)61.
We assess the solution quality achieved with PI-GNN with the rela-
tive error ϵ = (cutbest − cut⋆)/|E| quantifying the gap to the best
known solution, normalized by the number of edges |E|, thereby
giving the fraction of uncut edges as compared to the best known
solution. We find that our general-purpose approach is com-
petitive with other solvers and typically within ~1% of the best
published results.

Maximum independent set. The MIS problem is a prominent
combinatorial optimization problem with practical applications in
network design91 and finance92, and is closely related to the maxi-
mum clique, minimum vertex cover and set packing problems. In
the quantum community, the MIS problem has recently attracted
much interest93 as a potential target use case for novel experimental
platforms based on neutral atom arrays94. The MIS problem reads
as follows. Given an undirected graph G = (V , E), an independent
set is a subset of vertices that are not connected with each other. The
MIS problem is then the task to find the largest independent set,
with its (maximum) cardinality typically denoted as the indepen-
dence number α. To formulate the MIS problem mathematically,
for a given graph G = (V , E), one first associates a binary variable
xi ∈ {0, 1} with every vertex i ∈ V, with xi = 1 if vertex i belongs to the

106

0.920

0.915

0.910

0.905 d = 3
d = 5

GNN d = 3

GNN d = 5
d = 5

GW d = 3

GW

GNN d = 3

GNN d = 5
d = 5

GW d = 3

d = 5
d = 3

GW
Bound
Bound

0.900

105

104

C
ut

 s
iz

e

a b

S
ol

ut
io

n
ru

nt
im

e
(s

)

103

103 104 105 106

102

103

~n3.5

~n102

101

106105104

Number of nodes, n

Number of nodes, n

A
pp

ro
xi

m
at

io
n

ra
tio

103102 106105104

Number of nodes, n

103102

Fig. 4 | Numerical results for MaxCut. a, Average cut size for d-regular graphs with d = 3 and d = 5 as a function of the number of vertices n,
bootstrap-averaged over 20 random graph instances, for both the GNN-based method and the GW algorithm. On each graph instance, the GNN solver is
allowed up to five shots, and the GW algorithm takes 100 shots. Solid lines for n ≥ 103 represent theoretical upper bounds, as described in the main text.
Inset: the estimated relative approximation ratio, defined as cut⋆/cutub, showing that our approach consistently achieves high-quality solutions. b, Algorithm
runtime in seconds for both the GNN solver and the GW algorithm. Error bars refer to twice the bootstrapped standard deviations, sampled across 20
random graph instances for every data point.

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell372

http://www.nature.com/natmachintell

ArticlesNaTure MaCHIne InTellIgenCe

independent set, and xi = 0 otherwise. The MIS can then be formu-
lated in terms of a Hamiltonian that counts the number of marked
(coloured) vertices and adds a penalty to non-independent configu-
rations (when two vertices in this set are connected by an edge). It
is given by

HMIS = −

∑

i∈V

xi + P
∑

(i, j)∈E

xixj, (8)

with a negative pre-factor to the first term (because we solve for
the largest independent set within a minimization problem) and
the penalty parameter P > 0 enforcing the constraints. Note that the
numerical value for P is typically set as P = 2 (ref. 95), but can be fur-
ther optimized in an outer loop. Energetically, the Hamiltonian HMIS
favours each variable to be in the state xi = 1 unless a pair of these are
connected by an edge. Again, the Hamiltonian HMIS is quadratic and
falls into the broader class of QUBO problems described by equa-
tion (1); again, we provide the explicit Q-matrix for a sample MIS
problem in Fig. 2.

The MIS problem is known to be strongly NP-hard, making
the existence of an efficient algorithm for finding the maximum
independent set on generic graphs unlikely. In addition, the MIS
problem is even hard to approximate. In general, the MIS prob-
lem cannot be approximated to a constant factor in polynomial
time (unless P = NP). Again we study the MIS problem on random
unweighted d-regular graphs. Because in our approach the inde-
pendence constraint is enforced with soft penalty terms ~P (just
like in any QUBO-based model), the predicted set may violate the
independence condition (that is, the set may contain nodes con-
nected by an edge). Setting P = 2, we have observed these violations
only in very few cases. If present, as part of our post-processing,
we have enforced the independence constraint by greedily remov-
ing one of the nodes of each induced edge from the set, and only
reporting results after this correction. For small graphs with up to a
few hundred nodes, we compare the GNN-based results to results
obtained with the Boppana–Halldórsson algorithm built into the
Python NetworkX library96. For very large graphs with up to a mil-
lion nodes (where benchmarks are not available) we resort to ana-
lytical upper bounds for random d-regular graphs, as presented in
ref. 97. Here, the best known bounds on the ratio αd/n are reported as
α3/n = 0.45537 and α5/n = 0.38443 for d = 3 and d = 5, respectively, as
derived using refined versions of Markov’s inequality98. Our results
for the achieved independence number as a function of the number
of vertices n are shown in Fig. 5. All results are bootstrapped esti-
mates of the mean, with error bars denoting twice the bootstrapped
standard deviations, sampled across 20 random d-regular graphs for
every data point. Our numerical results for MIS are similar to the
observations we have made for MaxCut: for graphs with up to a few
hundred nodes, we find that a simple two-layer GCN architecture

