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Abstract

A method, regular decomposition (RD), for compression of large graphs
and matrices to a block structure is proposed. Szemerédi’s regularity
lemma is used as a generic motivation of the significance of the correspond-
ing stochastic block models (SBMs). Another ingredient of the method
is Rissanen’s minimum description length principle (MDL). We analyze
consistency of RD in detecting a block structure in a large and dense
graph generated from a SBM with fixed number of blocks. We show that
the coding length of the graph, used as a cost function in MDL, decreases
until the right number of blocks is reached, then the coding length reaches
a plateau with very slow or no reduction in value. This enables a prac-
tical algorithm for finding such block structures. Simulations are used to
illustrate that this scenario is visible already in modest sizes of the graph.
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1 Introduction

In recent years, the analysis of large graphs, matrices and hypergraphs has
become more contemporary. One reason for this is the elicitation of big data
and its accumulation at an accelerating pace.

Usually, the complete information of these objects (large graphs, matrices
and hypergraphs) is not available or/and it’s just too large to be practically
applied. In this situation, the methods that can acquire a low-dimensional
approximation of the underlying graphs are of a paramount interest. Such
approximations can be seen as a compressed representation of the large-scale
structure. This makes information theory a natural choice for the analysis which
was pointed out by Rosvall and Bergstrom [27]. Roughly speaking, this means
grouping redundant elements into a few communities. In case of graphs, exam-
ples are well-known division of nodes into communities or modules. Information
theory will aid in choosing the optimal structures, in particular, the number of
communities or modules.

Our aim is to develop a corresponding rigorous methodology and proofs of
correctness in the limit of large structures. We also introduce concrete algo-
rithms and numerical examples that clarify how to use our method in practice.
This work completes and partly summarizes our previous work on this subject
[13, 16, 21, 23, 24, 11, 22].

Another source of ideas is the fundamental mathematics of large structures
which indicates the directions from which some exact results can be expected.
A fundamental result in graph theory that is highly typical for problems of
big data and related graphs is Szemerédi’s Regularity Lemma (SRL) [31]. SRL
is a fundamental result in graph theory. Roughly speaking, SRL states that
any large enough graph can be approximated arbitrarily well by nearly regular,
pseudo-random bipartite graphs, induced by a partition of the node set into a
bounded number of equal-sized sets. For many graph problems, it suffices to
study the problem on a corresponding random structure, resulting in a much
easier problem (see, e.g., [10]). SRL is fundamental also in theoretical computer
science, say, in showing the existence of polynomial-time approximations for
solving dense graph problems, and in characterizing the class of so-called testable
graph properties [2].

Despite the impressive theoretical applications of SRL, it has had only few
applications to ’real-life’ problems. The main reason might be that SRL has
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extremely bad worst-case scenarios in the sense that the lower bound of graph
sizes, for which the partition claim holds with reasonable accuracy and without
a single exception, is enormous. Thus, a real-world application of SRL in the
literal sense is impossible. However, this drawback does not mean that reg-
ular partitions could not appear in much smaller scales which are relevant to
applications. On the contrary, one could conjecture that regular partitions or
structures be commonplace and worth revealing.

The goal of our work is on realistic, yet preferably large networks that ap-
pear in almost all imaginable application areas. The regular structure granted
by SRL is then replaced by a probabilistic model, substituting the regular bi-
partite components with truly random bipartite graphs. This model class is well
known as stochastic block models [9] (SBM), and it has recently gained much
attention in research and popularity in practical applications like community
detection [17, 7, 12]. However, the fundamental nature of SRL suggests the
(heuristic) conjecture that stochastic block models present a very generic form
of the separation of structure and randomness in large real-world systems. That
is why we think that SRL and related results should be kept in mind in practical
applications as a rich source of abstractions that can lead to new applications.

SBM structuring of data has good practical properties. Methods, such as
maximum likelihood fitting, expectation maximization, simulated annealing and
Monte Carlo Markov Chain algorithms, can be used.

There are also some examples of graph decomposition applications that have
been explicitly inspired by SRL. The practical contexts are varied: brain cor-
tex analysis [13], image processing [30], peer-to-peer network[16], analyzing the
functional magnetic resonance (fMRI) data to depict functional connectivity of
the brain [15] and a matrix of multiple time series [21]. In the last mentioned
work, the method was generalized from graphs to arbitrary positive matrices
using a Poissonian construction as an intermediary step.

