
Articles
https://doi.org/10.1038/s42256-022-00468-6

1Amazon Quantum Solutions Lab, Seattle, WA, USA. 2AWS Intelligent and Advanced Compute Technologies, Professional Services, Seattle, WA, USA. 
3AWS Center for Quantum Computing, Pasadena, CA, USA. ✉e-mail: maschuet@amazon.com; johbruba@amazon.com; katzgrab@amazon.com

Optimization is ubiquitous across science and industry. 
Specifically, the field of combinatorial optimization—the 
search for the minimum of an objective function within a 

finite but often large set of candidate solutions—is one of the most 
important areas in the field of optimization, with practical (yet noto-
riously challenging) applications found in virtually every industry, 
including both the private and public sectors, as well as in areas such 
as transportation and logistics, telecommunications and finance1–5. 
Although efficient specialized algorithms exist for specific use 
cases, most optimization problems remain intractable, especially 
in real-world applications where problems are more structured and 
thus require additional steps to make them amenable to traditional 
optimization techniques. Despite remarkable advances in both algo-
rithms and computing power, substantial yet generic improvements 
have remained elusive, generating an increased interest in new opti-
mization approaches that are broadly applicable and radically dif-
ferent from traditional operations research tools.

In the broader physics community, the advent of quantum 
annealing devices such as the D-Wave Systems Inc. quantum 
annealers6–9 has spawned a renewed interest in the development of 
heuristic approaches to solve discrete optimization problems. On 
the one hand, recent advances in quantum science and technol-
ogy have inspired the development of novel classical algorithms, 
sometimes dubbed nature-inspired or physics-inspired algorithms 
(for example, simulated quantum annealing10,11 running on con-
ventional CMOS hardware), that have raised the bar for emerg-
ing quantum annealing hardware (for example, refs. 12–15). On the 
other hand, in parallel to these algorithmic developments, substan-
tial progress has been made in recent years in the development of 
programmable special-purpose devices based on alternative tech-
nologies, such as the coherent Ising machine based on optical para-
metric oscillators16,17, digital MemComputing machines based on 
self-organizing logic gates18,19, and the ASIC-based Fujitsu digital 
annealer (ASIC, application-specific integrated circuit)20–22. Some 
of these approaches face severe scalability limitations. For example, 

in the coherent Ising machine there is a trade-off between preci-
sion and the number of variables, and the Fujitsu digital annealer—
baked into an ASIC—can currently handle, at most, 8,192 variables. 
It is thus of great interest to find new alternative approaches to tackle 
large-scale combinatorial optimization problems, going far beyond 
what is currently accessible with quantum and nature-inspired 
approaches alike.

In the deep learning community, graph neural networks (GNNs) 
have seen a burst in popularity over the past few years23–30. In essence, 
GNNs are deep neural network architectures specifically designed 
for graph structure data, with the ability to learn effective feature 
representations of nodes, edges or even entire graphs. Prime exam-
ples of GNN applications include classification of users in social 
networks31,32, the prediction of future interactions in recommender 
systems33 and the prediction of certain properties of molecular 
graphs34,35. As a convenient and general framework to model a vari-
ety of real-world complex structural data, GNNs have been applied 
successfully to a broad set of problems, including recommender 
systems in social media and e-commerce36,37, the detection of mis-
information (fake news) in social media38, and various domains of 
natural sciences including event classification in particle physics39,40, 
to name a few. Although several specific implementations of GNNs 
exist29,41,42, at their core, GNNs typically iteratively update the fea-
tures of the nodes of a graph by aggregating the information from 
their neighbours (often referred to as message passing43), thereby 
iteratively making local updates to the graph structure as the train-
ing of the network progresses. Because of their scalability and inher-
ent graph-based design, GNNs present an alternative platform on 
which to build large-scale combinatorial heuristics.

In this Article we present a highly scalable GNN-based solver 
to (approximately) solve combinatorial optimization problems with 
up to millions of variables. The approach is schematically depicted 
in Fig. 1, and works as follows. First, we identify the Hamiltonian 
(cost function) H that encodes the optimization problem in terms 
of binary decision variables xν ∈ {0, 1} and we associate this variable 
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with a vertex ν ∈ V  for an undirected graph G = (V , E) with vertex 
set V = {1, 2, …, n} and the edge set E = {(i, j) : i, j ∈ V} cap-
turing interactions between the decision variables. We then apply a 
relaxation strategy to the problem Hamiltonian to generate a differ-
entiable loss function, with which we perform unsupervised train-
ing on the node representations of the GNN. The GNN follows a 
standard recursive neighbourhood aggregation scheme43,44, where 
each node ν = 1, 2, …, n collects information (encoded as feature vec-
tors) of its neighbours to compute its new feature vector hkν at layer 
k = 0, 1, …, K. After k iterations of aggregation, a node is represented 
by its transformed feature vector hkν, which captures the structural 
information within the node’s k-hop neighbourhood28. For binary 
classification tasks we typically use convolutional aggregation steps, 
followed by the application of a nonlinear softmax activation func-
tion to shrink down the final embeddings hKν  to one-dimensional 
soft (probabilistic) node assignments pν = hKν ∈ [0, 1]. Finally, once 
the unsupervised training process has completed, we apply a pro-
jection heuristic to map these soft assignments pν back to integer 
variables xν ∈ {0, 1}, using, for example, xν = int(pν). We numerically 
showcase our approach with results for canonical NP-hard optimi-
zation problems such as maximum cut (MaxCut) and maximum 
independent set (MIS), showing that our GNN-based approach 
can perform on par or even better than existing well-established 
solvers, while being broadly applicable to a large class of optimiza-
tion problems. The scalability of our approach also opens up the 
possibility of studying unprecedented problem sizes with hun-
dreds of millions of nodes when leveraging distributed training 
in a mini-batch fashion on a cluster of machines, as demonstrated  
recently in ref. 45.

