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Many empirical networks are intrinsically polyadic, with interactions occurring within groups of agents of
arbitrary size. There are, however, few flexible null models that can support statistical inference in polyadic
networks. We define a class of null random hypergraphs that hold constant both the node degree and edge
dimension sequences, thereby generalizing the classical dyadic configuration model. We provide a Markov
Chain Monte Carlo scheme for sampling from these models and discuss connections and distinctions
between our proposed models and previous approaches. We then illustrate the application of these models
through a triplet of data-analytic vignettes. We start with two classical topics in network science—triadic
clustering and degree-assortativity. In each, we emphasize the importance of randomizing over hypergraph
space rather than projected graph space, showing that this choice can dramatically alter both the quantitative
and qualitative outcomes of statistical inference. We then define and study the edge intersection profile of a
hypergraph as a measure of higher-order correlation between edges, and derive asymptotic approximations
for this profile under the stub-labeled null. We close with suggestions for multiple avenues of future
work. Taken as a whole, our experiments emphasize the ability of explicit, statistically grounded polyadic
modelling to significantly enhance the toolbox of network data science.

1. Introduction

Graphs provide parsimonious mathematical descriptions of systems in which agents, represented by
nodes, partake in dyadic relationships, represented by edges. When analysing a graph derived from
empirical data, a common task is to compare an observable of interest to its distribution under a suitably
specified null model. The outcomes of comparisons often depend strongly on the choice of, and careful
consideration by the analyst is therefore required. A widely used ‘default’ is the class of configuration
models [1–4]. Configuration models preserve the graph’s degree sequence, which counts the number of
edges incident to each node. These counts are natural first-order statistics of the graph, which are known
to constrain many macroscopic graph properties [5]. Preserving these counts gives a natural null model
constraint: properties observed in data that are not present in a configuration model require explanation
in terms of higher-order graph structures.

In many systems of contemporary interest, groups of arbitrary size may interact simultaneously. Social
contact networks may record gatherings of groups of arbitrary size [6, 7]. Collaboration networks log
papers or projects in which many have participated [8–11]. Digital communications may be sent to many
receivers simultaneously [12]. Arbitrary numbers of classifiers—ranging from patent categories [13] to
online tags [14]—can be used to describe objects. In the past decades, the dominant approach to these
systems has been to represent these networks dyadically, allowing the analyst to apply standard techniques
of dyadic network science, including the configuration model. Recent work, however, has highlighted
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2 P. S. CHODROW

limitations of the dyadic paradigm in modelling of polyadic systems, in theory [15] and in application
domains including neuroscience [16], ecology [17], computational social science [18, 19] among others
[14]. Scholarly collaboration networks illustrate one of these limitations. Suppose that A, B and C are
collaborators in the same field. A three-author paper by A, B and C can be represented by a polyadic edge
of the form e = (A, B, C). The standard dyadic projection enumerates all pairwise relationships contained
in this single interaction, generating the three edges e1 = (A, B), e2 = (B, C) and e3 = (A, C). This is
exactly the same representation as would be obtained if each pair of authors wrote a two-author paper.
The same dyadic representation thus fails to distinguish a world containing one three-author paper from
a world containing three two-author papers. These worlds differ in the number of papers produced; the
inferred productivity of the scholars; and likely in the content of the papers as well, since author lists are
strong indicators of subject matter. In cases where these differences are relevant to our study questions,
we can expect the dyadic projection to yield misleading results.

Because of these limitations, it is desirable to construct random models for polyadic data that inherit
the useful properties of the dyadic configuration model. In this article, we construct two such models and
demonstrate their utility for polyadic network data science. Along the way, we argue for two principle
theses. First, the choice between dyadic and polyadic null models can determine the qualitative findings
of standard network analyses. Second, the use of polyadic nulls allows the analyst to measure and test
novel, rich measures of polyadic structure, thereby expanding the network-scientific toolbox.

Outline

We begin in Section 2 with a survey of the landscape of null models for relational data, including the
dyadic configuration model, random hypergraphs, and random simplicial complexes. In Section 3, we
define stub- and vertex-labeled configuration models of random hypergraphs. Practical application of
these models requires a sampling scheme, which we provide in Section 4. We then turn to a triplet of
illustrative applications in Section 5. We first consider triadic closure, showing that benchmarking against
hypergraph nulls can distinguish between different generative mechanisms in polyadic social networks.
We then turn to degree-assortativity, where hypergraph data representations allow us to define and test
multiple assortativity coefficients, each of which captures a qualitatively different form of intra-edge
degree correlation. Finally, we introduce a novel measure of correlation between polyadic edges, which
can be tested against either the full configuration model or analytic approximations. We close in Section 6
with a summary of our findings and suggestions for future development.

2. Graphs, hypergraphs and simplicial complexes

Random graph null modelling has a rich history; see [3] for a review. In this section, we take a rapid
tour through some of the most important results in configuration-type models for graphs and their
generalizations. We begin with a brief review of the configuration model for dyadic graphs.

Definition 1. (Graph). A graph G = (V , E) consists of a set V of nodes or vertices and a multiset E.
An element of E is an unordered pair e = (u, v) of nodes, also called an edge. We assume that both sets V
and E are endowed with an (arbitrary) order. An edge of the form (u, u) is called a self-loop. Two distinct
edges e1 and e2 are parallel if they are equal as sets. We denote by G� the set of all graphs on n nodes,
and by G ⊂ G� the set of graphs on n nodes without self-loops.
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CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 3

While it is indeed possible to define configuration models on G� [3, 20], we do not do so here. We
rule-out self-loops because (a) their presence considerably complicates sampling algorithms and (b) most
polyadic data sets do not possess a meaningful notion of self-interaction. We will therefore present most
of our results for elements of G and its generalization to hypergraphs, only discussing G� below in the
context of certain technical issues.

Let n = |V | and m = |E| be fixed and finite. Let I be the indicator function of its argument.

Definition 2. (Degree sequence). The degree sequence d = deg(G) of a graph G = (V , E) is the vector
d ∈ Z

n defined componentwise as

dv =
∑
e∈E

I(v ∈ e). (1)

A configuration model is a probability distribution on the set Gd = {G ∈ G : deg(G) = d} of graphs
with degree sequence d. There are two closely related model variants which should be distinguished
[3]. On its first introduction [2], the configuration model was defined mechanistically through a ‘stub-
matching’ algorithm. To perform stub-matching, we place dv labeled half-edges (or ‘stubs’) into an urn
for each node v. We draw half-edges two at a time, with each draw producing an edge. The result of this
process is a set of pairs of half-edges: a stub-labeled graph.

Definition 3. (Stub-labeled graphs). For a fixed node set V and degree sequence d, define the multiset

�d =
⊎
v∈V

{
v1, . . . , vdv

}
,

where � denotes multiset union. The copies v1, . . . , vdv are called stubs of node v. A stub-labeled graph
S = (V , E) consists of the node set V and an edge set E which partitions �d into unordered pairs. Each
element of E has the form (ui, vj) for some nodes u and v and stub indices i and j. An edge of the form
(vi, vj) is called a self-loop. Let S� be the set of stub-labeled graphs, and S ⊂ S� the set of stub-labeled
graphs without self-loops.

Technically speaking, one should remember that the set S� of stub-labeled graphs is not a subset of
the set G� of graphs, since the objects in the edge set are of different logical types. The same is true of the
sets S and G. These technical considerations will also apply when we generalize to hypergraphs below
but will not present any major practical issues.

There is a natural surjection g : S� → G�. If S ∈ S�, g(S) ∈ G� is the graph obtained by erasing
the stub-labels: each stub vi in S is recorded as an unlabeled copy of v in g(S). The stub-labeled graph
S and graph g(S) are topologically identical, differing only in the presence of stub-labels in S. We use
the notation A = g−1(G) to refer to the preimage A ⊆ S of G ⊆ G by g. We emphasize that g is not a
bijection, and the symbol g−1 should not be interpreted as an inverse of g. We define S�

d to be g−1
(G�

d

)
.

Note that an edge ẽ ∈ S is a self-loop if and only if its image e ∈ g(S) is. It follows that S = g−1 (G). It
is therefore natural to define Sd = g−1(Gd).

