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ABSTRACT

Network models are useful tools for modelling complex associations. If a Gaussian graphical
model is assumed, conditional independence is determined by the non-zero entries of the inverse
covariance (precision) matrix of the data. The Bayesian graphical horseshoe estimator provides a
robust and flexible framework for precision matrix inference, as it introduces local, edge-specific
parameters which prevent over-shrinkage of non-zero off-diagonal elements. However, for many
applications such as statistical omics, the current implementation based on Gibbs sampling becomes
computationally inefficient or even unfeasible in high dimensions. Moreover, the graphical horseshoe
has only been formulated for a single network, whereas interest has grown in the network analysis
of multiple data sets that might share common structures. We propose (i) a scalable expectation
conditional maximisation (ECM) algorithm for obtaining the posterior mode of the precision matrix
in the graphical horseshoe, and (ii) a novel joint graphical horseshoe estimator, which borrows
information across multiple related networks to improve estimation. We show, on both simulated and
real omics data, that our single-network ECM approach is more scalable than the existing graphical
horseshoe Gibbs implementation, while achieving the same level of accuracy. We also show that our
joint-network proposal successfully leverages shared edge-specific information between networks
while still retaining differences, outperforming state-of-the-art methods at any level of network
similarity.

Keywords Bayesian graphical models · Cancer genomics · Expectation conditional maximisation · Gene networks ·
Genomics · Graphical horseshoe · Horseshoe prior · High-dimensional inference · Integrative analysis ·Multi omics ·
Network models

1 Introduction

In statistical omics, network models are increasingly popular for representing complex associations and assessing
pathway activity. With such models, the links between genes, proteins or other types of omics data can be represented
and studied, providing valuable insight into functional relationships. The progress of high-throughput genomic
technologies has led to the collection of large, genome-wide data sets, and the availability of biomeasurements of
different types has enabled the development of integrative modelling approaches which can increase statistical power
while providing detailed insight into complex biological mechanisms (Someren et al. [2002], Karczewski and Snyder
[2018]).
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The Joint Graphical Horseshoe

If a Gaussian graphical model is assumed, an association (conditional independence) network can be estimated by
determining the non-zero entries of the inverse covariance (precision) matrix of the data. For this purpose, Li et al.
[2019a] propose the graphical horseshoe estimator. This Bayesian model formulation leads to many desirable properties,
particularly for identifying weak edges. Indeed, its local edge-specific parameters prevents over-shrinkage of non-zero
off-diagonal elements, resulting in a highly flexible framework. However, in the high-dimensional settings commonly
needed for investigating biological networks, Gibbs sampling for the graphical horseshoe becomes computationally
inefficient or even unfeasible. Moreover, the graphical horseshoe has only been formulated for a single network,
whereas interest has grown in the network analysis of multiple data sets that might share common structures. Such
related data sets could be different tissues, conditions or patient subgroups, or different omics types, such as gene levels
and the protein levels encoded by these genes. A joint approach that utilises the common information while preserving
the differences will both have increased statistical power and provide insight into the different mechanisms in play.

In this paper, we propose a computationally efficient expectation conditional maximisation (ECM) algorithm for
obtaining the posterior mode of the precision matrix in the graphical horseshoe which allows us to tackle realistic
biological inference. Building on this efficient implementation, we then propose a novel joint model that permits
borrowing information between multiple networks using the graphical horseshoe prior. We provide the two R packages
fastGHS and jointGHS, which implement the single and joint methods respectively.

The paper is organised as follows. In Section 2, we provide a data-driven motivation for our work, by illustrating the
need for a flexible and scalable approach on a multi-condition gene regulation problem in monocytes. In Section 3,
we introduce the standard graphical horseshoe and discuss its challenges. In Section 4, we describe our algorithm and
scalable inference procedure, and in Section 5, we present our joint graphical horseshoe model formulation which
allows for simultaneous inference of multiple networks with shared information. In Section 6, we demonstrate the
performance of our proposed methodology on simulated data, and in Section 7, we apply it to the monocyte gene
regulation study. Finally, we highlight possible extensions in Section 8.

2 Data and motivating example

We start by introducing our motivating data set, which illustrates the need for a scalable joint graphical framework.
The data is from an expression quantitative trait locus (eQTL) study in CD14+ monocytes. The genetic variants are
single nucleotide polymorphisms (SNPs) determined using Illumina arrays and monocyte expression was quantified
before and after immune stimulation via exposition to inflammation proxies, namely, interferon-γ (IFN-γ) or differing
durations of lipopolysaccharide (LPS 2h or LPS 24h) (Fairfax et al. [2014]). The data were obtained from 432
healthy European individuals, more precisely, the number of samples available in each condition was nunstim = 413,
nIFN-γ = 366, nLPS2h = 260, nLPS24h = 321 for unstimulated cells, and IFN-γ-, LPS 2h- and LPS 24h- stimulated
cells, respectively. Monocytes are key components of the innate immune system, therefore studying gene regulation in
monocytic conditions is used to clarify the genetic basis of diverse immune-mediated diseases.

Previous studies (Fairfax et al. [2014], Lee et al. [2014], Kim et al. [2014]) suggest that gene stimulation triggers
trans-regulatory activity, i.e., genetic regulation of distal genes, leading to a beneficial environment for hotspot genetic
variants to establish. Hotspots are SNPs regulating the levels of large numbers of gene products, thereby potentially
representing important contributors to disease pathogenesis (Yao et al. [2017]).

While Fairfax et al. [2014] mainly report condition-specific trans-regulatory activities, they also observe effects across
all conditions. The largest hotspot identified by Ruffieux et al. [2020] is persistent across all four conditions. Specifically,
using their global-local hotspot modelling approach ATLASQTL, the SNP rs6581889 was found to be the top hotspot
in the IFN-γ, unstimulated and LPS 2h studies (associated with 333, 242 and 96 transcripts, respectively), and it was
the second largest hotspot in the LPS 24h study (associated with 18 transcripts). This hotspot is located on chromosome
12, only a few Kb away from two genes which it controls (cis action), namely, LYZ and YEATS4, which are thought to
play a central role in the pathogenesis of immune disorders (Fairfax et al. [2012]).

To investigate further the possible role of this hotspot in disease risk and progression, and its mechanisms of action, we
analyse the network formed by the 381 genes associated with rs6581889 in at least one of the conditions (permutation-
based FDR < 0.05). Such an analysis helps characterising the complex interplays among the genes controlled, i.e.,
the direct effects on the distal trans genes or the indirect effects, mediated via other genes controlled by the hotspot
(typically via proximal cis genes, such as LYZ and YEATS4). Although graphical modelling approaches seem particularly
appropriate to disentangle direct and mediated effects, they haven’t been employed thus far.

With its desirable theoretical properties as well as its high performance in numerical studies, the graphical horseshoe
estimator would be a natural choice for graph inference in each of the four conditions. Unfortunately, the graphical
horseshoe Gibbs sampler of Li et al. [2019a] doesn’t scale to the problem dimensions (p = 381 genes and relatively few
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The Joint Graphical Horseshoe

observations in each condition). Further, the finding of Ruffieux et al. [2020] about the top hotspot being persistent
across all four conditions makes a joint approach, which so far has not been employed on the data, highly appropriate.
Such an analysis could provide insight into what co-regulatory activity is common or differs between the conditions.
Although also relevant for identifying common structures across the conditions, the Bayesian spike-and-slab joint
graphical lasso (Li et al. [2019b]) and the joint graphical lasso (Danaher et al. [2014]) are also infeasible or too
computationally demanding for inference using the monocyte data set. Indeed, with a joint approach, a total of 289 560
links need to be inferred — this extreme high dimensionality makes it clear that a highly scalable and computationally
efficient method is needed.

Hereafter, we aim to enable effective inference for our monocyte regulation problem — as well as for similar questions
which are increasingly encountered in practice — by proposing an expectation conditional maximisation (ECM) joint
graphical horseshoe approach that (i) borrows strength across shared patterns while highlighting differences across
networks; (ii) is highly scalable, permitting joint inference with realistic genomic problem sizes.

3 Problem statement

Consider a network model where each node is associated with some measurable attribute. Observed values of the
multivariate random vector x = (X1, . . . , Xp)

T of node attributes, each entry corresponding to one of p variables, can
then be used to infer a graph under suitable model assumptions. Given multivariate Gaussian node attributes, with
n × p observation matrix X with i.i.d. rows x1, . . . ,xn ∼ N (0,Σ), we can infer a partial correlation network by
estimating the inverse covariance matrix, or precision matrix, Θ = Σ−1. The partial correlation between nodes i and j
conditioned upon all others is then given by

ρij|V \{i,j} = −
θij√
θiiθjj

,

where the θij’s are the entries of Θ and V is the set of all node pairs (Kolaczyk [2009]). For Gaussian variables,
correlation equal to zero is equivalent to independence, and so a conditional independence graph can be constructed by
determining the non-zero entries of the precision matrix. The graph is assumed to be sparse, meaning that the precision
matrix has mostly zero elements. The sparsity is a measurement giving the number of edges in the edge set E relative to
the number of potential edges in the graph, 2|E|/(p2 − p), where | · | denotes the size of the set. The precision matrix
must also necessarily be positive definite Θ � 0, so that it is invertible.

In a Gaussian graphical model setting, network estimation requires a sparse estimate for the posterior mode of
the precision matrix Θ. In a high-dimensional setting, achieving both sparsity and positive definiteness requires
regularisation methods, and there is significant literature on this problem, both frequentist and Bayesian. Notable
frequentist methods include the graphical lasso (Friedman et al. [2008]), the neighbourhood selection of Meinshausen
and Bühlmann [2006] and the graphical SCAD (Fan et al. [2009]). In later years, Bayesian methods such as the
Bayesian graphical lasso (Wang et al. [2012]), the spike-and-slab prior for precision matrices (Wang [2015]) and the
graphical horseshoe model of Li et al. [2019a] have gained popularity. The latter adapts the horseshoe prior of Carvalho
et al. [2010] to a graphical setting.

The graphical horseshoe model puts horseshoe priors on the off-diagonal elements of the precision matrix, encouraging
sparse solutions. An uninformative prior is put on the diagonal elements, and the positive definiteness constraint is
respected. Due to symmetry, it is sufficient to consider the upper off-diagonal elements of Θ. Normal scale mixtures
with half-Cauchy hyperpriors are used on the off-diagonal elements. The hierarchy of the model is as follows:

θii ∝ 1,

θij|i<j ∼ N (0, λ2ijτ
2),

λij|i<j ∼ C+(0, 1), (1)

τ ∼ C+(0, 1),

where C+(0, 1) is the half-Cauchy distribution with density p(x) ∝ (1 + x2)−1, x > 0, and 1 ≤ i, j ≤ p. In (1), the
λij|i<j’s are local shrinkage parameters that avoid over-shrinking non-zero element-wise effects while τ is a global
shrinkage parameter that ensures sparsity.

To enable practical inference for the posterior distribution of Θ in networks of realistic sizes, we next develop a faster
alternative to the Gibbs sampling procedure proposed by Li et al. [2019a], inspired by the expectation conditional
maximisation (ECM) approach introduced by Li and McCormick [2019] for the spike-and-slab prior.
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4 An ECM algorithm for estimating the graphical horseshoe

We detail the updates of an ECM algorithm under the graphical horseshoe prior (1). The ECM approach, described first
by Meng and Rubin [1993], is a generalised EM algorithm (Dempster et al. [1977]) where a complex maximisation step
(M-step) is replaced with several computationally simpler conditional maximisation steps (CM-steps).

4.1 Full conditional posteriors

As in Li et al. [2019a], the full conditional posteriors of the local and global λij|i<j’s and τ can be derived by introducing
the augmented variables νij|i<j and ξ. We next employ the following reparameterisation, introducing the latent νij and
writing

λ2ij |νij ∼ InvGamma(1/2, 1/νij),

νij ∼ InvGamma(1/2, 1).