The Article is structured as follows. In the next section we pro-
vide some context for our work, discussing recent developments 
at the cross-section between machine learning and combinatorial 
optimization. We then summarize the basic concepts underlying 
our approach, as well as information on the class of problems that 
this approach can solve. An outline of the implementation of the 
proposed GNN-based optimizer follows, then numerical experi-
ments. We next discuss potential real-world applications in indus-
try. Finally, we draw conclusions and give an outlook on future 
directions of research.

Related work
In this section we briefly review the relevant existing literature, 
with the goal to provide a detailed context for our work. Broadly 
speaking, our work makes a physics-inspired contribution to the 
emerging cross-fertilization between combinatorial optimization 
and machine learning, where the development of novel deep learn-
ing architectures has sparked a renewed interest in heuristics for 
solving NP-hard combinatorial optimization problems using neural 

networks, as extensively reviewed in refs. 46,47, for example. Leaving 
alternative, non-graph-based approaches aside (as presented, 
for example, in ref. 48), in the following short survey we focus on 
graph-based optimization problems—where modern deep learn-
ing architectures such as sequence models, attention mechanisms 
and GNNs provide a natural tool set46—and we primarily distin-
guish between approaches based on supervised learning, reinforce-
ment learning or unsupervised learning. This categorization can be 
refined further with respect to the typical size of a problem solved 
by a specific approach and the scope of the solver (special-purpose 
versus general-purpose).

Supervised learning. The majority of neural-network-based 
approaches to combinatorial optimization are based on supervised 
learning, with the goal to approximate some (typically complex, 
nonlinear) mapping from an input representation of the problem 
to the target solution, based on the minimization of some empiri-
cal, handcrafted loss function. Early work was based on pointer 
networks, which leverage sequence-to-sequence models to pro-
duce permutations over inputs of variable size, as is relevant for the 
canonical travelling salesman problem (TSP)49. Since then, numer-
ous studies have fused GNNs with various heuristics and search 
procedures to solve specific combinatorial optimization problems, 
such as quadratic assignment50, graph matching51, graph colour-
ing52 and the TSP53,54. As pointed out in ref. 55, however, the viabil-
ity and performance of supervised approaches critically depends 
on the existence of large, labelled training datasets with previ-
ously optimized hard problem instances, resulting in a problematic 
chicken-and-egg scenario that is further amplified by the fact that 
it is hard to efficiently sample unbiased and representative labelled 
instances of NP-hard problems56.

Reinforcement learning. The critical need for training labels can 
be circumvented with reinforcement learning (RL) techniques that 
aim to learn a policy with the goal of maximizing some expected 
reward function. Specifically, optimization problems can typically 
be described with a native objective function that can then serve 
as a reward function in an RL approach46. Motivated by the chal-
lenges associated with the need for optimal target solutions, Bello 
and colleagues extended the pointer network architecture49 to an 
actor-critic RL framework to train an approximate TSP solver, using 
a recurrent neural network encoder scheme and the expected tour 
length as a reward signal57. Using a general RL framework based on 
a graph attention network architecture42, notable improvements in 
accuracy on a two-dimensional Euclidean TSP have subsequently 
been presented in ref. 58, getting close to optimal results for prob-
lems with up to 100 nodes. Moreover, TSP variants with hard con-
straints have been analysed in ref. 59, with the help of a multi-level 
RL framework in which each layer of a hierarchy learns a different 
policy, and from which actions can then be sampled. Finally, while 
the majority of RL-based approaches have focused on the TSP or 
variants thereof, ref. 60 proposes a combination of RL and graph 
embedding to learn efficient greedy meta-heuristics to incremen-
tally construct a solution, showcasing this approach with numerical 
results for minimum vertex cover, MaxCut and TSP as test prob-
lems, for graphs with up to ~1,000–1,200 nodes.

Unsupervised learning. Conceptually, our work is most simi-
lar to those that aim to train neural networks in an unsupervised, 
end-to-end fashion, without the need for labelled training sets55. 
Specifically, Toenshoff and colleagues have recently used a recur-
rent GNN architecture—dubbed RUN-CSP—to solve optimization 
problems that can be framed as maximum constraint satisfaction 
problems61. For other types of problem, such as the maximum 
independent set problem, the model relies on empirically selected 
handcrafted loss functions. Using the language of constraint  
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Fig. 1 | Schematic of the GNN approach for combinatorial optimization 
presented in this work. Following a recursive neighbourhood aggregation 
scheme, the graph neural network is iteratively trained against a custom 
loss function that encodes the specific optimization problem (for example, 
maximum cut). At training completion, we project the final values for 
the soft node assignments at the final graph neural network layer back 
to binary variables xi = 0, 1, providing the solution bit string x = (x1, x2, …). 
Further details are given in the main text.
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satisfaction problems, where the system size is expressed in terms 
of both the number of variables and the number of constraints, 
the authors solve problem instances of Maximum 2-satisfiability, 
3-colourability, MaxCut and maximum independent set with up 
to 5,000 nodes, showing that RUN-CSP can compete with tradi-
tional approaches like greedy heuristics or semidefinite program-
ming. Finally, by either optimizing a smooth relaxation of the cut 
objective or applying a policy gradient, Yao and colleagues trained 
a GNN to specifically solve the MaxCut problem, albeit at relatively 
small system sizes with up to 500 nodes62, and without any details 
on runtime.

In this Article we present a highly scalable, physics-inspired 
framework that uses deep-learning tools in the form of GNNs to 
approximate solutions to hard combinatorial optimization prob-
lems with up to millions of variables. Our GNN optimizer is based 
on a direct mathematical relation between prototypical Ising spin 
Hamiltonians63, the quadratic binary unconstrained optimiza-
tion (QUBO) and polynomial binary unconstrained optimiza-
tion (PUBO) formalism and the differentiable loss function with 
which we train the GNN, thereby providing one unifying frame-
work for a broad class of combinatorial optimization problems, and 
opening up the powerful toolbox of statistical physics to modern 
deep-learning approaches. Fusing concepts from statistical phys-
ics with modern machine learning tooling, we propose a simple, 
generic and robust solver that does not rely on handcrafted loss 
functions. Specifically, we show that the same GNN optimizer can 
solve different QUBO problems, without any need to change the 
architecture or loss function, while scaling to problem instances that 
are orders of magnitude larger than what many traditional QUBO 
solvers can handle6,12,64,65.