Definition 4. (Vertex-labeled dyadic configuration model [3]). The vertex-labeled configuration model
with degree sequence d is the uniform distribution ηd on Gd.
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4 P. S. CHODROW

Definition 5. (Stub-labeled dyadic configuration model [3]). Let λd be the uniform distribution on Sd.
The stub-labeled configuration model with degree sequence d is the distribution μd = λd ◦ g−1.

Here and below, the binary operator ◦ denotes composition of functions: (λd ◦g−1)(G) = λd(g−1(G)). As
originally defined by the authors of [3], the stub-labeled configuration model is the uniform distribution
λd over the space of stub-labeled graphs. We find it somewhat more natural to define the stub-labeled
model as the pushforward μd of that distribution to the space of (non-stub-labeled) graphs, which enables
clearer reasoning about comparisons to the vertex-labeled model.

Intuitively, the vertex-labeled configuration model assigns the same probability to each graph with
degree sequence d, while the stub-labeled model weights these graphs according to their likelihood
of being realized via stub-matching. One of the key insights of [2], since generalized by works such
as [4, 21], is that these two models are related. Let Gsimple be the set of simple graphs, which contain
neither self-loops nor parallel edges. Then, a small amount of algebra is sufficient to show that μd(G|G ∈
Gsimple) = ηd(G|G ∈ Gsimple). Furthermore, when the degree sequence is sampled from a fixed distribution
with finite second moment, μd(G ∈ Gsimple) is bounded away from zero as n grows large (see e.g. [21]).
This implies that repeated sampling from μd will produce a simple graph in a number of repetitions that
is asymptotically constant with respect to n. As a result, in the ‘large, sparse regime,’ it is possible to
sample from the stub-labeled configuration model until a simple graph is obtained, which will then be
distributed according to the vertex-labeled model. This relationship is extremely convenient, enabling
asymptotic analytic expressions for many quantities of theoretical and practical interest [5].

This close relationship between models is likely the reason why the distinction between them has
often been elided in applied network science. Recently, however, the authors of [3] pointed out that, in
many data sets, these two models are not interchangeable. It is important to distinguish them when the
data may possess multi-edges or self-loops and when the number of edges m = |E| is high relative to
the number of nodes n. The first condition is important because stub- and vertex-labeled models agree
only on the subspace of simple graphs, not the full space of multigraphs. When we wish to study data
represented by non-simple graphs, the convenient equivalence described above no longer applies. The
second condition locates us away from the large, sparse regime and implies that parallel edges will occur
under stub-matching with high probability. In this case, though equivalence between models is formally
preserved, an impractical number of repetitions of stub-matching may be required to produce a simple
graph. These considerations motivate the authors’ development of dedicated Monte Carlo schemes for
sampling from both vertex- and stub-labeled configuration models.

From a modelling perspective, the choice of vertex- or stub-labeling must depend on domain-specific
reasoning about counterfactual comparisons. Roughly, stub-labeling should be used when, for a fixed
graph G ∈ G, the elements of the set g−1(G) ⊂ S have distinct identities in the context of the application
domain. This corresponds to asking whether permutations of stubs lead to meaningfully different coun-
terfactual data sets. In contrast, when stub-permutations are either non-sensical or are considered to leave
the observed data unchanged, vertex-labeling is to be preferred. For example, in [3], the authors argue
that vertex-labeled nulls are most appropriate for studying a collaboration network of computational
geometers. Their reason is that stubs in this case correspond to an author’s participation in a paper. It is
nonsensical to say that A’s first collaboration with B is B’s second collaboration with A, and therefore
stub-labeling is inappropriate.

2.1 Beyond graphs

Configuration models and their variants have played a fundamental role in the development of modern
network science. The seminal paper by Molloy and Reed [22] has, according to Google Scholar, been
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CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 5

Fig. 1. A synthetic coauthorship network with n = 9 nodes. On the left, the network represented as a hypergraph with 3 hyperedges.
On the right, the projected graph with 17 dyadic edges.

cited at least 2,000 times since its publication, and over 800 times since 2015. How can we extend these
extremely useful models for application to polyadic data sets? A direct approach, taken in early studies
such as [10], is to compute the projected (dyadic) graph. The projected graph represents each k-adic
interaction as a k-clique, which contains an edge between each of the possible

(k
2

) = n(n−1)

2 pairs of
nodes (Fig. 1). The resulting dyadic graph may then be randomized according to vertex- or stub-labeled
dyadic configuration models. Projecting, however, can have unintended and occasionally counterintuitive
consequences. First and most clearly, all properties which depend explicitly on the presence of higher-
dimensional interactions are lost. Second, other observables such as node degrees and edge multiplicities
may be transformed in undesirable ways; for example, a single interaction between six agents becomes
15 pairwise interactions after projection. As consequence, each of the six agents involved in a single
6-adic interaction are dyadically represented as nodes of degree 5. Third, and most subtly, projecting
transforms the null space for downstream hypothesis testing in ways that may not be intended. For
example, projecting the network in Fig. 1 prior to randomization implicitly chooses a null space of
counterfactuals consisting of 17 dyadic interactions. This may be undesirable, especially when the null is
viewed as a candidate data generating process. Given that the data possesses higher-order interactions, a
null model that is by construction unable to produce such interactions may be implausible as a generator
of relevant counterfactuals.

2.2 Random hypergraphs

Considerations such as these motivate the development of dedicated random null models for polyadic
data. Such models enable the analyst to delay or omit dyadic projection when conducting null hypothesis
testing. We now make a brief survey of efforts to define configuration-type models for polyadic data.
Hypergraphs provide the most general data structure for such models.

Definition 6. (Hypergraph). A hypergraph H = (V , E) consists of a node set V and an edge set E =
{�j}mj=1 which is a multiset of multisets of V . Each subset is called a hyperedge, edge, or, in some contexts,
a simplex. Two hyperedges are parallel if they are equal as multisets. A hyperedge is degenerate if it
contains two copies of the same node. Let H� be the set of all hypergraphs and H the set of all hypergraphs
without degenerate edges.

Hypergraphs are straightforward generalizations of graphs in which each edge is permitted to have an
arbitrary number of nodes. Degenerate hyperedges generalize the notion of self-loops in dyadic graphs.
As before, parallel edges are permitted in H. We continue to let n = |V | and m = |E|. The definition of
d in (1) remains unchanged.

Extant literature provides several approaches to defining null distributions on hypergraphs. One of
the earliest approaches takes a somewhat indirect route through bipartite graphs [5]. A bipartite graph
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6 P. S. CHODROW

contains nodes of two classes, with connections permitted only between nodes of differing classes. To
construct a bipartite graph B from a hypergraph H, one constructs a class of nodes in B corresponding to
the nodes V of H , and a second class of nodes in B corresponding to the edges E of H. A node v is linked
to an edge-node e iff v ∈ e in H. We can now apply dyadic configuration models to randomize B, before
recovering a hypergraph by projecting B onto its node layer. This approach is natural and convenient, but
as we will discuss in Section 4 can be limiting in terms of the types of hypergraph nulls from which we
can conveniently sample.

A more direct approach is to define a null distribution directly over H. In [23], the authors define
an analog of the stub-labeled configuration model over the set of hypergraphs in which all edges have
three nodes, in the service of studying a tripartite tagging network on an online platform. Somewhat
more general models have been formulated for the purposes of community detection in hypergraphs
via modularity maximization, which requires the specification of a suitable null. In [24], the authors
develop a degree-preserving randomization via a ‘corrected adjacency matrix’, which may then be
used for modularity maximization on the projected dyadic graph. In [25], the authors explicitly gen-
eralize the model of Chung and Lu [26], which preserves degrees in expectation, to non-uniform
hypergraphs.