can perform on par with (or better than) the traditional solver,
with the GNN solver showing a favourable runtime scaling. For
large graphs with n ≈ 104 to 106 nodes we find that our approach
consistently achieves high-quality solutions with α3/n ≈ 0.416
and α5/n ≈ 0.338 for d = 3 and d = 5, respectively, resulting in esti-
mated numerical approximation ratios of 0.416/0.45537 ≈ 0.92
and 0.338/0.38443 ≈ 0.88, respectively. Finally, as shown in Fig. 5,
we observe a moderate, super-linear scaling of the total runtime
as ~n1.7 for large d-regular graphs with n ≳ 105, as opposed to the
Boppana–Halldórsson solver with a runtime scaling of ~n2.9 in the
range n ≲ 500. Note that the GNN model training alone displays
sub-linear runtime scaling as ~n0.8, in line with our MaxCut results,
and the aggregate runtime (including post-processing to enforce the
independence condition) scales as ~n1.7 in the regime n ≈ 105 to 106.

Applications in industry
Although our previous analysis has focused on canonical graph
optimization problems such as maximum cut and maximum inde-
pendent set, in this section we discuss real-world applications in
industry for which our solver could provide solutions, in particular
at potentially unprecedented problem scales. We focus on applica-
tions of the QUBO formalism, even though our methodology is not
limited to this modelling framework. We first review the existing
literature, providing relevant references across a wide stack of prob-
lem domains. Thereafter, we explicitly show how to distil combina-
torial QUBO problems for a few select real-world use cases, from
risk diversification in finance to sensor placement problems in
water distribution networks (WDNs). Once in QUBO format, the
problem can be plugged into our general-purpose physics-inspired
GNN solver, as outlined above.

As extensively reviewed in refs. 1,2,66, the QUBO (or, equivalently,
Ising) formalism provides a comprehensive modelling framework
encompassing a vast array of optimization problems, including
knapsack problems, task (resource) allocation problems and capi-
tal budgeting problems, among others. Specifically, the applicability
of the QUBO representation has been reported for problem set-
tings involving circuit board layouts99, capital budgeting in finan-
cial analysis100, computer aided design (CAD)101, electronic traffic
management102,103, cellular radio channel allocation104, molecular
conformation105 and the prediction of epileptic seizures106, among
others. As mentioned earlier, practical applications of the MaxCut
problem can be found in machine scheduling70, image recognition71
and electronic circuit layout design72. Similarly, in what follows we
discuss in detail three select use cases and how they can be cast in
QUBO form and thus made amenable to our solver.

Risk diversification. Graphs offer a convenient framework to
model portfolio management problems in finance. Specifically, we
outline a risk diversification strategy, but similar considerations

Table 1 | Numerical results for MaxCut on Gset instances

Graph Nodes Edges BLS DSDP KHLWG RUN-CSP PI-GNN Relative error, ϵ (%)

G14 800 4,694 3,064 2,922 3,061 2,943 3,026 0.81

G15 800 4,661 3,050 2,938 3,050 2,928 2,990 1.29

G22 2,000 19,990 13,359 12,960 13,359 13,028 13,181 0.89

G49 3,000 6,000 6,000 6,000 6,000 6,000 5,918 1.37

G50 3,000 6,000 5,880 5,880 5,880 5,880 5,820 1.00

G55 5,000 12,468 10,294 9,960 10,236 10,116 10,138 1.25

G70 10,000 9,999 9,541 9,456 9,458 — 9,421 1.20

The table reports cut sizes achieved with our physics-inspired GNN solver (PI-GNN), together with results sourced from refs. 61,88–90. Best known results are shown in bold. The last column specifies the
relative error ϵ comparing PI-GNN to the best known cut size. Further details are provided in the main text. GNN model configurations are detailed in the Supplementary Information.

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell 373

http://www.nature.com/natmachintell

Articles NaTure MaCHIne InTellIgenCe

apply for the implementation of hedging strategies107. We consider
a (potentially very large) universe of n assets, for which we are
given a vector μ ∈ R

n describing expected future returns, and the
covariance matrix Σ ∈ R

n×n capturing volatility through the cor-
relations among assets. To minimize the volatility of returns of our
portfolio, our goal is to select a subset of uncorrelated assets with
the largest possible diversified portfolio. To this end we consider
a graph G with n nodes, with every node representing one asset.
Correlations can be described in graph form, either by directly tak-
ing the cross-correlation matrix as a weighted adjacency matrix, or
by creating a binary adjacency matrix A through thresholding. We
set Ai,j = 1 if and only if the absolute value of the correlation between
assets i and j is greater than some user-specific threshold parameter
λ, and Ai,j = 0 otherwise107. Accordingly, in our model, pairs of assets
are classified as correlated or uncorrelated, based on whether or not
the corresponding correlation coefficient exceeds a minimum level.
Overall, the risk diversification strategy outlined above can be cast
as an optimization problem in QUBO form, with the Hamiltonian

HwMIS = −

∑

i∈V

μixi + P
∑

(i, j)∈E

xixj, (9)

in a straightforward extension of equation (8) from the standard
MIS problem to the weighted MIS problem. Accordingly, by mini-
mizing the first term of HwMIS we pick large-return assets subject to
the independent set constraint (as captured by the second term).
This diversification model is reminiscent of the mean-variance
Markowitz model108, albeit in discretized form. Given our results
for the standard MIS problem, with small tweaks to the loss func-
tion, such a problem could be readily plugged into our solver, for
example, as part of a larger, two-stage portfolio management pipe-
line where first a subset of assets is selected from a larger universe of
assets using our solver, and then capital is allocated within a smaller,
sparsified basket of assets using off-the-shelf solvers.