Preliminaries
To set up our notation and terminology we start out with a brief 
review of both combinatorial optimization and graph neural 
networks.

Combinatorial optimization. The field of combinatorial optimiza-
tion is concerned with settings where a large number of yes/no deci-
sions must be made and each set of decisions yields a corresponding 
objective function value, like a cost or profit value, that is to be opti-
mized1. Canonical combinatorial optimization problems include, 
among others, the maximum cut problem (MaxCut), the maximum 
independent set problem (MIS), the minimum vertex cover prob-
lem, the maximum clique problem and the set cover problem. In all 
cases, exact solutions are not feasible for sufficiently large systems 
due to the exponential growth of the solution space as the number 
of variables n increases. Bespoke (approximate) algorithms to solve 
these problems can typically be identified, at the cost of limited 
scope and generalizability. Conversely, in recent years, the QUBO 
framework has resulted in a powerful approach that unifies a rich 
variety of these NP-hard combinatorial optimization problems1–3,66. 
The cost function for a QUBO problem can be expressed in com-
pact form with the Hamiltonian

HQUBO = x⊤Qx =
∑

i,j
xiQijxj, (1)

where x = (x1, x2,…) is a vector of binary decision variables and 
the QUBO matrix Q is a square matrix of constant numbers that 
encodes the actual problem to solve. Without loss of generality, the 
Q matrix can be assumed to be symmetric or in an upper triangu-
lar form1. We have omitted any irrelevant constant terms, as well as 
any linear terms as these can always be absorbed into the Q matrix 
because x2i = xi for binary variables xi ∈ {0, 1}. Problem constraints, 
which are relevant for many real-world optimization problems, 
can be accounted for with the help of penalty terms entering the  

objective function (rather than being explicitly imposed), as detailed in  
ref. 1. The significance of QUBO problems is further illustrated 
by the close relation to the famous Ising model, which is known 
to provide mathematical formulations for many NP-complete 
and NP-hard problems, including all of Karp’s 21 NP-complete 
problems66. As opposed to QUBO problems, Ising problems are 
described in terms of binary spin variables zi ∈ {−1, 1}, which can 
be mapped straightforwardly to their equivalent QUBO form, 
and vice versa, using zi = 2xi − 1. By definition, both the QUBO 
and the Ising models are quadratic, but can be naturally gen-
eralized to higher-order PUBO problems, as described by the  
N-local Hamiltonian

HPUBO =

N∑

k=0

∑

⟨i1 , i2 , …, ik⟩
Qi1i2···ik xi1xi2 · · · xik , (2)

with real-numbered coefficients Qi1i2···ik for some N ≥ 3, and 
⟨i1, i2, …, ik⟩ indicating a group of k binary variables (or spins in 
the Ising formulation). Terms containing a product of k variables, 
of the form Qi1i2···ik xi1xi2 · · ·xik, are commonly referred to as k-local 
interactions, with Qi1i2···ik being the coupling constant. As we exem-
plify below for some canonical problems, graph (hypergraph) 
problems can be naturally framed as QUBO (PUBO) problems. To 
this end, given an undirected graph G = (V , E), we simply asso-
ciate a binary variable xi with every vertex i ∈ V, and then express 
the (node classification) objective as a QUBO problem, where 
the specific assignment x can be visualized as a specific two-tone 
(for example, light and dark) colouring of the graph (with colour-
ing of the graph we refer to a specific node classification as given 
by the assignment vector x, taking for example xi = 0 as red node 
colouring and xi = 1 as blue node colouring; we do not refer to 
the well-known vertex colouring problem, which seeks to colour 
the vertices of a graph such that no two adjacent vertices are of  
the same colour) (Fig. 1).

GNNs. On a high level, GNNs are a family of neural networks 
capable of learning how to aggregate information in graphs for 
the purpose of representation learning. Typically, a GNN layer is 
composed of three functions35: (1) a message passing function that 
permits information exchange between nodes over edges, (2) an 
aggregation function that combines the collection of received mes-
sages into a single, fixed-length representation and (3) a (typically 
nonlinear) update activation function that produces node-level 
representations given the previous layer representation and the 
aggregated information. Although a single-layer GNN encapsu-
lates a node’s features based on its immediate or one-hop neigh-
bourhood, by stacking multiple layers, the model can propagate 
each node’s features through intermediate nodes, analogous to the 
broadening of the receptive field in downstream layers of convolu-
tional neural networks. Formally, at layer k = 0, each node ν ∈ V  
is represented by some initial representation h0ν ∈ R

d0, usually 
derived from the node’s label or given input features of dimen-
sionality d0 (ref. 67). Following a recursive neighbourhood aggre-
gation scheme, the GNN then iteratively updates each node’s 
representation, in general described by some parametric function fkθ,  
resulting in

hkν = fkθ
(
hk−1

ν , {hk−1
u |u ∈ Nν}

)
, (3)

for the layers k = 1, …, K, with Nν = {u ∈ V|(u, ν) ∈ E} referring 
to the local neighbourhood of node ν, that is, the set of nodes that 
share edges with node ν. The total number of layers K is usually 
determined empirically as a hyperparameter, as is the intermediate 
representation dimensionality dk. Both can be optimized in an outer 
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loop. Although a growing number of possible implementations for 
GNN architectures30 exists, here we use a graph convolutional net-
work (GCN)29 for which equation (3) reads explicitly as

hkν = σ



Wk
∑

u∈N (ν)

hk−1
u

|N (ν)|
+ Bkhk−1

ν



, (4)

with Wk and Bk being (shared) trainable weight matrices, the 
denominator |N (ν)| serving as a normalization factor (with other 
choices available as well) and σ(⋅) being some (component-wise) 
nonlinear activation function such as sigmoid or ReLU. Although 
GNNs can be used for various prediction tasks (including node clas-
sification, link prediction, community detection, network similarity 
or graph classification), here we focus on node classification, where, 
usually, the last (Kth) layer’s output is used to predict a label yν for 
every node ν ∈ V. To this end, we feed the (parametrized) final 
node embeddings zν = hKν (θ) into a problem-specific loss function 
and run stochastic gradient descent to train the weight parameters.