One subspecies of hypergraph has received additional attention. A simplicial complex is a hyper-
graph with additional structure imposed by a subset-inclusion relation: if edge � ∈ E, then, for any
subset � ⊆ �, � ∈ E. Simplicial complexes are attractive tools when studying topological aspects of
discrete data [27], since the inclusion condition enables often-dramatic data compression while preserv-
ing topological features of interest. Configuration models of simplicial complexes provide one route for
conducting null hypothesis tests of such features. The model of [28] achieves analytic tractability by
restricting to simplicial complexes with maximal hyperedges of uniform dimension. The authors [29]
allow heterogeneous dimensions but sacrifice analytic tractability, instead applying Markov Chain Monte
Carlo to sample from the space. In applying any model based on simplicial complexes, it is important to
remember that subset inclusion is strong property suited only to certain data-scientific contexts. Particular
problems arise when edges possess the semantics of interaction, as in collaboration networks. Suppose
that authors A, B and C jointly coauthor a paper. Using hypergraphs, we would represent this collabo-
ration via an edge (A, B, C). In the setting of simplicial complexes, on the other hand, subset inclusion
would also require us to include the edges (A, B), (B, C), (A, C), (A), (B) and (C). This poses a similar
issue to that of the dyadic projection described above: we are not guaranteed that B and C, say, wrote
a two-author paper. While simplicial complex modelling may be useful in carefully selected applica-
tion areas, in other cases we may require more flexible configuration models defined on more general
hypergraphs.

3. Two hypergraph configuration models

We now construct two configuration models for general hypergraphs. Our models generalize the vertex-
and stub-labeled dyadic configuration models of [3] reviewed in the previous section.

Throughout this section, H denotes a fixed hypergraph. We use Greek characters to denote edges of
a hypergraph H and English characters to denote tuples of nodes. For example, the statement � = R
describes the event that an edge � of H has fixed location R = (u1, u2, u3, . . .). When R is a set,

(R
�

)
will denote the set of all subsets of R of size �. When k is a scalar,

(k
�

)
will denote the standard binomial

coefficient. The identity
∣∣(R

�

)∣∣ = (|R|
�

)
relates these two notational uses. Let I give the indicator function

of its argument.
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CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 7

Definition 7. (Degree and dimension sequences). The degree sequence d ∈ Z
n
+ and dimension sequence

k ∈ Z
m
+ of a hypergraph H are defined componentwise as

dv =
∑
e∈E

I(v ∈ e) and ke =
∑
v∈V

I(v ∈ e) .

Let H�
d,k and Hd,k denote the sets of hypergraphs with the specified degree and edge dimension

sequences with and without degenerate hyperedges, respectively. We say that the sequences d and k are
configurable if Hd,k �= ∅. A criterion for configurability in terms of the majorization of vectors appears
to have been obtained independently in early work by Gale and Ryser [30, 31].

Definition 8. (Vertex-labeled hypergraph configuration model). The vertex-labeled configuration
model ηd,k is the uniform distribution on Hd,k.

The stub-labeled configuration model is defined similarly to the dyadic case.

Definition 9. (Stub-labeled hypergraphs). Let

� =
⊎
v∈N

{
v1, . . . , vdv

}

be a multiset of stubs. For each v, dv copies of v appear in �. A stub-labeled hypergraph S has as its edge
set E a partition of �.

The map g extends naturally to the space of hypergraphs. Let S be the set of stub-labeled hypergraphs.
Then, if S ∈ S, H = g(S) ∈ H is the hypergraph obtained by erasing stub-labels: each stub vi in S is
recorded as an unlabeled copy of v in g(S). Define Sd,k = g−1(Hd,k)

Definition 10. (Stub-labeled hypergraph configuration model). Let λd,k be the uniform distribution on
Sd,k. Then, the stub-labeled configuration model is the distribution μd,k = λd,k ◦ g−1.

We have now defined two hypergraph configuration models, generalizing the vertex- and stub-labeled
models of [3]. The vertex-labeled configuration model is the entropy-maximizing distribution on Hd,k

in the case that the identities of stubs are not meaningful, while the stub-labeled configuration model
is the entropy-maximizing distribution when these identities are meaningful. The same considerations
discussed in [3] (and briefly in the previous section) apply to the question of when to use which null
model.

Figure 2 illustrates some of the considerations in play. At left, we show two stub-labeled hypergraphs
S1 and S2, depicted as bipartite graphs. Circles represent nodes, while squares represent edges. The
associated hypergraph is H = g(S1) = g(S2) = {(u, v, w), (u, v, w)}, which contains two parallel edges of
dimension 3. The stub-labelling is reflected as labels on the bipartite edges. The stub-labeled configuration
model treats each of S1 and S2 as distinct objects in sample space, while the vertex-labeled model treats
them as alternative representations of the same object. Because of this, stub-labelling should generally
only be chosen when the distinct arrangements of stubs can be given valid interpretations in domain
context. As the authors of [3] note, such cases are rare, and vertex-labelling is usually to be preferred.
Figure 2 also provides a flow chart that illustrates the kind of reasoning that can be used when selecting
between these models, using the stub-labeled hypergraphs S1 and S2 as guides.
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8 P. S. CHODROW

Fig. 2. Choosing between stub- and vertex-labeled models. (Left): Bipartite representations of two stub-labeled hypergraphs S1
and S2 which correspond to the same hypergraph: g(S1) = g(S2). The squares e and f denote edges; circles u, v and w denote
nodes, and an edge (u, e) denotes that u ∈ e. (Right): A schematic flow chart for choosing stub- or vertex-labeled randomization
depending on the interpretation of S1 and S2 in domain context.

4. Sampling

Stub-matching is a classical method for sampling from the stub-labeled dyadic configuration model [2],
and extends naturally to the case of random hypergraphs.

Algorithm 1: Hypergraph stub-matching
Input: Configurable d ∈ Z

n
+ and k ∈ Z

m
+.

Initialization: j← 1, S← ∅, �←⊎
v∈V

{
v1, . . . , vdv

}
for j = 1, . . . , m do

R← Uniform
(
�

kj

)
�← � \ R
S← S ∪ {R}

end
Output: S

Since any stub-labeled graph S is as likely as any other under Algorithm 1, the output, conditioned on
non-degeneracy, is distributed according to μd,k. As in the dyadic setting, there is non-zero probability
for the output of stub-matching to produce a degenerate hypergraph. This probability will generally be
large in the presence of highly heterogeneous node degrees—a common phenomenon in empirical data.
Many iterations of Algorithm 1 may therefore be necessary in order to generate a single valid sample.
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CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 9

Because of this, pure stub-matching is often not a practical method for generating random hypergraphs.
Stub-matching nevertheless will be helpful in our development, as we will appeal to it for several proofs
involving μd,k.

We consider a Markov Chain Monte Carlo (MCMC) approach to sampling, in which we use successive,
small alterations to the edge set E in order to systematically explore the space Hd,k. Our scheme extends
to hypergraphs the broad class of edge-swap MCMC samplers, which have also been formulated for
marginal-constrained binary matrices [32, 33]; degree-regular [34–36] and degree-heterogeneous [37–
40] simple graphs; degree-constrained graphs [3]; bipartite graphs with degree constraints [41] and graphs
with prescribed degree correlations [42].

It is most convenient to work in the space Sd,k of stub-labeled hypergraphs. Recall that λd,k is the
uniform distribution on this space.

Definition 11. (Pairwise reshuffle). Let S ∈ Sd,k, and �, � ∈ S. A pairwise reshuffle b(�, �|S) of �

and � is a sample from the conditional distribution μ(·|E \ {�, �}).

Depending on context, we will regard a pairwise reshuffle as either a random map on stub-labeled
hypergraphs or on pairs of hyperedges. To illustrate, there are

(5
3

) = 10 pairwise reshuffles of edges
e1 = (u, v) and e2 = (x, y, z), of which two are {(u, x, z), (v, w)} and {(x, y), (u, v, z)}.

Lemma 1. Let S ∈ S. Let b(�, �|H) = (�′, �′) be a pairwise reshuffle which results in S′ ∈ S. Then,

(1) The degree and dimension sequences are preserved: deg(S) = deg(S′) and dim(S) = dim(S′).

(2) The intersection of � and � is preserved: �′ ∩ �′ = � ∩ �.

(3) Any given realization of b occurs with probability

qμ(�, �) = 2−|�∩�|
(|�| + |�| − 2 |� ∩ �|

|�| − |� ∩ �|
)−1

. (2)

Proof. A pairwise reshuffle may be performed via the following sequence, which is an alternative
description of the final two iterations, conditioned on non-degeneracy, of stub-matching (Algorithm 1).