Interval scheduling. Here we consider a scenario involving the
scheduling of tasks with given start and end times, as relevant, for
example, in the context of algorithm design in computer science109.
Specifically, we face n resource requests, each represented by an

interval specifying the time in which it needs to be processed by
some machine. Typically, some requests will overlap in time, lead-
ing to request clashes that cannot be satisfied by the same machine
(resource). Conversely, a subset of intervals is deemed compatible
if no two intervals overlap on the machine. As is commonly done
in resource allocation problems and scheduling theory, this situa-
tion can conveniently be described with the help of an undirected
interval graph G in which we introduce a vertex for each request
and edges between vertices whose requests overlap. With the goal
to maximize the throughput (that is, to execute as many tasks as
possible on a single machine), the interval scheduling maximiza-
tion problem is then to find the largest compatible set, that is, a
set of non-overlapping intervals of maximum size. This use case
is equivalent to finding the maximum independent set in the cor-
responding interval graph G with n nodes. Although inexpensive
(special-purpose) algorithms exist for interval graphs110, we can
then solve the underlying MIS problem, as described by equation
(8), on this interval graph, in the same way as any other QUBO
problem, using our general-purpose GNN-based approach, follow-
ing the methodology outlined above.

Sensor placement in WDNs. Optimal sensor placement is key to
the detection and isolation of fault events—such as water leaks—
in WDNs111. As detailed in ref. 111, the problem of optimally plac-
ing pressure sensors on a WDN can be efficiently cast as a QUBO
problem. Specifically, a WDN can be readily mapped to a graph
G = (V , E), with nodes i ∈ V referring to tanks or junctions, and
edges (i, j) ∈ E representing pipes. We then associate a binary vari-
able xi = 0, 1 with every node, and set xi = 1 if node i hosts a sensor
and xi = 0 otherwise. The problem of covering the WDN with the
smallest possible number of pressure sensors then maps onto the
minimum vertex cover problem111, as described by the Hamiltonian

HMVC =
∑

i∈V

cixi + P
∑

(i, j)∈E

(1− xi − xj + xixj). (10)

Here ci ≥ 0 denotes the cost of node i hosting a sensor, the first term
describes the overall cost of any potential sensor placement strat-
egy, and the second (penalty) term with P > 0 ensures the constraint

106
a b

105

104

M
IS

 s
iz

e

103

101

100

102

104

S
ol

ut
io

n
ru

nt
im

e
(s

) 103

101

100

102

106105104

Number of nodes, n

103102 106105104

Number of nodes, n

103102

~n2.9

~n1.7

0.91

0.90

0.89

0.88

0.87
103 104 105 106

Number of nodes, n

A
pp

ro
xi

m
at

io
n

ra
tio

GNN d = 3

GNN d = 5
d = 5

BH d = 3

d = 5
d = 3

BH
Limit
Limit

GNN d = 3

GNN d = 5
d = 5

BH d = 3

d = 5
d = 3

BH

Fig. 5 | Numerical results for the MIS problem. a, Average independence number α for d-regular graphs with d = 3 and d = 5 as a function of the number of
vertices n, (bootstrap-)averaged over 20 random graph instances, for both the GNN-based method and a traditional MIS algorithm96. Solid lines for n ≥ 103
refer to theoretical upper bounds as described in the main text. Inset: the estimated relative approximation ratio comparing the achieved independence
number α against known theoretical upper bounds shows that our approach consistently achieves high-quality solutions. b, Algorithm runtime, in seconds,
for both the GNN solver and the Boppana–Halldórsson algorithm. Error bars refer to twice the bootstrapped standard deviations, sampled across 20
random graph instances for every data point.

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell374

http://www.nature.com/natmachintell

ArticlesNaTure MaCHIne InTellIgenCe

xi + xj ≥ 1 for all edges (i, j) ∈ E (that is, at least one of the endpoints
of each edge will be in the cover1). Potential tweaks to this model
are detailed in ref. 111; however, variations can all be represented as
a QUBO problem. Along the lines of our previous analysis for the
MaxCut or MIS problem, the Hamiltonian HMVC (or some variation
thereof) can be straightforwardly mapped to a relaxed loss function
with which we can train our solver and then solve the correspond-
ing sensor placement use case.

Conclusion and outlook
In summary, we have proposed and analysed a versatile and scalable
general-purpose solver that is powered by GNNs and draws from
concepts in statistical physics. Our approach is applicable to any
k-local Ising model, including canonical NP-hard combinatorial
optimization problems such as the maximum cut, maximum clique,
minimum vertex cover or maximum independent set problems,
among others66. Starting from a problem formulation in Ising form,
we apply a relaxation strategy to the problem Hamiltonian by drop-
ping integrality constraints on the decision variables to generate a
differentiable loss function with which we perform unsupervised
training on the node representations of the GNN. The GNN is then
trained to generate soft assignments to predict the likelihood of
belonging in one of two classes, for each vertex in the graph. To find
a binary (two-colour) labelling consistent with the original problem
formulation, simple projection heuristics are applied. Overall, we
find that this approach can compete with existing special-purpose
solvers, such as the Goemans–Williamson algorithm designed
to solve the maximum cut problem, with the potential to tap into
the rich toolbox of statistical physics, including, for example, the
study of phase transitions. In the current noisy intermediate-scale
quantum era, our approach could be used as a broadly applicable,
scalable benchmark for emerging quantum technologies, includ-
ing special-purpose quantum6 and quantum-inspired annealers20,
while not being resource-constrained nor being limited to prob-
lem instances in the QUBO form, as is also the case for coherent
Ising machines112.

