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Abstract

Generative diffusion models have recently emerged as a leading approach for
generating high-dimensional data. In this paper, we show that the dynamics of
these models exhibit a spontaneous symmetry breaking that divides the generative
dynamics into two distinct phases: 1) A linear steady-state dynamics around a
central fixed-point and 2) an attractor dynamics directed towards the data manifold.
These two “phases” are separated by the change in stability of the central fixed-
point, with the resulting window of instability being responsible for the diversity
of the generated samples. Using both theoretical and empirical evidence, we show
that an accurate simulation of the early dynamics does not significantly contribute
to the final generation, since early fluctuations are reverted to the central fixed point.
To leverage this insight, we propose a Gaussian late initialization scheme, which
significantly improves model performance, achieving up to 3x FID improvements
on fast samplers, while also increasing sample diversity (e.g., racial composition
of generated CelebA images). Our work offers a new way to understand the
generative dynamics of diffusion models that has the potential to bring about higher
performance and less biased fast-samplers.

1 Introduction

In recent years, generative diffusion models (Sohl-Dickstein et al., 2015), also known as score-based
diffusion models, have demonstrated significant progress in image (Ho et al., 2020; Song et al., 2021),
sound (Chen et al., 2020; Kong et al., 2020; Liu et al., 2023) and video generation (Ho et al., 2022;
Singer et al., 2022). These models have not only produced samples of exceptional quality, but also
demonstrated a comprehensive coverage of the data distribution. The generated samples exhibit
impressive diversity and minimal mode collapse, which are crucial characteristics of high-performing
generative models (Salimans et al., 2016; Lucic et al., 2018; Thanh-Tung and Tran, 2020). Diffusion
models are defined in terms of a stochastic dynamic that maps a simple, usually Gaussian, distribution
into the distribution of the data. In an intuitive sense, the dynamics of a generated sample passes from
a phase of equal potentiality, where any (synthetic) datum could be generated, to a denoising phase
where the (randomly) “selected” datum is fully denoised. As we shall see in the rest of this paper,
this can be interpreted as a form of spontaneous symmetry breaking. As stated by Gross (1996), “The
secret of nature is symmetry, but much of the texture of the world is due to mechanisms of symmetry
breaking.” Surprisingly, the concept of spontaneous symmetry breaking has not yet been examined
in the context of generative modeling. This is particularly noteworthy given the importance of
spontaneous symmetry breaking in nature, which accounts for the emergence of various phenomena
such as crystals (breaking translation invariance), magnetism (breaking rotation invariance), and
broken gauge symmetries, a common theme in contemporary theoretical physics.

The concept of spontaneous symmetry breaking is strongly connected with the theory of phase
transitions (Stanley, 1971; Donoghue et al., 2014). In high energy physics, experimental evidence of
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Figure 1: Overview of spontaneous symmetry breaking in generative diffusion models.
a) Symmetry breaking in a simple one-dimensional problem with two data points (-1,1). The figures
on the top illustrate the potential at different time points, while the bottom figure displays the
stochastic trajectories. The red dashed line denotes the time of the spontaneous symmetry breaking
(computed analytically). The red arrows represent fluctuations around the fixed-point of the drift.
b) Symmetry breaking in a real dataset. The top figures show 1D sections of the potential of a
trained diffusion models (CelebA HQ) at different times. The potential is evaluated along circular
interpolating paths connecting two generated samples (bottom figure).

particle collisions and decay appears to respect only a subset of the symmetry group that characterizes
the theory weak and electromagnetic interactions. This mismatch, which is responsible for the non-
null mass of several particles, is thought to be due to the fact that the potential energy of the Higgs
field has infinitely many minima, each of which corresponding to a subgroup of the symmetries of the
standard model (Englert and Brout, 1964; Higgs, 1964; Anderson, 1963; Nambu and Jona-Lasinio,
1961). Therefore, while the overall symmetry is preserved in the potential, this is not reflected in our
physical experiments as we experience a world where only one of these equivalent Higgs state has
been arbitrarily “selected”. The Higgs potential is often described as a “Mexican hat”, since it has an
unstable critical point at the origin and a circle of equivalent unstable points around it (see Figure 2).
Spontaneous symmetry breaking phenomena are also central to modern statistical physics as they
describe the thermodynamics of phase transitions (Stanley, 1971). For example, a ferromagnetic
material at low temperature generates a coherent magnetic field in one particular direction since all
the atomic dipoles tend to align to the field. On the other hand, at higher temperature the kinetic
energy prevents this global alignment and the material does not generate a macroscopic magnetic
field. In both cases, the laws of physics are spherically invariant and therefore do not favor any
particular directions. However, at low temperature a direction is selected among all the equally likely
possibilities, leading to an apparent breaking of the physical symmetries of the system. The global
symmetry can then only be recovered by considering an ideal ensemble of many of these magnets,
each aligning along one of the equally possible directions.

Figure 2: Mexican hat
potential

In this paper, using both theoretical and experimental evidence, we
show that the generative dynamics of diffusion models is characterized
by a similar spontaneous symmetry breaking phenomenon. In this
case, the symmetry group does not come from the laws of physics
but it is instead implicit in the dataset. For example, translational
invariance can be implicit in the fact that translated versions of similar
images are equally represented in a naturalistic dataset. During the
early stage of the generative dynamics, each particle reflects all the
symmetries since its dynamics fluctuates around a highly symmetric
central fixed-point. However, after a critical time, this central fixed-
point becomes unstable, and each particle tends towards a different
(synthetic) datum with arbitrarily “selected” features, with the global
symmetry being apparent only when considering the ensemble of all generated data. An overview of
spontaneous symmetry breaking in diffusion models is summarized in Figure 1. Our code can be
found at https://github.com/gabrielraya/symmetry_breaking_diffusion_models

2

https://github.com/gabrielraya/symmetry_breaking_diffusion_models


2 Preliminaries

Notation. We denote random variables using upper-case letters and their value using lower-case
letters. Additionally, vector-valued variables are denoted using boldface letters. The forward process
is denoted as (Ys, s), where Y0 represents the data and Ys denotes a noisy state. The generative
process is denoted as (Xt, t), with s and t = T − s representing forward and generative time,
respectively, and T as the time horizon. We will always use the standard integration from 0 to T > 0
(different to Song et al. (2021)) for the short hand notion of the Itô integral equation. Since we focus
on the generative part, we use Ŵs and Wt to denote Brownian motion associated to the inference
and generative SDEs. For ease of notation, we assume an additive SDE, so g only depends on time.

Continuous diffusion models. The stochastic dynamics of a particle Y0 ∼ p(y, 0), starting at
time s = 0, are described as the solution to the Itô SDE: dYs = f(Ys, s)ds + g(s)dŴs, where
f and g are the drift and diffusion coefficient chosen properly such that the marginal density will
(approximately) converge to a spherical Gaussian steady-state distribution as s → T . We can express
the marginal density at time s as

p(y, s) =

∫
RD

k(y, s;y0, 0)p(y0, 0)dy0 , (1)

where k(y, s;y′, s′) is the transition kernel that ‘solves’ Eq. 2 below. To generate samples from
p(y, 0) by starting from the tractable p(y, T ), we can employ a “backward” SDE that reverses this
process (Anderson, 1982), whose marginal density evolves according to p(y, s), reverse in time,

dXt =
[
g2(T − t)∇x log p(Xt, T − t)− f(Xt, T − t)

]
dt+ g(T − t)dWt (2)

The score function ∇x log p(x, T − t) directs the dynamics towards the target distribution p(y, 0)
and can be reliably estimated using a denoising autoencoder loss (Vincent, 2011; Song et al., 2021).
Ornstein–Uhlenbeck process. In the rest of the paper, we will assume that the forward process
follows a (non-stationary) Ornstein–Uhlenbeck dynamics: dYs = − 1

2β(s)Ysds+
√

β(s)dŴs. This
is an instance of Variance Preserving (VP) diffusion (Song et al., 2021) wherein the transition kernel
can be written in closed form: k(y, s;y0, 0) = N

(
y; θsy0, (1− θ2s)I

)
, with θs = e−

1
2

∫ s
0
β(τ)dτ . It

is easy to see that this kernel reduces to an unconditional standard spherical normal for s → ∞ while
it tends to a delta function for s → 0.

3 Theoretical analysis

For the purpose of our analysis, it is convenient to re-express the generative SDE in Eq. 2 in terms of
a potential energy function

dXt = −∇xu(Xt, T − t)dt+ g(T − t)dWt (3)
where

u(x, s) = −g2(s) log p(x, s) +

∫ x

0

f(z, s) · dz . (4)

where the line integral can go along any path connecting 0 and x. Given a sequence of potential
functions u(x, s), we can define an associated symmetry group of transformations

G = {g : RD ↔ RD | u(g(x), s) = u(x, s),∀ s ∈ R+,x ∈ RD} . (5)
In words, G is the group of all transformations of the ambient space RD that preserves the probability
measure of the training set at all stages of denoising.

We define a path of fixed points as x̃(t) : R → RD such that ∇u(x̃(t), T − t) = 0,∀t ∈ R+.
These are points of vanishing drift for the stochastic dynamics. The stability of the path can be
quantified using the second partial derivatives, which can be organized in the path of Hessian matrices
H(x̃, T − t). A fixed-point is stable when all the eigenvalues of the Hessian matrix of the potential
at that point are positive, while it is a saddle or unstable when at least one eigenvalue is negative.
Around a stable path of fixed-point, the drift term can be well approximated by a linear function:
∇xu(x, T − t) ≈ H(x̃, T − t)(x− x̃) . From this we can conclude that, along a stable path, the
dynamics is locally characterized by the quadratic potential

ũ(x, T − t) =
1

2
(x− x̃(t))TH(x̃(t), T − t)(x− x̃(t)) . (6)
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(a) (b)

Figure 3: Bifurcation analysis of the generative dynamics of a one-dimensional diffusion model.
(a) Geometric visualization of bifurcation of fixed points through the intersection of a straight line
and a hyperbolic tangent at a value θT−t > θc. (b) Bifurcation diagram obtained by numerically
solving the self-consistency equation Eq. 10, demonstrating the bifurcation at the critical value θc.
The blue, orange and green lines denote the three paths of fixed-points. The vector field is given by
the drift term (i.e. the gradient of the potential) in the generative SDE.

The associated symmetry group G̃ is generally only a subgroup of the global symmetry group G. We
say that the dynamics exhibit a bifurcation when there are at least two fixed-points paths that overlap
for some values of t. In this case, usually a stable fixed point loses its stability after a critical time
tc and ‘splits’ into two or more stable paths. As we will see, this is at the core of the spontaneous
symmetry breaking phenomenon. Each of the branched stable paths only preserve a sub-group of the
overall symmetry, while the full symmetry is still present when taking all stable paths into account.