(1) Delete � and � from E.

(2) Construct �′ and �′ as (initially empty) node sets.

(3) For each node v ∈ � ∩ �, add a v-stub to both �′ and �′.

(4) From the remaining stubs, select |� \ �| stubs uniformly at random and add them to �′. Add the
remainder to �′.

(5) Add �′ and �′ to E.

Each node begins with the same number of edges as it started, so degrees are preserved. Next, by
construction, |�′| = |� ∩ �| + |� \ �| = |�|, and similarly |�′| = |�|. The edge dimension sequence
is thus also preserved.

Finally, by construction, step 2 above preserves the intersection �∩�. There are 2|�∩�| ways to assign
stubs to this intersection. There are a total of |�| + |�| − 2 |� ∩ �| remaining stubs, and of these one
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10 P. S. CHODROW

must choose |�| − |� ∩ �| to be placed in �. We infer that any given pairwise reshuffle is realized with
probability given by (2), as was to be shown. �

We now define the transition kernel of a first-order Markov chain on the space Sd,k. Write S ∼�,� S′

if there exists a pairwise shuffle b such that b(�, �|S) = S′. Note that, since each element of each edge
has a distinct label in Sd,k, for any S and S′ there is at most one pair (�, �) such that S ∼�,� S′. If no such
pair exists, we write S �∼ S′. Then, let

p̃μ(S′|S) =
{(m

2

)−1
qμ(�, �) S ∼�,� S′

0 S �∼ S′ ,
(3)

with qμ(�, �) as defined in (2). To sample from p̃μ(·|S), it suffices to sample two uniformly random

edges from E and perform a reshuffle. The prefactor
(m

2

)−1
gives the probability that any two given edges

are chosen.
The sequence {St} is Markovian by construction. The following lemma and its corollary ensure that

the sequence {Ht} = {g(St)} is also a Markov chain.

Lemma 2. Let H , H ′ ∈ H. Suppose that S1, S2 ∈ g−1(H) and S′1, S′2 ∈ g−1(H ′). Then, p̃μ(S′1|S1) =
p̃μ(S′2|S2) .

Proof. The objects S1 and S2 may each be considered arbitrary stub-labellings of part-edges in H. Simi-
larly, S′1 and S′2 are each arbitrary labellings of part-edges in H ′. However, by (3), p̃μ(·|S) depends only
on the sizes of edges and their intersections in H, not their labels. �

Corollary 1. The process {Ht} = {g(St)} on Hd,k is a Markov chain.

Proof. Indeed, we can construct Ht mechanistically from Ht−1 by choosing St−1 ∈ g−1(Ht−1), setting
St ∼ p̃μ(·|St−1), and then letting Ht = g(St−1). Lemma 2 ensures that the distribution of Ht depends only
on Ht−1, and not on the choices of St−1 and St . �

Theorem 1. The Markov chain {St} on Sd,k defined by the kernel p̃μ is irreducible and reversible with
respect to λd,k, the uniform distribution on Sd,k. If in addition at least two entries of k are two or larger,
{St} is also aperiodic. In this case, λd,k is the equilibrium distribution of {St}. Furthermore, μd,k is the
equilibrium distribution of the process {Ht} = {g(St)}.

Proof. We will first show reversibility with respect to λd,k. Fix S. Let S ∼�,� S′ and S′ ∼�′ ,�′ S. In this
case, we have �′, �′ = b(�, �|S). Then,

p̃μ(S′|S) =
(

m

2

)−1

qμ(�, �) =
(

m

2

)−1

qμ(�′, �′) = p̃μ(S|S′) ,

as required. The second equality follows from Lemma 1, since q(�, �) depends only on |�|, |�|, and
|� ∩ �|, all of which are preserved by reshuffles.

Our proof approach for irreducibility generalizes that of [3]. We need to construct a path of non-zero
probability between two arbitrary elements S1 and S2 of Sd,k. Let E1 and E2 be the edge-sets of S1 and
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CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 11

S2, respectively. We first describe a procedure for generating a new stub-labeled hypergraph S3 such that
|E2 \ E3| < |E2 \ E1|. Since E1 �= E2 and |E1| = |E2|, we may pick � = {δ1, . . . , δ�} ∈ E2 \ E1. Since
� /∈ E1 and the edge dimension sequences must agree, there exists an edge 	 ∈ E1 \ E2 such that
|	| = |�| = �. Now, for each i, since � /∈ E1, δi belongs to a different edge (call it �i) in E1. Note that
we may have �i = �i′ for some i′ �= i in case δi and δi′ belong to the same hyperedge in E1. Suppose
we have j ≤ � such edges. Since δi is a stub, δi can belong to only one edge in each hypergraph, and
therefore �k /∈ E2 for each k = 1, . . . , j. For each k = 1, . . . , j, let

(
	k , �′k

) = bk(	k−1, �k), where bk

assigns all elements of the set � ∩ (	k−1 ∪ �k−1) to 	k and uniformly distributes the remainder. Since

� ⊆
(⋃j

k=1 �k

)
by construction, by the end of this procedure we have 	j = �. Call the resulting

stub-labeled hypergraph S3 with edge set E3. Since we have only modified the edges {�k} and 	, which
are elements of E1 \E2, we have not added any edges to the set E1 \E2, but we have removed one, namely
	. We therefore have |E2 \ E3| < |E2 \ E1|, as desired. Applying this procedure inductively, we obtain a
path of non-zero probability between S1 and S2, proving irreducibility.

To prove aperiodicity, we will construct supported cycles of length 2 and 3 in S. Since the lengths
of these cycles are relatively prime, aperiodicity will follow. To construct a cycle of length 2, pick two
edges � and � and any valid reshuffle b : (�, �) �→ (�′, �′). Then, b−1 : (�′, �′) �→ (�, �) is also a
valid reshuffle, and the sequence (b, b−1) of transitions constitutes a supported cycle through S of length
2. To construct a cycle of length 3, choose two edges � and � which each contain two or more nodes,
writing � = {δ1, δ2, . . .} and � = {γ1, γ2, . . .}. This is always possible by hypothesis. Then, the following
sequence of pairwise reshuffles constitutes a cycle of length 3:

{δ1, δ2, . . .}, {γ1, γ2, . . .} �→ {γ1, δ2, . . .}, {δ1, γ2, . . .}
�→ {γ2, δ2, . . .}, {δ1, γ1, . . .}
�→ {δ1, δ2, . . .}, {γ1, γ2, . . .} .

We have shown reversibility, irreducibility and aperiodicity, completing the proof. �

A small modification enables sampling from the vertex-labeled model ηd,k. Let m� give the number
of edges parallel to edge � in hypergraph H, including � itself. Define an acceptance rate

aη(S
′|S) =

{
2|�∩�|
m�m�

S ∼�,� S′

0 otherwise.
(4)

Theorem 2. Let p̃η(S′|S) = a(S′|S)p̃μ(S′|S). Let {St} be the Markov chain generated by p̃η. Then, the
process {Ht} = {g(St)} is a Markov chain. Furthermore, {Ht} is irreducible and reversible with respect
to ηd,k. If in addition k has at least two entries larger than 2, {Ht} is aperiodic. In this case, ηd,k is the
equilibrium distribution of {Ht}.

Proof. Markovianity of {Ht} follows from the same argument as Corollary 1. Irreducibility and aperiod-
icity follow from Theorem 1, since the state space H is a partition of S into equivalence classes induced
by g. It remains to demonstrate reversibility with respect to ηd,k. Let pη be the transition kernel of Ht . Fix
H and H ′. Fix S ∈ g−1(H) and S∗ ∈ g−1(H ′). Then, we can write
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12 P. S. CHODROW

pη(H
′|H) =

∑
S′∈g−1(H ′)

p̃η(S
′|S) =

∑
S′∈g−1(H ′)

a(S′|S)p̃μ(S′|S) = a(S∗|S)
∑

S′∈g−1(H ′)
p̃μ(S′|S).

