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Abstract. With ever increasing amount of available data on protein-
protein interaction (PPI) networks and research revealing that these net-
works evolve at a modular level, discovery of conserved patterns in these
networks becomes an important problem. Recent algorithms on aligning
PPI networks target simplified structures such as conserved pathways
to render these problems computationally tractable. However, since con-
served structures that are parts of functional modules and protein com-
plexes generally correspond to dense subnets of the network, algorithms
that are able to extract conserved patterns in terms of general graphs are
necessary. With this motivation, we focus here on discovering protein sets
that induce subnets that are highly conserved in the interactome of a pair
of species. For this purpose, we develop a framework that formally de-
fines the pairwise local alignment problem for PPI networks, models the
problem as a graph optimization problem, and presents fast algorithms
for this problem. In order to capture the underlying biological processes
correctly, we base our framework on duplication/divergence models that
focus on understanding the evolution of PPI networks. Experimental re-
sults from an implementation of the proposed framework show that our
algorithm is able to discover conserved interaction patterns very effec-
tively (in terms of accuracies and computational cost). While we focus
on pairwise local alignment of PPI networks in this paper, the proposed
algorithm can be easily adapted to finding matches for a subnet query
in a database of PPI networks.

1 Introduction

Increasing availability of experimental data relating to biological sequences, cou-
pled with efficient tools such as BLAST and CLUSTAL have contributed to fun-
damental understanding of a variety of biological processes [1, 2]. These tools are
used for discovering common subsequences and motifs, which convey functional,
structural, and evolutionary information. Recent developments in molecular bi-
ology have resulted in a new generation of experimental data that bear relation-
ships and interactions between biomolecules [3]. An important class of molecular
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interaction data is in the form of protein-protein interaction (PPI) networks,
which provide the experimental basis for understanding modular organization
of cells, as well as useful information for predicting the biological function of
individual proteins [4]. High throughput screening methods such as two-hybrid
analysis [5], mass spectrometry [6], and TAP [7] provide large amounts of data
on these networks.

As revealed by recent studies, PPI networks evolve at a modular level [8]
and consequently, understanding of conserved substructures through alignment
of these networks can provide basic insights into a variety of biochemical pro-
cesses. However, although vast amounts of high-quality data is becoming avail-
able, efficient network analysis counterparts to BLAST and CLUSTAL are not
readily available for such abstractions. As is the case with sequences, key prob-
lems on graphs derived from biomolecular interactions include aligning multiple
graphs [9], finding frequently occurring subgraphs in a collection of graphs [10],
discovering highly conserved subgraphs in a pair of graphs, and finding good
matches for a subgraph in a database of graphs [11]. In this paper, we specifi-
cally focus on discovering highly conserved subnets in a pair of PPI networks.
With the expectation that conserved subnets will be parts of complexes and
modules, we base our model on the discovery of two subsets of proteins from
each PPI network such that the induced subnets are highly conserved.

Based on the understanding of the structure of PPI networks that are avail-
able for several species, theoretical models that focus on understanding the
evolution of protein interactions have been developed. Among these, the du-
plication/divergence model has been shown to be successful in explaining the
power-law nature of PPI networks [12]. In order to capture the underlying bi-
ological processes correctly, we base our framework on duplication/divergence
models through definition of duplications, matches, and mismatches in a graph-
theoretic framework. We then reduce the resulting alignment problem to a graph
optimization problem and propose efficient heuristics to solve this problem. Ex-
perimental results based on an implementation of our framework show that the
proposed algorithm is able to discover conserved interaction patterns very ef-
fectively. The proposed algorithm can be also adapted to finding matches for a
subnet query in a database of PPI networks.

2 Related Work

As the amount of cell signaling data increases rapidly, there have been vari-
ous efforts aimed at developing methods for comparative network analysis. In
a relatively early study, Dandekar et al. [13] comprehensively align glycolysis
metabolic pathways through comparison of biochemical data, analysis of ele-
mentary modes, and comparative genome analysis, identifying iso-enzymes, sev-
eral potential pharmacological targets, and organism-specific adaptations. While
such efforts demonstrate the potential of interaction alignment in understanding
cellular processes, these analyses are largely manual, motivating the need for
automated alignment tools.
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As partially complete interactomes of several species become available, re-
searchers have explored the problem of identifying conserved topological motifs
in different species [8, 14]. These studies reveal that many topological motifs are
significantly conserved within and across species and proteins that are organized
in cohesive patterns tend to be conserved to a higher degree. A publicly avail-
able tool, PathBLAST, adopts the ideas in sequence alignment to PPI networks
to discover conserved protein pathways across species [11]. By restricting the
alignment to pathways, i.e., linear chains of interacting proteins, this algorithm
renders the alignment problem tractable, while preserving the biological impli-
cation of discovered patterns.