Interestingly, the authors of the recent work [28] define a ’practical’ variant
of SRL by relaxing algorithmic SRL in a certain way to make it more usable in
machine-learning tasks, see also [19]. Bolla [3] has developed a spectral approach
for finding regular structures of graphs and matrices. Our emphasis is more
information theoretical by nature and continues the works of [13, 16, 21, 23, 24].
It would be very interesting to compare the methods of [28, 3] and those of this
paper in depth.

The third main ingredient in this paper is Rissanen’s Minimum Description
Length (MDL) principle (see [6]), according to which the quality of a model
should be measured by the length of the bit string that it yields for the unique
encoding of the data. In our case, the data has the form of a graph or matrix, and
we present the stochastic block models as a modeling space in the sense of the
MDL theory. Within this modeling space, the model corresponding to minimum
code length encoding presents the optimal regular decomposition (partition) of
the data. Therefore we call this Szemerédi-motivated and technically MDL-
based approach Regular Decomposition.

By information theory, the optimal coding reveals as much redundancy in
the data as is possible from within the given modeling framework. The reg-
ular structure has a high degree of redundancy: a regular pair is an almost
structureless subgraph in which almost all the nodes have similar and uniform
connectivity patterns. By definition, the MDL principle should be able to dis-
cover regular structures. Note that this principle presents a case of ’Occam’s
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Razor’, a general rule of reasoning that has proved fruitful in all areas of science.
In non-hierarchic clustering tasks, it has been a major challenge to select the

’right’ size of a partition (k). Intuitively, the optimal choice of k will strike a
balance between the simplest partition of the data using a single cluster and the
maximal partition assigning each data point to its own cluster, and selecting
something in between. A popular device has been the Akaike information crite-
rion (AIC), which was applied also in [13]. The AIC simply adds the ’number
of model parameters’ to the maximal log-likelihood and chooses the model that
minimizes the sum. Our MDL-based approach solves the corresponding model
selection task in a better founded way (see also [18]).

The contributions of this paper are the following: (i) the linkage of SRL,
stochastic block models and the MDL principle, (ii) the unified handling of
graphs and matrices, (iii) the effective practical algorithms for revealing regular
structures in data, and (iv) Theorem 4.1 that characterizes how accurately the
MDL principle identifies a stochastic block model.

The paper is structured as follows: Section 2 presents the definitions of
the main notions: SRL, stochastic block models and MDL. The last topic is
expanded in Section 3. Section 4 presents our main technical results, in par-
ticular the algorithms and Theorem 4.1. The proof of Theorem 4.1 is given in
Section 5. It is structured into several propositions and makes strong use of
information-theoretic tools presented in Appendix A.

1.1 Related work

Let us enlist contributions that are most relevant to core results of our work.
Peixoto suggests to use MDL in the SBM context in [18] which continues

earlier work by Rosvall and Bergstrom [27] where this idea was first suggested.
It has interesting estimates which indicate that there is an upper limit of the
number of communities that can be detected, k ∼

√
n as a function of number of

nodes n. However, Peixoto does not consider the exact detection of communities
with a bounded number k of communities, that is the focus of the current work.
Peixoto has also made several implementations of corresponding algorithms and
made them available [18].

Wang and Bickel [33] used information theory for likelihood-based model
selection for the SBM. Their conclusions are similar to ours. In addition they
show validity of results also in a sparse case when the average degree grows
in polylog (polynomial in log n, n is number of nodes) rate and in the case of
degree-corrected block models. They use asymptotic distributions instead of the
exact ones that we use. The algorithmic part also deviates from ours. They end
up in a likelihood-based criterion, Bayesian information criterion (BIC), that is
asymptotically consistent. Along with a term that corresponds to log likelihood
there is a term proportional to k2n log n with some tuning coefficient that has to
be defined separately in every concrete case. In so defined BIC has a minimum
at the right value of the k. Instead of such a term we prefer to use MDL model
complexity that is not case sensitive.
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2 Basics and definitions

2.1 Szemerédi’s Regularity Lemma

Consider simple graphs G(V,E), where V is the set of nodes (vertices) and E
is the set of links (edges). The link density of a non-empty node set X ⊆ V is
defined as

d(X) =
|e(X)|(|X|

2

) , where e(X) = {{v, w} ∈ E : v, w ∈ X} ,

and |·| denotes the cardinality of a set. Similarly, the link density between two
disjoint non-empty node sets X,Y ⊆ V is defined as

d(X,Y ) :=
|e(X,Y )|
|X| |Y |

, where e(X,Y ) = {{v, w} ∈ E : v ∈ X, w ∈ Y } .