The expressions appearing in this calculation are independent of the specific choices of S or S∗ following
the same argument as in the proof of Lemma 2. We now evaluate the sum in the third line. The summand
is nonzero if and only if S ∼�,� S′, in which case its value depends only on |�|, |�| and |� ∩ �|. We
therefore count terms. There are 2|�∩�| ways to arrange the intersection of � and � in S, and m�m�

ways to choose two edges parallel to � and � to reshuffle, all of which generate a distinct element of
g−1(H ′). The sum therefore possesses precisely a(S∗|S)−1 terms. We find that pη(H ′|H) = p̃μ(S′|S) for
any S ∈ g−1(H) and S′ ∈ g−1(H ′). Reversibility of pη thus follows from reversibility of p̃μ. �

Since the value of aη(S′|S) does not depend on the specific choices of S′ and S, only H ′ and H, we can
equivalently write aη(H ′|H). For notational convenience, define an acceptance rate for the stub-labeled
model, aμ(H ′|H) = 1 for all S and S′. Algorithm 2 supplies pseudocode for sampling from the stub- and
vertex-labeled hypergraph configuration models.

Algorithm 2: Markov Chain Monte Carlo for hypergraph configuration models
Input: degree sequence d, edge dimension sequence k, target distribution ν ∈ {μd,k, ηd,k}, initial

hypergraph H0 ∈ Hd,k, sample interval h ∈ Z+, desired sample size s ∈ Z+.
Initialization: t← 0, H ← H0

for t = 1, 2, . . . , sh do
sample (�, �) uniformly at random from

(Et
2

)
H ′ = b(�, �|Ht)

if Uniform([0, 1]) ≤ aν(H ′|H) then
Ht+1 ← H ′ // accept transition

else
Ht+1 ← Ht // reject transition

end
end
Output: {Ht such that t|h}

Theorem 1 and 2 constitute a guarantee that, for sufficiently large sample intervals h, the hypergraphs
sampled from Algorithm 2 will be asymptotically independent and asymptotically distributed according
to the desired distribution. Unfortunately, we are unaware of any mixing-time bounds for this class of
Markov chain. It is therefore possible in principle that the scaling in the mixing time as a function of
system size is extremely poor, a result suggested by work on related classes of edge-swap Markov chains
[43–45]. Our experience indicates, however, that sampling is possible for configuration models with
many thousands of edges in practical time. For example, the email-enron data used here contains
10, 887 edges. In the implemented code, it is possible to take 105 steps of stub-labeled MCMC in under 4
seconds on a single core of the author’s personal laptop, and of vertex-labeled MCMC in under 30. The
significantly larger timing for vertex-labeled MCMC is due (a) the computational cost of computing the
acceptance probability and (b) the corresponding reduction in the number of successful transitions per
loop of Algorithm 2. In addition to potential software optimizations, sampling tasks can usually also be
parallelized, leading to shorter compute times when required.
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CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 13

4.1 Connections to random bipartite graphs

As briefly mentioned in Section 2, a hypergraph H = (V , E) corresponds in a natural way to a bipartite
dyadic graph B. The graph B consists of a node set V ∪E. An edge (u, e) exists between u ∈ V and e ∈ E
iff u ∈ e (in H). In this setting, the degree of u (in H) is equal to its degree in B, and the dimension of
e (in H) is similarly equal to its degree in B. Let h be the function that assigns to each hypergraph its
associated bipartite graph. When both nodes and edges are uniquely labeled, h is a bijection. It follows
that a probability measure ν on the space Bd,k of bipartite graphs with node degrees d and k induces a
probability measure ν ◦ h−1 on Hd,k. Several extant papers (e.g. [5, 46]) use this equivalence to construct
random models of polyadic data. While it is sometimes thought that bipartite randomization supplies
a complete solution to null hypergraph sampling, we show in this section that the natural scope of the
bipartite method is limited to stub-labeled models.

We first define a bipartite, dyadic, configuration model. Let νd,k be the measure on Bd,k obtained by
performing stub-matching with the node-set V ∪ E, conditioned on the events that (a) all edges have
the form (u, e) for u ∈ V and e ∈ E, and (b) the bipartite graph is simple, without multi-edges or self-
loops. Note that conditioning on the event that B is simple implies that the resulting stub-labeled and
vertex-labeled models on bipartite models are identical. The work of Kannan et al. [41] considers the
problem of sampling from νd,k via bipartite edge-swaps. Such a swap maps (u, e), (v, f ) �→ (u, f ), (v, e).
By construction, this swap preserves d and k. The authors show that a Markov chain which performs
successive, random bipartite edge-swaps (while avoiding ones that would lead to a non-simple bipar-
tite graph) is ergodic and therefore sufficient to sample from νd,k. Such a swap when viewed in the
space Hd,k amounts to swapping the edge memberships of nodes u and v. Importantly, a sequence
of such swaps is special case of the pairwise reshuffle Markov chain on Sd,k. This implies following
relationship:

Proposition 1. The configuration model on simple bipartite graphs is equivalent to the stub-labeled
hypergraph configuration model, in the sense that μd,k = νd,k ◦ h−1.

Proposition 1 makes precise the primary sense in which bipartite randomization provides an approach
to random hypergraph modelling. This is a convenient result, since a dyadic edge-swap Markov chain on B
can be used to produce samples from μd,k. This equivalence may also be used to give alternative proofs of
Theorem 1. However, as discussed in [3], many data sets in which we aim to apply null modelling are better
compared to vertex-labeled null distributions. Importantly, there is no obvious route for vertex-labeled
sampling through bipartite random graphs. In particular, there is no analogue of Proposition 1 for this case.
Thus, even though the work of [41] treats vertex-labeled sampling from Bd,k, this does not directly suffice
for vertex-labeled sampling from Hd,k. The reason is that sampling from the vertex-labeled measure
ηd,k requires adjusting for permutations of parallel hyperedges. When H contains multiple hyperedges
of dimension three or greater, it is necessary to track multiple node-edge incidence relations in order to
check when hyperedges are parallel.

It is possible to write down a version of Algorithm 2 for vertex-labeled sampling in which the funda-
mental data structure is a bipartite graph rather than a hypergraph. However, the result would not, to the
author’s knowledge, correspond to any standard random bipartite graph model. Expressing both models
directly on the space Hd,k of hypergraphs supports both conceptual clarity and a convenient formulation
of MCMC for both stub- and vertex-labeled models. Incidentally, we note that this discussion high-
lights another, separate setting in which rigid adherence to dyadic methods can limit our data-analytical

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/3/cnaa018/5879929 by C
arleton U

niversity Library user on 11 August 2020



14 P. S. CHODROW

horizons. An exclusive focus on nulls realizable through bipartite methods obscures the possibility of
vertex-labeled polyadic models.

5. Network analysis with random hypergraphs

We now illustrate the application of hypergraph configuration models through three simple data-analytic
vignettes. We first study triadic closure in polyadic networks, finding that the use of polyadic nulls
can generate opposite findings when compared to dyadic nulls, and in doing so highlight distinctions
between data sets that dyadic nulls miss. We then turn to degree-assortativity, defining and testing three
distinct measures of association via polyadic data representations and randomizations. Finally, we study
the tendency of edges to intersect on multiple vertices in the email-Enron data set, finding through
simulation and analytical methods that large intersections occur at much higher rates than would be
expected by random chance. Collectively, these cases illustrate the use of polyadic methods to define and
analyse richer measures of network structure, and the use of polyadic nulls in contextualizing the results.

The data sets for case study were gathered, cleaned and generously made public by the authors of
[14]. In certain experiments, data were temporally filtered in order to reduce their size; these cases have
been explicitly noted in figure captions. The filtering procedure IS described in Appendix A. Importantly,
in no case was the filtering operation motivated by the expense of Monte Carlo sampling from hypergraph
configuration models; rather, the bottlenecks were (a) Monte Carlo sampling from projected dyadic graphs
and (b) expensive graph computations such as triangle-counting.