Combinatorial optimization with GNNs
We now detail how to use GNNs to solve combinatorial optimiza-
tion problems, as schematically outlined in Fig. 2. To this end, we 
frame combinatorial optimization problems as unsupervised node 
classification tasks, without the need for any labelled data. Because 
the nodes do not carry any inherent features, in our set-up the node 
embeddings h0ν are initialized randomly. Warm-starting the train-
ing process with pre-training (transfer learning) will be left for 
future research. The Hamiltonians belonging to the class described 
above are not differentiable and cannot be used straightforwardly 
within the GNN training process. Therefore, for a given problem 
Hamiltonian H and graph G, we generate a differentiable loss func-
tion L(θ), as required for standard backpropagation, by promoting 

the binary decision variables xi ∈ {0, 1} to continuous (parame-
trized) probability parameters pi(θ) with the following (heuristic) 
relaxation approach:

xi −→ pi(θ) ∈ [0, 1]. (5)

The soft assignments pi can be viewed as class probabilities. They 
are generated by our GNN Ansatz as final node embeddings 
pi = hKi ∈ [0, 1] at layer K, after the application of a nonlinear soft-
max activation function. They are then used as input for the loss 
function L(θ). In particular, for QUBO-type problems

HQUBO −→ LQUBO(θ) =
∑

i, j
pi(θ)Qijpj(θ), (6)

which is differentiable with respect to the parameters of the GNN 
model, θ, and similarly for PUBO problems on hypergraphs with 
higher-order terms of the form pipjpk and so on, thereby establish-
ing a straightforward, general connection between combinatorial 
optimization problems, Ising Hamiltonians and GNNs. For training 
with gradient descent, standard ML optimizers such as Adam can be 
used. Once the (unsupervised) training process has completed, we 
apply projection heuristics to map these soft assignments pi back to 
integer variables xi = 0, 1, using, for example, simply xi = int(pi). The 
application of other, more sophisticated projection schemes will be 
left for future research. Note that any projection heuristics can be 
applied throughout training after every epoch, thereby increasing 
the pool of solution candidates, at no additional computational cost. 
With the GNN guiding the search through the solution space, one 
can then book-keep all solution candidates identified throughout 
training and simply pick the best solution found.

Our general GNN approach features several hyperparame-
ters, including the number of layers K, the dimensionality of the 
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Fig. 2 | Flow chart illustrating the end-to-end workflow for the proposed physics-inspired GNN optimizer. a, The problem is specified by a graph G with 
associated adjacency matrix A, and a cost function as described (for example) by the QUBO Hamiltonian HQUBO. Within the QUBO framework the cost 
function is fully captured by the QUBO matrix Q, as illustrated for both MaxCut and MIS for a sample (undirected) graph with five vertices and six edges. 
b, The problem set-up is complemented by a training strategy that specifies the GNN Ansatz, a choice of hyperparameters and a specific ML optimizer 
(for example, Adam, stochastic gradient descent (SGD)). c, The GNN is iteratively trained against a custom loss function LQUBO(θ) that encodes a relaxed 
version of the underlying optimization problem as specified by the cost function HQUBO. Typically, a GNN layer operates by aggregating information within 
the local one-hop neighbourhood (as illustrated by the k = 1 circle for the top node with label 0). By stacking layers one can extend the receptive field of 
each node, thereby allowing distant propagation of information (as illustrated by the k = 2 circle for the top node with label 0). d,e, The GNN generates 
soft node assignments, which can be viewed as class probabilities. Using some projection scheme (d), we then project the soft node assignments back to 
(hard) binary variables xi = 0, 1 (as indicated by the binary black/white node colouring), providing the final solution bit string x (e).
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embedding vectors hki  and the learning rate β, with details depend-
ing on the specific architecture and optimizer used. These can be 
fine-tuned and optimized in an outer loop, using, for example, 
standard techniques such as grid search or more advanced Bayesian 
optimization methods.

Our GNN-based approach can be readily implemented with 
open-source libraries such as PyTorch Geometric68 or the Deep 
Graph Library69. The core of the corresponding code is displayed 
in the Supplementary Information for a GCN with two layers and a 
loss function for any QUBO problem. For illustration, an example 
solution to the archetypal MaxCut problem (as implemented with 
this Ansatz) for a 3-regular graph with n = 100 vertices is shown in 
Fig. 3. Here, the cut size achieved with our GNN method amounts 
to 132. Further details are provided in the following.

Numerical experiments
We perform numerical experiments using MaxCut and MIS 
benchmark problems. Before providing details on these numerical 
experiments, we first describe our GNN model architecture as it is 
consistent across the d-regular MaxCut and MIS problem instances 
described below. It is certainly possible that better solutions can be 
found by fine-tuning the hyperparameters for every given prob-
lem instance. However, one of our goals is to design a robust and 
scalable solver that is able to solve a large sample of instances effi-
ciently without the need for hand-tuning the parameters on an 
instance-by-instance basis.