Using a key observation from Makalic and Schmidt [2015], we find the full conditional posteriors as

λ2ij |· ∼ InvGamma(1, 1/νij + θ2ij/(2τ
2)),

νij |· ∼ InvGamma(1, 1 + 1/λ2ij), (2)

where · denotes all other variables. The latent variables can be collected in the latent matrixN = (νij). Similarly, we
let τ2|ξ ∼ InvGamma(1/2, 1/ξ) and ξ ∼ InvGamma(1/2, 1), and get inverse Gamma full conditional posteriors for
them as well. To obtain conditional posteriors for the precision matrix and the local scale parameters, each column and
row of the matrices Θ and Λ = (λ2ij) are partitioned from a p× p matrix of parameters. Without loss of generality, we
describe the updates for the last row and column. As in Wang et al. [2012], they are partitioned out in the matrices

Θ =

(
Θ(−p)(−p) θ(−p)p
θT(−p)p θpp

)
, S =

(
S(−p)(−p) s(−p)p
sT(−p)p spp

)
,

Λ =

(
Λ(−p)(−p) λ(−p)p
λT(−p)p 1

)
,

where S =XTX is the scatter matrix of the observed dataX . The diagonal elements of Λ are not of relevance and
can be set to an arbitrary value such as 1. The posterior distribution for the last column (and row) of Θ can be obtained
as

p(θ(−p)p, θpp|Θ(−p)(−p),S,Λ, τ)

∝ (θpp − θT(−p)pΘ
−1
(−p)(−p)θ(−p)p)

n/2

× exp
{
−sT(−p)pθ(−p)p − sppθpp/2− θ

T
(−p)p(Λ

∗τ2)−1θ(−p)p/2
}
.

With a variable change, the conditional distributions can be reformulated as

θ(−p)p|Θ(−p)(−p),S,Λ, τ ∼ Normal(−Cs(−p)p, C),
θpp − θT(−p)pΘ

−1
(−p)(−p)θ(−p)p|Θ(−p)(−p),S,Λ, τ ∼ Gamma(n/2 + 1, spp/2), (3)

where C = {sppΘ−1(−p)(−p) + (Λ∗τ2)−1}−1 and Λ∗ = diag(λ(−p)p). By iteratively permuting each row and column
to be the last, the conditional posterior of all elements of the precision matrix can then be found row and column wise.

4.2 ECM algorithm

Given the estimates from the previous iteration l, the objective function is given by
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Q(Θ,Λ, τ |Θ(l),Λ(l), τ (l)) =EN ,ξ|Θ(l),Λ(l),τ(l),S

{
log p(Θ,Λ, τ,N , ξ|S)|Θ(l),Λ(l), τ (l)

}
=
n

2
log (detΘ)− 1

2
tr(SΘ) +

∑
i<j

{
− 4 log (λij)−

θ2ij
2τ2λ2ij

− 2E·|· {log (νij)} −
(

1

λ2ij
+ 1

)
E·|·

(
1

νij

)}
−
(
p(p− 1)

2
+ 3

)
log (τ) (4)

− 2E·|· {log (ξ)} −
(
1 +

1

τ2

)
E·|·

(
1

ξ

)
+ const.,

where E·|·(·) denotes EN ,ξ|Θ(l),Λ(l),τ(l),S(·) and const. is a constant not depending on Θ,Λ or τ .

In the E-step of the algorithm, the conditional expectations in (4) are computed. After the E-step is computed, the
CM-step performs the maximisation with respect to (Θ,Λ, τ).

4.2.1 The E-step

From (2), we have that the full conditional distributions of the νij’s and ξ are inverse Gamma, so

E·|· {log (νij)} = log

(
1 +

1

λ
(l)2

ij

)
− ψ(1),

E·|·

(
1

νij

)
=

1

1 + 1/λ
(l)2

ij

=
λ
(l)2

ij

λ
(l)2

ij + 1
=: λ∗

(l)

ij ,

E·|· {log (ξ)} = log

(
1 +

1

τ (l)
2

)
− ψ(1), (5)

E·|·

(
1

ξ

)
=

1

1 + 1/τ (l)
2 =

τ (l)
2

τ (l)
2
+ 1

=: τ∗
(l)

,

where ψ(·) is the digamma function. Inserting (5) into (4) and disregarding terms that do not involve Θ,Λ or τ , the
objective function becomes

Q(Θ,Λ, τ |Θ(l),Λ(l), τ (l)) =
n

2
log (detΘ)− 1

2
tr(SΘ) +

∑
i<j

{
− 4 log (λij)−

θ2ij
2τ2λ2ij

−
λ∗

(l)

ij

λ2ij

}
−
(
p(p− 1)

2
+ 3

)
log (τ)− τ∗

(l)

τ2
+ const. (6)

4.2.2 The CM-step

The CM-step maximises (6) with respect to (Θ,Λ, τ) in a coordinate ascent fashion. The following closed-form
updates are obtained for τ2 and λ2ij

τ (l+1)2 =

2
∑
i<j

{
θ2ij
λ2
ij

}
+ 4τ∗

(l)

p(p− 1) + 6
, (7)

λ
(l+1)2

ij =
λ∗

(l)

ij + θ2ij/(2τ
2)

2
. (8)

There is no closed form for the update of the precision matrix, however, (3) gives the updates for the last row and
column of Θ:
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θ(l+1)
pp = θ

(l+1)T

(−p)p
(
Θ

(l+1)
(−p)(−p)

)−1
θ
(l+1)
(−p)p +

n

spp
,

θ
(l+1)
(−p)p = −

{
spp
(
Θ

(l+1)
(−p)(−p)

)−1
+

1(
τ (l+1)

)2 (Λ∗(l+1))−1}−1
s(−p)p, (9)

setting l + 1 = l at each iteration. By iteratively permuting each row and column to be the last, all elements
of the precision matrix can be updated row and column wise. With this CM-step update, it is ensured that
Q(Θ(l+1),Λ(l+1), τ (l+1)|Θ(l),Λ(l), τ (l)) ≥ Q(Θ(l),Λ(l), τ (l)|Θ(l),Λ(l), τ (l)) (Meng and Rubin [1993]). By iter-
ating between the E-step and the CM-step until convergence, we obtain an estimator of the posterior mode Θ̂. The full
derivations for this section are given in the appendix.

One of the main computational advantages of the ECM approach over stochastic search is that the posterior mode is
fast to obtain. The estimates are computed directly and a full stochastic search is not necessary. Further, the entries
corresponding to unidentified edges tend to converge to values close to zero and the separation with the identified edges
increases as the algorithm converges – such an observation has also been reported by others in the context of EM or
variational inference (Kook et al. [2021]). We hereafter refer to this ECM implementation as “fastGHS”.

4.3 Global shrinkage parameter selection

While we have treated τ as an unknown parameter up until now, it can not be updated in the ECM approach like the
other variables as it collapses to zero in very sparse settings (Scott and Berger [2010]), and therefore needs to be fixed.
In a non-graphical setting, Van Der Pas et al. [2014] fix the global shrinkage parameter for the horseshoe estimator to be
the estimated sparsity level. Bhadra et al. [2017] use a similar empirical Bayes approach for their horseshoe+ estimator,
letting the global scale be of the order of the expected proportion of non-null effects. Similarly, based on the approach
of Piironen and Vehtari [2017], others in similar non-graphical settings have fixed the global shrinkage parameter by
making prior assumptions about the effective model size, derived from the model shrinkage factors (Williams et al.
[2018]). This is not transferable to our graphical setting due to the iterative nature of the updates (9).

We propose to select τ2 using the AIC criterion for Gaussian graphical models (Akaike et al. [1973]). For a given global
shrinkage parameter τ2 and corresponding precision matrix estimate Θ̂τ2 , the AIC score is given by

AIC(τ2) =
n

n− 1
tr(SΘ̂τ2)− n log

{
det(Θ̂τ2)

}
+ 2|Eτ2 |,

where tr is the trace, S =XTX is the scatter matrix and |Eτ2 | is the size of the corresponding edge set.

Figure A.10 in the appendix shows that for small τ2, small increases lead to large changes in the AIC score. However, for
sufficiently large values the AIC score stabilises as the global shrinkage parameter increases. Thus, instead of attempting
to identify the globally AIC minimising value of τ2, which is computationally exhausting, we start with a small value
and increase it until the AIC has stabilised. This approach shares similarities with the “dynamic posterior search” of
Ročková and George [2018]. Formally, considering τ2 from a suitable grid of M increasing values {τ21 , . . . , τ2M}, we
select the τ2AIC given by

τ2AIC = min
{
τ2m : |AIC(τ2m)− AIC(τ2m−1)| < ε

}
,

for some convergence tolerance ε.

5 Multiple network inference

In this section, we describe the joint graphical horseshoe for multiple network inference. By sharing information
through common latent variables, the method gives more precise estimates for networks with any level of similarity. The
heavy tails of the horseshoe prior permits effectively capturing network-specific edges, a property that few Bayesian
methods developed for similar purposes share. The resulting joint graphical horseshoe estimator simultaneously
shares information between networks and captures their differences. In addition, due to the scalability of the ECM
implementation, our method allows for joint network modelling for a larger number of networks than existing Bayesian
approaches do.
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5.1 Joint graphical horseshoe model formulation

Given K networks with p nodes each, with nk × p observation matricesXk for k = 1, . . . ,K, we are interested in the
precision matrices {Θ1, . . . ,ΘK}. We let the kth precision matrix follow the hierarchical model

θiik ∝ 1,

θijk|i<j ∼ N (0, λ2ijkτ
2
k ),

λijk|i<j ∼ C+(0, 1),

τk ∼ C+(0, 1),

for 1 ≤ i, j ≤ p. This is the standard graphical horseshoe model for each network separately. To share information
across networks, we introduce the latent variables νij|i<j and write

λ2ijk|νij ∼ InvGamma(1/2, 1/νij),

νij ∼ InvGamma(1/2, 1).

We then derive the full conditional posteriors. Because the λijk’s of the different data sets are independent given the
νij’s, we have

λ2ijk|· ∼ InvGamma(1, 1/νij + θ2ijk/(2τ
2
k )),

similarly to the standard graphical horseshoe. Hence, information is now shared across networks through the common
latent variable νij .

The full conditional posterior of the νij’s now depends on the λijk’s of all K networks:

p(νij |·) ∝ InvGamma

(
K + 1

2
, 1 +

K∑
k=1

1

λ2ijk

)
. (10)

We introduce the latent variables ξk for the τ2k ’s with a similar parameterisation τ2k |ξk ∼ InvGamma(1/2, 1/ξk) and
ξk ∼ InvGamma(1/2, 1), and get inverse Gamma full conditional posteriors for them as well. The global scales are
kept network-specific to allow for different sparsity levels across networks. The derivation of (10) is given in the
appendix.

5.2 ECM approach

With a multiple network approach, the E-step and CM-step in the ECM algorithm are very similar to the single network
version. Since the networks are independent given the common latent variables νij , we can perform the maximisation
of the λijk’s and the θijk’s for k = 1, . . . ,K separately. The main difference is that the expectation of νij now depends
on all K networks.

5.2.1 E-step

In the E-step, the ξk’s follow the same distribution as in the standard graphical horseshoe within each network. This
means that

E·|· {log (ξk)} = log

(
1 +

1

τ
(l)2

k

)
− ψ(1),

E·|·

(
1

ξk

)
=

1

1 + 1/τ
(l)2

k

=
τ
(l)2

k

τ
(l)2

k + 1
=: τ∗

(l)

k .

The distribution of the νij’s now depends on the local shrinkage parameters of allK networks. Using the full conditional
distribution (10), we get
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E·|· {log (νij)} = log

(
1 +

K∑
k=1

1

λ
(l)2

ijk

)
− ψ

(
K + 1

2

)
,

E·|·

(
1

νij

)
=

K

2
(
1 +

∑K
k=1 1/λ

(l)2

ijk

) =: λ∗ij·(l). (11)

5.2.2 CM-step

In the CM-step for multiple networks, the global shrinkage parameter for each graph k is updated as the maximising
value (7) within the network:

τ
(l+1)2

k =

2
∑
i<j

{
θ2ijk
λ2
ijk

}
+ 4τ∗

(l)

k

p(p− 1) + 6
.