Definition 2.1. Let ε > 0. A pair of disjoint sets A,B ⊆ V of G(V,E) is called
ε-regular, if for every X ⊆ A and Y ⊆ B, such that |X| > ε |A| and |Y | > ε |B|
we have

|d(X,Y )− d(A,B)| < ε.

A partition ξ = {V0, V1, V2, · · · , Vk} of V into k + 1 sets, where all except V0

have equal cardinalities, is called ε-regular, iff all except at most εk2 pairs are
ε-regular and |V0| < ε|V |.

Theorem 2.1. (Szemerédi’s Regularity Lemma, [31]) For every ε > 0 and for
any positive integer m, there are positive integers N(ε,m) and M(ε,m), such
that for any graph G(E, V ) with |V | ≥ N(ε,m) there is an ε-regular partition of
V into k + 1 classes with m ≤ k ≤M(ε,m).

Roughly, SRL states that nodes of any large enough graph can be partitioned
into a bounded number (k) of equal-sized sets and into one small set in such a
way that links between most pairs of sets look like those in a random bipartite
graphs, whose link probability equals the link density between the pair.

The claim of SRL is significant for sufficiently dense graphs, i.e., when the
link density is higher than ε.The result can be modified to sparse graphs by
multiplying ε at the right-hand side of the regularity definition by the link
density of the entire graph [29].

It is remarkable that the regularity claim holds for all graphs starting from
a lower bound for size that depends only on ε. However, it is also well-known
that this dependence on ε is of extremely bad kind: the known lower bound for
the graph size N(ε,m) is extremely large, like a tower of powers of 2:

22.
..
2

,

where the height of the tower is bounded above by 1/ε5. Such a number is too
big to be considered in any applications. Thus, all real-world networks fall into
a ’grey area’ with respect to SRL.

As we stated in the Introduction, there has been attempts to use algorith-
mic versions of SRL (ASRL), introduced by Alon et al, [1], also in practical
applications. The large numbers like the upper bound of N(ε,m) is problem-
atic. Although ASRL has time complexity that is only polynomial O(n2.376···),
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corresponding to the time for multiplying two n×n binary matrices, it requires
this enormous size (n ≥ N(ε,m)) of graph to be able to find a regular partition.

A considerable improvement was found in the recent work [5], where the
execution time is only linear in the graph size using a randomized algorithm.
From a practical point of view, this algorithm works in a more realistic fashion
than the original ASRL: for any graph, it either finds an ε-regular partition or
concludes that such a partition does not exists. Another randomized algorithm
with the same feature was suggested by Tao [32].

In principle, such algorithms could possibly be applicable for real-world
graphs, although some prohibitively big upper-bounds of the constants of the
algorithm are a problem that needs a solution. That is why, we conclude that
our approach is also needed.

2.2 Stochastic block models

The notion of an ε-regular partition is purely combinatorial. The stochastic
model closest to this notion is the following.

Definition 2.2. Let V be a finite set and ξ = {A1, . . . , Ak} a partition of V .
A stochastic block model is a random graph G = (V,E) with the following
structure:

• There is a symmetric k × k matrix D = (dij)
k
i,j=1 of real numbers dij ∈

[0, 1] satisfying the irreducibility condition that no two rows are equal, i.e.,

for all i, j, i < j, there is qij ∈ {1, . . . , k} such that diqij 6= djqij ; (2.1)

• For every pair {v, w} of distinct nodes of V such that v ∈ Ai, w ∈ Aj, let
evw = ewv be a Bernoulli random variable with parameter dij, assuming
that all evw’s are independent. The edges of G are

E = {{v, w} : v, w ∈ V, v 6= w, evw = 1} .

Note that the case of the trivial partition ξ = {V } yields the classical random
graph with edge probability d11.

A graph sequence Gn = (Vn, En) presenting copies of the same stochastic
block model in different sizes can, for definiteness, be constructed as follows.