3.1 Spontaneous symmetry breaking in one-dimensional diffusion models

We start by considering a very simple one-dimensional example with a dataset consisting of two
points y−1 = −1 and y1 = −y−1 = 1 sampled with equal probability. In this case, the symmetry
group that preserves the potential is comprised by identity and the transformation g(x) = −x. Up to
terms that are constant in x, the potential is given by the following expression:

u(x, t) = β(T − t)

(
−1

4
x2 − log

(
e
−

(x−θT−t)
2

2(1−θ2
T−t

) + e
−

(x+θT−t)
2

2(1−θ2
T−t

)

))
(7)

which can be obtained from Eq. 1. Figure 1a illustrates the evolution of the potential (top) and the
corresponding one-dimensional generative process (bottom). For all values of t, the gradient vanishes
at x = 0 since the potential is symmetric under the transformation g(x) = −x. The stability of this
fixed-point can be established by analyzing the second derivative:

∂2u

∂x2

∣∣∣∣
x=0

= −β(T − t)

(
1

2
+

2θ2T−t − 1

(θ2T−t − 1)2

)
(8)

where θT−t is a monotonic function of t ranging from 0 to 1. The second derivative is positive up to
a critical value θc and negative afterwards. This implies that the fixed-point at the origin loses its
stability when θT−t > θc. We can find this critical value by setting the second derivative equal to
zero and solving for θc, which gives

θc =

√√
2− 1 ≈ 0.6436 (9)

When θT−t > θc, the origin is not the only fixed-point of the system. All fixed-point can be found by
solving the self-consistency equation:

(θ2T−t + 1)x∗ = −2θT−t tanh

(
θT−tx

∗

θ2T−t − 1

)
(10)

This equation is strikingly similar to the Curie-Weiss equation of state, which describes magnetization
under the mean-field approximation (Täuber, 2014). Solving this equation corresponds to finding
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the intersections between a straight line and an hyperbolic tangent. From Figure 3a, it is clear that
there are three solutions for θT−t > θc and only the zero solution otherwise. This corresponds to a
bifurcation into two paths of fixed points that converge to the values of the data-points for θT−t → 1.

We can now describe the spontaneous symmetry breaking phenomenon. The potential u(x, t) is
invariant under the transformation g(x) = −x for all values of θT−t. However, for θT−t > θc, the
individual particles will be ‘trapped’ in one of those new stable paths of fixed-points, locally breaking
the symmetry of the system. From the point of view of generative modeling, this spontaneous
symmetry breaking corresponds to the selection of a particular sample among all possible ones.
This selection almost exclusively depends on the noise fluctuations around the critical time. In fact,
fluctuations for t ≪ tc are irrelevant since the process is mean reverting towards the origin. Similarly,
when t ≫ tc, fluctuations will be reverted towards the closest fixed-point. However, fluctuations are
instead amplified when t ≈ tc since the origin becomes unstable, as illustrated by the red arrows in
Figure 1a.

In supplemental section A.2, we provide detailed calculations pertaining to this one-dimensional
example. Additionally, in section A.3, we generalize our investigation to models of arbitrarily high
dimensionality by considering a hyper-spherical data distribution.

3.2 Theoretical analysis of spontaneous symmetry breaking for arbitrary normalized datasets

We can now move to a more realistic scenario where the data is comprised by a finite number N
of data-points {y1, . . . ,yN} embedded in RD. Assuming iid sampling, the most general symmetry
group in this case is given by all norm-preserving transformations of RD that map data-points into
data-points. Up to constant terms, the potential is given by

u(x, t) = −β(t)

1

4
∥x∥22 + log

∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

 (11)

where the sum runs over the whole dataset. The fixed-points of this model can be found by solving
the following self-consistency equation:

1 + θ2T−t

2θT−t
x∗ =

1∑
j wj(x∗; θT−t)

∑
j

wj(x
∗; θT−t)yj (12)

where wj(x
∗; θT−t) = e−∥x

∗−θT−tyj∥2

2
/(2(1−θ2

T−t)). While this is a very general case, we can still
prove the existence of a spontaneous symmetry breaking at the origin under two mild conditions.
First of all, we assume the data-points to be centered:

∑
j yj = 0 . Furthermore, we assumed that

the data-points are normalized so as to have a norm r:
∥∥yj

∥∥
2
= r , ∀j , . Under these conditions,

which can be easily enforced on real data through normalization, it is straightforward to see from
Eq. 12 that the origin is minimum of the potential for all values of t. While we cannot evaluate all the
eigenvalues of the Hessian matrix at the origin in closed-form, we can obtain a simple expression for
the trace of the Hessian (i.e. the Laplacian of the potential):

∇2u|x=0 = −β(T − t)

(
D

2
+

(D + r2)θ2T−t −D

(θ2T−t − 1)2

)
, (13)

which switches sign when θT−t is equal to θ∗ =
√

(
√
D2 + r4 − r2)/D. However, in this case we

cannot conclude that this is the point of the first spontaneous symmetry breaking since the Laplacian
is the sum of all second derivatives, which are not necessarily all equal. Nevertheless, we do know
that all second derivatives are positive at the origin for t → 0, since the forward dynamics has a
Gaussian steady-state distribution. Therefore, from the change of sign of the Laplacian we can
conclude that at least one second derivative at the origin changes sign, corresponding to a change in
stability and the onset of a spontaneous symmetry breaking with θ∗ > θc. In supplemental section
A.4, we provide detailed calculations pertaining to this model.
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4 Experimental evidence of spontaneous symmetry breaking in trained
diffusion models

In this section, we present empirical evidence demonstrating the occurrence of the spontaneous sym-
metry breaking phenomenon in diffusion models across a range of realistic image datasets, including
MNIST, CIFAR-10, CelebA 32x32, Imagenet 64x64 and CelebA 64x64. We trained diffusion models
in discrete time (DDPM) with corresponding continuous time Variance-Preserving SDE for each
dataset with a time horizon of T = 1000 and evaluated fast samplers using Denoising Diffusion
Implicit Models (DDIMs) (Song et al., 2020) and Pseudo-numerical Methods for Diffusion Models
(PNDM) (Liu et al., 2022). For more detailed information about our experimental implementation,
please refer to supplemental material section E.

4.1 Analyzing the impact of a late start initialization on FID performance

To investigate how the bifurcation affects generative performance, we performed an exploratory
analysis of Fréchet Inception Distance (FID) scores for different diffusion time starts. The objective
of this analysis is to examine the possible effects of starting the generative process at a late diffusion
time, since our theory predicts that performance will stay approximately constant up to a first critical
time and then it will sharply decrease. We explicitly define a "late start" as changing the starting point
of the generative process. For instance, instead of starting at T = 1000, we evaluate the model’s
generative performance for various starting points, ranging from sstart = 50 to sstart = T , using
as starting state xT ∼ N (0, I). In particular, since the distribution is not longer N (0, I) for any
s << T , a decrease in performance can be expected. However, as shown in Figure 4, denoted as
"DDPM-1000", there is indeed an initial phase in which the generative performance of the model
remains largely unaffected by this distributional mismatch, and in some cases, better FID scores were
obtained. Remarkably, as predicted by our framework, in all datasets we see a sharp degradation in
performance after a certain initialization time threshold, with an apparent discontinuity in the second
derivative of the FID curve. We provide additional results in supplemental section B.1.

(a) MNIST

(b) CIFAR10

(c) Imagenet64

(d) CelebA64 (e) Imagenet late start generation

Figure 4: Analysis of the model’s performance, as measured by FID scores, for different starting
times using three different sampling methods: the normal DDPM sampler with decreasing time
steps from T = 1000 to 0, and fast sampler DDIM and PSDM for 10 and 5 denoising steps. The
vertical line corresponds to the maximum of the second derivative of the FID curve, which offers a
rough estimate of the first bifurcation time. (e) Illustrates samples generation on Imagenet64, while
progressively varying the starting time from 1000 to 100.
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Dataset n gls-DDPM DDPM

MNIST
10 4.21 6.75
5 6.95 13.25
3 11.92 42.63

CIFAR10
10 28.77 43.35
5 42.46 84.82
3 57.03 146.95

CelebA32
10 11.05 26.79
5 14.79 40.92
3 18.93 59.75

Imagenet64
10 57.31 65.68
5 75.11 99.99
3 91.69 145.71

CelebA64
10 23.79 36.66
5 31.24 48.38
3 37.05 62.18

(a) DDPM

Dataset n gls-DDIM DDIM

MNIST
10 2.44 4.46
5 6.95 13.25
3 11.92 42.63

CIFAR10
10 15.98 19.79
5 26.36 44.61
3 42.31 109.37

CelebA32
10 7.27 11.37
5 10.83 23.45
3 16.24 45.34

Imagenet64
10 36.25 38.21
5 52.11 68.21
3 76.92 126.3

CelebA64
10 15.82 19.37
5 22.06 28.51
3 29.96 50.304

(b) DDIM

Dataset n gls-PNDM PNDM

MNIST
10 5.02 14.36
5 5.11 21.22
3 38.23 154.89

CIFAR10
10 5.90 8.35
5 9.55 13.77
3 34.20 103.11

CelebA32
10 2.88 4.92
5 4.2 6.61
3 28.60 235.87

Imagenet64
10 27.9 28.27
5 33.35 34.86
3 50.92 70.58

CelebA64
10 6.80 8.03
5 9.26 10.26
3 51.72 171.75

(c) PNDM

Table 1: Summary of findings regarding image generation quality, as measured by FID scores. The
performance of the stochastic DDPM sampler (a) is compared to the deterministic DDIM (b) and
PNDM (c) samplers in the vanilla case, as well as our Gaussian late start initialization scheme
denoted as “gls”. Results are presented for 3, 5, and 10 denoising steps (denoted as “n”) across
diverse datasets.

4.2 Empirical analysis of the potential function in trained diffusion models

The analysis of the FID curves offers indirect evidence of the existence of a critical time that
demarcates the generative dynamics of diffusion models trained on real datasets. In order to obtain
direct evidence, we need to study the potential associated to trained models. Unfortunately, studying
the stability of the initial fixed-point in a trained model is challenging given the high dimensionality
and the fact that its location is not available analytically. To reduce the dimensionality, we analyzed
how the potential changes across variance-preserving interpolating curves that connect generated
images. We defined an interpolating curve as x(α, t) = cos(α)x1(t) + sin(α)x2(t), where x1(t)
and x2(t) are two sampled generative paths. Up to constant terms, the potential along the path
ũ(α, t) = u(xα, t) can be evaluated from the output of the network (i.e. the score) using the
fundamental theorem of line integrals (see supplemental section B.2.1). An example of these
potential curves is shown in Figure 1b (top), as predicted by the theory, the potential has a convex
shape up to a time and then splits into a bimodal shape. A visualization of the average potentials
for several datasets is provided in the supplemental section B.2.2. Interestingly, this pairwise splits
happens significantly later than the critical transition time observed in the FID analysis. This suggests
that, in real datasets, different spontaneous symmetry breaking phenomena happen at different times,
with an early one causing a major distributional shift in the overall dynamics (as visible from the FID
curves) and later ones splitting the symmetry between individual data-points.