Since the local alignment of PPI networks for patterns in the form of general
graphs leads to computationally intractable problems, tools based on simpli-
fied models are generally useful. However, as functional modules and protein
complexes are likely to be conserved across species [8], algorithms for aligning
general graphs are required for understanding conservation of such functional
units. In a recent study, Sharan et al. [15] have proposed probabilistic models
and algorithms for identifying conserved modules and complexes through cross-
species network comparison. Similar to their approach, we develop a framework
for aligning PPI networks to discover subsets of proteins in each species such that
the subgraphs induced by these sets are highly conserved. In contrast to existing
methods, our framework relies on theoretical models that focus on understanding
the evolution of protein interaction networks.

3 Theoretical Models for Evolution of PPI Networks

There have been a number of studies aimed at understanding the general struc-
ture of PPI networks. It has been shown that these networks are power-law
graphs, i.e., the relative frequency of proteins that interact with k proteins is
proportional to k−γ , where γ is a network-specific parameter [16]. In order to
explain this power-law nature, Barábasi and Albert have proposed [16] a net-
work growth model based on preferential attachment, which is able to generate
networks with degree distribution similar to PPI networks. According to this
model, networks expand continuously by addition of new nodes and these new
nodes prefer to attach to well-connected nodes when joining the network. Ob-
serving that older proteins are better connected, Eisenberg and Levanon [17]
explain the evolutionary mechanisms behind such preference by the strength
of selective pressure on maintaining connectivity of strongly connected proteins
and creating proteins to interact with them. Furthermore, in a relevant study, it
is observed that the interactions between groups of proteins that are temporally
close in the course of evolution are likely to be conserved, suggesting synergistic
selection during network evolution [18].

A common model of evolution that explains preferential attachment and power-
law nature of PPI networks is the duplication/divergence model that is based on
gene duplications [12, 19, 20, 21]. According to this model, when a gene is dupli-
cated in the genome, the node corresponding to the product of this gene is also du-
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Fig. 1. Duplication/divergence model for evolution of PPI networks. Starting with

three interactions between three proteins, protein u1 is duplicated to add u′
1 into the

network together with its interactions (dashed circle and lines). Then, u1 loses its

interaction with u3 (dotted line). Finally, an interaction between u1 and u′
1 is added

to the network (dashed line)

plicated together with its interactions. An example of protein duplication is shown
in Figure 1. A protein loses many aspects of its functions rapidly after being dupli-
cated. This translates into divergence of duplicated (paralogous) proteins in the
interactome through deletion and insertion of interactions. Deletion of an interac-
tion in a PPI network implies the elimination of an existing interaction between
two proteins due to structural and/or functional changes. Similarly, insertion of an
interaction into a PPI network implies the emergence of a new interaction between
two non-interacting proteins, caused by mutations that change protein surfaces.
Examples of insertion and deletion of interactions are also illustrated in Figure 1.
If a deletion or insertion is related to a recently duplicated protein, it is said to
be correlated; otherwise, it is uncorrelated [19]. Since newly duplicated proteins
are more tolerant to interaction loss because of redundancy, correlated deletions
are generally more probable than insertions and uncorrelated deletions [12]. Since
the elimination of interactions is related to sequence-level mutations, one can ex-
pect a positive correlation between similarity of interaction profiles and sequence
similarity for paralogous proteins [20]. It is also theoretically shown that network
growth models based on node duplications generate power-law distributions [22].

In order to accurately identify and interpret conservation of interactions,
complexes, and modules across species, we base our framework for the local
alignment of PPI networks on duplication/divergence models. While searching
for highly conserved groups of interactions, we evaluate mismatched interactions
and paralogous proteins in light of the duplication/divergence model. Introduc-
ing the concepts of match (conservation), mismatch (emergence or elimination)
and duplication, which are in accordance with widely accepted models of evo-
lution, we are able to discover alignments that also allow speculation about the
structure of the network in the common ancestor.

4 Pairwise Local Alignment of PPI Networks

In light of the theoretical models of evolution of PPI networks, we develop a
generic framework for the comparison of PPI networks in two different species.
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We formally define a computational problem that captures the underlying bi-
ological phenomena through exact matches, mismatches, and duplications. We
then formulate local alignment as a graph optimization problem and propose
greedy algorithms to effectively solve this problem.