Construction 2.3. Let γ1, . . . , γk be positive, distinct real numbers such that∑k
i=1 γi = 1. Divide the interval (0, 1] into k segments

I1 = (0, γ1], I2 = (γ1, γ1 + γ2], . . . , Ik =

(
k−1∑
i=1

γi, 1

]
,

and denote Γ = {I1, . . . , Ik}. For n = 1, 2, . . ., let the vertices of Gn be

Vn =

{
i

n
: i ∈ {1, . . . , n}

}
.

For each n, let ξn be the partition of Vn into the blocks

A
(n)
i = Ii ∩ Vn, i = 1, . . . , k.
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For small n, we may obtain several empty copies of the empty set numbered
as blocks. However, from some n0 on, all blocks are non-empty and ξn ={
A

(n)
1 , . . . , A

(n)
k

}
is a genuine partition of Vn. We can then generate stochastic

block models based on (Vn, ξn, D) according to Definition 2.2.

Remark 2.4. A slightly different kind of stochastic block model can be defined

by drawing first the sizes of blocks A
(n)
i as independent Poisson(γin) random

variables and proceeding then with the matrix D as before. The additional level
of randomness, regarding the block sizes, is however of no interest in the present
paper.

Next, we define the notion of a Poissonian block model in complete analogy
with Definition 2.2. (This allows almost one-to-one transfer of the proofs in
Section 5 to the Poissonian case.)

Definition 2.5. Let V be a finite set of vertices, n = |V |, and let ξ = {A1, . . . , Ak}
be a partition of V . The symmetric Poissonian block model is a symmetric ran-
dom n× n matrix E with the following structure:

• There is a symmetric k × k matrix Λ = (λij)
k
i,j=1 of non-negative real

numbers satisfying the irreducibility condition that no two rows are equal,
i.e.,

for all i, j, i < j, there is qij ∈ {1, . . . , k} such that λiqij 6= λjqij ; (2.2)

• For every unordered pair {v, w} of distinct nodes of V such that v ∈ Ai,
w ∈ Aj, let evw = ewv be a Poisson random variable with parameter λij,
assuming that all evw’s are independent. The matrix elements of E are
evw for v 6= w, and evv = 0 for the diagonal elements.

Thanks to the independence assumption, the sums
∑
u∈A

∑
v∈B euv are Pois-

son distributed for any A,B ∈ ξ.

Remark 2.6. The rest of the technical contents of this paper focus on the simple
binary and Poissonian models of Definitions 2.2 and 2.5. However, the following
extensions are straightforward:

• bipartite graphs: this is just a subset of simple graphs;

• m × n matrices with independent Poissonian elements: a matrix can be
seen as consisting of edge weights of a bipartite graph, where the parts are
the index sets of the rows and columns of the matrix, respectively;

• directed graphs: a directed graph can be presented as a bipartite graph
consisting of two parts of equal size, presenting the input and output ports
of each node.

3 MDL approach to stochastic block models

In this Section we describe some basic definitions and notations for applying
standard MDL modeling approach to graphs and matrices.
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3.1 The Minimum Description Length (MDL) principle

The Minimum Description Length (MDL) Principle was introduced by Jorma
Rissanen, inspired by Kolmogorov’s complexity theory, and an extensive presen-
tation can be found in Grünwald’s monography [6], see also [26]. The basic idea
is the following: a set D of data is optimally explained by a model M, when
the combined unique encoding of the (i) model and (ii) the data as interpreted
in this model is as concise as possible. By encoding we mean here a mapping
that specifies an object uniquely.

The principle is best illustrated by our actual case, simple graphs. A graph
G = (V,E) with |V | = n can always be encoded as a binary string of length(
n
2

)
= n(n− 1)/2, where each binary variable corresponds to a node pair and a

value 1 (resp. 0) indicates an edge (resp. absense of an edge). Thus, the MDL
of G is always at most

(
n
2

)
. However, G may have a structure whose disclosure

would allow a much shorter description. Our heuristic postulate is that in the
case of graphs and similar objects a good a priori class of models should be
inferred from SRL, which points to stochastic block models.

Definition 3.1. Denote by Mn/k the set of irreducible stochastic block models
(V, ξ,D) with

• |V | = n,

• |ξ| = k, and, denoting ξ = {V1, . . . , Vk},

• for i, j ∈ {1, . . . , k},

dij =
hij
|Vi||Vj |

, hij ∈ N, dii =
hii(|Vi|
2

) , hii ∈ N.