5 Improving the performance of fast samplers

In the following, we leverage the spontaneous symmetry breaking phenomenon in order to improve
the performance of fast samplers. Since the early dynamics is approximately linear and mean-
reverting, the basic idea is to initialize the samplers just before the onset of the instability. This avoids
a wasteful utilization of denoising steps in the early phase while also ensuring that the critical window
of instability has been appropriately sampled. Unfortunately, while we can prove the existence of
a spontaneous symmetry breaking in a large family of models, we can only determine its exact
time in highly simplified toy models. We therefore find an “optimized” starting time empirically
by generating samples for different starting times (with a fixed number of equally spaced denoising
steps) and selecting the one that gives the highest FID scores. From our theoretical analysis it follows
that, while the distribution of the particles can drift from N (0, I) before the critical time point,
it generally remains close to a multivariate Gaussian distribution. Leveraging these insights, we
propose a Gaussian initialization scheme to address the distributional mismatch caused by a late start
initialization. This scheme involves estimating the mean and covariance matrix of noise-corrupted
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(a) DDPM n=5, FID=48.38

(b) DDPM n=10, FID=36.66

(c) gls-DDPM n=5, FID=31.24

(d) gls-DDPM n=10, FID=23.79

Figure 5: Comparison of stochastic DDPM samplers on CelebA64 with varying denoising steps.
Subfigures (a) and (c) represent the generative model performance for 5 denoising steps, while (b)
and (d) showcase the results for 10 denoising steps. The DDPM was initialized with the common
standard initialization point sstart = 800 for 5 steps and sstart = 900 for 10 steps. Notably, our
Gaussian late start initialization (gls-DDPM) with sstart = 400 for both 5 and 10 denoising steps
demonstrates significant improvements in FID scores and diversity, leveraging spontaneous symmetry
breaking in diffusion models.

dataset at the initialization time and utilizing the resulting Gaussian distribution as the initialization
point. By using this fitted Gaussian as the starting point, we can obtain an initial sample and run the
denoising process from there instead of using a sample from N (0, I). We refer to this method as
“Gaussian late start” (gls) and present results for stochastic dynamics in Table 1a and deterministic
dynamics in Tables 1b and 1c, using DDIM and PNDM samplers respectively. In our experiments
on several datasets, we found that in both cases, the Gaussian late start always increases model
performance when compared with the baseline samplers. The performance boost is striking in some
datasets, with a 2x increase in CelebA 32 for 10 denoising steps and a 3x increase for 5 denoising
steps. As evidenced by the results showcased in Figure 5, gls-DDPM boost performance over vanilla
DDPM for 10 and 5 denoising steps. For more detailed information on fast samplers, please refer
to the supplemental section C. This section also includes extended results for higher number of
denoising steps, as detailed in Table 6. Figure 19 provides empirical evidence of the Gaussian nature
of the initial distribution via the Shapiro-Wilk test, which remains valid until the critical point.

5.1 Diversity analysis

Diffusion models that can quickly generate high-quality samples are highly de-
sirable for practical applications. However, the use of fast samplers can lead

Figure 6: Sample entropy as
function of DDIM denoising
steps.

to a reduction in the diversity of generated samples. For instance,
the analysis shown in Figure 7 using the DDIM sampler with only
5 denoising steps on the CelebA64 dataset revealed a decrease in
“race” diversity, with a bias towards the dominant race (white) and
a reduction in the coverage of other races. Our theoretical analysis
suggests that achieving high generative diversity relies on reliably
sampling a narrow temporal window around the critical time, since
small perturbations during that window are amplified by the insta-
bility and thereby play a central role in the determination of the final
samples. This suggests that our Gaussian late initialization should in-
crease diversity when compared with the vanilla fast-sampler, since

8



(a) Training set (b) DDPM-1000 (c) gls-DDIM-05 (d) DDIM-05

Figure 7: “Race” diversity analysis on CelebA64 over 50,000 generated samples by (c) gls-DDIM
and (d) DDIM samplers with 5 denoising steps. Results obtained on (a) training set and (b) DDPM
using 1000 denoising steps are provided for reference. Corresponding samples obtained by each set
are shown on top of the pie charts.

the Gaussian approximation is reliable prior to the change of shape in the potential. Indeed, our
proposed late initialization method (gls-DDIM-05) was able to significantly improve sample diversity,
even for a small number of denoising steps, e.g., 3, 5, and 10 sampling steps (see Figure 6). For
comparison, we also provided the diversity obtained in the training set and from a typical sampling of
DDPM with 1000 sampling steps (DDPM-1000). In supplemental section D, we also provided a full
analysis of attributes such as age, gender, race, and emotion by running a facial attribute analysis
over 50,000 generated images using the deep face library (Serengil and Ozpinar, 2020).

6 Related work

Efficient sampling in diffusion models. In recent years, research has been focused on accelerating
the slow sampling process in diffusion models, resulting in two categories of efficient samplers:
learning-free and learning-based. Among the learning-free samplers, Denoising Diffusion Implicit
Models (DDIM) (Song et al., 2020) and Pseudo Numerical Diffusion Models (PNDM) (Liu et al.,
2022) have gained considerable attention. DDIM introduced a non-Markovian class of diffusion
processes to achieve faster sampling, while PNDM proposed an enhancement to traditional numerical
methods through the use of pseudo numerical methods. Both DDIM and PNDM implicitly employ a
late start initialization using a linearly spaced open interval running from 1 to T , with steps determined
by the required number of denoising steps, and consequently not including T , but use the sample
at xT as the starting point. The choice of the starting point has been proposed based on empirical
results, and to the best of our knowledge, our work is the first to theoretically explore the relevance of
this starting point and systematically suggest a way to choose it.
Diffusion and spontaneous symmetry breaking in optimal control theory. The concept of
spontaneous symmetry breaking has been studied in optimal control theory, with the work of
Kappen (2005), who showed the existence of spontaneous symmetry breaking in both stochastic and
deterministic optimal control problems. Spontaneous symmetry breaking in the cost as a function of
time implies a “delayed choice” mechanism for stochastic control, where taking a decision far in the
future is sub-optimal due to high uncertainty. Instead, the optimal policy is to steer between the targets
until the critical time one should aim for one of the targets. For T < tc (far in the past) it is best to
steer towards x = 0 (between the targets) and delay the choice which slit to aim for until later, when
the uncertainty is less close to the terminal state. The relationship between optimal control theory and
diffusion models has recently been explored by the work of Berner et al. (2022), who demonstrated
that the reverse-backward SDE is directly related to the Hamilton-Jacobi-Bellman equation for the
time-inverse log-density through a Hopf-Cole transformation. This theoretical link suggests that the
spontaneous symmetry breaking phenomena that we have identified here are analogous to delayed
choice phenomena in optimal control.
Encoding symmetries in generative models. Symmetries plays a central role in any area of physics,
revealing the foundational principles of nature and enabling the formulation of conservation laws
(Gross, 1996; Noether, 1971). A substantial body of deep learning literature has capitalized on
this inherent property of nature by encoding equivariance to symmetry transformations constrains
into deep neural networks (Cohen and Welling, 2016; Worrall and Brostow, 2018; Bogatskiy et al.,
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2020; Cesa et al., 2021; Weiler et al., 2021) allowing to construct more efficient and physically
interpretable models with minimized learnable parameters. Recently, this attribute has garnered
attention in the realm of generative models, spurring interest in integrating both internal (Gauge) and
external (space-time) symmetries (Kanwar et al., 2020), particularly when sampling symmetric target
densities (Köhler et al., 2020). While the focus has been in incorporating symmetries in normalizing
flows (Boyda et al., 2021; Köhler et al., 2020; Rezende et al., 2020; Satorras et al., 2021), there is
already an increase interest in encoding symmetries in diffusion models Xu et al. (2022); Hoogeboom
et al. (2022). Our work, along with previous research, acknowledges the importance of the existence
of symmetry groups for generative modeling. However, the key distinction in our approach lies in
emphasizing the relevance of spontaneous symmetry breaking for particle generation rather than
encoding symmetry constraints.
Comparison with other generative models. While diffusion models differ conceptually from
other deep generative approaches like Variational Autoencoders (VAEs) (Kingma and Welling, 2014;
Rezende et al., 2014), GANs (Goodfellow et al., 2014), autoregressive models (Van Den Oord et al.,
2016), normalizing flows (Dinh et al., 2014; Rezende and Mohamed, 2015), and Energy-Based
Models (EBMs), they all share certain operational traits. Specifically, all these models—explicitly
or implicitly—start from an isotropic equilibrium state and evolve toward a data-equilibrium state.
Beyond this, an underlying theme across these generative models is the idea of pattern formation,
marked by a transition from a high-symmetric state to a low-symmetric state. This commonality
suggests the potential for leveraging the concept of symmetry breaking for performance improvement.
For instance, implementing symmetry breaking mechanisms in GANs could address the well-known
problem of mode collapse, thereby enhancing their generative performance. This idea is especially
relevant for EBMs, which, like diffusion models, strive to learn an energy function that assigns
lower values to states close to the data distribution. Consequently, the phenomenon of spontaneous
symmetry breaking could offer key insights for refining the generative capabilities of all these models.

7 Discussion and conclusions

In this work, we have demonstrated the occurrence of spontaneous symmetry breaking in diffusion
models, a phenomenon of significant importance in understanding their generative dynamics. Our
findings challenge the current dominant conception that the generative process of diffusion models is
essentially comprised of a single denoising phase. Instead, we have shown that the generative process
is divided into two (or more) phases, the early phase where samples are mean-reverted to a fixed point,
and the “denoising phase” that moves the particle to the data distribution. Importantly, our analysis
suggests that the diversity of the generated samples depends on a point of “critical instability” that
divides these two phases. Our experiments demonstrate how this phenomenon can be leveraged to
improve the performance of fast samplers using delayed initialization and a Gaussian approximation
scheme. However, the algorithm we proposed should be considered as a proof of concept since the full
covariance computation does not scale well to high-resolution images. Nevertheless, these limitations
can be overcome either by using low-rank initialization or by fitting the Gaussian initialization on a
lower-dimensional space of Fourier frequencies. More generally, our work sheds light on the role
that symmetries play in the dynamics of deep generative models. Following this research direction,
existing theoretical frameworks, such as optimal control and statistical physics, can be leveraged to
make advancements in this field towards more efficient, interpretable, and fair models.