4.1 The Pairwise Local Alignment Problem

A PPI network is conveniently modeled by an undirected graph G(U,E), where
U denotes the set of proteins and uu′ ∈ E denotes an interaction between pro-
teins u ∈ U and u′ ∈ U . For pairwise alignment of PPI networks, we are given
two PPI networks belonging to two different species, denoted by G(U,E) and
H(V, F ). The homology between a pair of proteins is quantified by a similar-
ity measure that is defined as a function S : (U ∪ V ) × (U ∪ V ) → �. For
any u, v ∈ U ∪ V , S(u, v) measures the degree of confidence in u and v being
orthologous if they belong to different species and paralogous if they belong
to the same species. We assume that similarity scores are non-negative, where
S(u, v) = 0 indicates that u and v cannot be considered as potential orthologs
or paralogs. In this respect, S is expected to be highly sparse, i.e., each pro-
tein is expected to have only a few potential orthologs or paralogs. We discuss
the reliability of possible choices for assessing protein similarity in detail in
Section 4.4.

For PPI networks G(U,E) and H(V, F ), a protein subset pair P = {Ũ , Ṽ }
is defined as a pair of protein subsets Ũ ⊆ U and Ṽ ⊆ V . Any protein subset
pair P induces a local alignment A(G,H, S, P ) = {M,N ,D} of G and H with
respect to S, characterized by a set of duplications D, a set of matches M, and a
set of mismatches N . The biological analog of a duplication is the duplication of
a gene in the course of evolution. Each duplication is associated with a penalty,
since duplicated proteins tend to diverge in terms of their interaction profiles in
the long term [20]. A match corresponds to a conserved interaction between two
orthologous protein pairs, which is rewarded by a match score that reflects our
confidence in both protein pairs being orthologous. A mismatch, on the other
hand, is the lack of an interaction in the PPI network of one of the species
between a pair of proteins whose orthologs interact in the other species. A mis-
match may correspond to the emergence (insertion) of a new interaction or the
elimination (deletion) of a previously existing interaction in one of the species
after the split, or an experimental error. Thus, mismatches are also penalized
to account for the divergence from the common ancestor. We provide formal
definitions for these three concepts to construct a basis for the formulation of
local alignment as an optimization problem.

Definition 1. Local Alignment of PPI networks. Given protein interaction
networks G(U,E), H(V, F ), and a pairwise similarity function S defined over
the union of their protein sets U ∪V , any protein subset pair P = (Ũ , Ṽ ) induces
a local alignment A(G,V, S, P ) = {M,N ,D}, where

M = {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0, uu′ ∈ E, vv′ ∈ F} (1)
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N = {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0, uu′ ∈ E, vv′ /∈ F}
∪ {u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0, uu′ /∈ E, vv′ ∈ F} (2)

D = {u, u′ ∈ Ũ : S(u, u′) > 0} ∪ {v, v′ ∈ Ṽ : S(v, v′) > 0} (3)

Each match M ∈ M is associated with a score µ(M). Each mismatch N ∈
N and each duplication D ∈ D are associated with penalties ν(N) and δ(D),
respectively.

The score of alignment A(G,H, S, P ) = {M,N ,D} is defined as:

σ(A) =
∑

M∈M
µ(M) −

∑

N∈N
ν(N) −

∑

D∈D
δ(D). (4)

We aim to find local alignments with locally maximal score (drawing an anal-
ogy to sequence alignment [23], high-scoring subgraph pairs). This definition of
the local alignment problem provides a general framework for the comparison
of PPI networks, without explicitly formulating match scores, mismatch, and
duplication penalties. These functions can be selected and their relative contri-
butions can be tuned based on theoretical models and experimental observations
to effectively synchronize with the underlying evolutionary process. Clearly, an
appropriate basis for deriving these functions is the similarity score function S.
We discuss possible choices for scoring functions in detail in Section 4.4.

A sample instance of the pairwise local alignment problem is shown in Fig-
ure 2(a). Consider the alignment induced by the protein subset pair Ũ = {u1, u2,
u3, u4} and Ṽ = {v1, v2, v3}, shown in Figure 2(b). The only duplication in this

u1 u2

u3 u4

v1 v2

v3 v4

G H

u1

u2

u4

v1 v2

G

H

(a) (b)

Fig. 2. (a) An instance of the pairwise local alignment problem. The proteins that

have non-zero similarity scores (i.e., are potentially orthologous), are colored the same.

Note that S does not necessarily induce a disjoint grouping of proteins in practice. (b)