We obtain the updates for the λ2ijk’s in the multiple network setting by replacing the expectation E·|·
(

1
νij

)
= λ∗ij(l) in

(8) by λ∗ij·(l) found in the E-step in (11):

λ
(l+1)2

ijk =
λ∗

(l)

ij· + θ2ijk/(2τ
2
k )

2
. (12)

The precision matrices Θk are also updated separately for each network, as they are independent given the νij’s. Setting
l + 1 = l at each iteration, we get the ordinary graphical horseshoe block updates (Li et al. [2019a]) given by

θ
(l+1)
ppk = θ

(l+1)T

(−p)pk
(
Θ

(l+1)
(−p)(−p)k

)−1
θ
(l+1)
(−p)pk +

nk
sppk

,

θ
(l+1)
(−p)pk = −

(
sppk

(
Θ

(l+1)
(−p)(−p)k

)−1
+

1(
τ
(l+1)
k

)2 (Λ∗(l+1)

k

)−1)−1
s(−p)pk,

where the matrix partitioning is analogous to (9). We iterate between the E-step and the CM-step until convergence is
achieved for all K graphs, when the updates for all precision matrix elements of all K graphs differ from their previous
estimate in absolute value by less than some tolerance threshold. We hereafter refer to this ECM implementation of our
joint graphical network model as “jointGHS”.

5.3 Global shrinkage parameter selection

As in the single network setting, we need to fix the global shrinkage parameters τk in the K networks. We do this
for each network separately, using the approach described in Section 4.3. This way, we allow for different sparsity
levels across networks, avoiding the over- or under-selection of edges that might occur for some networks should we
assume the same sparsity level for all. After each τk has been selected, we run the joint method with these values. This
means that the single-network approach is ran on each network separately before the joint analysis is performed. In our
implementation, we do this in parallel for computational efficiency.

5.4 More on the heavy horseshoe tail

In the joint graphical horseshoe, information is shared through the common latent parameter νij . The larger the full
conditional expectation of 1/νij in (11) is, the larger are the CM-updates (12) for the local scales λijk, k = 1, . . . ,K,
and hence the larger the updates for the corresponding precision matrix elements. Thus, a large posterior expected value
of 1/νij signifies strong evidence for the edge (i, j) being present in all networks. It is also clear from the CM-updates
(12) that even if the conditional expectation of 1/νij is close to zero, this does not imply that the updates for all the local
scales will be close to zero. That is, thanks to the heavy tail of the half-Cauchy distribution, if there is enough evidence
from the data, an edge can be identified in an individual network even though the common latent parameter signifies no
edge. This is illustrated by Figure 1, which shows partial correlations estimated by the joint graphical horseshoe for
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Figure 1: The size of the partial correlations estimated by the joint graphical horseshoe, plotted against the corresponding
inverse shared latent parameters for local scales. The data sets correspond toK = 2 networks with 40% edge agreement,
with p = 100 nodes, and n1 = 100 and n2 = 150 observations respectively. Both networks have a true sparsity of
0.02. The points are colored according to the network for which they are estimated, and the shape indicates whether the
corresponding edge truly is present in both, one or neither networks.

K = 2 networks, plotted against the posterior expectations of the corresponding shared latent parameters 1/νij . The
true networks have 99 edges each, of which they have 39 in common. The details of the data generation and analysis
are given the the appendix. Figure 1 shows that the expectation of 1/νij is only far from zero when an edge is present
in both networks. When this expectation is close to zero, i.e., shared information is not found, posterior output still
captures edges (i.e. non-zero θijk) specific to each network. This illustrates how the joint graphical horseshoe estimator
can simultaneously share information between networks and capture their differences.

5.5 Posterior checks with the Bayesian bootstrap

The joint graphical horseshoe adapts well to the level of similarity between networks, but it is not meant to be applied to
a set with many highly similar networks and a few unrelated or less similar networks. This limitation generally applies
to joint graphical methods, including the spike-and-slab joint graphical lasso (Li et al. [2019b]) and joint graphical
lasso (Danaher et al. [2014]). In such a case, the highly similar networks dominate the inference of the common latent
variables νij in the joint graphical horseshoe. Due to the heavy tail of the horseshoe, when 1/νij is small, the local
scales can adapt and identify edges individually on the network-level. However, a large 1/νij tends to lead to non-zero
precision matrix elements for all networks.

To account for this possibility, we propose to carry out a posterior check to evaluate whether the joint network estimates
are in strong contradiction with the single network estimates, suggesting that a joint analysis should be reconsidered.
This routine uses the Bayesian bootstrap (Rubin [1981]) and is described in the appendix; it is also implemented in our
R package jointGHS.

6 Simulations

To evaluate the performance of our approach, we have performed comprehensive simulation studies in R (R Core Team
[2013]). The details of the simulation study are given in the appendix, and the corresponding code is available on
Github (https://github.com/Camiling/jointGHS_simulations). We have generated data as close as possible
to our multiomic application of interest, with non-zero partial correlations between 0.1 and 0.2 in magnitude and with
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the scale-free property (i.e. the degree distribution follows a power-law distribution), a known trait in multiomic data
(Kolaczyk [2009]). We assess graph accuracy by the precision, which is the fraction of the inferred edges that are
actually present in the true graph (also known as positive predictive value), and the recall, which is the fraction of the
edges in the true graph that are present in the inferred one (also known as sensitivity). Because the inferred networks of
the different methods do not necessarily have the same sparsity, there is some consideration needed when comparing
their precision and recall. For example, the recall tends to increase when the number of edges increases, favouring
methods that over-select edges. In the discussion of the results, we therefore put more emphasis on the precision since
we consider false positives to be a larger concern than false negatives: in an omics application, we would rather identify
few but highly reliable associations than many but less accurate ones. We consider the recall to be an informative
additional measure, particularly in situations when two methods have comparable precision.

Our numerical experiments are divided into three parts. In Subsection 6.1, we assess the statistical and computational
performance of fastGHS in a single network setting, comparing it to the Gibbs sampling version of Li et al. [2019a] and
to the graphical lasso of Friedman et al. [2008]. In Subsection 6.2, we assess the edge-selection performance of the joint
graphical horseshoe in a multiple network setting, comparing it to the Bayesian spike-and-slab joint graphical lasso of
Li et al. [2019b] and to the joint graphical lasso of Danaher et al. [2014]. Finally, in Subsection 6.3 we demonstrate the
benefits of joint modelling, showing how the accuracy of the joint graphical horseshoe increases with the number of
related networks.

6.1 Comparison to the Gibbs sampling scheme for single networks

In this subsection we assess how the performance of our ECM implementation of the graphical horseshoe compares to
the Gibbs sampler by Li et al. [2019a]. To serve as baseline reference we also provide the results of the widely used
graphical lasso lasso algorithm for Gaussian graphical model inference (Friedman et al. [2008]). We consider settings
with different numbers of nodes p ∈ {50, 100} and observations n ∈ {100, 200}. For each setting, we construct a
p× p precision matrix and sample N = 20 data sets with n observations from the corresponding multivariate Gaussian
distribution. For each generated data set, we use the different graph reconstruction methods to obtain precision matrix
estimates.

In a graphical setting, n = 200 and p = 100 gives rise to a high-dimensional problem since there are (p2−p)/2 = 4950
potential edges. For the Gibbs sampling implementation of the graphical horseshoe, a larger p, such as 200, leads to
computational problems as the algorithm entails singular updates, likely a result overflow not being properly dealt with.
This holds for both the original MATLAB implementation and our translation into R, where the algorithm halts as it
attempts to solve a singular system. In this comparison we therefore only consider up to p = 100 nodes.

Table 1 indicates the performance of fastGHS is comparable to the Gibbs sampler, and tends to have a slightly smaller
standard error. The two graphical horseshoe implementations perform better than the graphical lasso in terms of both
precision and recall in most of the cases. The only exception is the third case, where the graphical lasso has the best
performance in terms of precision but slightly smaller recall.

Another limitation of the Gibbs sampler is the time use. Figure 2 shows the CPU time on a logarithmic scale used to
infer a network for different numbers of nodes p, using Gaussian graphical data sets with n = 100 observations. When
Gibbs sampling is feasible to compute, the fast ECM estimator for the graphical horseshoe is substantially faster. For 90
nodes, fastGHS is 30 times faster than the Gibbs sampler. For even larger p, only the scalable ECM estimator can be
used, which in practice is limited only by the available memory to store the current p× p matrix updates for Θ, Λ and
N .

6.2 Comparison with other joint network inference methods

We next investigate the performance of our joint graphical horseshoe estimator, jointGHS, through comparison with
the Bayesian spike-and-slab joint graphical lasso of Li et al. [2019b] and the joint graphical lasso of Danaher et al.
[2014]. We restrict ourselves to a setting with K = 2 graphs with p = 50 nodes each because the latter methods are
either infeasible within reasonable time (still running after multiple days) or very time consuming (taking more than 24
hours) for a larger number of nodes and graphs. By varying the similarity, i.e., proportion of common edges, between
the graphs, we assess the performance of the methods in different settings. Namely, we consider six settings, with
the similarity between the two graphs varying from 0% edge disagreement (i.e., the same edge set) to 100% edge
disagreement (i.e., no common edges). For each setting, we construct two p×p precision matrices with the desired level
of similarity and sample N = 100 data sets from each of the two corresponding multivariate Gaussian distributions,
with n1 = 50 observations for the first graph and n2 = 80 observations for the second. In all settings, both graphs have
true sparsity 0.04, corresponding to 49 edges.
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Table 1: Simulation results for our ECM implementation of the graphical horseshoe (fastGHS), the Gibbs sampling
implementation of the graphical horseshoe (GHS) and the graphical lasso (Glasso) applied to multivariate Gaussian data
from graphs with different numbers of vertices p and observations n. The results are averaged over N = 20 simulations,
and shows sparsity, precision and recall as well as their standard errors in parentheses. For each case the highest value
of the precision is marked in bold, and so is the precision of any other method within one standard error of it.

Case True sparsity p n Method Estimated Sparsity Precision Recall

1 0.04 50 100 Glasso 0.019 (0.006) 0.80 (0.12) 0.37 (0.08)

GHS 0.017 (0.002) 0.91 (0.06) 0.38 (0.05)

fastGHS 0.017 (0.002) 0.94 (0.04) 0.39 (0.05)

2 0.04 50 200 Glasso 0.020 (0.003) 0.88 (0.08) 0.44 (0.03)

GHS 0.017 (0.002) 0.98 (0.03) 0.42 (0.04)

fastGHS 0.017 (0.002) 0.99 (0.02) 0.43 (0.04)

3 0.02 100 100 Glasso 0.011 (0.002) 0.61 (0.08) 0.33 (0.04)

GHS 0.015 (0.001) 0.49 (0.06) 0.37 (0.04)

fastGHS 0.015 (0.001) 0.46 (0.05) 0.35 (0.03)

4 0.02 100 200 Glasso 0.008 (0.001) 0.86 (0.06) 0.36 (0.02)

GHS 0.009 (0.001) 0.91 (0.05) 0.40 (0.03)

fastGHS 0.009 (0.001) 0.93 (0.05) 0.41 (0.04)
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Figure 2: CPU time in seconds on a logarithmic scale used to infer a network for various numbers of nodes p with
n = 100 observations, for our ECM implementation of the graphical horseshoe (fastGHS) and the Gibbs sampling
implementation of the graphical horseshoe (GHS). The computations were performed on a 16-core Intel Xeon CPU,
2.60 GHz.
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6.2.1 Estimation accuracy

Table 2 shows the performance of the joint network approaches. Starting with the joint graphical lasso, we see that its
performance in terms of precision is low in all settings. When the default AIC-based selection criteria for sparsity- and
similarity-selection is used, the method tends to severely over-select edges. This leads to high recall with many edges
correctly identified, but very low precision, with almost ten times as many estimated edges than there are in the true
network.