Finally, we highlight possible extensions of research going
beyond our present work. First, to better understand the limita-
tions of GNNs in the context of combinatorial optimization, further
studies are in order, systematically benchmarking GNNs against
state-of-the-art solvers for a large class of optimization problems
while leveraging the entire zoo of GNN implementations including,
for example, GraphSAGE27 or graph attention networks (GATs)42
to potentially boost the GNN Ansatz with an attention mechanism
enabling vertices to weigh neighbour representations during the
aggregation steps. Second, the presented GNN approach should be
able to accommodate problems sizes with hundreds of millions of
nodes when leveraging distributed training in a mini-batch fash-
ion on a cluster of machines45, thereby challenging the capabili-
ties of several existing solvers. Although we have solved individual
problem instances from scratch, using a random initialization pro-
cess for the initial node embeddings, in the future, warm-starting
the training process with pre-trained weights (transfer learning)
could boost the time to solution. Moreover, one could potentially
boost the performance of our optimizer by implementing ran-
domized projection schemes (as opposed to the simple determin-
istic approach used here) or augment these strategies with simple
greedy post-processing routines that check for local optimality with
a sequence of local bit flips. Finally, as discussed in the main text,
our approach can be generalized to PUBO problems on hyper-
graphs where so-called hyper-edges may contain more than just
two nodes, with no need for (typically) resource-intensive degree
reduction schemes, as opposed to resource-constrained QUBO
solvers. Potential applications cover many real-world optimization
problems involving multi-body interactions, as found in schedul-
ing problems113 or chemistry114,115. In conclusion, the proposed

cross-fertilization between machine learning, operations research
and physics opens up a number of interesting research directions,
with the ultimate goal to further advance our ability to solve hard
combinatorial optimization problems.

Data availability
The data necessary to reproduce our numerical benchmark results
are publicly available at https://web.stanford.edu/~yyye/yyye/
Gset/. Random d-regular graphs have been generated using the
open-source networkx library (https://networkx.org).

Code availability
An end-to-end open source demo version of the code implement-
ing our approach has been made publicly available at https://github.
com/amazon-research/co-with-gnns-example116.

Received: 9 July 2021; Accepted: 21 February 2022;
Published online: 21 April 2022

References
	1.	 Glover, F., Kochenberger, G. & Du, Y. Quantum bridge analytics I: a tutorial

on formulating and using QUBO models. 4OR 17, 335 (2019).
	2.	 Kochenberger, G. et al. The unconstrained binary quadratic programming

problem: a survey. J. Comb. Optim. 28, 58–81 (2014).
	3.	 Anthony, M., Boros, E., Crama, Y. & Gruber, A. Quadratic reformulations

of nonlinear binary optimization problems. Math. Program. 162,
115–144 (2017).

	4.	 Papadimitriou, C. H. & Steiglitz, K. Combinatorial Optimization: Algorithms
and Complexity (Courier Corporation, 1998).

	5.	 Korte, B. & Vygen, J. Combinatorial Optimization Vol. 2 (Springer, 2012).
	6.	 Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature

473, 194–198 (2011).
	7.	 Bunyk, P. et al. Architectural considerations in the design of a

superconducting quantum annealing processor. IEEE Trans. Appl.
Supercond. 24, 1–10 (2014).

	8.	 Katzgraber, H. G. Viewing vanilla quantum annealing through spin glasses.
Quantum Sci. Technol. 3, 030505 (2018).

	9.	 Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W.
Perspectives of quantum annealing: methods and implementations. Rep.
Prog. Phys. 83, 054401 (2020).

	10.	 Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising
model. Phys. Rev. E 58, 5355 (1998).

	11.	 Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random
instances of an NP-complete problem. Science 292, 472–475 (2001).

	12.	 Mandrà, S., Zhu, Z., Wang, W., Perdomo-Ortiz, A. & Katzgraber, H. G.
Strengths and weaknesses of weak-strong cluster problems: a detailed
overview of state-of-the-art classical heuristics versus quantum approaches.
Phys. Rev. A 94, 022337 (2016).

	13.	 Mandrà, S. & Katzgraber, H. G. A deceptive step towards quantum speedup
detection. Quantum Sci. Technol. 3, 04LT01 (2018).

	14.	 Barzegar, A., Pattison, C., Wang, W. & Katzgraber, H. G. Optimization of
population annealing Monte Carlo for large-scale spin-glass simulations.
Phys. Rev. E 98, 053308 (2018).

	15.	 Hibat-Allah, M. et al. Variational neural annealing. Nat. Mach. Intell. 3,
952–961 (2021).

	16.	 Wang, Z., Marandi, A., Wen, K., Byer, R. L. & Yamamoto, Y. Coherent Ising
machine based on degenerate optical parametric oscillators. Phys. Rev. A
88, 063853 (2013).

	17.	 Hamerly, R. et al. Scaling advantages of all-to-all connectivity in physical
annealers: the coherent Ising machine vs. D-wave 2000Q. Sci. Adv. 5,
eaau0823 (2019).