Broader Impact

Our research has important implications for advancing deep generative models, which are essential
for understanding complex phenomena like human creativity, molecular formation and protein design.
However, the real-world usage of generative diffusion models can pose several risks and reinforce
social biases. We hope that the insights and results offered in our work will have a positive social
outcome by helping to create less biased models.
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Supplementary Material

This supplementary section aims to provide additional details, derivations, and results that support the
main paper. Section A presents detailed mathematical derivations. We start with a brief introduction
to diffusion models using a VP-SDE, followed by an explanation of the phenomenon of symmetry
breaking in a one-dimensional (Section A.2), hyper-spherical (Section A.3) diffusion model and in
normalized datasets (Section A.4). Section B provides additional experiments to support the results
reported in the main paper, together with improvements over fast samplers in Section C. A description
over results in diversity analysis is given in Section D. Finally, Section E provides a full description
of model architectures and detailed experimental settings used to evaluate our experiments.

Outline

• Section A : Mathematical derivations
• Section B: Extended experiments
• Section C : Fast samplers results
• Section D: Diversity Analysis
• Section E: Implementation details

A Mathematical derivations

A.1 SDE formulation for analysing symmetry breaking

Assuming Y0 follows the data distribution p(y, 0) with forward dynamics described by the Îto SDE:

dYs = f(Ys, s)ds+ g(s)dŴs (14)

and corresponding backward SDE:

dXt =
[
g2(T − t)∇x log p(Xt, T − t)− f(X, T − t)

]
dt+ g(T − t)dWt (15)

Re-expressing the generative SDE in terms of a potential energy function u(x, t):

u(x, t) = −g2(T − t) log p(x, T − t) +

∫ x

0

f(z, T − t)dz (16)

yields to the following generative dynamics:

dX = −∇xu(Xt, T − t)dt+ g(T − t)dWt (17)

A.1.1 Variance Preserving SDE as a potential function

We can re-express the widely used Variance Preserving (VP-SDE) (DDPM):

dYs = −1

2
β(s)Ysds+

√
β(s)dŴs (18)

with corresponding generative dynamics:

dXt =
[
β(T − t)∇x log p(Xt, T − t) +

1

2
β(T − t)Xt

]
dt+

√
β(T − t)dWt (19)

in terms of a potential energy u(Xt, t)

dX = −∇xu(Xt, T − t)dt+
√

β(T − t)Wt (20)

where the potential energy results in the following expression:

u(x, T − t) = −β(T − t) log p(x, T − t) +

∫ x

0

f(z, T − t)dz

= −β(T − t) log p(x, T − t)− 1

2
β(T − t)

∫ x

0

Ztdz

= −β(T − t) log p(x, T − t)− 1

4
β(T − t)X2

t (21)
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with transition kernel expressed in closed form:

k(y, s;y0, 0) = N
(
y; θsy0, (1− θ2s)I

)
; where θs = e−

1
2

∫ s
0
β(τ)dτ . (22)

and where the gradient of the log of the distribution can be reliably estimated using denoising score
matching (Song et al., 2021; Ho et al., 2020; Vincent, 2011).

A.2 Symmetry breaking in one-dimensional diffusion model

We consider a mixture of two delta distributions consisting of two points x1 = −x−1 = 1 sampled
with equal probability. The distribution at time s = 0 is:

p(y, 0) =
1

2
(δ(x+ x1) + δ(x− x1))

In this case we can compute analytically the marginal distribution p(y, s) as follows:

p(y, s) =

∫
k(y, s;y0, 0)p(y0, 0)dy0

=

∫
N
(
y; θsy0, (1− θ2s)I

) 1
2
(δ(x+ x1) + δ(x− x1))

=
1

2

∫
N
(
y; θsy0, (1− θ2s)I

)
δ(x− (−x1))dx

+
1

2

∫
N
(
y; θsy0, (1− θ2s)I

)
δ(x− x1)dx

=
1

2
√
2π(1− θ2s)

(
e
− (x−θs)2

2(1−θ2s) + e
− (x+θs)2

2(1−θ2s)

)
(23)

Here we used the property of the Direct delta function
∫∞
−∞ f(x)δ(x− a)dx = f(a).

The log probability is expressed as :

log p(y, s) = log

(
1

2
√

2π(1− θ2s)

(
e
− (x−θs)2

2(1−θ2s) + e
− (x+θs)2

2(1−θ2s)

))
(24)

Following Anderson (1982) theorem log p(y, s) = log p(x, t) when s = t. Therefore, the potential
function is given by the following expression :

u(x, t) = β(T − t)

(
−1

4
x2 − log

(
e
−

(x−θT−t)
2

2(1−θ2
T−t

) + e
−

(x+θT−t)
2

2(1−θ2
T−t

)

))
(25)

with s = T − t.

A.2.1 Critical point

We now study the stability of the fixed-point at x = 0 by analyzing the second derivative. For ease of
notation we will use b = θT−t, m(x) = (x−b)2

2(b2−1) and v(x) = (x+b)2

2(b2−1) .

We first obtain the first derivative of the log term using chain rule:

∂

∂x
log
(
em(x) + ev(x)

)
=

1

em(x) + ev(x)
·
∂
(
em(x) + ev(x)

)
∂x

=
1

em(x) + ev(x)
·
(
m(x)

′
em(x) + v(x)

′
ev(x)

)
=

m(x)
′
em(x)

em(x) + ev(x)
+

v(x)
′
ev(x)

em(x) + ev(x)
(26)
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The second derivative is obtain by deriving each term in the previous results. The derivative of the
first RHT is obtained using the quotient rule as follows:

∂

∂x

(
m(x)

′
em(x)

em(x) + ev(x)

)

=
(m(x)

′
em(x))

′
(em(x) + ev(x))− (m(x)

′
em(x))(em(x) + ev(x))

′

(em(x) + ev(x))2

=
(m(x)

′′
em(x) +m(x)

′2em(x))(em(x) + ev(x))− (m(x)
′
em(x))(m(x)

′
em(x) + v(x)

′
ev(x))

(em(x) + ev(x))2

=
m(x)

′′
em(x) +m(x)

′2em(x)

em(x) + ev(x)
− (m(x)

′
em(x))(m(x)

′
em(x) + v(x)

′
ev(x))

(em(x) + ev(x))2
(27)

Similarly, the derivative of the second RHT is obtained as follows:

∂

∂x

(
v(x)

′
ev(x)

em(x) + ev(x)

)

=
(v(x)

′
ev(x))

′
(em(x) + ev(x))− (v(x)

′
ev(x))(em(x) + ev(x))

′

(em(x) + ev(x))2

=
(v(x)

′′
ev(x) + v(x)

′2ev(x))(em(x) + ev(x))− (v(x)
′
ev(x))(m(x)

′
em(x) + v(x)

′
ev(x))

(eu(x) + ev(x))2

=
v(x)

′′
ev(x) + v(x)

′2ev(x)

em(x) + ev(x)
− (v(x)

′
ev(x))(m(x)

′
em(x) + v(x)

′
ev(x))

(em(x) + ev(x))2
(28)

with m(x) = (x−b)2

2(b2−1) , m(x) = (x+b)2

2(b2−1) , m(x)
′
= (x−b)

(b2−1) , v(x)
′
= (x+b)

(b2−1) and m(x)
′′
= 1

(b2−1) =

v(x)
′′

. At x = 0, m(0) = v(0) = b2

2(b2−1) , m(0)
′
= −v(0)

′
= −b

(b2−1) and m(x)
′′
= v(x)

′′
=

1
(b2−1) . Then, the resulting second derivative is the following:

∂2

∂x2
log
(
em(x) + ev(x)

)
=

∂

∂x

(
u(x)

′
eu(x)

eu(x) + ev(x)

)
+

∂

∂x

(
v(x)

′
ev(x)

eu(x) + ev(x)

)

=
u(x)

′′
eu(x) + u(x)

′2eu(x)

eu(x) + ev(x)
− (u(x)

′
eu(x))(u(x)

′
eu(x) + v(x)

′
ev(x))

(eu(x) + ev(x))2

+
u(x)

′′
ev(x) + v(x)

′2ev(x)

eu(x) + ev(x)
− (v(x)

′
ev(x))(u(x)

′
eu(x) + v(x)

′
ev(x))

(eu(x) + ev(x))2
(29)

at x = 0 this becomes :
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∂2

∂x2
log
(
em(x) + ev(x)

)
|x=0

=
u(0)

′′
eu(0) + u(0)

′2eu(0)

eu(0) + eu(0)
− (u(0)

′
eu(0x))(u(0)

′
eu(0) − u(0)

′
eu(0))

(eu(0) + eu(0))2

+
u(0)

′′
eu(0) + v(0)

′2eu(0)

eu(0) + eu(0)
− (−u(0)

′
eu(0))(u(0)

′
eu(0) − u(0)

′
eu(0))

(eu(0) + eu(0))2

=
u(0)

′′
eu(0) + u(0)

′2eu(0)

2eu(0)
+

u(0)
′′
eu(0) + v(0)

′2eu(0)

2eu(0)

=
2u(0)

′′
+ 2u(0)

′2

2
since v(0)

′2 = u(0)
′2

= u(0)
′′
+ u(0)

′2

=
1

b2 − 1
+

b2

(b2 − 1)2

=
2b2 − 1

(b2 − 1)2

=
2θ2T−t − 1

(θ2T−t − 1)2
by substitution of b = θT−t (30)

Consequently the second derivative of the potential is at x = 0:

∂2u

∂x2

∣∣∣∣
x=0

=
∂2u

∂x2

(
−β(T − t)

(
1

4
x2 + log

(
e
−

(x−θT−t)
2

2(1−θ2
T−t

) + e
−

(x+θT−t)
2

2(1−θ2
T−t

)

)))

= −β(T − t)

(
1

2
+

2θ2T−t − 1

(θ2T−t − 1)2

)
(31)

The solution to the equation above can be found as follows:

0 = −β(T − t)

(
1

2
+

2θ2T−t − 1

(θ2T−t − 1)2

)
=

(
1

2
(θ2T−t − 1)2 + 2θ2T−t − 1

)
Multiplying two sides by(θ2T−t − 1)2

=
1

2
θ4T−t − θ2T−t +

1

2
+ 2θ2T−t − 1

=
1

2

(
θ4T−t + 2θ2T−t − 1

)
(32)

We can solve this equation using substitution with x = θ2T−t, resulting in x2 + 2x− 1 = (x− 1).
By the quadratic formula we have:

x =
−b±

√
b2 − 4ac

2a
=

−2±
√
22 + 4

2
=

−1±
√
8

2
= −1±

√
2 (33)

Therefore, θ2T−t = −1±
√
2 with solution:

θc =

√√
2− 1 ≈ 0.643594

Figure 8 illustrates the change of sign at the critical θc.
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Figure 8: Analysis of the stability of the fixed-point.