5.1 Triadic closure

Triadic closure refers to the phenomenon that, in many networks, if two nodes u and v interact with a third
node w, then it is statistically likely that u and v also interact with each other. Studies such as [5, 10, 47]
observed triadic closure in many empirical networks and highlighted the fact that dyadic configuration
models tend to be unable to reproduce this behaviour. Traditionally, triadic closure is measured by a
ratio of the number of triangles (closed cycles on three nodes) that are present in the graph, compared to
the number of ‘wedges’ (subgraphs on three nodes in which two edges are present).1 Local and global
variants of this ratio have been proposed. We follow the choice of [47] and work with the average local
clustering coefficient. Let Tv denote the number of triangles incident on v, and Wv the number of wedges.
Note that Wv =

(dv
2

)
. The average local clustering coefficient is

C̄ = 1

|N |
∑
v∈N

Tv

Wv
. (5)

It is direct to show that, in dyadic configuration models and under mild sparsity assumptions, C̄ decays
to zero as n grows large [47, 49].

The average local clustering coefficient C̄ is a natively dyadic metric, in the sense that ‘wedges’
and ‘triangles’ are defined explicitly in terms of 2-edges. To compute C̄ in polyadic data, it is therefore
necessary to project a hypergraph down to a dyadic graph. In the context of hypothesis testing, there
is some subtlety involved in the choice of when to do this. One method is to project first and then
randomize via a dyadic null model. This is the most common historical approach, used for example in

1 Recent measures have been developed for higher-order notions of clustering on larger subgraphs; see [48].

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/3/cnaa018/5879929 by C
arleton U

niversity Library user on 11 August 2020



CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 15

Table 1 Average local clustering coefficients for selected data sets, compared to their expectations
computed under vertex- and stub-labelling of hypergraph and projected graph models. Parentheses
show standard deviations in the least-significant figure under the equilibrium distribution of each null
model. Starred* data sets have been temporally filtered as described in Appendix A.

Hypergraph Projected

C̄ Vertex Stub Vertex Stub

congress-bills* 0.608 0.601(1) 0.622(2) 0.451(2) 0.611(1)
coauth-MAG-Geology* 0.8200 0.8196(7) 0.8186(7) 0.00035(3) 0.00035(3)
email-Enron 0.658 0.825(3) 0.808(4) 0.638(5) 0.797(3)
email-Eu* 0.540 0.569(4) 0.601(4) 0.398(4) 0.598(4)
tags-ask-ubuntu* 0.571 0.609(4) 0.631(5) 0.183(4) 0.499(6)
threads-math-sx* 0.293 0.435(3) 0.426(3) 0.041(1) 0.093(2)

[5]. Alternatively, one may randomize via polyadic nulls prior to projection. This approach has the effect
of preserving clustering induced by polyadic edges, since an edge of dimension k contains 3

(k
3

)
wedges

and 3
(k

3

)
ordered triangles.

Table 1 summarizes a sequence of experiments performed on two collaboration networks (top) and
four communication networks (bottom). For each network, we computed the observed local clustering
coefficient C̄ on the unweighted projected graph. We chose the unweighted projected graph, rather than
the weighted projected graph, in order to more closely match previous analyses (such as those of [5]),
as well as to avoid ambiguities that arise in the definition of C̄ in the presence of multi-edges. We then
compared the observed value to its null distribution under four randomizations. We first randomized
using the vertex- and stub-labeled hypergraph configuration models, prior to projecting and measuring
C̄. These results are shown in the second and third columns. We then reversed the order, first computing
the projected graph and randomizing via dyadic configuration models. The results are shown in the fourth
and fifth columns.

Benchmarking against dyadic configuration models yields mixed results. Vertex-labeled configuration
models conclude in all cases that the observed degree of clustering is significantly higher than would be
expected by random chance. Stub-labeled benchmarking concludes that congress-bills and the two
email data sets have significantly less clustering than expected, while the remainder have significantly
more. The stub-labeled results should be approached with caution—for reasons discussed in detail in [3],
the stub-labeled configuration model is a less-relevant comparison for these data sets than the vertex-
labeled model.

Hypergraph randomization leads to different conclusions. First, the expected values of C̄ under both
hypergraph vertex- and stub-labeled nulls are much closer than under dyadic nulls, indicating that the
polyadic statistical test is much less sensitive than the dyadic test to the choice of vertex- and stub-labelling.
Second, the vertex-labeled null separates the two collaboration networks from the four communication
networks. These two data sets are only slightly more clustered than expectation under the vertex-labeled
model. Chebyshev’s inequality implies that, at 95% confidence,congress-billswould be considered
‘significantly more clustered’ than its expectation under the vertex-labeled model, while the opposite
conclusion would be reached under the stub-labeled model. On the other hand,coauth-MAG-Geology
falls within two standard deviations of its expectation under each model; it would be necessary to inspect
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16 P. S. CHODROW

the full sampling distribution to conduct a significance test at 95% confidence in this case. In contrast,
Chebyshev’s inequality implies that the four communication networks are all significantly less clustered
than either vertex- or stub-labeled nulls would expect. Not only is there no clustering beyond that implied
by the edge dimensions; triadic closure even appears to be inhibited in these data sets.

From a purely statistical perspective, these examples highlight the importance of careful null model
selection in hypothesis testing for triadic closure, as differing statistical conclusions would be reached
under different choices. More physically, the hypergraph nulls—and not the dyadic nulls—distinguish data
sets by their generative mechanisms. Under the hypergraph nulls, the communication networks are all less
clustered than expected, while the collaboration networks are approximately as clustered as expected. This
result is to some extent intuitive. Collaborations between many agents often have nontrivial coordination
costs that scale with the number of agents involved. It may be easier to assemble and coordinate a set
of overlapping groups than a single large collective. In such cases, one may expect to observe clustering
near or above that expected at random, since overlaps between related groups would generate triangles.
In contrast, in digital communications it is essentially effort-free to construct interactions between larger
groups of agents. Examples include adding an email address to the ‘cc’ field or introducing participants
to thread on a forum. In such cases, triangles composed of distinct edges are energetically unnecessary,
and may reflect redundant information flow. We therefore hypothesize that these systems have a tendency
to absorb potential triangles into higher-dimensional interactions, resulting in lower levels of clustering
than would be expected under polyadic nulls. A more detailed study of this hypothesis would require
accounting for additional structure in these phenomena not captured by the hypergraph representation,
including distinctions between bill authors and cosponsors; email senders and recipients; and similar
node roles in polyadic interactions. Null models for hypergraph with distinguished roles, such as those
provided by [50] and [51], may be of interest in this context.

5.2 Degree-assortativity

A network is degree-assortative when nodes of similar degree preferentially interact with each other. Early
studies found that different categories of social, biological and technological networks display different
patterns of assortative mixing by degree [52–54]. Social networks, for example, are frequently measured
to be degree-assortative. In this context, degree-assortativity is often taken to indicate a tendency for
popular or productive agents to interact with each other.

We measure degree-assortativity in hypergraphs via a generalization of the standard Spearman rank
assortativity coefficient to hypergraphs. Importantly, there are multiple possible generalizations, each of
which measures distinct structural information about intra-edge degree correlations. Let E≥2 = {� ∈ E :
|�| ≥ 2}. Let h : E≥2 → N2 be a (possibly random) choice function that assigns to each edge � two
distinct nodes u, v ∈ �. Three possibilities of interest are:

h(�) = (u, v) ∼ Uniform

(
�

2

)
(Uniform)

h(�) = (u, v) = argmax
w,w′∈(�

2)

dwdw′ (Top-2)

h(�) = (u, v) =
(

argmax
w∈�

dw, argmin
w∈�

dw

)
(Top-Bottom)

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/3/cnaa018/5879929 by C
arleton U

niversity Library user on 11 August 2020



CONFIGURATION MODELS OF RANDOM HYPERGRAPHS 17

he Uniform choice function selects two distinct nodes at random. The Top-2 choice function selects the
two distinct nodes in the edge with largest degree. The Top-Bottom choice function selects the nodes
with largest and smallest degree.