	18.	 Di Ventra, M. & Traversa, F. L. Perspective: memcomputing: leveraging
memory and physics to compute efficiently. J. Appl. Phys. 123,
180901 (2018).

	19.	 Traversa, F. L., Ramella, C., Bonani, F. & Di Ventra, M. Memcomputing
NP-complete problems in polynomial time using polynomial resources and
collective states. Sci. Adv. 1, e1500031 (2015).

	20.	 Matsubara, S. et al. in Complex, Intelligent and Software Intensive Systems
(CISIS-2017) (eds Terzo, O. & Barolli, L.) 432–438 (Springer, 2017).

	21.	 Tsukamoto, S., Takatsu, M., Matsubara, S. & Tamura, H. An accelerator
architecture for combinatorial optimization problems. FUJITSU Sci. Tech. J.
53, 8–13 (2017).

	22.	 Aramon, M., Rosenberg, G., Miyazawa, T., Tamura, H. & Katzgraber, H. G.
Physics-inspired optimization for constraint-satisfaction problems using a
digital annealer. Front. Phys. 7, 48 (2019).

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell 375

https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/
https://networkx.org
https://github.com/amazon-research/co-with-gnns-example
https://github.com/amazon-research/co-with-gnns-example
http://www.nature.com/natmachintell

Articles NaTure MaCHIne InTellIgenCe

	23.	 Gori, M., Monfardini, G. & Scarselli, F. A new model for learning in graph
domains. In Proc. 2005 IEEE International Joint Conference on Neural
Networks Vol. 2 729–734 (IEEE, 2005).

	24.	 Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The
graph neural network model. IEEE Trans. Neural Netw. 20, 61–80 (2008).

	25.	 Micheli, A. Neural network for graphs: a contextual constructive approach.
IEEE Trans. Neural Netw. 20, 498–511 (2009).

	26.	 Duvenaud, D. K. et al. Convolutional networks on graphs for learning
molecular fingerprints. Adv. Neural Inf. Process. Syst. 28, 2224–2232 (2015).

	27.	 Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on
graphs: methods and applications. Preprint at https://arxiv.org/abs/
1709.05584 (2017).

	28.	 Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural
networks? Preprint at https://arxiv.org/abs/1810.00826 (2018).

	29.	 Kipf, T. N. & Welling, M. Semi-supervised classification with graph
convolutional networks. Preprint at https://arxiv.org/abs/1609.02907 (2016).

	30.	 Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE
Trans. Neural Netw. 32, 4–24 (2021).

	31.	 Perozzi, B., Al-Rfou, R. & Skiena, S. Deepwalk: online learning of social
representations. In Proc. 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining 701–710 (ACM, 2014).

	32.	 Sun, Z., Deng, Z. H., Nie, J. Y. & Tang, J. Rotate: knowledge graph
embedding by relational rotation in complex space. Preprint at https://arxiv.
org/abs/1902.10197 (2019).

	33.	 Ying, R. et al. Graph convolutional neural networks for web-scale
recommender systems. In Proc. 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD ’18) 974–983
(ACM, 2018).

	34.	 Strokach, A., Becerra, D., Corbi-Verge, C., Perez-Riba, A. & Kim, P. M. Fast
and flexible protein design using deep graph neural networks. Cell Syst. 11,
402–411 (2020).

	35.	 Gaudelet, T. et al. Utilising graph machine learning within drug discovery
and development. Preprint at https://arxiv.org/abs/2012.05716 (2020).

	36.	 Pal, A. et al. Pinnersage: multi-modal user embedding framework for
recommendations at Pinterest. In Proc. 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining 2311–2320
(ACM, 2020).

	37.	 Rossi, E. et al. Temporal graph networks for deep learning on dynamic
graphs. Preprint at https://arxiv.org/abs/2006.10637 (2020).

	38.	 Monti, F., Frasca, F., Eynard, D., Mannion, D. & Bronstein, M. Fake news
detection on social media using geometric deep learning. Preprint at
https://arxiv.org/abs/1902.06673 (2019).

	39.	 Choma, N. et al. Graph neural networks for icecube signal classification. In
17th IEEE International Conference on Machine Learning and Applications
(ICMLA) 386–391 (IEEE, 2018).

	40.	 Shlomi, J., Battaglia, P. & Vlimant, J.-R. Graph neural networks in particle
physics. Mach. Learn. Sci. Technol. 2, 021001 (2020).

	41.	 Li, Y., Tarlow, D., Brockschmidt, M. & Zemel, R. Gated graph sequence
neural networks. Preprint at https://arxiv.org/abs/1511.05493 (2015).

	42.	 Veličković, P. et al. Graph attention networks. Preprint at https://arxiv.org/
abs/1710.10903 (2017).

	43.	 Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural
message passing for quantum chemistry. In International Conference on
Machine Learning 1263–1272 (PMLR, 2017).

	44.	 Xu, K. et al. Representation learning on graphs with jumping knowledge
networks. In International Conference on Machine Learning 5453–5462
(PMLR, 2018).

	45.	 Zheng, D. et al. DistDGL: distributed graph neural network training for
billion-scale graphs. In IEEE/ACM 10th Workshop on Irregular Applications:
Architectures and Algorithms (IA3) 36–44 (IEEE, 2020).