The joint graphical horseshoe (jointGHS) either outperforms of performs similarly to the spike-and-slab joint graphical
lasso (SSJGL) in terms of precision in all settings. We further see that SSJGL has higher sparsity levels than jointGHS,
which in general tends to give higher recall. This is true for highly similar networks, where SSJGL performs best in
terms of recall. However, as the dissimilarity between the networks increases, the recall of the spike-and-slab method
quickly decreases, and it becomes similar to that of jointGHS. This is due to the fact that SSJGL shrinks all precision
matrices towards a common structure, so it over-selects edges that are absent in some networks while being present in
others. This is exemplified further in Subsection 6.2.2. In terms of precision, the difference in performance between the
two methods increases as the dissimilarity between the networks increases, and the joint graphical horseshoe largely
outperforms its spike-and-slab counterpart in terms of all measures: the performance of the latter method is more
sensitive to the degree of similarity and appears to deteriorate in settings where little information is shared between
networks, while the joint graphical horseshoe adapts to this and so both precision and recall remains relatively high
even for completely unrelated networks. This is due to the local scales λijk, which flexibly capture isolated effects
thanks to their heavy Cauchy tails. The versatility of the joint graphical lasso ensures that information is only shared
to the degree that it improves the model fit, which makes it highly suitable to agnostic settings where the similarity
between the networks of interest is unknown or not very high.

6.2.2 Ability to capture edges on the individual-graph level

Figure 3 further illustrates the benefits of the horseshoe heavy tailed local scales for capturing graph-specific edges. The
estimated precision matrix elements of two graphs are plotted against each other, for our joint graphical horseshoe and
for the spike-and-slab joint graphical lasso. The example is the same as in 5.4, with networks reconstructed from two
data sets corresponding to K = 2 graphs with 40% edge agreement, with p = 100 nodes and n1 = 100 and n2 = 150
observations respectively. Both graphs have a true sparsity of 0.02.

The joint graphical horseshoe method identifies both common and graph-specific edges. When an edge is found to be
present in only one of the graphs, the corresponding precision matrix element in the other graph is found to be zero,
ensuring that a false positive is not reported due to excess shrinkage towards a common graph. This does result in the
method in some instances only identifying an edge in one network even though it actually is present in both, meaning
it is more inclined to false negatives than false positives. On the contrary, the spike-and-slab joint graphical lasso
shrinks excessively towards a common graph and as a result almost no graph-specific edges are identified. While the
spike-and-slab joint graphical lasso does well in capturing edges common to both graphs, an edge in one graph tends to
lead to an inferred edge in both and hence a large number of false positives. This explains its excellent performance
for very similar networks, but poorer performance as the similarity between two networks decreases in Table 2. In
these settings, the joint graphical horseshoe successfully avoids over-shrinking the networks towards each other, whilst
preserving graph-specific information. These specific traits of the graphical horseshoe makes it exceptionally suitable
for joint approaches when preserving network specific features is also important.

6.3 Increased accuracy with joint modelling

We next investigate the statistical power gain obtained with jointGHS, as a function of the number of networks modelled
jointly. To do this, we use the joint graphical horseshoe to reconstruct K ∈ {2, 4, 10} graphs with p = 50 nodes and
various similarity of the true graph structures. The larger K gives a setting where neither the spike-and-slab joint
graphical lasso of (Li et al. [2019b]) nor the joint graphical lasso of Danaher et al. [2014] is feasible for inference. The
results are averaged over N = 40 simulations, and show the precision and recall for the first estimated graph in each
setting, reconstructed from n = 80 observations. All graphs have true sparsity 0.04.

Figure 4 shows how the precision and recall of the joint graphical horseshoe changes with the available information,
i.e., when the number of graphs used in the joint procedure increases. It also illustrates how the accuracy changes with
the level of edge disagreement between the networks. The results are compared to those of the single-network ECM
implementation of the graphical horseshoe (fastGHS).

Although the simulated graph structure remains the same in all settings, the sparsity of the inferred jointGHS graphs
will vary with K and the level of similarity. In order to make a fair comparison, we obtained single-network estimates
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Table 2: Performance of the joint graphical horseshoe, (jointGHS), the spike-and-slab joint graphical lasso (SSJGL)
and the joint graphical lasso (JGL) in simulations, reconstructing K = 2 graphs with various similarity of the true
graph structures. The edge disagreement between the two graphs is shown as the percentage of edges in one network
not present in the other. There are p = 50 nodes in each graph. The results are averaged over N = 100 simulations,
and shows the sparsity, precision and recall for both of the K = 2 estimated graphs. The standard errors are shown
in parentheses. For each case the highest value of the precision is marked in bold, and so is the precision of any
other method within one standard error of it. The first graph is reconstructed from n1 = 50 observations from the
corresponding Gaussian graphical distribution, and the second from n2 = 80 observations. All graphs have true sparsity
0.04.

n1 = 50 n2 = 80

Disagr. % Method Sparsity Precision Recall Sparsity Precision Recall

0 JGL 0.312 (0.011) 0.11 (0.01) 0.83 (0.05) 0.269 (0.011) 0.13 (0.01) 0.91 (0.04)

SSJGL 0.025 (0.003) 0.85 (0.09) 0.53 (0.06) 0.025 (0.003) 0.85 (0.09) 0.53 (0.06)

jointGHS 0.017 (0.002) 0.82 (0.08) 0.34 (0.04) 0.016 (0.001) 0.93 (0.06) 0.38 (0.03)

20 JGL 0.310 (0.02) 0.11 (0.01) 0.83 (0.05) 0.266 (0.017) 0.14 (0.01) 0.90 (0.04)

SSJGL 0.025 (0.003) 0.77 (0.10) 0.48 (0.05) 0.025 (0.003) 0.79 (0.10) 0.49 (0.05)

jointGHS 0.016 (0.002) 0.79 (0.10) 0.32 (0.04) 0.016 (0.001) 0.93 (0.06) 0.38 (0.03)

40 JGL 0.291 (0.048) 0.12 (0.02) 0.82 (0.06) 0.252 (0.059) 0.14 (0.05) 0.83 (0.08)

SSJGL 0.020 (0.002) 0.76 (0.09) 0.38 (0.04) 0.020 (0.002) 0.77 (0.09) 0.39 (0.05)

jointGHS 0.016 (0.002) 0.76 (0.08) 0.30 (0.04) 0.010 (0.002) 0.98 (0.04) 0.25 (0.05)

60 JGL 0.291 (0.049) 0.12 (0.02) 0.82 (0.07) 0.247 (0.058) 0.15 (0.05) 0.84 (0.07)

SSJGL 0.021 (0.003) 0.63 (0.09) 0.33 (0.05) 0.021 (0.003) 0.70 (0.08) 0.37 (0.05)

jointGHS 0.016 (0.002) 0.74 (0.08) 0.29 (0.04) 0.010 (0.002) 0.98 (0.04) 0.25 (0.05)

80 JGL 0.299 (0.040) 0.11 (0.02) 0.81 (0.06) 0.259 (0.046) 0.14 (0.04) 0.89 (0.06)

SSJGL 0.022 (0.004) 0.52 (0.08) 0.27 (0.04) 0.021 (0.003) 0.60 (0.09) 0.32 (0.05)

jointGHS 0.015 (0.002) 0.70 (0.11) 0.26 (0.04) 0.010 (0.002) 0.98 (0.04) 0.25 (0.05)

100 JGL 0.313 (0.012) 0.11 (0.01) 0.83 (0.05) 0.251 (0.009) 0.16 (0.01) 0.98 (0.02)

SSJGL 0.029 (0.003) 0.29 (0.06) 0.21 (0.03) 0.029 (0.003) 0.55 (0.06) 0.40 (0.05)

jointGHS 0.015 (0.002) 0.65 (0.12) 0.24 (0.04) 0.013 (0.002) 0.95 (0.06) 0.31 (0.05)

with the same sparsity as the joint estimates in each setting, making the fastGHS results vary with K and the level of
similarity as well. We refer to the appendix for the details.

As expected, the accuracy of the joint estimate increases with the number of graphs since more shared information is
available. The joint approach clearly outperforms the single network approach in terms of both precision and recall, and
the improvement grows with the number of graphs K. This applies to all levels of edge disagreement.

This example illustrates that the networks need not be very similar in order to benefit from the joint procedure, and
hence we see that there is little to lose yet much to gain from using jointGHS for multiple graph estimation.

7 Application to a study of hotspot activity with stimulated monocyte expression

Returning to the monocyte QTL data set from Section 2, we now apply our proposed methodology to estimate
conditional independence among the gene levels under genetic control. Specifically, the finding of Ruffieux et al. [2020]
about the top hotspot SNP (rs6581889, on chromosome 12) being persistent across all four monocytic conditions
(unstimulated cells, IFN-γ-, LPS 2h- & LPS 24h-stimulated cells) makes a joint graphical approach particularly relevant
to study the interplay within and across the different gene networks. The number of genes associated with the top
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Figure 3: Comparison of estimated precision matrix elements (scaled by the diagonal as when finding partial correlations)
of two networks with 40% edge agreement and p = 100 nodes, for the joint graphical horseshoe and for the spike-and-
slab joint graphical lasso separately. The points’ shape and color indicates whether the corresponding edge is simulated
as present is both, one or neither network.
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Figure 4: Performance of the joint graphical horseshoe (jointGHS) and single network graphical horseshoe (fastGHS),
reconstructing K ∈ {2, 4, 10} graphs with p = 50 nodes and various similarity of the true graph structures. The edge
disagreement between the two graphs is shown as the percentage of edges in one network not present in the other. The
results are averaged over N = 40 simulations, and show the precision and recall for the first estimated graph in each
setting, reconstructed from n = 80 observations. All graphs have true sparsity 0.04.
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Figure 5: Upset plot of the joint graphical horseshoe graphs of the monocyte data, an alternative to a venn diagram
showing the number of edges solely shared between conditions (Conway et al. [2017]). For each intersection, the
number of edges shared only by the corresponding conditions is shown. The total number of edges for each condition is
represented on the left barplot. Every possible intersection is represented by the bottom plot, and their occurence is
shown in the top barplot.

hotspot in each condition was 294, 88, 16 and 215 respectively (permutation-based FDR < 0.05, Ruffieux et al. [2020]);
hereafter we focus on the p = 381 genes associated with the hotspot in at least one condition. For further details on the
data and preprocessing steps, we refer to Ruffieux et al. [2020].

We use jointGHS to jointly estimate the precision matrix, and hence network structure, of the genes in the four
conditions. As discussed in Section 2, neither the spike-and-slab joint graphical lasso nor the joint graphical lasso is
feasible for this problem. Figure 5 shows the number of edges sorely shared between the inferred networks of each
condition. It indicates that many edges are common to all four networks, meaning that the joint method has identified
a fair amount of shared information. There are no three conditions with more shared information compared to a last
condition, but there are many pairs of conditions with edges shared only between them. We see that LPS 2h and LPS
24h is the pair with the most edges shared only between them, which is expected as the two conditions correspond to
an exposition to differing durations of a same lipopolysaccharide activation. After this, the unstimulated and IFN-γ
networks, and LPS 24h and IFN-γ networks, are the pairs with the most edges shared only between them. We also see
that the joint graphical lasso has been able to capture many edges specific to each network, with the LPS 24h having
the most unique edges. This can in part be due to the fact that this network has the most edges overall, a difference
that should be kept in mind when considering the number of edges shared. Next, it would be sensible to ask whether
groups of edges shared by two or more conditions pertain to known pathway activations and whether the pathways
of genes in edges unique to one stimulated condition are indicative of some functional mechanisms specific to that
stimulation. While such questions fall outside the scope of this publication, they illustrate how our joint network
findings can motivate new mechanistic studies.