Let r : N → R be a ranking function on the node set; we will always take r(u) to be the rank
of node u by degree in the hypergraph. For fixed h, let f : E → R

2 be defined componentwise by
fj(�) = (r ◦ hj)(�). Then, the generalized Spearman assortativity coefficient is the empirical correlation
coefficient between f1(�) and f2(�):

ρh = σ 2 (f1(�), f2(�))√
σ 2 (f1(�), f1(�)) σ 2 (f2(�), f2(�))

, (6)

where σ 2(X, Y) = 〈XY〉 − 〈X〉〈Y〉 and brackets express averages over pairs of edges in E.
In the case of dyadic graphs, the three choice functions above are trivially identical, since there is only

one way to pick two nodes from an edge of size two. On polyadic data, however, the resulting Spearman
coefficients capture usefully different classes of information. For example, in studying coauthorship
networks, they may be used to test hypotheses such as the following:

(1) Generic assortativity: On a given paper, most coauthors will simultaneously be more or less prolific
than average.

(2) Senior–senior assortativity: The two most prolific authors on a paper will tend to be simultaneously
more or less prolific than average.

(3) Junior–senior assortativity: The least prolific author on a paper will tend to be relatively more
prolific if the most prolific author is relatively more prolific.

While the corresponding Spearman coefficients may in general be correlated, substantial variation mani-
fests across study data sets. Figure 3 shows measurements and significance tests for one synthetic data set
and the six empirical data sets studied in the previous section. The synthetic data consists of five copies
of the hypergraph shown in Fig. 1. For each data set, we compute the dyadic assortativity coefficient on
the projected graph (first column), as well as each of the three polyadic assortativity coefficients defined
above.

The synthetic data (first row) illustrates a stark case in which dyadic hypothesis testing leads to a
finding of statistically significant assortativity, while all three polyadic hypothesis tests find statistically
significant disassortativity. The choice between dyadic and polyadic nulls in this case would determine
the sign of the effect size in an experiment that produced these data. In each of the empirical data sets,
the dyadic and polyadic tests show qualitative agreement. However, the polyadic tests highlight sev-
eral features of the data missed by the dyadic tests. In the two email data sets, all four coefficients are
positive and to the right of the null distributions, though projecting (first column) increases the signif-
icance of the coefficients relative to hypergraph randomization (second column). The two forum data
sets (threads-math-sx and tags-ask-ubuntu) are disassortative when compared to vertex-
labeled nulls. The fact that tags-ask-ubuntu is statistically disassortative despite a positive uniform
hypergraph Spearman coefficient speaks to the importance of carefully specified null hypothesis test-
ing. Interestingly, the misspecified stub-labeled randomization would lead to the opposite finding. The
coauthorship network coauth-MAG-Geology is highly assortative in all metrics—including the top-
bottom measure, which is negative. The congress-bills data set is also assortative in all measures.
Unlike the other data sets, the uniform hypergraph coefficient lies farther from the bulk of its null
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18 P. S. CHODROW

Fig. 3. Significance tests of degree-assortativity in synthetic and empirical networks. The synthetic data consists of five copies of
the illustrative network shown in Fig. 1. In each figure, the dashed line gives the observed Spearman correlation, and densities give
the null distributions under vertex- and stub-labeled configuration models. In the first column only, the hypergraph was projected
down to an unweighted dyadic graph prior to randomization. Starred∗ data sets have been temporally filtered as described in the SI.

distribution than does the projected coefficient. We note in passing that, whereas the stub-labeled and
vertex-labeled hypergraph distributions had similar expected rates of triadic closure (Table 1), their
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distributions of degree-assortativity coefficients vary substantially, and would in some cases lead to
qualitatively different study conclusions.

When studying triadic closure, we saw how hypergraph null models could lead us to contextualize
standard graph metrics differently by delaying dyadic projection until after randomization. When studying
assortativity, use of hypergraph nulls allows us to forgo the dyadic projection entirely, and thereby define a
family of polyadic assortativity measures. Hypergraph null models thus enable us to measure and interpret
novel structural patterns in polyadic data. We expand on this theme further in the next vignette.

5.3 Hyperedge intersection profiles

Let �, � ∈ H. What is the size of their intersection? In the case of dyadic graphs, the intersection can
have size at most two (when � is parallel to �). In hypergraphs, intersections of arbitrary sizes may
occur. The existence of large intersections in a data set may indicate the emergence of polyadic social
ties between groups of agents, or interpretable event sequences such as email threads or series of related
scholarly papers. Several recent papers [14, 55] have studied similar questions by considering the rate
at which ‘holes’ in the hypergraph tend to be ‘filled in’ by higher-order interactions. We take a simpler
approach, defining a measure which is both easily computed and amenable to analytical approximation.

Definition 12. (Intersection profile). For fixed k, � ∈ Z+, the conditional intersection profile of a
hypergraph H ∈ H is the distribution

rk�(j|H) = 〈I(|� ∩ �| = j)〉k� ,

where 〈·〉k� denotes the empirical average over all hyperedges � of size k and � of size �. The marginal
intersection profile is

r(j|H) = 〈I(|� ∩ �| = j)〉 ,

with the average taken over all pairs of distinct edges in E.

Large values of rk�(j|H) indicate that edges of size k and � frequently have intersections of size j in H.
Empirical data sets may possess complex patterns of correlation between edges of various sizes. Evaluat-
ing whether an observed conditional or marginal intersection profile is noteworthy requires comparison
to appropriately chosen null models.

Figure 4 demonstrates the use of hypergraph configuration models to study the intersection profile
of the email-Enron data set. In Fig. 4(a), we compare the empirical average intersection size 〈J〉k� =∑∞

j=0 jrk�(j|H) to its average 〈Ĵ〉k� under the vertex-labeled configuration model. Higher values of the ratio
〈J〉k�

〈Ĵ〉k�
indicate the presence of denser intersections between edges of sizes k and �. Notably, the empirical

averages are not uniformly higher than the null model averages, even on the diagonal. There is apparent
block structure, indicating that edges of certain sizes tend to correlate most strongly with certain other
sizes. Edges of dimension 3 through 6 tend to interact strongly with each other, as do edges of dimension
7 and 8. However, edges in the smaller group interact more weakly with edges in the larger group than
would be expected by chance. Further, more detailed study may be able to shed light on the groups of
agents involved in these overlapping communications.

Figure 4(b) gives a global view using the marginal intersection profile. The observed profile (points in
Fig. 4(b)) appears nearly linear on semilog axes through j = 6, suggesting that the decay in the intersection
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(a) (b)

Fig. 4. Analysis of intersection profiles in the email-Enron data set. (a) The average of the intersection size normalized by the
expectation 〈Ĵ〉k� under the vertex-labeled configuration model. Positive values indicate that the data display larger intersections
than expected under the configuration model for the corresponding values of k and �. Colours are shown on a log scale. The missing
value at (k, �) = (10, 10) indicates that no non-empty intersections were observed between edges of these sizes in the Monte Carlo
sampling runs. (b) Marginal intersection profile (points) of the empirical data, compared to null distributions under the stub- and
vertex-labeled configuration models. The dashed line gives the analytic approximation of (7). Note the logarithmic vertical axis.

size is roughly exponential. In order to evaluate whether this behaviour indicates non-random clustering
between edges, we compute the expectation r̂(j) = Eν[r(j|H)] of the marginal intersection profile under
a configuration model ν ∈ {μd,k, ηd,k}. This expectation quantifies the typical behaviour of a random
comparable hypergraph. The solid lines in Fig. 4(b) give these expected profiles under both stub- and
vertex-labeled models, which qualitatively agree. The observed data show fewer intersections on single
vertices than would be expected by chance. On the other hand, for j ≥ 3, r(j|H) exceeds r̂(j) by an order
of magnitude or more, suggesting substantial higher-order correlation in the data. These results likely
reflect the passing of multiple messages between the same sets of users.

Some data sets may be too large to practically estimate r̂(j) by Monte Carlo methods. In such cases, it is
possible to approximate r̂(j) under the stub-labeled configuration model analytically, using the following
asymptotic result.