GNN architecture. We use a simple two-layer GCN architecture 
based on PyTorch GraphConv units. The first convolutional layer 
is fed the node embeddings of dimension d0 and outputs a repre-
sentation of size d1. Next, we apply a component-wise, nonlinear 
ReLU transformation. The second convolutional layer is then fed 
this intermediate representation and outputs the output layer of size 
d2, which is then fed through the component-wise sigmoid trans-
formation to provide a soft probability pi ∈ [0, 1] for every node 
i ∈ V. We find that the following simple heuristic for determining 
the hyperparameters d0 and d1 works well: if the number of nodes is 
large (n ≥ 105), then we set d0 = int(

√
n), else we set d0 = int( 3√n), 

and we take d1 = int(d0/2). Because we solve for binary classifica-
tion tasks, we set the final output dimension as d2 = 1. However, for 
multi-colour problems this could be extended to C > 2 classes by 
passing the output layer through a softmax transformation (instead 
of a sigmoid) and taking the argmax. Note that as the graph size 

scales beyond ~105 nodes, memory becomes a concern, so we fur-
ther reduce the representations to allow the GNN to be trained on a 
single graphics processing unit (GPU). Distributed training leverag-
ing a whole cluster of machines will be discussed in the ‘Conclusion 
and outlook’ section. With the GNN’s output depending on the ran-
dom initialization of the hidden feature vectors, there is a risk of 
becoming stuck in a local optimum where the GNN stops learning. 
To counter this issue, one can take multiple shots (that is, run the 
GNN training multiple times for different random seeds and choose 
the best solution), thereby boosting the performance at the cost of 
extended runtime. In our numerical experiments we limited the 
number of shots per instance to five, only re-running the training 
when an obviously sub-optimal solution was detected. Finally, we 
set the learning rate to β = 10−4 and allow the model to train for up 
to ~105 epochs, with a simple early stopping rule set to an absolute 
tolerance of 10−4 and a patience of 103.

Maximum cut. MaxCut is an NP-hard combinatorial optimization 
problem with practical applications in machine scheduling70, image 
recognition71 and electronic circuit layout design72. In the current 
era of noisy intermediate-scale quantum devices, with the advent 
of novel hybrid quantum-classical algorithms such as the quantum 
approximate optimization algorithm (QAOA)73, the MaxCut prob-
lem has recently attracted considerable attention as a potential use 
case of pre-error-corrected quantum devices74–79. MaxCut is a graph 
partitioning problem defined as follows: given a graph with vertex 
set V  and edge set E, we seek a partition of V into two subsets with 
maximum cut, where a cut refers to edges connecting two nodes 
from different vertex sets. Intuitively, this means we score a point 
whenever an edge connects two nodes of different colours. To for-
mulate MaxCut mathematically, we introduce binary variables sat-
isfying xi = 1 if vertex i is in one set and xi = 0 if it is in the other set. 
It is then easy to verify that the quantity xi + xj − 2xixj = 1 if the edge 
(i, j) has been cut, and 0 otherwise. With the help of the adjacency 
matrix Aij with Aij = 0 if edge (i, j) does not exist and Aij > 0 if a (pos-
sibly weighted) edge connects node i with j, the MaxCut problem is 
described by the quadratic Hamiltonian

HMaxCut =
∑

i<j
Aij(2xixj − xi − xj), (7)

which falls into the broader class of QUBO problems described by 
equation (1). We provide the explicit Q-matrix for a sample MaxCut 
problem in Fig. 2. Up to an irrelevant constant, the MaxCut problem 
can equivalently by described by the compact Ising Hamiltonian 
HMaxCut = ∑i < jJijzizj with Jij = Aij/2, favouring antiferromagnetic 
ordering of the spins for Jij > 0, as expected intuitively based on the 
problem definition. As our figure of merit, we denote the largest cut 
found as cut⋆ = −HMaxCut(x⋆), with x⋆ referring to the corresponding 
bit string.

The complexity of MaxCut depends on the regularity and con-
nectivity of the underlying graph. Following an existing trend in the 
community75, we first consider the MaxCut problem on random 
(unweighted) d-regular graphs, where every vertex is connected to 
exactly d other vertices. We perform the benchmarks as follows. For 
graphs with up to a few hundred nodes, we compare our GNN-based 
solver to the (approximate) polynomial-time Goemans–Williamson 
(GW) algorithm80, which provides the current record for an approx-
imate answer within some fixed multiplicative factor of the opti-
mum (referred to as approximation ratio α), using semidefinite 
programming and randomized rounding. Specifically, the GW algo-
rithm achieves a guaranteed approximation ratio of α ~ 0.878 for 
generic graphs. This lower bound can be raised for specific graphs 
such as unweighted 3-regular graphs where α ~ 0.9326 (ref. 81).  
Our implementation of the GW algorithm is based on the open- 
source CVXOPT solver, with CVXPY as the modelling interface.  

Fig. 3 | Example solution to MaxCut for a random 3-regular graph with 
n = 100 nodes. After training completion, the GNN provides a binary bit 
string x that assigns one of two possible colours (for example, black or 
white) to each vertex. An edge is said to be cut when it connects two 
vertices of different colours. For a given graph, the optimization problem is 
to assign the colours in such a way that as many edges as possible can be 
cut at the same time (corresponding to the antiferromagnetic ground state 
of the system).
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For very large graphs with up to a million nodes, numerical bench-
marks are not available, but we can compare our best solution 
cut⋆ to an analytical result derived in ref. 82, where it was shown 
that with high probability (in the limit n → ∞) the size of the 
maximum cut for random d-regular graphs with n nodes is given 
by cut⋆ = (d/4+ P∗

√
d/4+O(

√
d))n+O(n). Here, P* ≈ 0.7632 

refers to a universal constant related to the ground-state energy of the 
Sherrington–Kirkpatrick model83,84, which can be expressed analyti-
cally via Parisi’s formula82. We thus take cutub = (d/4+ P∗