Hotspot control

Using permutation testing to derive empirical p-values, we find that the subnetwork of genes controlled by the top
hotspot has significantly more links than the overall network (p < 0.01), except in the IFN-γ network, suggesting a
hotspot-induced increase in activity. We similarly find that, in all conditions, there is a significant enrichment of genes
associated with the top hotspot among the neighbours of the cis gene LYZ. This may suggest a mediation of the hotspot
effect on trans genes via the LYZ gene –– a hypothesis already examined in different studies (Fairfax et al. [2012],
Ruffieux et al. [2021]) but which would require experimental validation or dedicated inspection, e.g., with Mendelian
randomization analysis. The findings are summarised in Table 3.

Comparing the posterior output of jointGHS to that of our single-network ECM implementation of the graphical
horseshoe (fastGHS) can highlight the biological insight gained from a joint approach. To get directly comparable
networks, we find fastGHS estimates with the same sparsity levels as the jointGHS estimates, for each condition
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Table 3: Sparsity of the jointGHS subnetwork of top hotspot controlled genes in the joint graphical horseshoe graph,
as well as the overall sparsity of the full network, and the proportion of neighbour genes of LYZ and YEATS4 in the
joint graphical horseshoe graph that are mediated by the top hotspot, as well as the overall proportion, in the different
conditions. For each condition, if the proportion is higher than the overall proportion it is marked in bold. If the
proportion is found to be significantly higher than what we can expect from a randomly sampled subset of genes of the
same size it is marked by ∗ (empirical p-value < 0.05) or ∗∗ (empirical p-value < 0.01) .

IFN-gamma LPS 2h LPS 24h Unstim

Sparsity Overall 0.018 0.020 0.021 0.016

Controlled by top hotpot 0.019 0.042** 0.183** 0.022*
Controlled by top hotspot Overall 0.77 0.23 0.04 0.56

LYZ neighbourhood 0.78 0.42* 0.33** 0.77*
YEATS4 neighbourhood 0.62 0.17 0.22** 0.43

separately (we refer to the appendix for the details). The jointGHS finds that the subgraph of genes controlled by the
top hotspot is denser than what fastGHS finds; this agrees with the expectation that the hotspot will trigger substantial
activity among the controlled genes (Ruffieux et al. [2020]). The cis genes LYZ and YEATS4 also have a more central
role in the joint network, with more trans-trans edges among the neighbours of LYZ and YEATS4. The joint method also
identifies more cis-trans relationships, which lends further support to the above cis mediation hypothesis. Moreover,
many trans genes directly associated with the cis genes have very high degree, highlighting their interplay with other
trans genes as potentially relevant for the disease-driving mechanisms. All these observations highlight the biological
insight gained by sharing information across networks with jointGHS.

Hub genes

Investigating hub genes in the jointGHS networks can help gain better understanding of the immune response driving
mechanisms. Table A.1 in the appendix shows the node degree of the genes with degree larger than the 90th percentile
in the respective jointGHS networks of the different conditions. Remarkably, the Autoimmune Regulator (AIRE) gene,
which is highly expressed in monocytes, has by far the most links to other genes in all conditions but IFN-γ, where it
has the second most. This gene is known to play an important role in immunity through gene and autoantigen activation
and regulation, and negative selection of autoreactive T-cells in the thymus (Liston et al. [2003], Kyewski and Klein
[2006], Peterson et al. [2008]). Mutations in this gene have been associated with autoimmune polyendocrinopathy-
candidiasis-ectodermal dystrophy (APECED), distinguished by multi-organ autoimmunity (Mathis and Benoist [2007],
Akirav et al. [2011]). Similarly, the arylformamidase (AFMID) gene, also known as kynurenine formamidase, is found
to have amongst the higher degrees in all four conditions in addition to being associated with the top hotspot in all; it
also has a link to the cis gene LYZ in all four conditions. Arylformamidase is a rate-limiting enzyme in tryptophan
conversion, and deficiency is associated with immune system abnormalities (Hugill et al. [2015], Dobrovolsky et al.
[2005]). Another gene with many links consistent across all conditions is Galectin-3 (LGALS3), whose expression is
found to modulate T-cell growth and apoptosis (Yang et al. [1996]). Studies indicate that it affects numerous biological
processes through specific interactions with a variety of intra- and extracellular proteins, and has a regulatory role in
both innate and adaptive immunity (Dumic et al. [2006], Bernardes et al. [2006]). It has been found to be a negative
regulator of lipopolysaccharide (LPS) mediated inflammation (Li et al. [2008], Fermino et al. [2011]), and lack of
Galectin-3 has been directly linked to higher IFN-γ levels (Nishi et al. [2007], Radosavljevic et al. [2012]). Finally,
the Aftiphilin (AFTPH) gene has many links in all conditions, including to the cis gene YEATS4. Aftiphilin has been
found to be differentially expressed in the immune cells of tumor patients, suggesting it might affect tumor development
through immune cell regulation (Huang et al. [2021]).

Network-specific activity

As illustrated in our simulation experiments, jointGHS is not only tailored to the detection of shared structures across
networks, but it is also capable to effectively identify what differs between them. This feature is particularly relevant in
the context of the monocyte study as it is informative to also examine specific effects of the different stimulations. The
Cytochrome C Oxidase Subunit 6A1 (COX6A1) gene has large degree in both LPS 2h and LPS 24h and a moderately
large degree in IFN-γ, but not in the unstimulated group. The oxidative phosphorylation pathway and immune system
processes both include COX6A1 (Wang et al. [2019]), and the gene has been shown to have key functions in the
replication of influenza A viruses (Hao et al. [2008]), making it noteworthy that this gene’s activity is found elevated
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only in the stimulated conditions. For example, we identify the PHD-finger 1 protein encoding gene (PHF1) to have
high degree only in the IFN-γ network, in which it is also found to be controlled by the top hotspot. Further, IFN-γ
is the only condition in which it has a link to the cis gene LYZ. The PHD-finger 1 protein is an essential factor for
epigenetic regulation and genome maintenance, and contains two kinds of histone reader modules; a Tudor domain and
two PHD fingers, of which the function of the latter is less defined (Baker et al. [2008], Liu et al. [2018]). The centrality
of PHF1 in the network of the IFN-γ stimulated monocytes has implications for a potential role in the immune reaction,
and provides a relevant alley for further studies. Additional details and discussion from our analysis can be found in the
appendix.

While it is reassuring that our method identifies genes known from literature to be relevant, this type of validation is
biased towards gene and protein functions that have already been explored. We believe though that jointGHS could
serve to generate further unexplored hypotheses about genetic co-regulation and co-expression across the stimulated
monocyte networks — this would deserve further follow-up research. More generally, our findings illustrate the
potential of the joint graphical horseshoe for gaining deeper insight into the mechanisms at play among large networks
of cellular and/or molecular variables for multiple conditions or tissues.

8 Discussion and Conclusions

We have introduced a novel scalable expectation conditional maximisation (ECM) algorithm for obtaining the posterior
mode of the precision matrix in the graphical horseshoe, and a novel joint graphical horseshoe estimator for multiple
network estimation. Through simulations, we have shown that the single network estimator achieves results that are
comparable to the existing Gibbs sampler while being far more scalable. We have also shown that in a multiple network
setting, our joint network estimator successfully shares information between networks while capturing their differences,
outperforming comparable methods such as the joint graphical lasso and the spike-and-slab joint graphical lasso. This
holds for any level of network similarity, even when there is little or no information to share between networks. This
clear advantage of the joint graphical horseshoe can be attributed to the horseshoe heavy-tailed local scales, which
are able to adapt even when no common information is found for a specific edge, so that network-specific edges can
be identified. This means that the joint estimator can be used even at minimal levels of graph similarity and still
outperform single-network methods — to our knowledge, no existing joint graphical modelling approach enjoys this
property. Hence, jointGHS stands out as a joint approach capable to also pinpoint differences across networks, which,
in practice, is often of great interest, sometimes even more than the identification of shared structures. Additionally, the
scalability of the method makes it applicable to larger data sets than comparable methods. Finally, while our ECM
implementation does not provide a fully Bayesian solution, parameter uncertainty could still be quantified using an
additional bootstrapping procedure.

We have applied jointGHS to an eQTL monocyte data set with four conditions, whose joint graphical modelling
relationships had not been investigated thus far. We found that the inferred networks indicated a hotspot-induced
increase in trans gene regulatory activity in all conditions. More generally, compared to a separate analysis of
the conditions, biologically-supported findings were stronger in the joint analysis and agreed more with previous
results (Ruffieux et al. [2020]). Our results may have implications for the identification of genes driving a range of
immune-mediated diseases, with some less studied genes coming up as putatively relevant in addition to those with
known immune-related function. This application illustrates how jointGHS can be used to generate hypotheses about
disease-driving mechanisms.

There are many possible extensions. For instance, a natural continuation given the increasing prevalence of longitudinal
studies would be to formulate a time variant version of the model, with one network per point in time. This could be
particularly profitable for studies aimed at understanding disease progression. An autoregression-like approach could
be developed, where information is shared between successive time points.

To conclude, we have proposed a scalable method for single and joint graph inference that is suitable for a wide range
of applications. Relevant settings include omics problems with single or multiple data types, subgroups or conditions,
or just any type of data for which a multivariate Gaussian assumption is reasonable. Altogether, thanks to the flexibility
of its shrinkage profile, the joint graphical horseshoe constitutes an efficient and robust framework to boost statistical
power for the estimation of weak edge effects, as well as the detection of similarities and differences across multiple
networks.

Software

The ECM graphical horseshoe approach for single or multiple networks has been implemented in the R packages fast-
GHS (https://github.com/Camiling/fastGHS) and jointGHS (https://github.com/Camiling/jointGHS),
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and has all subroutines implemented in C++ for computational efficiency. R code for the simulations and data
analyses in this paper is available at https://github.com/Camiling/jointGHS_simulations and https:
//github.com/Camiling/jointGHS_analysis.

Data

The CD14+ monocyte gene expression data and genotyping data collected from individuals with European ancestry used
in this study is provided by Fairfax et al. [2012, 2014]. The raw expression data is generated with HumanHT-12 v4 arrays
and freely available for downloading from ArrayExpress45 (accession E-MTAB-2232). The raw genotyping data is
generated by Illumina HumanOmniExpress-12 arrays, and deposited in the European Genome-Phenome Archive (acces-
sions EGAD00010000144 and EGAD00010000520). The genotyping data requires a data access agreement (see Fairfax
et al. [2012, 2014] and https://www.well.ox.ac.uk/research/research-groups/julian-knight-group/
research-projects/data-access.
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A Appendix

A.1 Derivation of the ECM algorithm

A.1.1 Deriving the objective function

The objective function for the graphical horseshoe ECM algorithm is as follows:
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A.1.2 Deriving the E-step

Given the updates for the νij’s and τ

21



The Joint Graphical Horseshoe

E·|· {log (νij)} = log

(
1 +

1

λ
(l)2

ij

)
− ψ(1),

E·|·

(
1

νij

)
=

1

1 + 1/λ
(l)2

ij

=
λ
(l)2

ij

λ
(l)2

ij + 1
=: λ∗

(l)

ij ,

E·|· {log (ξ)} = log

(
1 +

1

τ (l)
2

)
− ψ(1), (14)

E·|·

(
1

ξ

)
=

1

1 + 1/τ (l)
2 =

τ (l)
2

τ (l)
2
+ 1

=: τ∗
(l)

,

the objective function becomes
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A.1.3 Deriving the CM-step

The maximisation of the objective function (15) with respect to τ is easily found by solving
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A.1.4 Deriving full conditional posteriors for multiple networks

The full conditional posteriors of the νij’s depends on the λijk’s of all K networks. They are given by

p(νij |·) = p(νij |{λ2ijk}Kk=1)

∝ p({λ2ijk}Kk=1|νij)p(νij)

=

(
K∏
k=1

p(λ2ijk|νij)

)
p(νij)

=

(
K∏
k=1

1

ν
1/2
ij

exp

(
− 1

νijλ2ijk

))
1

ν
3/2
ij

exp

(
− 1

νij

)

=
1

ν
(K+3)/2
ij

exp

(
− 1

νij

(
1 +

K∑
k=1

1

λ2ijk

))

∝ InvGamma

(
K + 1

2
, 1 +

K∑
k=1

1

λ2ijk

)
.