A local alignment induced by the protein subset pair {u1, u2, u3, u4} and {v1, v2, v3}.
Ortholog and paralog proteins are vertically aligned. Existing interactions are shown by

solid lines, missing interactions that have an existing ortholog counterpart are shown

by dotted lines. Solid interactions between two aligned proteins in separate species

correspond to a match, one solid one dotted interaction between two aligned proteins

in separate species correspond to a mismatch. Proteins in the same species that are on

the same vertical line correspond to duplications
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alignment is (u1, u2). If this alignment is chosen to be a “good” one, then, based
on the existence of this duplication in the alignment, if S(u2, v1) < S(u1, v1),
we can speculate that u1 and v1 have evolved from the same gene in the com-
mon ancestor, while u2 is an in-paralog that emerged from duplication of u1

after split. The match set consists of interaction pairs (u1u1, v1v1), (u1u2, v1v1),
(u1u3, v1v3), and (u2u4, v1v2). Observe that v1 is mapped to both u1 and u2

in the context of different interactions. This is associated with the functional
divergence of u1 and u2 after duplication. Moreover, the self-interaction of v2 in
H is mapped to an interaction between paralogous proteins in G. The mismatch
set is composed of (u1u4, v1v2), (u2u2, v1v1), (u2u3, v1v3), and (u3u4, v3v2). The
interaction u3u4 in G is left unmatched by this alignment, since the only possi-
ble pair of proteins in Ṽ that are orthologous to these two proteins are v3 and
v2, which do not interact in H. One conclusion that can be derived from this
alignment is the elimination or emergence of this interaction in one of the species
after the split. The indirect path between v3 and v2 through v1 may also serve
as a basis for the tolerability of the loss of this interaction. We can also simply
attribute this observation to experimental noise. However, if we include v4 in Ṽ
as well, then the induced alignment is able to match u3u4 and v3v4. This will
strengthen the probability that this interaction existed in the common ancestor.
However, v4 comes at the price of another duplication since it is paralogous to
v2. This example illustrates the challenge of correctly matching proteins to their
orthologs in order to reveal the maximum amount of reliable information about
the conservation of interaction patterns. Our model translates this problem into
a trade-off between mismatches and duplications, favoring selection of duplicate
proteins that have not quite diverged in the alignment.

4.2 Alignment Graphs and the Maximum-Weight Induced
Subgraph Problem

It is possible to collect information on matches and mismatches between two
PPI networks into a single alignment graph by computing a modified version of
the graph Cartesian product that takes orthology into account. Assigning appro-
priate weights to the edges of the alignment graph, the local alignment problem
defined in the previous section can be reduced to an optimization problem on
this alignment graph. We define an alignment graph for this purpose.

Definition 2. Alignment Graph. For a pair of PPI networks G(U,E), H(V,
F ), and protein similarity function S, the corresponding weighted alignment
graph G(V,E) is computed as follows:

V = {v = {u, v} : u ∈ U, v ∈ V and S(u, v) > 0}. (5)

In other words, we have a node in the alignment graph for each pair of ortholog
proteins. Each edge vv′ ∈ E, where v = {u, v} and v′ = {u′, v′}, is assigned
weight

w(vv′) = µ(uu′, vv′) − ν(uu′, vv′) − δ(u, u′) − δ(v, v′). (6)
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Fig. 3. (a) Alignment graph corresponding to the instance of Fig. 2(a). Note that match

scores, mismatch and duplication penalties are functions of incident nodes, which is

not explicitly shown in the figure for simplicity. (b) Subgraph induced by node set

Ṽ = {{u1, v1}, {u2, v1}, {u3, v3}, {u4, v2}}, which corresponds to the alignment shown

in Fig. 2(b)

Here, µ(uu′, vv′) = 0 if (uu′, vv′) /∈ M, and similarly for mismatch and dupli-
cation penalties.

Consider the PPI networks in Figure 2(a). To construct the corresponding
alignment graph, we first compute the product of these two PPI networks to
obtain five nodes that correspond to five ortholog protein pairs. We then put
an edge between two nodes of this graph if the corresponding proteins interact
in both networks (match edge), interact in only one of the networks (mismatch
edge), or at least one of them is paralogous (duplication edge), resulting in the
alignment graph of Figure 3(a). Note that the weights assigned to these edges,
which are shown in the figure, are not constant, but are functions of their incident
nodes. Observe that the edge between {u1, v1} and {u2, v1} acts a match and
duplication edge at the same time, allowing analysis of the conservation of self-
interactions of duplicated proteins.

The weighted alignment graph is conceptually similar to the orthology graph
of Sharan et al. [15]. However, instead of accounting for similarity of proteins
through node weights, we encapsulate the orthology information in edge weights,
which also allows consideration of duplications effectively. This construction of
the alignment graph allows us to formulate the alignment problem as a graph
optimization problem defined below.

Definition 3. MaximumWeight InducedSubgraphProblem. Given graph
G(V,E) and a constant ε, find a subset of nodes, Ṽ ∈ V such that the sum
of the weights of the edges in the subgraph induced by Ṽ is at least ε, i.e.,
W (Ṽ) =

∑
v,v′∈Ṽ w(vv′) ≥ ε.