The condition in the last bullet entails that each modeling space Mn/k is
finite.

Remark 3.2. Without the irreducibility condition (2.1), there would not be a
bijection between stochastic block models and their parameterizations.

The models in Mn/k are parameterized by Θk = (ξ,D). A good model for
a graph G is the one that gives maximal probability for G and is called the
maximum likelihood model. We denote the parameter of this model

Θ̂k(G) := arg max
Θk∈Mn/k

(P (G | Θk)), (3.1)

where P (G | Θk) denotes the probability that the probabilistic model specified
by Θk produces G.

One part of likelihood optimization is trivial: when a partition ξ is selected
for a given graph G, the optimal link probabilities are the empirical link densi-
ties:

dij =
|e(Vi, Vj)|
|Vi||Vj |

, i 6= j, dii =
|e(Vi)|(|Vi|

2

) . (3.2)

Thus, the nontrivial part is to find the optimal partition for the given graph.
This is the focus of the next sections.
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3.2 Two-part MDL for simple graphs

Let us denote the set of all simple graphs with n nodes as

Ωn = {G : G = (V,E) is a graph, |V | = n} .

A prefix (binary) coding of a finite set Ω is an injective mapping

C : Ω→ ∪s≥1{0, 1}s (3.3)

such that no code is a prefix of another code. Recall the following proposition
from information theory (see, e.g., [4]):

Theorem 3.1. (Kraft’s Inequality) For an m-element alphabet there exists a
binary prefix coding scheme with code lengths l1, l2, · · · , lm iff the code lengths
satisfy:

∑
i=1,··· ,m 2−li ≤ 1.

An important application of Theorem 3.1 is the following: if letters are
drawn from an alphabet with probabilities p1, p2, · · · , pm, then there exists a
prefix coding with code lengths d− log p1e, · · · , d− log pme, and such a coding
scheme is optimal in the sense that it minimizes the expected code length (in this
section, the logarithms are in base 2). In particular, any probability distribution
P on the graph space Ωn indicates that there exists a prefix coding that assigns
codes to elements of G ∈ Ωn with lengths equal to d− logP ({G})e.

The code length l(·) is the number of binary digits in the code of the corre-
sponding graph. In case of a large set Ω, most such codes are long and as a result
the ceiling function can be omitted, a case we assume in sequel. A good model
results in good compression, meaning that a graph can be described by much
less bits than there are elements in the adjacency matrix. An incompressible
case corresponds to the uniform distribution on Ωn and results in code length
− log (1/ | Ω |) =

(
n
2

)
, equivalent to writing down all elements of the adjacency

matrix.
For every graph G from Ωn and model P we can associate an encoding with

code length distribution − logP (· | Θ̂k(G)). However, this is not all, since in
order to be able to decode we must know what particular probabilistic model
P is used. This means that also Θ̂k(G) must be prefix encoded, with some
code-length L(Θ̂k(G)). We end up with the following description length:

l(G) = d− logP (G | Θ̂k(G))e+ L(Θ̂k(G)). (3.4)

Eq. (3.4) presents the so-called two-part MDL, [6]. In an asymptotic regime
with n → ∞, we get an analytic expression of the refined MDL. A simple way
of estimating L(Θ̂k(G)) is just to map injectively every model in Mn/k to an
integer and then encode integers with l∗(| Mn/k(G) |) as an upper bound of the
code-length. Here

l∗(m) = max(0, log (m)) + max(0, log log(m)) + · · · , m ∈ N, (3.5)

gives, as shown by Rissanen, the shortest length prefix coding for integers (see
[6, 25]). The size of the graph must also be encoded with l∗(n) bits (it is assumed
that there is a way of defining an upper bound of the models with given n). In
this point, it is necessary to assume that the modeling space is finite. This
results in
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Proposition 3.3. For any graph G ∈ Ωn, there exists a prefix coding with
code-length

l(G) = d− logP (G | Θ̂k(G))e+m,

m ≤ mk := l∗(n) + l∗

(
S2(n, k)

((
n− k + 2

2

)
+ 1

)(k2)+k

+ 1

)
+ 1,

where S2(n, k) is the Stirling number of the second kind.