√
d/4)n 

as an upper-bound estimate for the maximum cut size in the large-n 
limit. We complement this upper bound with a lower bound as 
achieved by a simple, randomized 0.5-approximation algorithm 
that (on average) cuts half of the edges, yielding a cut size of 
cutrnd ≈ (d/4)n for a d-regular graph with |E| = (d/2)n. Our results 
for the achieved cut size as a function of the number of vertices n 
are shown in Fig. 4. All results are bootstrapped estimates of the 
mean, with error bars denoting twice the bootstrapped standard 
deviations, sampled across 20 random d-regular graphs for every 
data point. For graphs with up to a few hundred nodes, we find 
that a simple two-layer GCN architecture can perform on par 
with the GW algorithm, while showing a runtime advantage com-
pared to GW starting at around n ≈ 100 nodes. For large graphs 
with n ≈ 104 to 106 nodes, we find that our approach consistently 
achieves high-quality solutions with cut⋆ ≳ 0.9 × cutub for both d = 3 
and d = 5, respectively (that is, much better than any naive random-
ized algorithm). As expected for d-regular graphs, we find cut⋆ to 
scale linearly with the number of nodes n, that is, cut⋆ ≈ γdn, with 
γ3 ≈ 1.28 and γ5 ≈ 1.93 for d = 3 and d = 5, respectively. Moreover, 
utilizing modern GPU hardware, we observe a favourable runtime 
scaling at intermediate and large system sizes that allows us to solve 
instances with n = 106 nodes in ~10 min (which includes both GNN 
model training and post-processing steps). Specifically, as shown in 
Fig. 4, we observe an approximately linear scaling of total runtime 
with ~n for large d-regular graphs with 105 ≤ n ≤ 106, contrasting 
with the observed GW algorithm scaling as ~n3.5 for problem sizes 
in the range n ≲ 250, thereby showing the (expected) time complex-
ity Õ(n3.5) of the interior-point method (as commonly used for solv-
ing the semidefinite program underlying the GW algorithm) that 
dominates the GW algorithm runtime85,86.

To complement our work on random d-regular graphs, we per-
formed additional experiments on standard MaxCut benchmark 
instances, with published results, based on the publicly available 
Gset dataset87 that is commonly used for testing MaxCut algo-
rithms. We provide benchmark results for seven different graphs, 
with thousands of nodes, including (1) two Erdös–Renyi graphs 
with uniform edge probability, (2) two graphs where the connectiv-
ity gradually decays from node 1 to node n, (3) two 4-regular toroi-
dal graphs and (4) one of the largest Gset instances with n = 104. The 
results are displayed in Table 1. Here we report cut sizes achieved 
with our physics-inspired GNN solver (PI-GNN), together with 
results sourced from refs. 61,88–90; the latter include an SDP solver 
using dual scaling (DSDP)90, a combination of local search and 
adaptive perturbation referred to as breakout local search (BLS)89 
(providing the best known solutions for the Gset dataset), a Tabu 
Search metaheuristic (KHLWG)88 and a recurrent GNN architec-
ture for maximum constraint satisfaction problems (RUN-CSP)61. 
We assess the solution quality achieved with PI-GNN with the rela-
tive error ϵ = (cutbest − cut⋆)/|E| quantifying the gap to the best 
known solution, normalized by the number of edges |E|, thereby 
giving the fraction of uncut edges as compared to the best known 
solution. We find that our general-purpose approach is com-
petitive with other solvers and typically within ~1% of the best  
published results.

Maximum independent set. The MIS problem is a prominent 
combinatorial optimization problem with practical applications in 
network design91 and finance92, and is closely related to the maxi-
mum clique, minimum vertex cover and set packing problems. In 
the quantum community, the MIS problem has recently attracted 
much interest93 as a potential target use case for novel experimental 
platforms based on neutral atom arrays94. The MIS problem reads 
as follows. Given an undirected graph G = (V , E), an independent 
set is a subset of vertices that are not connected with each other. The 
MIS problem is then the task to find the largest independent set, 
with its (maximum) cardinality typically denoted as the indepen-
dence number α. To formulate the MIS problem mathematically, 
for a given graph G = (V , E), one first associates a binary variable 
xi ∈ {0, 1} with every vertex i ∈ V, with xi = 1 if vertex i belongs to the 
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independent set, and xi = 0 otherwise. The MIS can then be formu-
lated in terms of a Hamiltonian that counts the number of marked 
(coloured) vertices and adds a penalty to non-independent configu-
rations (when two vertices in this set are connected by an edge). It 
is given by

HMIS = −

∑

i∈V

xi + P
∑

(i, j)∈E

xixj, (8)

with a negative pre-factor to the first term (because we solve for 
the largest independent set within a minimization problem) and 
the penalty parameter P > 0 enforcing the constraints. Note that the 
numerical value for P is typically set as P = 2 (ref. 95), but can be fur-
ther optimized in an outer loop. Energetically, the Hamiltonian HMIS 
favours each variable to be in the state xi = 1 unless a pair of these are 
connected by an edge. Again, the Hamiltonian HMIS is quadratic and 
falls into the broader class of QUBO problems described by equa-
tion (1); again, we provide the explicit Q-matrix for a sample MIS 
problem in Fig. 2.

The MIS problem is known to be strongly NP-hard, making 
the existence of an efficient algorithm for finding the maximum 
independent set on generic graphs unlikely. In addition, the MIS 
problem is even hard to approximate. In general, the MIS prob-
lem cannot be approximated to a constant factor in polynomial 
time (unless P = NP). Again we study the MIS problem on random 
unweighted d-regular graphs. Because in our approach the inde-
pendence constraint is enforced with soft penalty terms ~P (just 
like in any QUBO-based model), the predicted set may violate the 
independence condition (that is, the set may contain nodes con-
nected by an edge). Setting P = 2, we have observed these violations 
only in very few cases. If present, as part of our post-processing, 
we have enforced the independence constraint by greedily remov-
ing one of the nodes of each induced edge from the set, and only 
reporting results after this correction. For small graphs with up to a 
few hundred nodes, we compare the GNN-based results to results 
obtained with the Boppana–Halldórsson algorithm built into the 
Python NetworkX library96. For very large graphs with up to a mil-
lion nodes (where benchmarks are not available) we resort to ana-
lytical upper bounds for random d-regular graphs, as presented in 
ref. 97. Here, the best known bounds on the ratio αd/n are reported as 
α3/n = 0.45537 and α5/n = 0.38443 for d = 3 and d = 5, respectively, as 
derived using refined versions of Markov’s inequality98. Our results 
for the achieved independence number as a function of the number 
of vertices n are shown in Fig. 5. All results are bootstrapped esti-
mates of the mean, with error bars denoting twice the bootstrapped 
standard deviations, sampled across 20 random d-regular graphs for 
every data point. Our numerical results for MIS are similar to the 
observations we have made for MaxCut: for graphs with up to a few 
hundred nodes, we find that a simple two-layer GCN architecture  