Not surprisingly, this problem is equivalent to the local alignment of PPI
networks defined in the previous section, as formally stated in the following
theorem:

Theorem 1. Given PPI networks G, H, and a protein similarity function S,
let G(V,E, w) be the corresponding alignment graph. If Ṽ is a solution to the
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maximum weight induced subgraph problem on G(V,E, w), then P = {Ũ , Ṽ }
induces an alignment A(G,H, S, P ) with σ(A) = W (Ṽ), where Ũ = {u ∈ U :
∃v ∈ V s.t. {u, v} ∈ Ṽ} and Ṽ = {v ∈ V : ∃u ∈ U s.t. {u, v} ∈ Ṽ}.

Proof. Follows directly from the construction of alignment graph.
The induced subgraph that corresponds to the local alignment in Figure 2(b)

is shown in Figure 3(b).
It can be easily shown that the maximum-weight induced subgraph problem

is NP-complete by reduction from maximum clique, by assigning unit weight to
edges and −∞ to non-edges. This problem is closely related to the maximum
edge subgraph [24] and maximum dispersion problems [25] that are also NP-
complete. Although the positive weight restriction on these problems limits the
application of existing algorithms to the maximum weight induced subgraph
problem, the nature of the conservation of PPI networks makes a simple greedy
heuristic quite effective for the local alignment of PPI networks.

4.3 A Greedy Heuristic for Local Alignment of Protein Interaction
Networks

In terms of protein interactions, functional modules and protein complexes are
densely connected while being separable from other modules, i.e., a protein in
a particular module interacts with most proteins in the same module either
directly or through a common module hub, while it is only loosely connected
to the rest of the network [26]. Since analysis of conserved motifs reveals that
proteins in highly connected motifs are more likely to be conserved suggesting
that such dense motifs are parts of functional modules [8], high-scoring local
alignments are likely to correspond to functional modules. Therefore, in the
alignment graph, we can expect that proteins that belong to a conserved module
will induce heavy subgraphs, while being loosely connected to other parts of the
graph. This observation leads to a greedy algorithm that can be expected to
work well for the solution of the maximum weight induced subgraph problem on
the alignment graph of two PPI networks. Indeed, similar approaches are shown
to perform well in discovering conserved or dense subnets in PPI networks [15,
27]. By seeding a growing subgraph with a protein that has a large number
of conserved interactions and small number of mismatched interactions (i.e., a
conserved hub) and adding proteins that share conserved interactions with this
graph one by one, it is possible to discover a group of proteins with a set of dense
interactions that are conserved, likely being part of a functional module.

A sketch of the greedy algorithm for finding a single conserved subgraph
on the alignment graph is shown in Figure 4. This algorithm grows a subgraph,
which is of locally maximal total weight. To find all non-redundant “good” align-
ments, we start with the entire alignment graph and find a maximal subgraph.
If this subgraph is statistically significant according to the reference model de-
scribed in Section 4.5, we record the alignment that corresponds to this subgraph
and mark its nodes. We repeat this process by allowing only unmarked nodes
to be chosen as seed until no subgraph with positive weight can be found. Re-
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procedure GreedyMaWiSh(G)
� Input G(V,E, w): Alignment graph

6 repeat

7 Ṽ ← Ṽ ∪ {ṽ}
� Output Ṽ: Subset of selected nodes 8 W ← W + g(ṽ)

� g(v): Gain of adding v into Ṽ 9 for each v ∈ (V\Ṽ) s.t.ṽv ∈ E do
� W : Total subgraph weight 10 g(v) ← g(v) + w(ṽv)

1 for each v ∈ V do 11 ṽ ← argmaxv∈(V\Ṽ)g(v)

2 g(v) ← w(vv) 12 until g(v) ≤ 0
3 w(v) =

∑
vv′∈E w(vv′) 13 if W > 0

4 Ṽ ← ∅, W ← 0 14 then return Ṽ
5 ṽ ← argmaxv∈Vw(v) 15 else return ∅

Fig. 4. Greedy algorithm for finding a set of nodes that induces a subgraph of maximal

total weight on the alignment graph

stricting the seed to only non-aligned nodes avoids redundancy while allowing
discovery of overlapping alignments. Finally, we rank all subgraphs based on
their significance and report the corresponding alignments. A loose bound on
the worst-case running time of this algorithm is O(|V||E|), since each alignment
takes O(|E|) time and each node can be the seed at most once. Assuming that
the number of orthologs for each protein is bounded by a constant, the size of
the alignment graph is linear in the total size of the input networks.

4.4 Selection of Model Components

In order for the discovered PPI network alignments to be biologically meaningful,
selection of the underlying similarity function and the models for scoring and
penalizing matches, mismatches, and duplications is crucial, as in the case of
sequences.