A.2 Simulation study details

To evaluate the performance our proposed methodology, we have done comprehensive simulation studies in R (R
Core Team [2013]). We have used our R packages fastGHS and jointGHS to perform the single-network graphical
horseshoe ECM routine and the joint graphical horseshoe ECM routine respectively, and the code for the simulations is
available on Github (https://github.com/Camiling/jointGHS_simulations).
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A.3 Single network inference

The first part of the simulation studies compares our graphical horseshoe ECM implementation (fastGHS) to the
graphical horseshoe Gibbs sampler and the graphical lasso. The performance of the methods is assessed on multivariate
Gaussian simulated data sets.

Generating networks and data. We aim to generate data similar to our omic application of interest. We have done
this using the R package huge. The package provides the function huge.generator(), which generates multivariate
Gaussian data with the scale-free property as it is a known characteristic of multiomic data (Kolaczyk [2009]). Given a
number p of vertices, huge constructs a precision matrix Θ with p edges. For a desired number of observations n, a
data set can then be generated from the resulting multivariate Gaussian distribution with covariance matrix Σ = Θ−1

and expectation vector 0. This results in a n by p data matrixX , where each column corresponds to a node. As for the
values of the non-zero partial correlations, we let them be in [0.1, 0.2], a range we found to reflect the values observed
in our omic application. Such data is generated N = 20 times. In our simulations, we consider different settings,
i.e., different combinations of p and n. When p = 50, the final graph has p edges and thus a sparsity of 0.04. When
p = 100, the sparsity of the graph is 0.02.

Data analysis details. In our simulation study, we wish to compare the graph reconstruction accuracy of the Gibbs
sampling implementation of Li et al. [2019b] to our ECM implementation of the graphical horseshoe (fastGHS). We
also include the graphical lasso of Friedman et al. [2008], a state-of-the-art frequentist method for Gaussian graph
reconstruction. For each setting we consider, and each generated data set, we obtain a precision matrix estimate Θ̂ from
the dataX of interest for each of the methods.

We perform the ordinary graphical lasso using the R function huge, while we perform the Gibbs sampling procedure
using the code of Li et al. [2019b] translated by us from MATLAB to R. A translation is necessary for us to perform
the simulation study in R, but we have ensured that it gives identical results to those of the original MATLAB
implementation.

The sparsity level of the graphical lasso is selected using the Stability Approach to Regularisation Selection (StARS),
a selection method based on model stability (Liu et al. [2010]), with variability threshold β = 0.03. For the Gibbs
sampling procedure of Li et al. [2019b], we draw nmc = 1000 MCMC samples after burnin = 100 burn-in iterations.
In fastGHS, we use a convergence tolerance threshold of 0.001 for the precision matrix estimate and an AIC convergence
threshold of 0.1 for the global scale parameter selection. The results are averaged over the N = 20 simulations for all
settings, and we report the precision and recall, as well as the sparsity of the estimates.

Computational time simulation details. To illustrate the scalability of our ECM implementation for the graphical
horseshoe, we save the CPU time used to infer a network for different numbers of nodes p, using Gaussian graphical
data sets with n = 100 observations. We limit ourselves to p ≤ 90, to permit comparison to the less scalable Gibbs
sampler of Li et al. [2019b]. We run all methods on a 16-core Intel Xeon CPU, 2.60 GHz. We use the same parameters
as for the single network simulation study, and consider the time used for one run, i.e. for a given value of τ2 in the
joint graphical horseshoe or one initial value in the Gibbs sampler.

A.3.1 Multiple network inference

Generating Gaussian graphs and data of specific similarity. We generate data for the joint graphical horseshoe
simulation study using the same method as in 6.1 in the main manuscript, with the huge package in R to generate graphs
and drawing data from the corresponding multivariate Gaussian distributions. The main difference is that we now have
K = 2 graphs instead of one. Because we wish to investigate different settings with various similarity of the K = 2
true graph structures, we can not generate the graph structures independently. Starting by generating the first graph
using huge, we instead modify its precision matrix in order to obtain a second graph with the desired level of similarity.
Specifically, for the initial precision matrix we create, we permute a certain percentage of the edges by randomly
reallocating them. This allows us to generate graphs of various similarity, ranging from 0% edge disagreement (i.e.
the same edge set) to 100% edge disagreement (i.e. no common edges). In all settings, both graphs have true sparsity
0.04. For each pair of graphs, we sample N = 100 data sets from each of the two corresponding multivariate Gaussian
distributions, with n1 = 50 observations for the first graph and n2 = 80 observations for the second.

Data analysis details. For each pair of generated data sets, we use the different joint graph reconstruction methods to
obtain precision matrix estimates and assess their performance. In addition to our joint graphical horseshoe approach,
we consider the Bayesian spike-and-slab joint graphical lasso of Li et al. [2019b] and the joint graphical lasso of
Danaher et al. [2014]. Li et al. [2019b] provide R code for the Bayesian spike-and-slab at https://github.com/
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richardli/SSJGL, and the joint graphical lasso is implemented by Danaher et al. [2014] in the R package JGL. The
spike-and-slab joint graphical lasso (SSJGL) has a wide range of parameters that must be selected, and we use the
values Li et al. [2019b] use for their own simulations, including an EM convergence tolerance of 0.0001. In the joint
graphical lasso, the sparsity- and similarity controlling parameters must be selected. We do this using the approach
suggested by Danaher et al. [2014], considering a grid of two parameters to find the values minimising their proposed
adapted AIC score. In our joint graphical horseshoe approach, we use a convergence tolerance threshold of 0.001
for the precision matrix estimate and an AIC convergence threshold of 0.1 for the global scale parameter selection.
For both graphs, the results are averaged over the N = 100 simulations for all settings and methods, and we report
the precision and recall as well as the sparsity of the estimates. When comparing jointGHS and fastGHS, we get the
fastGHS estimate of each network to the same sparsity as the corresponding jointGHS estimate by setting the global
scale parameter to a small value, and slowly increasing it until the same sparsity is achieved.

A.4 Monocyte data

A.4.1 Data analysis details

For the jointGHS application, we use a convergence tolerance of 0.001 for the precision matrices. We use the same
tolerance when applying fastGHS to each condition separately. Due to the large size of the problem, with 289 560
potential links to be inferred, we use a looser AIC convergence threshold of 5 for the global scale parameter selection to
speed up computations. As previously discussed, inference is not very sensitive to this choice: a wide range of global
scale parameter values tend to give similar results. When comparing the results from jointGHS and fastGHS, we get the
fastGHS estimate of each condition to the same sparsity as the corresponding jointGHS estimate by setting the global
scale parameter to a small value, and slowly increasing it until the same sparsity is achieved.

Model parameters. Figure A.1 shows the scaled precision matrix elements of the jointGHS estimates plotted against
the common latent parameters in all four conditions. We see that while many edges are found to be in common meaning
information has been shared, there are still many network-specific edges that have been inferred. Thanks to the heavy
horseshoe tail, we are able to capture these edges even though no common information about them is found between the
conditions.

Degree distribution. Table A.1 shows the node degree of the genes with degree larger than the 90th percentile in the
respective jointGHS networks of the different conditions.

Cis genes and their neighbours. To investigate the role of the two cis genes LYZ and YEATS4 in the different
conditions, Figure A.2 shows their edges in the four conditions. It is clear that the two genes have a number
of neighbours, and thus are relatively influential in the networks. These neighbours are fairly spread out on the
chromosomes, in accordance with our expectations about cis-trans effects (Ruffieux et al. [2020]). While several edges
are common to all conditions, we see that jointGHS identifies many edges on the specific condition level. Further, we
see that a lot of the edges represent negative partial correlations, implying that the cis genes could have a role in the
down-regulation as well as the up-regulation of the trans genes.

Investigating the neighbourhood of the two cis genes in each condition can also be useful for understanding the possible
mediation effect of LYZ and YEATS4. Table A.2 shows the node degree of all neighbours in the jointGHS networks of
the different conditions. As we see, AFMID is a neighbour of LYZ in all four conditions. Given its central role in each
network, this potential interplay between LYZ and AFMID is noteworthy. Another notable observation is that PHF1 is a
neighbour of a cis gene only in IFN-γ. Given its importance only in this network, the possible association between
LYZ and PHF1 may provide further insight into the role of this gene. Another neighbour of LYZ in all conditions is
MAF BZIP Transcription Factor F (MAFF), which is a regulator for growth factor signaling (Amit et al. [2007]). We
also observe that AFTPH, which we found to have a high degree in all conditions, is a neighbour of YEATS4 in all four
conditions.

It can be relevant to investigate whether the neighbours of the two cis genes tend to be have more associations with the
top hotspot. Table 3 in the main manuscript shows the proportion of the neighbours of LYZ and YEATS4 respectively
that are mediated by the top hotspot in each condition, and compares it to the total proportion of top hotspot controlled
genes. We use permutation testing to assess whether more of the neighbours of each gene are controlled by the top
hotspot than we would expect from a gene set of the same size; by randomly sampling 10000 gene sets with the same
size as the neighbourhood, we calculate empirical p-values for the observed proportion of controlled neighbours. We
see that YEATS4 does not have significantly more mediated neighbours than the overall fraction, except in LPS 24h.
LYZ, on the other hand, has, at a significance level 0.05, more mediated neighbours in all conditions.
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Table A.1 : The genes with node degree larger than the 90th percentile in the respective jointGHS networks of the
different conditions. The genes that have node degree in the upper 10% in all four conditions are marked in bold. The
genes that only have node degree in the upper 10% in one condition are marked in red. The genes that are controlled by
the top hotspot in the condition in question are marked with ∗.

IFN-gamma LPS-2h LPS-24h Unstimulated

Gene Degree Gene Degree Gene Degree Gene Degree
ACBD5* 33 AIRE 37 AIRE 38 AIRE* 40
AIRE* 25 B3GNT5 28 TNK2 25 AFMID* 33
AFMID* 24 AFMID* 26 AFMID* 25 PHRF1 24
LGALS3 23 LGALS3 24 COX6A1 24 LGALS3 23
SLC3A2 20 COX6A1 24 LGALS3 22 NBPF8 20
PHF1* 20 ACBD5 24 TBC1D9 21 AKR1D1* 20
YEATS4* 18 AFTPH 22 EPSTI1 21 AFTPH 20
PTPLAD2* 18 PRPF8 21 CYP27A1 21 GIMAP1 19
GIMAP1 18 EPSTI1 21 YEATS4* 20 STAG3L3 18
COPZ1* 18 IMPDH1 19 STK24 20 SLC3A2 18
TNK2 17 GIMAP1 19 STAG3L3 20 ADAMTS4* 18
STK24 17 BIRC3 19 AFTPH 20 VHL* 17
SORL1 17 TBC1D15 18 CCL20 19 SGK3* 17
SNX17 17 SORL1 18 TNFSF14 18 GSDM1* 17
RELB 17 SLC3A2 18 SORL1 18 ZNF845 16
CYP27A1 17 CYP27A1 18 SLC3A2 18 YEATS4* 16
NLRP3 16 BFAR 18 RELB 18 TBC1D9 16
NBPF8 16 SNX17 17 PTPLAD2 18 KIAA0101* 16
KIAA0101* 16 PION 17 GNB4 18 JARID2 16
EPSTI1 16 NOD1 17 CRTC3 18 GLTSCR1 16
COX6A1 16 NLRP3 17 CD72 18 PTPLAD2 15
B3GNT5 16 ALPP 17 BATF3 18 LYZ* 15
SMC4 15 ZYX 16 TLK1 17 FLJ38717 15
PRPF8* 15 SGK3 16 SMC4 17 COX19 15
MAFF* 15 RELB 16 IMPDH1 17 ALPP* 15
LOC728457 15 NBPF8 16 HNRPR 17 AGTRAP* 15
IMPDH1* 15 LOC641522 16 DENND4C 17 ACBD5* 15
GSDM1* 15 KIAA0101* 16 COPZ1 17 TLK1 14
BATF3 15 HNRPR 16 CHRNA5* 17 SORL1 14
TNFSF15* 14 GTF2IRD2B 16 C4orf34 17 RELB 14
STAG3L3* 14 AGTRAP 16 TPM4 16 PCDHB9 14
SGK3* 14 SNX17 16 NLRP3 14
NFIL3 14 PLEKHB2 16 KLHL8* 14
HNRPR 14 PHRF1 16 IMPDH1 14
FLJ38717* 14 NFIL3 16 IL12RB1 14
BIRC3* 14 C4orf34* 14
AFTPH* 14 C12orf43 14
ADAMTS4* 14 BIRC3* 14
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Table A.2 : The node degree of the neighbours of the cis genes LYZ and YEATS4 in the jointGHS networks of the
different conditions. For each of the two cis genes, the genes that are a neighbour in all four conditions are marked in
bold. The genes that are only a neighbour in one of the conditions are marked in red. The genes that are controlled by
the top hotspot rs6581889 in the condition in question are marked with ∗.