A.2.2 All fixed-points

We now provide the derivation to obtain all the fixed-points at a particular time by analysing its first
derivative. For the sake of simplicity, we reorder the terms in the exponential inside the log term,
resulting in the following expression:

u(x, t) = −β(T − t)

(
1

4
x2 + log

(
e

(x−b)2

2(b2−1) + e
(x+b)2

2(b2−1)

))
(34)

Again for ease of notation we defined b = θT−t, and note that we can derive from cosh(x) = ex+e−x

2

the expression for 2 cosh(x) = ex + e−x, which we use to re-express the log term as follows:

log

(
e

(x−b)2

2(b2−1) + e
(x+b)2

2(b2−1)

)
= log

(
e

x2−2xb+b2

2(b2−1) + e
x2+2xb+b2

2(b2−1)

)
= log

(
e

x2+b2

2(b2−1) · e
−xb

b2−1 + e
x2+b2

2(b2−1) · e
xb

b2−1

)
= log

(
e

x2+b2

2(b2−1) ·
(
e

−xb

b2−1 + e
xb

b2−1

))
= log

(
e

x2+b2

2(b2−1) · 2 cosh( xb

b2 − 1
)

)
=

x2 + b2

2(b2 − 1)
+ log(2) + log

(
cosh(

xb

b2 − 1
)

)
(35)

Re-expressing the potential, we have:

u(x, t) = −β(T − t)

(
1

4
x2 +

x2 + b2

2(b2 − 1)
+ log

(
2 cosh(

xb

b2 − 1
)

))
+ const (36)

computing its derivative we obtain the following

d

dx
u(x, t) = −β(T − t)

(
1

2
x+

x

(b2 − 1)
+

b tanh( xb
b2−1 )

(b2 − 1)

)
(37)
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Now we solve this equation for d
dxu(x, t) = 0

d

dx
u(x, t) = 0 = −β(T − t)

(
1

2
x+

x

(b2 − 1)
+

b tanh( xb
b2−1 )

(b2 − 1)

)

−1

2
x− x

(b2 − 1)
=

b tanh( xb
b2−1 )

(b2 − 1)

−x(b2 − 1)− 2x

2(b2 − 1)
=

b tanh( xb
b2−1 )

(b2 − 1)

−xb2 + x− 2x

2(b2 − 1)
=

b tanh( xb
b2−1 )

(b2 − 1)

−xb2 − x

2(b2 − 1)
=

b tanh( xb
b2−1 )

(b2 − 1)

−x(b2 + 1)

2(b2 − 1)
=

b tanh( xb
b2−1 )

(b2 − 1)

(b2 + 1)x∗ = −2b tanh(
x∗b

b2 − 1
) (38)

A.3 Symmetry breaking in hyper-spherical diffusion models

We will now analyze a more complex multivariate example where the data is sampled from the
surface of a D-dimensional hyper-sphere. It is easy to see that in this case G = O(D), since both the
data distribution and the forward noise are spherically symmetric. Note that, while this is a highly
simplified model, it does capture some properties of real data, since the Euclidean norm concentrates
in high dimension. In this case, again up to constant terms, the potential is given by:

u(x, t) = −β(T − t)

(
1

4
∥x∥22 + log

(∫
RD

k(x, T − t;x′, 0)ϕD(x′; r)dx′
))

(39)

where ϕD(x′; r) is a Dirac ‘density’ spherically symmetric and vanishing outside the surface of the
hyper-sphere centered at the origin with radios equal to r. Unfortunately, the integral in the potential
cannot be solved in closed form. However, it is possible to evaluate its Laplacian (i.e. the trace of the
Hessian) at the origin, since the resulting integral only depends on the radial variable. In fact, the
Laplacian of our potential at the origin is

∇2u|x=0 = −β(T − t)

(
D

2
+

(D + r2)θ2T−t −D

(θ2T−t − 1)2

)
(40)

In general, the sign of the Laplacian does not contain enough information to determine the stability
of the fixed-point. However, in this case the Hessian matrix is a multiple of the identity matrix since
all cross-derivatives vanish and all second derivatives have the same value. Consequently, we can
determine the critical value of θT−t by checking when the Laplacian (and consequently all second
derivatives), flips sign. The resulting equation gives us the critical value

θc =

√√
D2 + r2 − r

D
(41)

which reduces to Eq. 9 for r = 1 and D = 1. The qualitative behavior of the hyper-spherical model
is analogous to the one-dimensional model. When θT−t < θc, the origin is the only stable fixed-point.
On the other hand, when θT−t becomes smaller than θc, the origin becomes unstable while it appears
a D − 1-dimensional manifolds of stable points consisting of the surface of a D-dimensional sphere
centered at the origin with radius equal to θT−tr. Again, while the potential is spherically symmetric
for all values of τ , the symmetry is ‘broken’ if we consider small perturbations of a single path, since
the final position is in an arbitrary location on the surface of the sphere.
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A.4 Symmetry breaking in normalized datasets

A.4.1 Fixed-points

To derive the fixed-points of a diffusion model with N i.i.d. data-points y1, . . . ,yN ∈ RD, where
the potential is described by Eq. 11, we need to estimate the gradient of the potential function:

To compute the gradient of the potential, first we derive the gradient of the log term:

∂

∂x
(log f(x)) =

1

f(x)

∂

∂x
f(x) with f(x) =

∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

=
1

f(x)

∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) ∂

∂x

(
−
∥x− θT−tyj∥22
2(1− θ2T−t)

)
(chain rule)

=
1

f(x)

−
∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) x− θT−tyj

1− θ2T−t


= − 1∑

j e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) x− θT−tyj

1− θ2T−t

(42)

For ease of notation, we express bj = e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) , and compute the gradient of the potential:

∂

∂x
u(x, t) =

∂

∂x

−β(T − t)

1

4
(∥x∥22) + log

∑
j

bj


= −β(T − t)

1

4

∂

∂x
(∥x∥22) +

∂

∂x
log
∑
j

bj


= −β(T − t)

1

2
x− 1∑

j bj

∑
j

bj
x− θT−tyj

1− θ2T−t

 (43)

solve the equation for ∂
∂xu(x, t) = 0
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∂

∂x
u(x, t) = 0 = β(T − t)

−1

2
x+

1∑
j bj

∑
j

bj
x− θT−tyj

1− θ2T−t


1

2
x =

1∑
j bj

∑
j

(bj
x− θT−tyj

1− θ2T−t

)

1

2
x =

1∑
j bj

∑
j

x

1− θ2T−t

bj −
∑
j

θT−tyj

1− θ2T−t

bj


1

2
x =

x

1− θ2T−t

∑
j bj∑
j bj

− θT−t

1− θ2T−t

1∑
j bj

∑
j

bjyj

1

2
x− x

1− θ2T−t

= − θT−t

1− θ2T−t

1∑
j bj

∑
j

bjyj

x(1− θ2T−t)− 2x

2(1− θ2T−t)
= − θT−t

1− θ2T−t

1∑
j bj

∑
j

bjyj

−x
1 + θ2T−t

2(1− θ2T−t)
= − θT−t

1− θ2T−t

1∑
j bj

∑
j

bjyj

x
1 + θ2T−t

2θT−t
=

1∑
j bj

∑
j

bjyj (44)

Resulting in equation

1 + θ2T−t

2θT−t
x∗ =

1∑
j e

wj(x∗;θT−t)

∑
j

ewj(x
∗;θT−t)yj (45)
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A.4.2 Critical point

We assume data-points to be centered around zero, thus
∑

j yj = 0 , and perturbed samples

x = {x1, . . . , xD} ∈ RD. We denote a single coordinate point xi at coordinate i, then
∑D

i 1 = D.

The Laplacian of the potential function will be calculated as detailed below. A comprehensive
derivation of the logarithmic term will subsequently follow:

∇2u(x, t) =
∑
i

∂2

∂x2
i

u(x, t)

=
∑
i

∂2

∂2xi

−β(T − t)

1

4
(∥x∥22) + log

∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)


= −β(T − t)

1

4

∑
i

∂2

∂2xi
(∥x∥22) +

∑
i

∂2

∂2xi
log
∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)


= −β(T − t)

D

2
+
∑
i

∂2

∂2xi

log
∑
j

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)


= −β(T − t)

(
D

2
+
∑
i

∂2

∂2xi
(log f(x))

)

= −β(T − t)

D

2
+
∑
i

−1

1− θ2T−t

+
x2
i

(1− θ2T−t)
2
+

θ2T−t

N(1− θ2T−t)
2

∑
j

(yj
i )

2


= −β(T − t)

D

2
+

−D

1− θ2T−t

+
Dx2

i

(1− θ2T−t)
2
+

θ2T−t

N(1− θ2T−t)
2

∑
j

∑
i

(yji )
2


= −β(T − t)

D

2
+

−D

1− θ2T−t

+
Dx2

i

(1− θ2T−t)
2
+

θ2T−t

N(1− θ2T−t)
2

∑
j

(yj
i )

2


= −β(T − t)

D

2
+

−D

1− θ2T−t

+
Dx2

i

(1− θ2T−t)
2
+

θ2T−t

N(1− θ2T−t)
2

∑
j

r2


∇2u(x, t)|x=0 = −β(T − t)

(
D

2
+

−D

1− θ2T−t

+
θ2T−tr

2

(1− θ2T−t)
2

)
= −β(T − t)

(
D

2
+

−D(1− θ2T−t) + θ2T−tr
2

(1− θ2T−t)
2

)
= −β(T − t)

(
D

2
+

(D + r2)θ2T−t −D

(1− θ2T−t)
2

)
= −β(T − t)

(
D

2
+

(D + r2)θ2T−t −D

(θ2T−t − 1)2

)
(46)

where f(x) =
∑

j e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) . Utilizing the quotient rule, we estimated the second partial
derivative of the logarithmic term as follows:

∂2

∂x2
(log f(x)) =

∂

∂x

(
f

′
(x)

f(x)

)
=

f
′′
(x)f(x)− f

′
(x)2

f(x)2
=

f
′′
(x)

f(x)2
since f

′
(x)2|x=0 = 0
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To compute the second partial derivative we do the following:

1. First compute, we compute the first partial derivative of f(x) by applying change rule again

∂

∂xi
f(x) =

∑
j

∂

∂xi
e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

=
∑
j

(−xi − θT−ty
j
i

1− θ2T−t

)e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

=
∑
j

(
− 1

1− θ2T−t

xi +
θT−t

1− θ2T−t

yj
i

)
e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) (47)