	46.	 Kotary, J., Fioretto, F., Van Hentenryck, P. & Wilder, B. End-to-end
constrained optimization learning: a survey. Preprint at https://arxiv.org/
abs/2103.16378 (2021).

	47.	 Cappart, Q. et al. Combinatorial optimization and reasoning with graph
neural networks. Preprint at https://arxiv.org/abs/2102.09544 (2021).

	48.	 Mills, K., Ronagh, P. & Tamblyn, I. Finding the ground state of spin
Hamiltonians with reinforcement learning. Nat. Mach. Intell. 2,
509–517 (2020).

	49.	 Vinyals, O., Fortunato, M. & Jaitly, N. Pointer networks. Adv. Neural Inf.
Process. Syst. 28, 2692–2700 (2015).

	50.	 Nowak, A., Villar, S., Bandeira, A. S. & Bruna, J. Revised note on learning
algorithms for quadratic assignment with graph neural networks. Preprint
at https://arxiv.org/abs/1706.07450 (2017).

	51.	 Bai, Y. et al. SimGNN: a neural network approach to fast graph similarity
computation. Preprint at https://arxiv.org/abs/1808.05689 (2018).

	52.	 Lemos, H., Prates, M., Avelar, P. & Lamb, L. Graph colouring meets deep
learning: effective graph neural network models for combinatorial
problems. In 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI) 879–885 (IEEE, 2019).

	53.	 Li, Z., Chen, Q. & Koltun, V. Combinatorial optimization with graph
convolutional networks and guided tree search. In Proc. NeurIPS
536–545 (2018).

	54.	 Joshi, C. K., Laurent, T. & Bresson, X. An efficient graph convolutional
network technique for the travelling salesman problem. Preprint at https://
arxiv.org/abs/1906.01227 (2019).

	55.	 Karalias, N. & Loukas, A. Erdos goes neural: an unsupervised learning
framework for combinatorial optimization on graphs. Preprint at https://
arxiv.org/abs/2006.10643 (2020).

	56.	 Yehuda, G., Gabel, M. & Schuster, A. It’s not what machines can learn, it’s
what we cannot teach. Preprint at https://arxiv.org/abs/2002.09398 (2020).

	57.	 Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. Neural
combinatorial optimization with reinforcement learning. Preprint at https://
arxiv.org/abs/1611.09940 (2017).

	58.	 Kool, W., van Hoof, H. & Welling, M. Attention, learn to solve routing
problems! Preprint at https://arxiv.org/abs/1803.08475 (2019).

	59.	 Ma, Q., Ge, S., He, D., Thaker, D. & Drori, I. Combinatorial optimization by
graph pointer networks and hierarchical reinforcement learning. Preprint at
https://arxiv.org/abs/1911.04936 (2019).

	60.	 Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B. & Song, L. Learning
combinatorial optimization algorithms over graphs. In Annual Conference
on Neural Information Processing Systems (NIPS) 6351–6361 (2017).

	61.	 Toenshoff, J., Ritzert, M., Wolf, H. & Grohe, M. RUN-CSP: unsupervised
learning of message passing networks for binary constraint satisfaction
problems. Preprint at https://arxiv.org/abs/1909.08387 (2019).

	62.	 Yao, W., Bandeira, A. S. & Villar, S. Experimental performance of graph
neural networks on random instances of max-cut. In Wavelets and
Sparsity XVIII Vol. 11138 111380S (International Society for Optics and
Photonics, 2019).

	63.	 Ising, E. Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31,
253–258 (1925).

	64.	 Matsubara, S., et al. Ising-model optimizer with parallel-trial bit-sieve
engine. In Conference on Complex, Intelligent, and Software Intensive Systems
432–438 (Springer, 2017).

	65.	 Hamerly, R. et al. Experimental investigation of performance differences
between coherent Ising machines and a quantum annealer. Sci. Adv. 5,
eaau0823 (2019).

	66.	 Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).
	67.	 Alon, U. & Yahav, E. On the bottleneck of graph neural networks and its

practical implications. Preprint at https://arxiv.org/abs/2006.05205 (2020).
	68.	 Fey, M. & Lenssen, J. E. Fast graph representation learning with PyTorch

Geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).
	69.	 Wang, M. et al. Deep Graph Library: a graph-centric, highly-performant

package for graph neural networks. Preprint at https://arxiv.org/
abs/1909.01315 (2019).

	70.	 Alidaee, B., Kochenberger, G. A. & Ahmadian, A. 0-1 Quadratic
programming approach for optimum solutions of two scheduling problems.
Int. J. Syst. Sci. 25, 401–408 (1994).

	71.	 Neven, H., Rose, G. & Macready, W. G. Image recognition with an adiabatic
quantum computer I. Mapping to quadratic unconstrained binary
optimization. Preprint at https://arxiv.org/abs/0804.4457 (2008).

	72.	 Deza, M. & Laurent, M. Applications of cut polyhedra. J. Comput. Appl.
Math. 55, 191–216 (1994).

	73.	 Farhi, E., Goldstone, J. & Gutmann, S. A. A quantum approximate
optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

	74.	 Zhou, L., Wang, S.-T., Choi, S., Pichler, H. & Lukin, M. D. Quantum
approximate optimization algorithm: performance, mechanism and
implementation on near-term devices. Phys. Rev. X 10, 021067 (2020).

	75.	 Guerreschi, G. G. & Y., A. QAOA for Max-Cut requires hundreds of qubits
for quantum speed-up. Nat. Sci. Rep. 9, 6903 (2019).