LYZ

IFN-gamma LPS-2h LPS-24h Unstimulated

Gene Degree Gene Degree Gene Degree Gene Degree

AFMID* 24 AFMID* 26 AFMID* 25 AFMID* 33

LGALS3 23 LGALS3 24 YEATS4* 20 PHRF1 24

PHF1* 20 NDUFV3* 13 MAFF 14 LGALS3 23

NBPF8* 16 MAFF* 12 SNRNP48 12 LOC202781 13

MAFF* 15 TPM3 11 MBD4 12 KLHL28* 11

KLHL28* 11 SNRNP48 11 LRRFIP1 10 SNRNP48* 10

SNRNP48* 9 LOC653086 11 KLHL28* 10 NCAPD2* 10

LIN52* 9 MBOAT2 10 LOC100128098 8 MAFF* 8

LOC100128098* 7 KLHL28* 10 KIAA1751 8 LOC100128098* 7

TBCCD1 7 TBCCD1* 6

MINK1 7 RAG1AP1* 6

LOC100128098* 6 MEFV* 5

MINK1* 4

YEATS4

IFN-gamma LPS-2h LPS-24h Unstimulated

Gene Degree Gene Degree Gene Degree Gene Degree

AIRE* 25 AIRE 37 LGALS3 22 AFTPH 20

LGALS3 23 AFTPH 22 TBC1D9 21 TBC1D9 16

COPZ1* 18 IMPDH1 19 AFTPH 20 GLTSCR1 16

RELB 17 SORL1 18 TLK1 17 TLK1 14

IMPDH1* 15 TBC1D9 15 IMPDH1 17 IMPDH1 14

AFTPH* 14 HIST1H2BD 15 COPZ1 17 USP49* 13

TLK1 13 TLK1 14 AKR1D1 15 COPZ1 13

SLC4A5* 13 COPZ1 13 SC4MOL 14 BFAR 13

TBC1D15 12 ZNF131* 11 ZNF131* 11 SLC4A5* 11

CHST12* 12 MEFV 10 LYZ* 11 TP53BP2* 8

SMCR5* 11 TP53BP2* 9 ZNF738 10 DDX51* 7

LYRM7 11 TMEM106A 9 LRRFIP1 10 TMEM106A* 6

TP53BP2* 10 XRCC2 9 TMEM128* 5

SC4MOL* 10 TP53BP2* 9 CDK5RAP2 5

TMEM106A* 9 TMEM106A 9

TBC1D9 9 MFSD11 8

DDX51* 7

TIPRL 6
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Figure A.1: Scaled precision matrix elements of the jointGHS graph plotted against the common latent parameters of
all conditions.

Figure A.3 shows the density of the degree distribution of the jointGHS graph of each condition, as well as the degree
of the cis genes LYZ and YEATS4. It appears that the degree distribution of the unstimulated network has more density
on lower degrees, which is reasonable considering the unstimulated network is the sparsest among the four. As we see,
the two cis genes have a relatively high degree in all conditions.

Top-hotspot mediated genes. Investigating whether the genes controlled by the top hotspot have more associations
with each other can be insightful. In Table 3 in the main manuscript, we find the sparsity of the subnetwork of genes
that are mediated by the top hotspot in each condition, and compares it to the sparsity of the whole network. We
use permutation testing to assess whether the subnetwork of top hotspot controlled genes is denser than we would
expect from a subnetwork of the same size; by randomly sampling 10000 subnetworks with the same size, we calculate
empirical p-values for the observed sparsity. We see that the empirical p-value is 0.001 for all conditions except
IFN-γ, implying the subnetworks are indeed denser in these conditions. While the difference is relatively small in the
unstimulated network, it is larger in the LPS ones and in particular in LPS 24h.

Comparison to results from single network analysis. Table A.3 shows the sparsity of the estimated jointGHS
graphs of the different conditions, as well as the percentage of the inferred edges that the jointGHS and fastGHS
estimates at the same sparsity agree on. Figure A.4 shows an upset plot (Conway et al. [2017]), an alternative to a
venn diagram that shows the number of edges shared between the inferred networks of each condition, for fastGHS
and jointGHS separately. For each intersection, the number of edges shared only by the corresponding conditions is
shown. It indicates that many edges are common to all four networks, meaning that the joint method has identified a
fair amount of shared information. Compared to the fastGHS networks, we see that the intersection of edges present
in all four conditions is larger in the jointGHS networks. This is as expected, as we, with the joint method, are better
equipped to identify what is common and borrow information.

To understand more about what differs between the single and the joint estimates, we have a closer look at the genes
controlled by the top hotspot rs6581889. The left panel of Figure A.5 compares the fastGHS and jointGHS density of
the degree distribution of the subnetwork of genes controlled by the top hotspot in each condition. The density plots
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Figure A.2: Subnetworks consisting of the edges of the cis genes YEATS4 and LYZ in each condition of the monocyte
data. A red edge indicates that the edge is unique to that condition, while a blue edge is common across all networks
and a grey edge is present in two or three networks. Solid lines represent positive partial correlation while a dashed line
represents negative partial correlation, and nodes are sized according to their edge degree in the subnetwork, with larger
size representing a higher degree.

Table A.3 : The sparsity of the joint graphical horseshoe (jointGHS) estimated graphs of the different conditions in the
monocyte data, as well as the percentage of the inferred edges that the jointGHS and the fastGHS estimate at the same
sparsity agree on.

IFN-gamma LPS-2h LPS-24h Unstimulated

Sparsity 0.018 0.020 0.021 0.016

% Edge agreement with fastGHS 66.8 64.6 65.9 62.3

29



The Joint Graphical Horseshoe

LPS−2h Unstim

IFN−gamma LPS−24h

0 10 20 30 40 0 10 20 30 40

0.00

0.05

0.10

0.00

0.05

0.10

degree

de
ns

ity gene

LYZ
YEATS4

Figure A.3: Density plot of the degree distribution of the jointGHS graph of each condition, with the edge degree of
LYZ and YEATS4 shown as vertical lines.

with the mean and median lines suggest that the jointGHS distribution is more shifted to the right in all conditions,
implying that amongst the genes controlled by the top hotspot, the joint method identifies an overall higher activity level
in terms of associations to other genes. This agrees with what we would expect, with the hotspot triggering substantial
gene activity (Ruffieux et al. [2020]).

We next investigate the role of the two cis genes LYZ and YEATS4 in the networks inferred by the two methods.
In particular, we want to investigate if their role is common to all four conditions. To this end, we compare the
neighbourhood status (with respect to the two cis genes) of the edges common to all conditions, namely, how close an
edge is to a cis gene. If an edge is between a cis and a trans gene, that edge has order 1. If an edge is between two
trans genes where at least one of them is a neighbour of a cis gene, than edge has order 2, and so on. Only the edges
found to be common in all conditions in jointGHS but not in fastGHS are shown, and vice versa. The results from
the comparison are shown in the right panel of Figure A.5. The edges identified by jointGHS but not fastGHS are in
much closer proximity to the cis genes, implying that the joint method identifies a stronger effect from the cis genes,
which agrees with previous findings (Ruffieux et al. [2020]). Similarly, there is not a single cis-trans edge identified by
fastGHS but not jointGHS, while the opposite is not true. This again implies that the joint method is able to identify
more of the cis-trans relationships.

We have now investigated what differs between the networks informed by fastGHS and jointGHS, but what about the
edges the two methods agree on? The alluvial diagram in figure A.6 compares the order to the edges common to all
conditions, and that fastGHS and jointGHS agree on, using the same definition of order as above. It shows that the
two methods agree completely on all first order edges, meaning the direct effect of the cis genes on the trans genes in
this case has sufficient evidence in the data to be captured even with the single-network approach. We also observe
that the edges tend to have a lower order in the jointGHS estimates, implying a stronger influence from the cis genes
has been captured. This strong effect of the cis genes observed in the jointGHS estimates agrees more with previous
findings in this data set (Ruffieux et al. [2020]). In general, we see that two methods disagree more on the higher-order
edges, where the effect of the cis genes can be said to be weaker. In such a setting, a joint approach that gains statistical
power by sharing information between conditions can be highly useful, helping us gain more insight not only into the
cis-trans effects but also role of the affected trans genes. In particular, many trans genes directly associated with the
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Figure A.4: Upset plot for the inferred edges of the fastGHS and jointGHS graphs of the monocyte data, an alternative
to a venn diagram showing the number of shared edges between conditions. For each method, the total number of edges
for each condition is represented on the left barplot. Every possible intersection is represented by the bottom plot, and
their occurence is shown in the top barplot.

cis genes have a very high degree, highlighting their interplay with other trans genes as potentially relevant for the
disease-driving mechanisms.

A.5 More on the choice of global shrinkage parameter

This section supplements Sections 2 and 4 in the main manuscript.

A.5.1 The deflation issue of the global shrinkage

Figure A.7 illustrates how the global shrinkage parameter shrinks to zero after just a few iterations, regardless of its
initial value, when it is updated in the ECM algorithm. The Gaussian graphical data is generated using the procedure
described in Section A.2, with p = 50 nodes and n = 500 observations in each data set.

A.5.2 The issue of under-selection

Our ECM approach tends to be conservative. Figure A.8 shows two trace plots for a Gaussian graphical data set with
p = 150 nodes and n = 500 observations, one considering only small values of τ2 and the other larger. Since we
ultimately are interested in the partial correlations, we disregard the scale and look at the size of the scaled precision
matrix elements θij/

√
θiiθjj . By comparing how these elements change as τ2 increases, the plot illustrates that

over-selection of edges is not a concern. This can in part be explained by the fact that the local scale parameters λij
adapt to the global shrinkage parameter, making the model flexible with respect to the choice of τ2 as long as it is large
enough to avoid overshrinkage to zero. Indeed, for small values of τ2 we see that very few edges are captured, and
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Figure A.5: Comparison of the results from fastGHS and jointGHS applied to the monocyte data. The left panel
compares the density of the degree distribution of the subnetwork of genes controlled by the top hotspot in each
condition, showing the mean and median as solid and dashed lines respectively. The degree of the cis genes LYZ and
YEATS4 in the jointGHS networks are shown as orange and blue dots respectively. The right panel compares the
neighbourhood status with respect to the cis genes of the edges common to all conditions. Only the edges found to be
common in all conditions in jointGHS but not in fastGHS are shown, and vice versa.
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Figure A.6: Comparison of the order of the edges in the fastGHS estimated graphs to the jointGHS estimated graphs, in
terms of distance to the cis genes.
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Figure A.7: The value of the global shrinkage parameter τ2 at each iteration when it is not fixed, but updated as part of
the ECM graphical horseshoe scheme. The results are shown for different initial values of τ2 for a setting with p = 50
and n = 500.