2. Subsequently, the derivative of ∂
∂xi

f(x) is computed utilizing the product rule:

∂2

∂x2
i

f(x) (48)

=
∑
j

(
− 1

1− θ2T−t

e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) + (−xi − θT−ty
j
i

1− θ2T−t

)2e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

)

=
∑
j

(
− 1

1− θ2T−t

+ (−xi − θT−ty
j
i

1− θ2T−t

)2

)
e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

=
∑
j

(
− 1

1− θ2T−t

+
x2
i

(1− θ2T−t)
2
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j
i
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2
+

θ2T−t(y
j
i )

2

(1− θ2T−t)
2

)
e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

=

 −N

1− θ2T−t

+
Nx2

i

(1− θ2T−t)
2
− 2xiθT−t

(1− θ2T−t)
2

∑
j

yj
i︸ ︷︷ ︸

=0

+
θ2T−t

(1− θ2T−t)
2

∑
j

(yj
i )

2

 e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

=

(
−N

1− θ2T−t

+
Nx2

i

(1− θ2T−t)
2
+

θ2T−t

(1− θ2T−t)
2
Nr2

)
e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

) (49)

3. We can now proceed to determine the second partial derivative:

∂2

∂x2
i

(log f(x)) =
f

′′
(x)

f(x)

=

(
−N

1−θ2
T−t

+
Nx2

i

(1−θ2
T−t)

2 +
θ2
T−t

(1−θ2
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2

∑
j(y

j
i )

2
)
e
−

∥x−θT−tyj∥2
2

2(1−θ2
T−t

)

∑
j e

−
∥x−θT−tyj∥2

2
2(1−θ2

T−t
)

=

(
−N

1−θ2
T−t

+
Nx2

i

(1−θ2
T−t)

2 +
θ2
T−t

(1−θ2
T−t)

2

∑
j(y

j
i )

2
)

N

=
−1

1− θ2T−t

+
x2
i

(1− θ2T−t)
2
+

θ2T−t

N(1− θ2T−t)
2

∑
j

(yj
i )

2 (50)
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A.4.3 What happens at the origin?

Here, we evaluate Eq. 12 at x∗ = 0 to assess the behavior at the origin. The initial step involves
evaluating the exponential term within the summation:

wj(x
∗; θT−t)|x∗=0 = e−∥x

∗−θT−tyj∥2

2
/(2(1−θ2

T−t)) = e−∥θT−tyj∥2

2
/(2(1−θ2

T−t))

= e
−

θ2T−t

(2(1−θ2
T−t

))
∥yj∥2

2

= e
−

θ2T−t

(2(1−θ2
T−t

))
r2

(51)

Following this, we calculate the normalized weights at the origin for N data points:

wj(0; θT−t)∑
j wj(0; θT−t)

=
e
−

θ2T−t

(2(1−θ2
T−t

))
r2

∑
j e

−
θ2
T−t

(2(1−θ2
T−t

))
r2

=
1

N
(52)

Now, we can evaluate Eq. 12 at x∗ = 0:

1 + θ2T−t

2θT−t
x∗ =

1∑
j wj(x∗; θT−t)

∑
j

wj(x
∗; θT−t)yj

0 =
1

N

∑
j

yj

0 = 0 (53)

Under the two specific assumptions that 1) data points are centered around zero and 2) constrained to
a fixed radius (r2 =

∥∥yj

∥∥2
2
), we have demonstrated that the origin indeed functions as a fixed point.

B Extended experiments

B.1 Late start initialization

For completeness, Table 2 presents the resulting Fréchet Inception Distance (FID) scores, as illustrated
in Figure 4, for different late start times sstart ≪ T . Table 3 provides error bars computed from
4 runs. Figure 9 visually demonstrates the unaffected performance of the CIFAR10 model during
the early phase, even with fewer denoising steps. Notably, a late start at sstart = 800 yields better
FID scores compared to sstart = 1000, resulting in a direct 20% reduction in compute. Similarly,
Figure 10 illustrates generated samples for different late starts using the deterministic DDIM sampler,
highlighting how a single starting point remains nearly unaffected in the early generative phase.
Figure 11, 12, 13 provide the same analysis but for Celeba64, Imagenet64 and MNIST respectively.

XXXXXXXXXDataset
sstart 50 100 200 300 400 500 600 700 800 900 1000

MNIST 377.91 295.00 201.33 55.47 25.01 14.14 6.13 2.12 1.32 1.21 1.16
CIFAR10 381.77 360.51 283.74 130.35 23.47 11.11 5.02 3.35 3.11 3.05 3.18
CelebA 316.6 318.04 291.57 148.23 39.85 22.51 9.76 2.76 1.91 2.06 2.15

Imagenet 423.34 443.77 469.12 456.90 152.55 45.24 32.36 26.5 23.93 22.89 22.69
CelebA64 424.13 380.79 371.05 301.66 81.16 40.24 23.11 10.26 3.39 3.00 3.27

Table 2: Analysis of image generation degradation measured in FID scores for different "late start"
time sstart for DDPM.
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XXXXXXXXXDataset
sstart 50 100 200 300 400 500 600 700 800 900 1000

MNIST 377.83 ± 0.15 295.07 ± 0.10 201.40 ± 0.27 55.64 ± 0.22 24.99 ± 0.03 13.99 ± 0.26 6.20 ± 0.05 2.12 ± 0.03 1.33 ± 0.01 1.22 ± 0.00 1.17 ± 0.01
CIFAR10 381.79 ± 0.04 360.62 ± 0.07 283.90 ± 0.14 130.15 ± 0.17 23.69 ± 0.17 11.07 ± 0.05 4.98 ± 0.02 3.36 ± 0.02 3.06 ± 0.01 3.06 ± 0.03 3.08 ± 0.03
CelebA 316.59 ± 0.05 318.11 ± 0.05 291.71 ± 0.09 148.40 ± 0.44 39.83 ± 0.04 22.50 ± 0.08 9.83 ± 0.06 2.82 ± 0.06 1.91 ± 0.01 2.08 ± 0.01 2.14 ± 0.02

Imagenet 423.42± 0.10 443.79± 0.04 469.37 ±0.30 457.25 ±0.37 152.43 ±0.47 45.12 ±0.10 32.44 ±0.05 26.40 ±0.09 23.92 ±0.07 22.91± 0.02 22.68± 0.03

Table 3: Mean FID scores and their associated standard deviations, obtained from a late-start
initialization analysis across CIFAR10, MNIST, CelebA, and Imagenet, evaluated over 4 runs.

(a) T=1000; FID=3.181 (b) sstart=900; FID=3.05 (c) sstart=800; FID=3.105 (d) Denoising start point sstart vs FID

(e) sstart=700; FID=3.346 (f) sstart=600; FID=5.018 (g) sstart=500; FID=11.1 (h) SNR

(i) Progressive generation (j) Correlation coefficient (k) Normalized pixels

Figure 9: Impact of starting the generative process at a late start sstart = 800 << T = 1000 on
the model’s performance. a) The standard generative process starting at T = 1000. b-g/d) Depict
the process when initiated at sstart << T = 1000. d) Resulting FID scores for different late start
times sstart << T . (i-k) Progressive generation and correlation and normalized pixel analysis (see
Sec. B.3).

sstart = 100

sstart = 200

sstart = 300

sstart = 400

sstart = 500

sstart = 600

sstart = 700

sstart = 800

sstart = 900

T = 1000

Figure 10: Impact of a late initialization (sstart ≪ T = 1000) on CIFAR10 generation using the
DDIM sampler, with starting times varied progressively from 1000 to 100. Despite the late start, the
early phase remains largely unaffected since particles convergence to the fixed-point. The number
of denoising steps matches each respective starting time, such as 1000 denoising steps for a start at
1000, and 100 for a start at 100.
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sstart = 100

sstart = 200

sstart = 300

sstart = 400

sstart = 500

sstart = 600

sstart = 700

sstart = 800

sstart = 900

T = 1000

Figure 11: Analogous impact of a late initialization (sstart ≪ T = 1000) on CelebA64 generation
using the DDIM sampler, with starting times varied progressively from 1000 to 100. The denoising
steps are set to match each respective starting time, demonstrating similar stability in the early phase.

sstart = 100

sstart = 200

sstart = 300

sstart = 400

sstart = 500

sstart = 600

sstart = 700

sstart = 800

sstart = 900

T = 1000

Figure 12: Analogous impact of a late initialization (sstart ≪ T = 1000) on Imagenet64 generation
using the DDIM sampler, with starting times varied progressively from 1000 to 100. The denoising
steps are set to match each respective starting time, demonstrating similar stability in the early phase.
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sstart = 100

sstart = 200

sstart = 300

sstart = 400

sstart = 500

sstart = 600

sstart = 700

sstart = 800

sstart = 900

T = 1000

Figure 13: Analogous impact of a late initialization (sstart ≪ T = 1000) on MNIST generation using
the DDIM sampler, with starting times varied progressively from 1000 to 100. The denoising steps
are set to match each respective starting time, demonstrating similar stability in the early phase.

B.2 Empirical analysis of the potential function in trained diffusion models

B.2.1 Method

To visualize the potential for real high-dimensional datasets, we project the n-dimensional potential
onto 1D by focusing only on the trajectory of two sampled generative paths (x1(t),x2(t)) and
representing the potential as a function of α. In short, we do the following:

• We run the sampler and obtain generative trajectory for x1(t) and for x2(t), obtaining
x1T , . . . ,x1t,x10 and x2T , . . . ,x2t,x20 corresponding sampled paths.

• We then obtained interpolated curves x(α, t) = cos(α)x1(t)+ sin(α)x2(t) (see Figure 14).
• We then compute the potential (up to a constant) as a function of α by

ũ(α, t) = u(x(α), t) =

∫ α

−1

∇U(x(a), t) · vda

in discrete time we estimate

ũ(αN , t) ≈
N∑
i=1

∇u(x(αi), t) · v∆α

where v = − sinαx1 + cosαx1

• Plot potential for (α, ũ(α, t)) coordinates (see Section B.2.2)

0

200

400

600

800

1000

Figure 14: VP interpolations of two sampled paths x1(t) and x2(t) over α ∈ [− 1
5π,

7
10π].
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B.2.2 Plots of potentials

This section presents 1D sections plots of the potential of diffusion models trained on CIFAR10,
ImageNet64 and CelebA64, along with corresponding generated samples in Figures 15, 16, and 17.

(a) (b)

Figure 15: Symmetry breaking in CIFAR10: (a) Generated samples; (b) Time-varied 1D potential
sections (top figure) from a trained diffusion model along circular paths between two samples (bottom
figure), averaged over 20 generated samples from (a).

(a) (b)

Figure 16: Symmetry breaking in Imagenet64.