	76.	 Crooks, G. E. Performance of the quantum approximate optimization
algorithm on the maximum cut problem. Preprint at https://arxiv.org/
abs/1811.08419 (2018).

	77.	 Lotshaw, P. C. et al. Empirical performance bounds for quantum
approximate optimization. Quantum Inf. Process. 20, 403 (2021).

	78.	 Patti, T. L., Kossaifi, J., Anandkumar, A. & Yelin, S. F. Variational Quantum
Optimization with Multi-Basis Encodings. Preprint at https://arxiv.org/
abs/2106.13304 (2021).

	79.	 Zhao, T., Carleo, G., Stokes, J. & Veerapaneni, S. Natural evolution strategies
and variational Monte Carlo. Mach. Learn. Sci. Technol. 2, 02LT01 (2020).

	80.	 Goemans, M. X. & Williamson, D. P. Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite
programming. J. ACM 42, 1115–1145 (1995).

	81.	 Halperin, E., Livnat, D. & Zwick, U. MAX CUT in cubic graphs. J.
Algorithms 53, 169–185 (2004).

	82.	 Dembo, A., Montanari, A. & Sen, S. Extremal cuts of sparse random
graphs. Ann. Probab. 45, 1190–1217 (2017).

	83.	 Sherrington, D. & Kirkpatrick, S. Solvable model of a spin glass. Phys. Rev.
Lett. 35, 1792–1795 (1975).

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell376

https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1709.05584
https://arxiv.org/abs/1810.00826
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1902.10197
https://arxiv.org/abs/1902.10197
https://arxiv.org/abs/2012.05716
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/1902.06673
https://arxiv.org/abs/1511.05493
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2103.16378
https://arxiv.org/abs/2103.16378
https://arxiv.org/abs/2102.09544
https://arxiv.org/abs/1706.07450
https://arxiv.org/abs/1808.05689
https://arxiv.org/abs/1906.01227
https://arxiv.org/abs/1906.01227
https://arxiv.org/abs/2006.10643
https://arxiv.org/abs/2006.10643
https://arxiv.org/abs/2002.09398
https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1803.08475
https://arxiv.org/abs/1911.04936
https://arxiv.org/abs/1909.08387
https://arxiv.org/abs/2006.05205
https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/1909.01315
https://arxiv.org/abs/0804.4457
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/1811.08419
https://arxiv.org/abs/1811.08419
https://arxiv.org/abs/2106.13304
https://arxiv.org/abs/2106.13304
http://www.nature.com/natmachintell

ArticlesNaTure MaCHIne InTellIgenCe

	84.	 Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical
concepts and open questions. Rev. Mod. Phys. 58, 801–976 (1986).

	85.	 Alizadeh, F. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM J. Optimization 5,
13 (1995).

	86.	 Haribara, Y. & Utsunomiya, S. in Principles and Methods of Quantum
Information Technologies. Lecture Notes in Physics Vol. 911 (eds Semba, K. &
Yamamoto, Y.) 251–262 (Springer, 2016).

	87.	 Ye, Y. The Gset Dataset (Stanford, 2003); https://web.stanford.edu/~yyye/
yyye/Gset/

	88.	 Kochenberger, G. A., Hao, J.-K., Lu, Z., Wang, H. & Glover, F. Solving
large scale Max Cut problems via tabu search. J. Heuristics 19,
565–571 (2013).

	89.	 Benlic, U. & Hao, J.-K. Breakout local search for the Max-Cut problem.
Eng. Appl. Artif. Intell. 26, 1162–1173 (2013).

	90.	 Choi, C. & Ye, Y. Solving Sparse Semidefinite Programs Using the Dual
Scaling Algorithm with an Iterative Solver Working Paper (Department of
Management Sciences, Univ. Iowa, 2000).

	91.	 Hale, W. K. Frequency assignment: theory and applications. Proc. IEEE 68,
1497–1514 (1980).

	92.	 Boginski, V., Butenko, S. & Pardalos, P. M. Statistical analysis of financial
networks. Comput. Stat. Data Anal. 48, 431–443 (2005).

	93.	 Yu, H., Wilczek, F. & Wu, B. Quantum algorithm for approximating
maximum independent sets. Chin. Phys. Lett. 38, 030304 (2021).

	94.	 Pichler, H., Wang, S.-T., Zhou, L., Choi, S. & Lukin, M. D. Quantum
optimization for maximum independent set using Rydberg atom arrays.
Preprint at https://arxiv.org/abs/1808.10816 (2018).

	95.	 Djidjev, H. N., Chapuis, G., Hahn, G. & Rizk, G. Efficient combinatorial
optimization using quantum annealing. Preprint at https://arxiv.org/
abs/1801.08653 (2018).

	96.	 Boppana, R. & Halldórsson, M. M. Approximating maximum independent
sets by excluding subgraphs. BIT Numer. Math. 32, 180–196 (1992).

	97.	 Duckworth, W. & Zito, M. Large independent sets in random regular
graphs. Theor. Comput. Sci. 410, 5236–5243 (2009).

	98.	 McKay, B. D. Independent sets in regular graphs of high girth. Ars
Combinatoria 23A, 179 (1987).

	99.	 Grötschel, M., Jünger, M. & Reinelt, G. An application of combinatorial
optimization to statistical physics and circuit layout design. Oper. Res. 36,
493–513 (1988).