Similarity Function. Since proteins that are involved in a common functional
module, or more generally, proteins that interact with each other, show local
sequence similarities, care must be taken while employing pairwise sequence
alignment as a measure of potential orthology between proteins. Furthermore,
while aligning two PPI networks and interpreting the alignment, only duplica-
tions that correspond to proteins that are duplicated after the split of species
are of interest. Such protein pairs are called in-paralogs, while the others are
called out-paralogs [28]. Unfortunately, distinguishing between in-paralogs and
out-paralogs is not trivial. Therefore, we assign similarity scores to protein pairs
conservatively by detecting orthologs and in-paralogs using a dedicated algo-
rithm, INPARANOID [28], which is developed for finding disjoint ortholog clus-
ters in two species. Each ortholog cluster discovered by this algorithm is char-
acterized by two main orthologs, one from each species, and possibly several
other in-paralogs from both species. The main orthologs are assigned a confi-
dence value of 1.0, while the in-paralogs are assigned confidence scores based on
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their relative similarity to the main ortholog in their own species. We define the
similarity between two proteins u and v as

S(u, v) = confidence(u) × confidence(v). (7)

This provides a normalized similarity function that takes values in the interval
[0, 1] and quantifies the confidence in the two proteins being orthologous or
paralogous.

Scores and Penalties. Match score. A match is scored positively in an align-
ment to reward a conserved interaction. Therefore, the score represents the sim-
ilarity between the two interactions that are matched. Since the degree of con-
servation in the two ortholog protein pairs involved in the matched interactions
need not be the same, it is appropriate to conservatively assign the minimum of
the similarities at the two ends of the matching interaction to obtain:

µ(uu′, vv′) = µ̄S(uu′, vv′), (8)

where S(uu′, vv′) = min{S(u, v), S(u′, v′)} and µ̄ is a pre-determined parameter
specifying the relative weight of a match in the total alignment score. While
we use this definition of S(uu′, vv′) in our implementation, S(u, v) × S(u′, v′)
provides a reliable measure of similarity between the two protein pairs as well.

Mismatch penalty. Similar to match score, mismatch penalty is defined as:

ν(uu′, vv′) = ν̄S(uu′, vv′), (9)

where ν̄ is the relative weight of a mismatch. With this penalty function, each
lost interaction of a duplicate protein is penalized to reflect the divergence of
duplicate proteins.

Duplication penalty. Duplications are penalized to account for the divergence
of the proteins after duplication. Sequence similarity provides a crude approx-
imation to the age of duplication and likelihood of being paralogs [21]. Hence,
duplication penalty is defined as:

δ(u, u′) = δ̄(d − S(u, u′)), (10)

where δ̄ is the relative weight of a duplication and d ≥ maxu,u′∈U S(u, u′) is
a parameter that determines the extent of penalizing duplications. Considering
the similarity function of (7), setting d = 1.0 results in no penalty for duplicates
that are paralogous to the main ortholog with 100% confidence.

4.5 Statistical Significance

To evaluate the statistical significance of discovered high-scoring alignments, we
compare them with a reference model generated by a random source. In the
reference model, it is assumed that the interaction networks that belong to the
two species are independent from each other as well as the protein sequences. To
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accurately capture the power-law nature of PPI networks, we assume that the
interactions are generated randomly from a distribution characterized by a given
degree sequence. The probability quu′ of observing an interaction between two
proteins u, u′ ∈ U for the degree sequence derived from G can be estimated by
a Monte Carlo algorithm that repeatedly swaps the incident nodes of randomly
chosen edges [15]. On the other hand, we assume that the sequences are generated
by a memoryless source, such that u ∈ U and v ∈ V are orthologous with
probability p. Similarly, u, u′ ∈ U and v, v′ ∈ V are paralogous with probability
pU and pV , respectively. Since the similarity function of (7) provides a measure
of the probability of true homology between a given pair of proteins, we estimate
p by

∑
u∈U,v∈V S(u,v)

|U ||V | . Hence, E[S(u, v)] = p for u ∈ U, v ∈ V . The probabilities
of paralogy are estimated similarly.

In the reference model, the expected value of the score of an alignment in-
duced by Ṽ ⊆ V is

E[W (Ṽ)] =
∑

v,v′∈Ṽ

E[w(vv′)],

where

E[w(vv′)] = µ̄p2quu′qvv′ − ν̄p2(quu′(1 − qvv′) + (1 − quu′)qvv′)
−δ̄(pU (1 − pU ) + pV (1 − pV )) (11)

is the expected weight of an edge in the alignment graph. Moreover, with the sim-
plifying assumption of independence between interactions, we have V ar[W (Ṽ)] =∑

v,v′∈Ṽ V ar[w(vv′)], enabling us to compute the z-score to evaluate the sta-
tistical significance of each discovered high-scoring alignment, under the normal
approximation that we assume to hold.