(a) (b)

Figure 17: Symmetry breaking in CelebA64.
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B.3 Correlation coefficients and Normalized pixel trajectories

In order to qualitatively investigate the generative dynamics of diffusion models, we analyze cor-
relation and normalized pixel trajectories along the generative paths. The correlation coefficient
trajectories reveal the evolution of sample correlations over time, highlighting the transition from
uncorrelated to aligned samples. By comparing a fixed/reference trajectory with multiple trajecto-
ries, we construct correlation trajectories. Furthermore, we track the changes in pixel values using
normalized pixel trajectories. Initially, during the early generation phase, the pixel values remain
unchanged without any discernible patterns or transformations. However, beyond a critical point,
the normalized pixels show the emergence of features and patterns. Our analyses utilize a batch of
300 samples for correlation trajectories and over 500 generated samples for normalized trajectories.
The normalized trajectories are sampled using the deterministic DDIM sampler, showcasing both
stochastic and deterministic behavior.

(a) MNIST Progressive generation (b) Correlation coefficient (c) Normalized pixels

(d) CelebA32 Progressive generation (e) Correlation coefficient (f) Normalized pixels

(g) Imagenet64 Progressive generation (h) Correlation coefficient (i) Normalized pixels

(j) CelebA64 Progressive generation (k) Correlation coefficient (l) Normalized pixels

Figure 18: Progressive generation and trajectory analysis: Correlation and normalized pixel evolution
in diffusion models over time.
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C Fast Samplers

C.1 Table results

This section provides comprehensive empirical analysis on model performance for varied start times,
comparing the Gaussian initialization with vanilla samplers. Table 4 details results for deterministic
samplers like DDIM and PSNDM, while Table 5 focuses on stochastic DDPM. These tables include
FID scores and consider a fixed number of equally spaced denoising steps. Table 6 extends these
results for higher numbers of functions evaluations (NFEs), confirming FID improvements at higher
NFEs. Figure 19 validates the Gaussianity assumption in the early generative phase.

Dataset
XXXXXXXXXmodel

sstart 50 100 200 300 400 500 600 700 800 900 1000

DDIM-10 397.7 364.05 287.79 174.14 42.65 18.06 10.01 5.81 4.40 4.46 5.03
DDIM-10† 163.22 163.83 104.34 28.98 6.07 2.44 2.5 3.05 3.57 4.20 4.80
DDIM-05 397.75 362.82 283.78 167.02 43.65 19.69 13.08 10.11 10.69 12.92 16.06
DDIM-05† 162.92 160.62 96.96 25.73 7.28 5.24 6.16 7.80 9.92 12.47 15.77
DDIM-03 397.49 359.51 271.84 151.35 50.50 29.5 30.01 37.93 52.11 73.81 102.28

MNIST DDIM-3† 162.11 155.72 84.09 22.73 11.50 13.32 20.97 34.60 50.96 73.547 102.70
PSDM-10 398.45 366.40 290.22 188.32 57.63 27.80 17.83 12.40 17.15 14.36 15.00
PSDM-10† 165.47 167.99 113.20 35.25 9.35 5.02 5.78 7.31 14.75 13.32 14.77
PSDM-05 398.47 367.91 293.90 183.42 51.29 23.49 18.72 18.01 21.22 21.18 21.34
PSDM-05† 165.68 168.53 115.43 33.77 8.70 5.11 7.28 11.89 18.68 20.33 21.54
PSDM-03 398.81 367.92 288.95 207.45 123.95 110.05 119.18 154.89 220.26 273.10 381.89
PSDM-3† 165.23 166.11 117.72 43.49 38.23 64.41 98.1 148.49 218.91 271.59 381.15
DDIM-10 410.13 376.91 334.41 229.93 57.18 17.98 15.65 16.57 18.39 19.79 21.27
DDIM-10† 139.41 89.97 48.30 28.66 19.36 15.98 16.14 17.03 18.50 19.54 21.12
DDIM-5 409.17 375.47 330.77 210.12 51.78 29.97 33.55 38.28 44.61 51.31 56.68
DDIM-5† 132.58 86.59 49.85 33.72 26.88 26.36 30.13 36.29 44.26 51.46 56.68
DDIM-03 407.79 373.01 320.84 190.75 71.77 68.01 85.93 109.37 133.53 144.55 129.76

CIFAR10 DDIM-3† 125.29 84.14 54.08 42.84 42.31 51.8 72.86 102.88 131.68 144.51 128.91
PSDM-10 412.60 379.25 337.89 247.44 75.76 17.36 7.75 6.20 7.31 8.35 8.07
PSDM-10† 150.39 95.77 45.97 22.09 10.81 6.72 5.90 6.24 7.41 8.23 8.07
PSDM-05 412.49 379.41 340.89 236.68 63.11 17.78 11.13 11.34 13.77 17.56 26.15
PSDM-05† 149.778 92.62 44.49 21.97 12.41 9.55 10.17 11.79 13.94 17.72 25.73
PSDM-03 412.76 379.27 339.22 252.22 134.77 80.94 78.20 103.11 170.68 266.32 407.46
PSDM-3† 149.63 96.97 53.34 37.10 34.20 44.98 65.78 99.46 169.76 265.58 407.63
DDIM-10 345.98 316.55 306.08 251.90 68.03 25.67 25.67 15.86 10.83 11.37 13.94
DDIM-10† 65.45 34.5 12.80 7.89 7.27 8.57 10.00 11.81 13.38 15.32 16.81
DDIM-05 344.04 316.53 303.82 237.93 55.65 28.74 22.11 20.03 23.45 28.61 33.21
DDIM-05† 59.18 30.59 13.41 10.83 11.86 14.29 17.59 21.42 25.67 30.05 33.85
DDIM-03 341.43 317.05 297.70 215.48 57.31 42.72 39.73 45.34 56.31 65.41 70.65

CelebA DDIM-3† 53.38 28.27 16.24 16.29 19.67 25.42 33.12 44.41 56.39 65.77 70.87
(32x32) PSDM-10 350.09 316.93 306.89 263.09 94.16 31.19 15.41 6.41 4.17 4.92 5.61

PSDM-10† 76.28 43.35 14.13 5.53 3.16 2.88 3.34 4.29 5.07 5.81 5.93
PSDM-05 350.62 316.52 308.97 259.61 82.27 29.94 16.16 7.88 6.61 8.46 11.07
PSDM-05† 74.87 39.57 12.11 5.56 4.2 4.57 5.39 6.63 8.04 9.55 11.11
PSDM-03 350.06 316.85 305.95 276.48 203.66 167.61 182.22 235.87 340.24 282.92 330.85
PSDM-3† 75.43 47.62 28.60 31.63 45.56 72.57 127.70 214.48 331.07 282.69 331.07
DDIM-10 424.13 422.57 443.86 455.37 286.98 71.39 41.62 37.79 37.56 38.21 38.21
DDIM-10† 263.67 213.10 103.10 66.68 53.45 44.18 38.46 36.25 36.64 37.90 39.22
DDIM-05 423.88 422.51 443.88 441.66 249.88 83.73 65.87 63.74 68.21 76.41 82.09
DDIM-05† 260.95 207.15 104.13 73.28 60.98 53.83 52.11 56.41 65.21 75.99 82.22
DDIM-03 423.37 422.69 438.96 414.58 225.88 130.18 119.98 126.38 147.59 171.55 184.78

Imagenet DDIM-3† 256.70 198.52 108.13 84.31 76.92 77.31 89.05 111.34 141.40 168.82 183.88
(64x64) PSDM-10 424.26 422.59 442.03 465.26 323.34 76.74 35.71 28.64 28.43 28.27 28.21

PSDM-10† 267.76 219.10 103.88 61.27 45.63 36.85 31.08 28.59 27.93 27.9 28.05
PSDM-05 424.18 422.35 447.05 471.08 321.94 67.40 37.13 32.39 34.86 41.34 73.96
PSDM-05† 267.73 218.87 98.16 59.60 46.32 38.41 34.24 33.35 34.97 42.02 73.91
PSDM-03 424.35 422.64 443.79 466.20 329.90 115.26 73.63 70.58 153.47 306.65 391.19
PSDM-3† 267.52 219.09 109.04 68.48 54.77 50.92 54.42 66.64 157.63 305.77 391.28
DDIM-10 441.61 424.22 391.42 339.56 202.98 40.51 23.91 17.95 16.13 19.37 23.60
DDIM-10† 93.41 65.24 34.43 22.30 17.57 15.82 16.35 18.42 21.12 22.72 24.98
DDIM-05 441.51 422.97 390.12 326.51 165.61 47.46 32.47 27.08 28.51 34.76 42.82
DDIM-05† 86.56 59.26 34.13 25.86 22.79 22.06 24.16 27.91 32.88 37.27 44.18
DDIM-03 440.68 420.81 387.85 315.0 146.78 62.27 52.34 50.304 59.8 75.68 84.89

CelebA DDIM-03† 79.69 55.19 36.54 31.28 29.96 31.86 37.62 48.10 61.99 76.42 85.00
(64x64) PSDM-10 442.67 426.44 393.62 352.46 241.59 52.21 22.91 12.95 7.40 8.03 9.43

PSDM-10† 104.12 77.59 39.24 20.07 11.37 7.82 6.80 7.65 9.37 10.52 10.38
PSDM-05 442.53 426.75 394.26 349.31 216.03 55.25 25.80 14.79 10.26 12.92 21.91
PSDM-05† 103.41 72.79 34.73 19.33 12.74 9.88 9.26 10.92 13.58 16.09 21.39
PSDM-03 442.50 426.40 393.72 352.35 293.40 204.93 169.69 171.75 355.40 331.48 416.23
PSDM-03† 103.08 81.84 58.93 51.96 51.72 60.66 81.53 118.69 342.83 329.88 416.63

Table 4: Comparison of image generation using deterministic samplers like DDIM and PSNDM,
measured in FID Scores. The strategies employed involve different ’late start’ scenarios with 5 and
10 denoising steps. PNDM for T starts at 999. †Gaussian approximation initialization (gls).
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Dataset
XXXXXXXXXmodel

sstart 50 100 200 300 400 500 600 700 800 900 999

DDPM-10 381.52 302.46 211.31 58.27 25.73 16.61 9.37 6.24 6.25 6.75 7.34
DDPM-10† 164.89 159.73 66.46 12.28 4.62 4.21 4.82 5.58 6.17 6.71 7.25