Theorem 3. Fix �, k and j. Let D ∈ Z
n
+ be a vector of i.i.d. copies of positive, discrete random variable

D ∈ Z+ such that D ≤ dmax with probability one for some dmax. Let K ∈ Z
m
+ be any vector of edge

dimensions configurable with D. Let H ∼ μD,K, and let � and � be uniformly random edges of H. Then,
with high probability (w.h.p.) as n grows large,

r̂k�(j) = (1+ O(n−1))j!
(

k

j

)(
�

j

) (
1

n

E[D2] − E[D]
E[D]2

)j

. (7)

Proof. Let 〈d〉 = 1
n

∑
u∈N du denote the empirical mean degree of a given degree sequence d. Assume

without loss of generality that � = {δ1, . . . , δk} and � = {γ1, . . . , γ�} are the first two hyperedges
formed by Algorithm 1, conditioned on non-degeneracy. There are

(k
j

)
ways to choose the j elements of

� contained in � ∩ �, and similarly
(
�

j

)
ways to choose the elements of �. There are then j! ways to

place these two sets in bijective correspondence. Define the event A = {δh = γh, h = 1, . . . , j}. Then,
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r̂k�(j) = j!(k
j

)(k
�

)
μD,K(A). To compute μD,K(A), we may explicitly enumerate

μD,K(A) =
∑
u∈N

du

n〈d〉
du − 1

n〈d〉 − 1

[ ∑
v∈N\{u}

dv

n〈d〉 − du

dv − 1

n〈d〉 − du − 1

[ ∑
w∈N\{u,v}

· · ·
]]

,

with a total of j sums appearing. In each summation, the first factor gives the probability that δ1 = u and
the second that γ1 = u. Consider the innermost summation, which may be written

SR =
∑

z∈N\R

dz

n〈d〉 −∑
y∈R dy

dz − 1

n〈d〉 −∑
y∈R dy − 1

(8)

for a set R of size j−1. Since D ≤ dmax with probability one by hypothesis, we may employ Chebyshev’s
inequality to find that (n〈d〉)−1

∑
y∈R dy = O(n−1) w.h.p. We may therefore w.h.p. expand both factors

within (8), obtaining the expression

∑
z∈N\R

dz(dz − 1)

n2〈d〉2
(
1+ O(n−1)

)
.

Using Chebyshev’s inequality again, we also obtain asymptotic behaviour on the other expressions appear-
ing above. 〈d〉 = (

1+ O
(
n−1

))
E[D] and

∑
z∈N\R

dz(dz−1)

n = (
1+ O

(
n−1

))
(E[D2] − E[D]), both w.h.p.

We have therefore shown that

SR =
(
1+ O

(
n−1

)) (
1

n

E[D2] − E[D]
E[D]2

)
(9)

w.h.p. This argument may be repeated inductively for each of the remaining j − 1 sums, each of which
contributes the same factor appearing in (9), proving the theorem. �

Figure 4 shows the resulting approximation for r̂k� as a dashed line, finding excellent qualitative
agreement. In Figure 5, we demonstrate the use of Theorem 3 to estimate a null intersection profile in data
sets of arbitrary size. The top set of panels shows four data sets in which the approximate null intersection
profile consistently underestimates the rates of large intersections by several orders of magnitude, clearly
indicating the presence of correlation structure over and above what would be expected under hypergraph
randomization. The lower panels show four additional data sets in which the approximate null profile
more closely approximates the observed data.

6. Discussion

Configuration models of random hypergraphs preserve the first moments of the data—the degree and
edge-dimension sequences—while remaining maximally ignorant about additional data structure. These
models extend the widely used configuration models for dyadic graphs, and serve as natural null models
for polyadic network data analysis. We have demonstrated how to define, sample from, analyse and apply
these models. We have seen that the choice between nulls can greatly impact the qualitative findings of
studies of empirical polyadic data. The analyst faced with such a choice must therefore carefully consider
whether dyadic simplification will lead to data representations and null spaces that are relevant for their
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Fig. 5. Points give the observed intersection profile for six large polyadic data sets. The solid line gives the null intersection profile
of Theorem 3. In this visualization, full data sets were used—the temporal filtering described in Appendix A was not performed.

application area. If the answer is negative, polyadic models such as those developed here should be
employed. Second, employing polyadic nulls often allows the analyst to define novel measures that can
illuminate higher-order structure in data. We have illustrated this with extended assortativity measures and
intersection profiles, but many more extensions are possible. We hope that the introduction of statistically
grounded hypergraph nulls will encourage analysts to design, measure and carefully interpret many novel
techniques for networks with polyadic structure.

There are several directions of future work on configuration models of random hypergraphs. Beginning
with theory, many classical asymptotic results on dyadic configuration models invite generalization. These
include probabilistic characterization of component sizes; cycles and parallel edges; and the diameter of
the connected component in various regimes. We also highlight two applications of potential interest. The
first is motif analysis. A network motif is a subgraph that appears with higher-than-expected frequency in a
given network [56], relative to a given null model. Considering the explicit dependence of this definition on
the null, we conjecture that motif-discovery algorithms based on polyadic nulls may highlight importantly
distinct structure when compared to dyadic nulls. A second promising application is in hypergraph
clustering and community detection. A recent paper [25] offers a definition of modularity—a common
quality function for network partitioning—based on a polyadic generalization of the Chung-Lu model
[26]. In this case, the modularity of a given partition may be computed analytically. The same calculations
used to prove Theorem 3 can also be used to show that the stub-labeled configuration model will give
an asymptotically equivalent expression. However, for the large class of data sets more appropriately
modelled by vertex-labeled nulls, other methods may be necessary. We anticipate that pursuing these
tasks will pose interesting theoretical and computational challenges.
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Software

Ahypergraph class, written in Python 3.5, is available at https://github.com/PhilChodrow/hypergraph.
This class includes implementations of Monte Carlo sampling for both stub- and vertex-labeled

configuration models, as well as a simple tutorial illustrating the use of the software.
Additionally, a repository illustrating the analysis pipeline—including data acquisition, batch com-

putations, and visualization script—is available at https://github.com/PhilChodrow/hypergraph_analysis.
This repository has considerably more moving parts, and is recommended only to those aiming to

reproduce the results of this paper. Those who wish only to conduct novel analyses with hypergraph
configuration models should refer to the first repository.
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43. Erdős, P. L., Greenhill, C., Mezei, T. R., Miklós, I., Soltész, D. & Soukup, L. (2019) The mixing time of
the swap (switch) Markov chains: a unified approach. arXiv:1903.06600.

44. Greenhill, C. (2011) A polynomial bound on the mixing time of a Markov chain for sampling regular directed
graphs. Electron. J. Combin., 18, 234.

45. Greenhill, C. (2014) The switch Markov chain for sampling irregular graphs. Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, pp. 1564–1572.

46. Saracco, F., Di Clemente, R., Gabrielli, A. & Squartini, T. (2015) Randomizing bipartite networks: the case
of the World Trade Web. Sci. Rep., 5, 1–18.

47. Strogatz, S. H. & Watts, D. J. (1998) Collective dynamics of “small-world” networks. Nature, 393, 440–442.
48. Yin, H., Benson, A. R. & Leskovec, J. (2018) Higher-order clustering in networks. Phys. Rev. E, 97, 052306.
49. Newman, M. E. J. (2010) Networks: An Introduction. Oxford, UK: Oxford University Press.
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A. Data

The data sets used in this article were prepared by the authors of [14] and accessed from
https://www.cs.cornell.edu/∼arb/data/. Some data sets have been filtered to exclude edges prior to a
temporal threshold τ in order to promote practical compute times on triangle counting and mixing of
vertex-labeled models in projected dyadic graph spaces. Notably, in no cases was sampling from hyper-
graph configuration models the computational bottleneck. Thresholds were chosen to construct data with
edge sets of approximate size m ≈ 104 but are otherwise arbitrary. Temporal data subsets were used in
the generation of Table 1 and Fig. 3. Table A.1 gives the node and edge counts of both the original data
and the data after temporal subsetting when applicable.
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Table A.1 Summary of data preparation. When τ is given, the filtered data set consists in all edges that
occurred after time τ .

Original Filtered

n m τ n m

email-Enron 143 10, 886 − − −
email-Eu 1, 006 235, 264 1.105× 109 817 32, 117
congress-bills [9, 57] 1, 719 260, 852 7.315× 105 537 6,661
coauth-MAG-Geology [58] 1, 261, 130 1, 591, 167 2017 73, 436 23, 434
threads-math-sx 201, 864 719, 793 2.19× 1012 11, 880 22, 786
tags-ask-ubuntu 200, 975 192, 948 2.6× 1012 2, 120 19, 338
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