4.6 Extensions to the Model

Accounting for Experimental Error. PPI networks obtained from high-
throughput screening are prone to errors in terms of both false negatives and
positives [4]. While the proposed framework can be used to detect experimental
errors through cross-species comparison to a certain extent, experimental noise
can also degrade the performance of the alignment algorithm. In other words,
mismatches should be penalized for lost interactions during evolution, not for ex-
perimental false negatives. To account for such errors while analyzing interaction
networks, several methods have been developed to quantify the likelihood of an
interaction or complex co-membership between proteins [29, 30, 31]. Given the
prior probability distribution for protein interactions and set of observed inter-
actions, these methods compute the posterior probability of interactions based
on Bayesian models. Hence, PPI networks can be modeled by weighted graphs
to account for experimental error more accurately.

While the network alignment framework introduced in Section 4.1 assumes
that interactions are represented by unweighted edges, it can be easily general-
ized to a weighted graph model as follows. Assuming that weight �uv represents
the posterior probability of interaction between u and v, we can define match
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score and mismatch penalty in terms of their expected values derived from these
posterior probabilities. Therefore, for any u, u′ ∈ U and v, v′ ∈ V , we have

µ(uu′, vv′) = µ̄S(uu′, vv′)�uu′�vv′ (12)

ν(uu′, vv′) = ν̄S(uu′, vv′)(�uu′(1 − �vv′) + (1 − �uu′)�vv′). (13)

Note that match and mismatch sets are not necessarily disjoint here in con-
trast to the unweighted graph model, which is indeed a special case of this model.

Tuning Model Components and Parameters. Sequence similarity. A more
flexible approach for assessing similarity between proteins is direct employ-
ment of sequence alignment scores. In PathBLAST [32], the similarity between
two proteins is defined as the log-likelihood ratio for homology, i.e., S(u, v) =
log(p(u, v)/p̄), where p(u, v) is the probability of true homology between u and
v given the BLAST E value of their alignment and p̄ is the expected value of
p over all proteins in the PPI networks being aligned. To avoid consideration of
similarities that do not result from orthology, it is necessary to set cut-off values
on the significance of alignments [32, 20].

Shortest-path mismatch model. Since proteins that are linked by a short alter-
native path are more likely to tolerate losing their interaction, mismatch penalty
can be improved using a shortest-path mismatch model, defined as:

ν(uu′, vv′) = ν̄S(uu′, vv′)(max{∆(u, u′),∆(v, v′)} − 1), (14)

where ∆(u, u′) is the length of the shortest path between proteins u and u′. While
this model is likely to improve the alignment algorithm, it is computationally
expensive since it requires solution of the all pairs shortest path problem on both
PPI networks.

Linear duplication model. The alignment graph model enforces each duplicate
pair in an alignment to be penalized. For example, if an alignment contains n
paralogous proteins in one species,

(
n
2

)
duplications are penalized to account for

each duplicate pair. However, in the evolutionary process, each paralogous pro-
tein is the result of a single duplication, i.e., n paralogous proteins are created
in only n− 1 duplications. Therefore, we refer to the current model as quadratic
duplication model, since the number of penalties is a quadratic function of num-
ber of duplications. While this might be desirable as being more restrictive on
duplications, to be more consistent with the underlying biological processes, it
can be replaced by a linear duplication model. In this model, each duplicate
protein is penalized only once, based on its similarity with the paralog that is
most similar to itself.

5 Experimental Results

In this section, we present local alignment results to illustrate the effective-
ness of the proposed framework and the underlying algorithm on interaction
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data retrieved from the DIP protein interaction database [33]. We align the PPI
networks of two mammalians that are available in the database; Homo sapiens
(Hsapi) and Mus musculus (Mmusc). As of October 2004, the Hsapi PPI network
contains 1369 interactions among 1065 proteins while Mmusc PPI network con-
tains 286 interactions among 329 proteins. Running INPARANOID on this set of
1351 proteins, we discover 237 ortholog clusters. Based on the similarity function
induced by these clusters, we construct an alignment graph that consists of 273
nodes and 1233 edges. The alignment graph contains 305 matched interactions,
205 mismatched interactions in Hsapi, 149 mismatched interactions in Mmusc,
536 duplications in Hsapi, and 384 duplications in Mmusc. We then compute
local alignments using the algorithm of Section 4.3 on this graph. By trying
alternate settings for the relative weights of match score and mismatch, dupli-
cation penalties, we identify 54 non-redundant alignments, 15 of which contain
at least 3 proteins on each network. Note that construction of alignment graph
and discovery of local alignments on this graph takes only a few milliseconds.