	100.	 Laughhunn, D. J. Quadratic binary programming with application to
capital-budgeting problems. Oper. Res. 18, 454–461 (1970).

	101.	 Krarup, J. & Pruzan, A. Computer aided layout design. Math. Program.
Study 9, 75–94 (1978).

	102.	 Gallo, G., Hammer, P. & Simeone, B. Quadratic knapsack problems. Math.
Program. 12, 132–149 (1980).

	103.	 Witsgall, C. Mathematical Methods of Site Selection for Electronic System
(EMS) NBS Internal Report (NBS, 1975).

	104.	 Chardaire, P. & Sutter, A. A decomposition method for quadratic zero-one
programming. Manag. Sci. 41, 704–712 (1994).

	105.	 Phillips, A. & Rosen, J. B. A quadratic assignment formulation of the
molecular conformation problem. J. Glob. Optim. 4, 229–241 (1994).

	106.	 Iasemidis, L. D. et al. Prediction of human epileptic seizures based on
optimization and phase changes of brain electrical activity. Optim. Methods
Software 18, 81–104 (2003).

	107.	 Kalra, A., Qureshi, F. & Tisi, M. Portfolio asset identification using graph
algorithms on a quantum annealer. SSRN https://ssrn.com/
abstract=3333537 (2018).

	108.	 Markowitz, H. Portfolio selection. J. Finance 7, 77–91 (1952).
	109.	 Kolen, A. Interval scheduling: a survey. Naval Res. Logist. 54,

530–543 (2007).
	110.	 Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J. & Schieber, B. A unified

approach to approximating resource allocation and scheduling. J. ACM 48,
1069–1090 (2001).

	111.	 Speziali, S. et al. Solving sensor placement problems in real water
distribution networks using adiabatic quantum computation. In 2021 IEEE
International Conference on Quantum Computing and Engineering (QCE)
463–464 (IEEE, 2021).

	112.	 McMahon, P. L. et al. A fully programmable 100-spin coherent Ising
machine with all-to-all connections. Science 354, 614–617 (2016).

	113.	 Bansal, N. & Khot, S. Inapproximability of hypergraph vertex cover and
applications to scheduling problems. In Proc. Automata, Languages and
Programming (ICALP 2010) Lecture Notes in Computer Science Vol. 6198
(eds Abramsky, S. et al.) 250–261 (Springer, 2010).

	114.	 Hernandez, M., Zaribafiyan, A., Aramon, M. & Naghibi, M. A novel
graph-based approach for determining molecular similarity. Preprint at
https://arxiv.org/abs/1601.06693 (2016).

	115.	 Terry, J. P., Akrobotu, P. D., Negre, C. F. & Mniszewski, S. M. Quantum
isomer search. PLoS ONE 15, e0226787 (2020).

	116.	 Combinatorial optimization with graph neural networks. GitHub https://
github.com/amazon-research/co-with-gnns-example (2022).

Acknowledgements
We thank F. Brandao, G. Karypis, M. Kastoryano, E. Kessler, T. Mullenbach, N. Pancotti,
M. Resende, S. Roy, G. Salton, S. Severini, A. Urweisse and J. Zhu for fruitful discussions.

Author contributions
All authors contributed to the ideation and design of the research. M.J.A.S. and J.K.B.
developed and ran the computational experiments and also wrote the initial draft of the
the manuscript. H.G.K. supervised this work and revised the manuscript.

Competing interests
M.J.A.S., J.K.B. and H.G.K. are listed as inventors on a US provisional patent application
(no. 7924-38500) on combinatorial optimization with graph neural networks.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42256-022-00468-6.

Correspondence and requests for materials should be addressed to
Martin J. A. Schuetz, J. Kyle Brubaker or Helmut G. Katzgraber.

Peer review information Nature Machine Intelligence thanks Thomas Vandal and Estelle
Inack for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Nature Machine Intelligence | VOL 4 | April 2022 | 367–377 | www.nature.com/natmachintell 377

https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/
https://arxiv.org/abs/1808.10816
https://arxiv.org/abs/1801.08653
https://arxiv.org/abs/1801.08653
https://ssrn.com/abstract=3333537
https://ssrn.com/abstract=3333537
https://arxiv.org/abs/1601.06693
https://github.com/amazon-research/co-with-gnns-example
https://github.com/amazon-research/co-with-gnns-example
https://doi.org/10.1038/s42256-022-00468-6
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Combinatorial optimization with physics-inspired graph neural networks

	Related work

	Supervised learning.
	Reinforcement learning.
	Unsupervised learning.

	Preliminaries

	Combinatorial optimization.
	GNNs.

	Combinatorial optimization with GNNs

	Numerical experiments

	GNN architecture.
	Maximum cut.
	Maximum independent set.

	Applications in industry

	Risk diversification.
	Interval scheduling.
	Sensor placement in WDNs.

	Conclusion and outlook

	Acknowledgements

	Fig. 1 Schematic of the GNN approach for combinatorial optimization presented in this work.
	Fig. 2 Flow chart illustrating the end-to-end workflow for the proposed physics-inspired GNN optimizer.
	Fig. 3 Example solution to MaxCut for a random 3-regular graph with n = 100 nodes.
	Fig. 4 Numerical results for MaxCut.
	Fig. 5 Numerical results for the MIS problem.
	Table 1 Numerical results for MaxCut on Gset instances.