can perform on par with (or better than) the traditional solver, 
with the GNN solver showing a favourable runtime scaling. For 
large graphs with n ≈ 104 to 106 nodes we find that our approach 
consistently achieves high-quality solutions with α3/n ≈ 0.416 
and α5/n ≈ 0.338 for d = 3 and d = 5, respectively, resulting in esti-
mated numerical approximation ratios of 0.416/0.45537 ≈ 0.92 
and 0.338/0.38443 ≈ 0.88, respectively. Finally, as shown in Fig. 5, 
we observe a moderate, super-linear scaling of the total runtime 
as ~n1.7 for large d-regular graphs with n ≳ 105, as opposed to the 
Boppana–Halldórsson solver with a runtime scaling of ~n2.9 in the 
range n ≲ 500. Note that the GNN model training alone displays 
sub-linear runtime scaling as ~n0.8, in line with our MaxCut results, 
and the aggregate runtime (including post-processing to enforce the 
independence condition) scales as ~n1.7 in the regime n ≈ 105 to 106.

Applications in industry
Although our previous analysis has focused on canonical graph 
optimization problems such as maximum cut and maximum inde-
pendent set, in this section we discuss real-world applications in 
industry for which our solver could provide solutions, in particular 
at potentially unprecedented problem scales. We focus on applica-
tions of the QUBO formalism, even though our methodology is not 
limited to this modelling framework. We first review the existing 
literature, providing relevant references across a wide stack of prob-
lem domains. Thereafter, we explicitly show how to distil combina-
torial QUBO problems for a few select real-world use cases, from 
risk diversification in finance to sensor placement problems in 
water distribution networks (WDNs). Once in QUBO format, the 
problem can be plugged into our general-purpose physics-inspired 
GNN solver, as outlined above.

As extensively reviewed in refs. 1,2,66, the QUBO (or, equivalently, 
Ising) formalism provides a comprehensive modelling framework 
encompassing a vast array of optimization problems, including 
knapsack problems, task (resource) allocation problems and capi-
tal budgeting problems, among others. Specifically, the applicability 
of the QUBO representation has been reported for problem set-
tings involving circuit board layouts99, capital budgeting in finan-
cial analysis100, computer aided design (CAD)101, electronic traffic 
management102,103, cellular radio channel allocation104, molecular 
conformation105 and the prediction of epileptic seizures106, among 
others. As mentioned earlier, practical applications of the MaxCut 
problem can be found in machine scheduling70, image recognition71 
and electronic circuit layout design72. Similarly, in what follows we 
discuss in detail three select use cases and how they can be cast in 
QUBO form and thus made amenable to our solver.

Risk diversification. Graphs offer a convenient framework to 
model portfolio management problems in finance. Specifically, we 
outline a risk diversification strategy, but similar considerations 

Table 1 | Numerical results for MaxCut on Gset instances

Graph Nodes Edges BLS DSDP KHLWG RUN-CSP PI-GNN Relative error, ϵ (%)

G14 800 4,694 3,064 2,922 3,061 2,943 3,026 0.81

G15 800 4,661 3,050 2,938 3,050 2,928 2,990 1.29

G22 2,000 19,990 13,359 12,960 13,359 13,028 13,181 0.89

G49 3,000 6,000 6,000 6,000 6,000 6,000 5,918 1.37

G50 3,000 6,000 5,880 5,880 5,880 5,880 5,820 1.00

G55 5,000 12,468 10,294 9,960 10,236 10,116 10,138 1.25

G70 10,000 9,999 9,541 9,456 9,458 — 9,421 1.20

The table reports cut sizes achieved with our physics-inspired GNN solver (PI-GNN), together with results sourced from refs. 61,88–90. Best known results are shown in bold. The last column specifies the 
relative error ϵ comparing PI-GNN to the best known cut size. Further details are provided in the main text. GNN model configurations are detailed in the Supplementary Information.
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apply for the implementation of hedging strategies107. We consider 
a (potentially very large) universe of n assets, for which we are 
given a vector μ ∈ R

n describing expected future returns, and the 
covariance matrix Σ ∈ R

n×n capturing volatility through the cor-
relations among assets. To minimize the volatility of returns of our 
portfolio, our goal is to select a subset of uncorrelated assets with 
the largest possible diversified portfolio. To this end we consider 
a graph G with n nodes, with every node representing one asset. 
Correlations can be described in graph form, either by directly tak-
ing the cross-correlation matrix as a weighted adjacency matrix, or 
by creating a binary adjacency matrix A through thresholding. We 
set Ai,j = 1 if and only if the absolute value of the correlation between 
assets i and j is greater than some user-specific threshold parameter 
λ, and Ai,j = 0 otherwise107. Accordingly, in our model, pairs of assets 
are classified as correlated or uncorrelated, based on whether or not 
the corresponding correlation coefficient exceeds a minimum level. 
Overall, the risk diversification strategy outlined above can be cast 
as an optimization problem in QUBO form, with the Hamiltonian

HwMIS = −

∑

i∈V

μixi + P
∑

(i, j)∈E

xixj, (9)

in a straightforward extension of equation (8) from the standard 
MIS problem to the weighted MIS problem. Accordingly, by mini-
mizing the first term of HwMIS we pick large-return assets subject to 
the independent set constraint (as captured by the second term). 
This diversification model is reminiscent of the mean-variance 
Markowitz model108, albeit in discretized form. Given our results 
for the standard MIS problem, with small tweaks to the loss func-
tion, such a problem could be readily plugged into our solver, for 
example, as part of a larger, two-stage portfolio management pipe-
line where first a subset of assets is selected from a larger universe of 
assets using our solver, and then capital is allocated within a smaller, 
sparsified basket of assets using off-the-shelf solvers.