A conserved subnet of DNA-dependent transcription regulation that is found
to be statistically significant (z-score=18.1) is shown in Figure 5. The subnet
is composed of three major common functional groups, namely transcription
factors and coactivators PO22, PO31, OCT1, TIF2, OBF1, steroid hormone re-
ceptors GCR, ANDR, ESR1, PRGR, GRIP1, THB1, and high mobility proteins
HMG1 and HMG2. Indeed, it is known that HMG1 and HMG2 are co-regulatory
proteins that increase the DNA binding and transcriptional activity of the steroid
hormone class of receptors in mammalian cells [34]. All proteins in this subnet
are localized in nucleus, with mobility proteins particularly localizing in con-
densed chromosome. This subnet contains 17 matching interactions between 15
proteins. Two interactions of TIF2 (transcriptional intermediary factor 2) that
exist in human are missing in mouse. If we increase the relative weight of mis-
match penalties in the alignment score, the alignment does not contain TIF2
any more, providing a perfect match of 16 interactions.

The subnet that is part of transforming growth factor beta receptor sig-
naling pathway, which is significantly conserved (z-score=19.9) in human and
mouse PPI networks is shown in Figure 6. This subnet contains 8 matching

Homo Sapiens

PO22ANDR OCT1PO31GCR HMG2 OBF1ESR1 PRGRCBP GRIP1 HMG1ZAC1 THB1TIF2
Mus Musculus

PO22ANDR OCT1PO31GCR HMG2 OBF1ESR1 PRGRCBP GRIP1 HMG1ZAC1 THB1TIF2

Fig. 5. A conserved subnet that is part of DNA-dependent transcription regulation

in human and mouse PPI networks. Ortholog proteins are vertically aligned. Exist-

ing interactions are shown by solid edges, missing interactions that have an existing

orthologous counterpart in the other species are shown by dotted edges
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Homo Sapiens

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5
Mus Musculus

BMRB AVR2ALK3BMP4 BMRA BMP6 AVR1 AVRB BMP7 GDF5

Fig. 6. A conserved subnet that is part of transforming growth factor beta receptor

signaling pathway in human and mouse PPI networks

Homo Sapiens Mus Musculus

1A02 1B14 1B54 1B51 1B21 HLAB

B2MG

HLAE HA1B HA12 HA11

B2MG

Fig. 7. A conserved subnet that is part of antigen presentation and antigen processing

in human and mouse PPI networks. Homologous proteins are horizontally aligned.

Paralogous proteins in a species are shown from left to right in the order of confidence

in being orthologous to the respective proteins in the other species

interactions among 10 proteins. It is composed of two separate subnets that
are connected through the interaction of their hubs, namely BMP6 (bone mor-
phogenetic protein 6 precursor) and BMRB (activin receptor-like kinase 6 pre-
cursor). All proteins in this subnet have the common function of transforming
growth factor beta receptor activity and are localized in the membrane. Note
that self-interactions of three proteins in this subnet that exist in human PPI
network are missing in mouse and one self-interaction that exists in mouse is
missing in human.

As an example for duplications, a subnet that is part of antigen presenta-
tion and antigen processing, which is significantly conserved (z-score=456.5) in
human and mouse PPI networks is shown in Figure 7. This subnet is a star net-
work of several paralogous class I histocompatibility antigens interacting with
B2MG (beta-2 microglobulin precursor) in both species. In the figure, paralo-
gous proteins are displayed in order of confidence in being orthologous to the
corresponding proteins in the other species from top to bottom. This star net-
work is associated with MHC class I receptor activity. Since all proteins that are
involved in these interactions are homologous, we can speculate that all these
interactions have evolved from a single common interaction. Note that such pat-
terns are found only with the help of the duplication concept in the alignment
model. Neither a pathway alignment algorithm, nor an algorithm that tries to
match each protein with exactly one ortholog in the other species will be able to
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detect such conserved patterns. Indeed, this subnet can only be discovered when
the duplication coefficient is small (δ̄ ≤ 0.12µ̄).

6 Concluding Remarks and Ongoing Work

This paper presents a framework for local alignment of protein interaction net-
works that is guided by theoretical models of evolution of these networks. The
model is based on discovering sets of proteins that induce conserved subnets with
the expectation that these proteins will constitute a part of protein complexes or
functional models, which are expected to be conserved together. A preliminary
implementation of the proposed algorithm reveals that this framework is quite
successful in uncovering conserved substructures in protein interaction data.

We are currently working on a comprehensive implementation of the pro-
posed framework that allows adaptation of several models for assessing protein
similarities and scoring/penalizing matches, mismatches and duplications. Fur-
thermore, we are working on a rigorous analysis of distribution of the alignment
score, which will enable more reliable assessment of statistical significance. Once
these enhancements are completed, the proposed framework will be established
as a tool for pairwise alignment of PPI networks, that will be publicly available
through a web interface. The framework will also be generalized to the search of
input queries in the form of subnets in a database of PPI networks. Using this
tool researchers will be able to find conserved counterparts of newly discovered
complexes or modules in several species.
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