MNIST DDPM-05 386.63 314.07 226.71 67.14 28.16 19.37 13.27 11.24 13.25 16.02 18.78
DDPM-05† 162.03 155.05 64.62 13.27 6.95 7.26 8.82 10.63 13.12 15.98 18.88
DDPM-03 391.53 330.81 238.59 86.89 36.93 29.30 32.90 42.63 54.93 73.87 100.78
DDPM-3† 158.89 148.52 63.22 16.44 11.92 15.29 26.19 41.16 54.75 73.68 100.75
DDPM-10 383.98 361.29 279.54 95.56 37.04 38.50 36.16 36.09 39.2 43.35 47.76
DDPM-10† 112.94 72.63 44.39 33.60 29.10 28.77 31.13 35.05 39.32 43.63 47.80

CIFAR10 DDPM-05 388.03 362.67 281.87 90.79 56.40 65.41 68.15 74.56 84.82 96.54 105.49
DDPM-05† 111.3 76.52 52.59 44.85 42.46 46.46 57.10 70.46 84.4 96.40 106.05
DDPM-03 393.92 364.69 289.34 103.07 85.80 108.30 125.24 146.95 172.63 192.61 190.69
DDPM-3† 112.34 80.34 60.91 57.03 60.85 76.23 104.00 139.32 171.82 193.07 191.66
DDPM-10 317.33 319.39 290.02 116.35 34.40 27.02 20.94 20.41 23.95 26.79 28.90
DDPM-10† 44.88 21.05 11.05 11.30 13.59 16.37 19.13 22.49 24.99 27.24 29.31

CelebA DDPM-05 319.6 319.17 289.0 109.2 40.80 36.60 32.67 34.93 40.92 46.06 50.35
(32x32) DDPM-05† 42.56 21.86 14.79 16.41 20.05 24.56 29.92 36.23 41.66 46.32 50.24

DDPM-03 324.14 318.42 288.56 118.83 51.77 51.34 51.12 59.75 71.29 78.1 82.21
DDPM-3† 42.29 23.91 18.93 22.06 27.38 35.049 44.9 57.95 70.84 78.13 82.09
DDPM-10 422.90 439.20 456.48 418.56 121.52 66.33 63.22 60.66 62.69 65.68 69.25
DDPM-10† 247.69 175.06 86.68 73.9 66.62 59.70 57.31 58.67 61.79 65.81 69.27

Imagenet DDPM-05 422.63 434.66 445.04 394.01 125.68 95.92 95.45 95.06 99.99 108.84 115.235
(64x64) DDPM-05† 246.76 174.24 95.91 85.59 79.61 75.11 77.26 85.94 96.88 108.33 115.94

DDPM-03 422.68 429.65 433.43 373.03 153.07 133.66 139.13 145.71 160.1 178.46 177.59
DDPM-3† 245.64 176.23 105.28 94.93 91.69 93.7 106.34 128.62 153.00 177.08 177.43
DDPM-10 428.98 383.53 367.83 301.06 62.62 42.01 32.05 27.76 30.80 36.66 40.49
DDPM-10† 73.35 46.52 28.73 24.91 23.79 25.12 27.95 32.24 35.89 38.93 41.04

CelebA DDPM-05 433.17 390.28 368.18 305.34 71.96 55.1 45.32 41.90 48.38 55.42 61.94
(64x64) DDPM-05† 68.60 45.71 33.93 31.58 31.24 33.62 38.08 44.67 51.67 56.75 62.33

DDPM-03 435.8 402.04 371.31 312.56 85.84 71.33 63.4 62.18 74.22 88.36 92.14
DDPM-3† 67.18 47.58 38.32 37.05 37.85 41.49 48.71 60.55 75.79 88.55 92.25

Table 5: Stochastic sampler. †Gaussian approximation initialization (gls).

Dataset n gls-DDPM DDPM gls-DDIM DDIM gls-PNDM PNDM

MNIST
20 2.40 4.10 1.21 2.39 3.70 5.39
50 1.29 2.15 0.84 1.56 3.69 4.78

100 0.98 1.51 0.78 1.44 3.69 4.65

CIFAR10
20 19.78 26.13 10.92 12.42 4.27 5.13
50 12.54 16.257 7.54 8.26 3.42 3.60

100 9.16 11.55 6.19 6.57 3.32 3.34

CelebA64
20 18.37 28.40 11.78 15.44 4.63 6.10
50 12.61 20.23 7.43 10.78 3.57 4.06

100 9.27 15.33 5.51 8.13 3.40 3.58

Table 6: FID score comparison for higher NFEs with n = 20, 50, 100 denoising steps. Stochastic
DDPM, deterministic DDIM, and PNDM samplers are evaluated in both vanilla and "gls" settings.

(a) MNIST (b) CIFAR10 (c) Imagenet64 (d) CelebA64

Figure 19: The Shapiro-Wilk test assesses the normality of data over time, evaluated over 500
perturbed samples. It helps determine if the data closely follows a Multivariate Gaussian distribution
up to a specific critical time.
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C.2 Generated images over improved fast samplers

This section presents the enhanced performance of standard samplers due to our Gaussian late start
(gls) initialization, visualized across several datasets. Figure 20 displays results of DDIM and PSDM
samplers on CelebA64 with five denoising steps. Additional DDIM results are provided in Figure 21
for 5 and 10 denoising steps. The method’s performance on MNIST, CIFAR10, ImageNet64, and
CelebA64 is further illustrated in Figures 22, 23, 24, and 25 respectively.

(a) DDIM (b) gls-DDIM (c) PSDM (d) gls-PSDM

Figure 20: Comparison of deterministic samplers with and without our proposed Gaussian late start
for CelebA 64x64 for 5 denoising steps generation.

(a) DDIM n=5, FID=28.51

(b) DDIM n=10, FID=19.37

(c) gls-DDIM n=5, FID=22.06

(d) gls-DDIM n=10, FID=15.82

Figure 21: Comparison of the deterministic DDIM sampler on CelebA 64x64 with varying denoising
steps. Subfigures (a) and (c) represent the generative model performance for 5 denoising steps, while
(b) and (d) showcase the results for 10 denoising steps. The DDIM sampler was initialized with the
common standard initialization point sstart = 800 for 5 steps and sstart = 900 for 10 steps. Notably,
our Gaussian late start initialization (gls-DDPM) with sstart = 500 for both 5 and 10 denoising steps
demonstrates significant improvements in FID scores and diversity, leveraging spontaneous symmetry
breaking in diffusion models.
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(a) gls-DDPM n=5, sstart = 400, FID=6.95

(b) gls-DDIM n=5, sstart = 500, FID=5.24

(c) DDPM n=5, sstart = 800, FID=13.25

(d) DDIM n=5, sstart = 800, FID=10.69

Figure 22: Our Gaussian late start initialization boost performance on fast sampler, expemplified here
in both DDPM (top row) and DDIM (bottom row) for 5 denoising steps on MNIST.
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(a) gls-DDIM n=10, sstart = 500, FID=15.98

(b) gls-DDIM n=5, sstart = 500, FID=26.36

(c) DDIM n=10, sstart = 900, FID=19.79

(d) DDIM n=5, sstart = 800, FID=44.61

Figure 23: Our Gaussian late start initialization boost performance on DDIM for 10 and 5 denoising
steps on CIFAR10.
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(a) gls-DDIM n=10, sstart = 700, FID=36.25

(b) gls-DDIM n=5, sstart = 600, FID=52.11

(c) DDIM n=10, sstart = 900, FID=38.21

(d) DDIM n=5, sstart = 800, FID=68.21

Figure 24: Our Gaussian late start initialization boost performance on DDIM for 10 and 5 denoising
steps on Imagenet64.
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(a) gls-DDPM n=5, sstart = 400, FID=31.24

(b) gls-DDPM n=3, sstart = 300, FID=37.05

(c) DDPM n=5, sstart = 800, FID=48.38

(d) DDPM n=3, sstart = 700, FID=62.18

Figure 25: Our Gaussian late start initialization boost performance on DDPM for 5 and 3 denoising
steps on Celeba64.
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D Diversity analysis

This section presents an expanded examination of the diversity analysis carried out on CelebA64
samples generated using the DDIM sampler, and our gls-DDIM initialization. Figure 26 illustrates the
analysis of “emotion"" and “gender“ attributes for 5 denoising steps. Meanwhile, Figure 27 provides
a visual summary of the “age” distribution for 5 and 10 denoising steps. For comparison, we also
provided the diversity analysis obtained in the training set and from the standard DDPM sampler with
1000 denoising steps (DDPM-1000).

(a) Training set (b) DDPM-1000 (c) gls-DDIM-05 (d) DDIM-05

(e) Training set (f) DDPM-1000 (g) gls-DDIM-05 (h) DDIM-05

Figure 26: “Emotion” and “Gender“ diversity analysis on CelebA64 over 50,000 generated samples
by (c,g) gls-DDIM and (d,h) DDIM samplers with 5 denoising steps. Results obtained on (a,e)
training set and (b,f) DDPM using 1000 denoising steps are provided for reference. Corresponding
samples obtained by each set are shown on top of the pie charts.

E Implementation Details

Our implementation is based on a newly developed codebase, taking inspiration from the imple-
mentation by Song et al. Song et al. (2021) for the DDPM model. In our experiments, we employ

(a) DDIM n=5 (b) DDIM n=10

Figure 27: Age attribute analysis on generated CelebA64 samples for 5 and 10 denoising steps.

37



DDPM models where the stochastic differential equation (SDE) is defined over the continuous-time
interval t ∈ [0, 1] and discretized into N = 1000 time steps, representing a finite horizon of T = 1 in
discrete-time. We conducted all experiments on NVIDIA DGX-1 machines with 3 Tesla V100 GPUs
each, utilizing PyTorch 1.10.2+cu102, CUDA 10.2, and CuDNN 7605.

E.1 FID computation

To compute FID scores, we use the Inception-v3 model to extract activations from the coding layer
for both real and generated images. We calculate the mean and covariance matrix of these activations
for the training set and over 50,000 generated images separately. We validate our implementation by
comparing FID scores with previous work Ho et al. (2020); Song et al. (2021), such as achieving a
FID score of 3.08 on CIFAR-10.

E.2 Implementation of the one-dimensional diffusion model

Following Song et al. (2021), the implementation of the time-continuous function β(s), with s = T−t
and s ∈ [0, 1], is given by β(s) = β̄min + s(β̄max − β̄min) discretized over N = 1000 steps. To
match our DDPM settings in realistic datasets, we let β̄min = 0.1 and β̄max = 20. Therefore we can
estimate the evolution of θs = e−

1
2

∫ s
0
β(τ)dτ as follows:

θs = e−
1
2

∫ s
0
β(τ)dτ

= e−
1
2

∫ s
0
β̄min+τ(β̄max−β̄min)dτ

= e−
1
4 s

2(β̄max−β̄min)− 1
2 sβ̄min

E.3 Code Availability

Our code can be found at https://github.com/gabrielraya/symmetry_breaking_diffusion_models
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