Interval scheduling. Here we consider a scenario involving the 
scheduling of tasks with given start and end times, as relevant, for 
example, in the context of algorithm design in computer science109. 
Specifically, we face n resource requests, each represented by an 

interval specifying the time in which it needs to be processed by 
some machine. Typically, some requests will overlap in time, lead-
ing to request clashes that cannot be satisfied by the same machine 
(resource). Conversely, a subset of intervals is deemed compatible 
if no two intervals overlap on the machine. As is commonly done 
in resource allocation problems and scheduling theory, this situa-
tion can conveniently be described with the help of an undirected 
interval graph G in which we introduce a vertex for each request 
and edges between vertices whose requests overlap. With the goal 
to maximize the throughput (that is, to execute as many tasks as 
possible on a single machine), the interval scheduling maximiza-
tion problem is then to find the largest compatible set, that is, a 
set of non-overlapping intervals of maximum size. This use case 
is equivalent to finding the maximum independent set in the cor-
responding interval graph G with n nodes. Although inexpensive 
(special-purpose) algorithms exist for interval graphs110, we can 
then solve the underlying MIS problem, as described by equation 
(8), on this interval graph, in the same way as any other QUBO 
problem, using our general-purpose GNN-based approach, follow-
ing the methodology outlined above.

Sensor placement in WDNs. Optimal sensor placement is key to 
the detection and isolation of fault events—such as water leaks—
in WDNs111. As detailed in ref. 111, the problem of optimally plac-
ing pressure sensors on a WDN can be efficiently cast as a QUBO 
problem. Specifically, a WDN can be readily mapped to a graph 
G = (V , E), with nodes i ∈ V referring to tanks or junctions, and 
edges (i, j) ∈ E representing pipes. We then associate a binary vari-
able xi = 0, 1 with every node, and set xi = 1 if node i hosts a sensor 
and xi = 0 otherwise. The problem of covering the WDN with the 
smallest possible number of pressure sensors then maps onto the 
minimum vertex cover problem111, as described by the Hamiltonian

HMVC =
∑

i∈V

cixi + P
∑

(i, j)∈E

(1− xi − xj + xixj). (10)

Here ci ≥ 0 denotes the cost of node i hosting a sensor, the first term 
describes the overall cost of any potential sensor placement strat-
egy, and the second (penalty) term with P > 0 ensures the constraint 
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xi + xj ≥ 1 for all edges (i, j) ∈ E (that is, at least one of the endpoints 
of each edge will be in the cover1). Potential tweaks to this model 
are detailed in ref. 111; however, variations can all be represented as 
a QUBO problem. Along the lines of our previous analysis for the 
MaxCut or MIS problem, the Hamiltonian HMVC (or some variation 
thereof) can be straightforwardly mapped to a relaxed loss function 
with which we can train our solver and then solve the correspond-
ing sensor placement use case.

Conclusion and outlook
In summary, we have proposed and analysed a versatile and scalable 
general-purpose solver that is powered by GNNs and draws from 
concepts in statistical physics. Our approach is applicable to any 
k-local Ising model, including canonical NP-hard combinatorial 
optimization problems such as the maximum cut, maximum clique, 
minimum vertex cover or maximum independent set problems, 
among others66. Starting from a problem formulation in Ising form, 
we apply a relaxation strategy to the problem Hamiltonian by drop-
ping integrality constraints on the decision variables to generate a 
differentiable loss function with which we perform unsupervised 
training on the node representations of the GNN. The GNN is then 
trained to generate soft assignments to predict the likelihood of 
belonging in one of two classes, for each vertex in the graph. To find 
a binary (two-colour) labelling consistent with the original problem 
formulation, simple projection heuristics are applied. Overall, we 
find that this approach can compete with existing special-purpose 
solvers, such as the Goemans–Williamson algorithm designed 
to solve the maximum cut problem, with the potential to tap into 
the rich toolbox of statistical physics, including, for example, the 
study of phase transitions. In the current noisy intermediate-scale 
quantum era, our approach could be used as a broadly applicable, 
scalable benchmark for emerging quantum technologies, includ-
ing special-purpose quantum6 and quantum-inspired annealers20, 
while not being resource-constrained nor being limited to prob-
lem instances in the QUBO form, as is also the case for coherent  
Ising machines112.

Finally, we highlight possible extensions of research going 
beyond our present work. First, to better understand the limita-
tions of GNNs in the context of combinatorial optimization, further 
studies are in order, systematically benchmarking GNNs against 
state-of-the-art solvers for a large class of optimization problems 
while leveraging the entire zoo of GNN implementations including, 
for example, GraphSAGE27 or graph attention networks (GATs)42 
to potentially boost the GNN Ansatz with an attention mechanism 
enabling vertices to weigh neighbour representations during the 
aggregation steps. Second, the presented GNN approach should be 
able to accommodate problems sizes with hundreds of millions of 
nodes when leveraging distributed training in a mini-batch fash-
ion on a cluster of machines45, thereby challenging the capabili-
ties of several existing solvers. Although we have solved individual 
problem instances from scratch, using a random initialization pro-
cess for the initial node embeddings, in the future, warm-starting 
the training process with pre-trained weights (transfer learning) 
could boost the time to solution. Moreover, one could potentially 
boost the performance of our optimizer by implementing ran-
domized projection schemes (as opposed to the simple determin-
istic approach used here) or augment these strategies with simple 
greedy post-processing routines that check for local optimality with 
a sequence of local bit flips. Finally, as discussed in the main text, 
our approach can be generalized to PUBO problems on hyper-
graphs where so-called hyper-edges may contain more than just 
two nodes, with no need for (typically) resource-intensive degree 
reduction schemes, as opposed to resource-constrained QUBO 
solvers. Potential applications cover many real-world optimization 
problems involving multi-body interactions, as found in schedul-
ing problems113 or chemistry114,115. In conclusion, the proposed 

cross-fertilization between machine learning, operations research 
and physics opens up a number of interesting research directions, 
with the ultimate goal to further advance our ability to solve hard 
combinatorial optimization problems.

Data availability
The data necessary to reproduce our numerical benchmark results 
are publicly available at https://web.stanford.edu/~yyye/yyye/
Gset/. Random d-regular graphs have been generated using the 
open-source networkx library (https://networkx.org).

Code availability
An end-to-end open source demo version of the code implement-
ing our approach has been made publicly available at https://github.
com/amazon-research/co-with-gnns-example116.
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