33



The Joint Graphical Horseshoe

0.0

0.1

0.2

0.3

0.001 0.010 0.100
tau_sq

th
et

a
(a)

0.0

0.1

0.2

0.0 2.5 5.0 7.5 10.0
tau_sq

th
et

a truth

false
true

(b)

Figure A.8: Trace plots showing size of the scaled precision matrix elements estimated by the ECM graphical horseshoe
change for (a) smaller τ2 plotted on a logarithmic scale and (b) larger τ2 on a normal scale, for a Gaussian graphical
data set with p = 150 nodes and n = 500 observations. Each line represents one precision matrix element, and the lines
are colored according to whether the corresponding edge is present in the true network or not. The non-zero scaled
precision matrix elements are all equal to 0.2 in the simulated network.

the estimates deviate more from their true value of 0.2. It is clear that we should take care to ensure the global scale
parameter is not too small. If high computational efficiency is desired, fixing it to a large value is possible. However, for
general use we propose a data-driven way to select the parameter.

A.5.3 Avoiding under-selection with the AIC

Figure A.9 shows plots of the sparsity, precision and recall of ECM graphical horseshoe network estimates for different
values of the fixed global shrinkage parameter τ2 ∈ (0, 10], and for two data sets with (a) p = 100 and n = 100 with
true graph sparsity 0.02 and (b) p = 150 and n = 200 with true graph sparsity 0.013. The estimated sparsity grows
with τ2, but only to a certain point. For large enough values of the global shrinkage parameter, the results are the same
in terms of precision and recall. On the other hand, too small values of τ2 can lead to severe under-selection of edges
and very variable results.

Figure A.10 shows the second setting (b) for τ2 ∈ (0, 2], where the values corresponding to the τ2AIC found by our AIC
selection approach are marked as points. This rule leads to satisfactory results in terms of both precision and recall. A
smaller value of τ2 would result in reduced accuracy, and a larger value would not improve the estimate further.

A.6 Posterior checks with the Bayesian bootstrap

While the joint graphical horseshoe adapts well to the level of similarity between networks, issues may arise when the
joint analysis is performed on a set with many highly similar networks and a few unrelated or less similar networks. In
such a case, the highly similar networks might dominate the analysis through the common latent variables νij . We have
seen that, due to the heavy tail of the horseshoe, a small ν−1ij does not detoriate inference since the local scales still can
escape and identify edges individually on the network level. However, a large ν−1ij tends to lead to non-zero precision
matrix elements for all networks. A setting with many highly similar and a few unrelated or less similar network can
result in large ν−1ij for the edges (i, j) common to the highly similar networks, risking wrongly included edges and thus
reduced accuracy for the less similar ones.

To account for this possibility, after performing a joint network analysis it should be possible to check whether the
edges of the joint network estimates strongly contradict the single network estimates. This could indicate that a joint
approach is not suitable.
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Figure A.9: Sparsity, precision and recall of ECM graphical horseshoe network estimates for different values of the
fixed global shrinkage parameter τ2 for data sets with (a) p = 100 and n = 100 with true graph sparsity 0.02 and (b)
p = 150 and n = 200 with true graph sparsity 0.013.

For this purpose, we propose an approach for performing a posterior check for the suitability of a joint analysis. This
check is implemented in our R package jointGHS. This extra step is more computationally demanding, but is optional
and only necessary if there is doubt about the suitability of a joint approach.

A.6.1 Bayesian bootstrap procedure

We propose to use Bayesian bootstrapping (Rubin [1981]) to assess the suitability of a joint analysis. Specifically, for
each network k and each inferred edge (i, j) found in the joint analysis, we assess whether the corresponding precision
matrix element θijk from the joint analysis is plausibly non-zero given its posterior Bayesian bootstrap distribution in
the single network version.

In order to obtain a bootstrap sample θijk(b) for b = 1, . . . , B, we start by drawing nk weights from the Dirichlet
distribution with nk categories and parameters α = (1, . . . , 1), i.e., the flat Dirichlet distribution. The resulting weight
vector w(b) is used to weigh the observations in the nk by p observation matrixXk. For notational simplicity, we will
from now refer to nk as n,Xk asX and so on.

Using an expression for the Bayesian bootstrap sample of the covariance matrix (Rodriguez and Williams [2022]), we
can obtain a weighted scatter matrix estimate for each bootstrap sample b, using the sampled weights w(b)
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Figure A.10: Sparsity, precision and recall of ECM graphical horseshoe network estimates for different values of the
fixed global shrinkage parameter τ2 for a data set with p = 150 and n = 200 observations, and a true graph sparsity of
0.013. The values corresponding to the τ2AIC found by our AIC selection approach are marked as points.

S(b)
w = (n− 1)

[
1−

n∑
i=1

(w
(b)
i )2

]−1
X(b)
w

T
X(b)
w , (16)

whereX(b)
w is the weighted observation matrixX(b)

w =X ◦w∗(b)1Tp . Here ◦ denotes the Hadamard product, w∗(b) is

the length n vector with elements
√
w

(b)
i and 1p is a length p vector of ones.

Replacing the unweighted scatter matrix S in the ECM graphical horseshoe algorithm by (16), we can obtain Bayesian
bootstrap samples of θijk. Repeating this B times, we get a set of Bayesian bootstrap samples {θijk(b)}Bb=1 that we can
use to describe the posterior of the precision matrix elements in the single network model.

Using this sampled posterior, we can investigate whether the estimated non-zero θijk from the joint network conflicts
with its single network distribution. Since we ultimately are interested in the partial correlations, we perform comparisons
regardless of scale by looking at the distribution of the scaled precision matrix elements θijk/

√
θiikθjjk. If a scaled

precision matrix element exceeds the empirical 95th percentile of its bootstrap distribution in absolute value, this
suggests that it may have been overestimated and thus that the edge (i, j) may have been wrongly included in the joint
model.

One can expect a few edges from the joint approach to be in conflict with their single network posterior as more
information is available in the joint approach, but if this occurs for a large portion of edges this could suggest that the
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network is being forced towards networks it bears little similarity to. This could indicate that a joint approach is not
suitable.

In our R package jointGHS (github.com/Camiling/jointGHS), we provide a functionality for performing the
Bayesian bootstrap as part of the joint graphical horseshoe, allowing assessment of all or specific edges. This also
includes a plot and a print function. This optional functionality allows users to assess the suitability of a joint analysis.
Notably, this tool is meant to guide users to make a decision, not to make the decision for them. For more details, we
refer to the package documentation.

A.6.2 Examples

Two similar networks. The package has a plotting function which enables visualisation of the results of the Bayesian
bootstrap. Figure A.11 shows the output for K = 2 data sets with the same underlying network structure. The Gaussian
graphical data is generated using the procedure described in Section A.2, with p = 50 nodes and n = 100 observations
in each data set. In this case we see that no joint graphical horseshoe estimate exceeds its Bayesian bootstrap empirical
95th percentile in absolute value, implying that the joint estimates are not in conflict with the single network estimates.

Two different networks. On the contrary, Figure A.12 shows the output of the plot function for K = 2 data sets
with completely unrelated network structures. The networks have p = 50 nodes and the data sets n = 100 and
n = 200 observations respectively. Once again, we see that there is no conflict between the joint graphical horseshoe
estimates and the single-network bootstrap distributions. While this might be surprising given that the two networks are
completely unrelated, it is important to note that we have a “symmetrical” (dis)similarity pattern and so the common
latent ν−1ij will not be large for edges present in only one network. For this reason, a Bayesian bootstrap check is not
necessary for K = 2 networks.

Six networks with one unrelated. Figure A.13 shows the output of the plotting function for the last of K = 6 data
sets, where all but the last data set have the same underlying network structure. All networks have p = 20 nodes and
the data sets have n = 150 observations each. It is very clear from the plot that most of the scaled precision matrix
elements of the inferred edges from the joint approach strongly contradict their single-network bootstrap distributions,
exceeding their empirical 95th percentiles in absolute value. Such an output indicates that the user should reconsider
using a joint analysis.

For a summary of the Bayesian bootstrap procedure, the user can also use the print function implemented in the
package. The function provides a summary of the findings, including how many edges whose corresponding scaled
precision matrix element from the joint analysis exceeds its Bayesian bootstrap empirical 95th percentile in absolute
value. Figures A.14 and A.15 show the output of the print function for the 1st and the 6th data sets from the previous
example respectively. This output indicates that 5.3% of the edges in network 1 exceeds this percentile, in contrast to
73.7% for network 6. When using the 95th percentile, we can expect 5% of edges to exceed this threshold. Thus, the
output suggests that the joint estimate strongly contradicts the single network estimate, which agrees with the simulated
truth, namely that the 6th data set is unrelated to the others.

A.7 Additional results

A.7.1 Scalability

Figure A.16 shows the CPU time used to infer a network for various numbers of nodes, for fastGHS.
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Figure A.11: Output of plot function implemented in the jointGHS package, showing results of the Bayesian bootstrap
procedure for assessing the suitability of a joint approach for K = 2 networks with p = 50 nodes. The two data sets
used for inference have the same true network structure, and n = 100 observations each. The output of the plot function
is shown for both networks. For each inferred edge in the joint graphical horseshoe network of a given data set, the plot
shows the Bayesian bootstrap distribution of the corresponding scaled precision matrix element of the single-network
graphical horseshoe model, with the corresponding empirical 0% and 95% percentiles shown as dashed lines. The joint
graphical horseshoe estimate is shown as a solid line.
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Figure A.12: Output of plot function implemented in the jointGHS package, showing results of the Bayesian bootstrap
procedure for assessing the suitability of a joint approach for K = 2 networks with p = 50 nodes. The two data sets
used for the inference have unrelated true network structures, and n = 100 and n = 200 observations respectively. The
output of the plot function is shown for both networks. For each inferred edge in the joint graphical horseshoe network
of a given data set, the plot shows the Bayesian bootstrap distribution of the corresponding scaled precision matrix
element of the single-network graphical horseshoe model, with the corresponding empirical 0 and 95% percentiles
shown as dashed lines. The joint graphical horseshoe estimate is shown as a solid line.
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Figure A.13: Output of plot function implemented in the jointGHS package, showing results of the Bayesian bootstrap
procedure for assessing the suitability of a joint approach for K = 6 networks with p = 20 nodes. The first five data
sets used for the inference have the same true network structure, and the network structure of the sixth data set in
question is completely unrelated to them. All data sets have n = 150 observations each. The output of the plot function
is shown for data set 6. For each inferred edge in the joint graphical horseshoe network of a given data set, the plot
shows the Bayesian bootstrap distribution of the corresponding scaled precision matrix element of the single-network
graphical horseshoe model, with the corresponding empirical 0 and 95% percentiles shown as dashed lines. The joint
graphical horseshoe estimate is shown as a solid line.
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Figure A.14: Output of print function implemented in the jointGHS package, showing results of the Bayesian bootstrap
procedure for assessing the suitability of a joint approach for K = 6 networks with p = 20 nodes. The first five data
sets used for the inference have the same true network structure, and the network structure of the sixth data set in
question is completely unrelated to them. All data sets have n = 150 observations each. The bootstrap results of the
first data set is shown, and for each inferred edge in the joint graphical horseshoe network its scaled precision matrix
estimate as well as the empirical 95% percentile of the corresponding single-network Bayesian bootstrap distribution is
shown. If the estimate from the joint approach exceeds this percentile in absolute value, it is marked by a star.

Figure A.15: Output of print function implemented in the jointGHS package, showing results of the Bayesian bootstrap
procedure for assessing the suitability of a joint approach for K = 6 networks with p = 20 nodes. The first five data
sets used for the inference have the same true network structure, and the network structure of the sixth data set in
question is completely unrelated to them. It is the bootstrap results of this data set that are printed. All data sets have
n = 150 observations each. For each inferred edge in the joint graphical horseshoe network, its scaled precision matrix
estimate as well as the empirical 95% percentile of the corresponding single-network Bayesian bootstrap distribution is
shown. If the estimate from the joint approach exceeds this percentile in absolute value, it is marked by a star.
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Figure A.16: CPU time in seconds on a logarithmic scale used to infer a network for various numbers of nodes p with
n = 500 observations, for our fast ECM implementation of the graphical horseshoe (fastGHS).
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