Proof. The expression in (3.4) corresponds to a concatenation of two binary
codes. The m-part is the length of a code for describing the parameters of
the model (in the case of a non-unique maximum, we take, say, the one with
smallest number in the enumeration of all such models). The corresponding
code is called the parametric code. The parametric code uniquely encodes the
model. To create such an encoding, we just enumerate all possible models, given
in Definition 3.1, and use the integer to fix the model. The length of a prefix
code corresponding to an integer is the l∗-function computed for that integer,
and we add 1 to handle the ceiling function.

To obtain an upper bound for the parametric code length m, we find an
upper bound for the number of models in the modeling space. The number
of models is upper-bounded by the product of two integers. The first is the
number of partitions of an n-element set into k non-empty sets (blocks), which
equals S2(n, k), and the second bounds the number of different link density
configurations per partition. We can view the blocks of a partition as the nodes
of a ‘reduced multi-graph’ (in a multi-graph, there can be several links between
a node pair, as well as self-loops). The range of multi-links is between zero and(
n−k+2

2

)
: if we consider a pair of blocks (or one block internally), there can be

at most n − (k − 2) nodes in such a pair (in one set, slightly less), since there
must be at least k − 2 nodes in the other blocks of the partition. Obviously, in
such a subgraph of n− (k− 2) nodes there can be at most

(
n−k+2

2

)
links. Thus,

the number of values each multi-link can take is upper-bounded by
(
n−k+2

2

)
+1.

Since the number of node pairs in the reduced multi-graph is
(
k
2

)
+k, we obtain

the second multiplier in the argument of l∗ in the proposition.
Finally, we show that the coding of the graph is prefix. We concatenate both

parts into one code that has the prescribed length and put first the prefix code
of the integer that defines the parameters of the maximum likelihood model.
When we start to decode from the beginning of the entire code, we first obtain
a code of an integer, because we used a prefix coding for integers. At this stage
we are able to define the probabilistic model that was used to create the other
part of the code, corresponding to the probability distribution P (· | Θ̂k(G)).
Using this information we can decode the graph G. It remains to show that
the concatenated code itself is prefix. Assume the opposite: some prefix of such
a code is prefix to some other similar code, say, the first code is a prefix to
the second one. However, the parametric code was prefix, so both codes must
correspond to the same model. Since the first two-part code is a prefix to the
second, they both share the same parametric part, and the code for the graph of
the first is a prefix of the second one. But this is impossible, since the encoding
for graphs within the same model is prefix. This contradiction shows that the
two-part coding is prefix.
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Finally, we call

Mn :=
⋃

1≤k≤n

Mn/k (3.6)

the full regular decomposition modeling space of Ωn.

3.3 Two-part MDL for matrices

In this section we consider input data in the form of a n×m matrix A = (aij)
with non-negative entries. With such a matrix we associate a random bipartite
multi-graph. The set of rows and the set of columns form a bipartition. Between
row i and column j there is a random number of links that are distributed
according to Poisson distribution with mean ai,j . Such a model was introduced
in [14] and it has been used in various tasks in complex network analysis, see
[8]. The aim of this model is to back up, heuristically, a corresponding practical
algorithm for regular decomposition of matrices. Our approach is closely related
to but slightly different from the Poissonian block model. Assume that A is
used to generate random n × m matrices X with independent integer-valued
elements following Poisson(aij) distributions. The target is to find a regular
decomposition model that minimizes the expected description length of such
random matrices. We propose the following modeling spaces:

Definition 3.4. For integers k1, k2 from ranges 1 ≤ k1 ≤ n and 1 ≤ k2 ≤ m,
the parameters of a model Θk1,k2 in the modeling space Mk1,k2 for an integer
matrix X are partition of rows into k1 non-empty sets V = (V1, · · ·Vk1) and
partition of columns into k2 non-empty sets U = (U1, · · · , Uk2) and k1 × k2

block average matrix P , with elements (P )α,β :=
∑
i∈Vα,j∈Uβ

xi,j
|Vα||Uβ | .

Thanks to the addition rule of Poisson distributions, the likelihood of X in
a model Θk1,k2 ∈ Mk1,k2 , corresponds to probabilistic models where the ele-
ments of X are independent and Poisson distributed with parameters xi,j ∼
Poisson(Pα(i),β(j)), where i ∈ Vα(i), j ∈ Uβ(j) in the model Θk1,k2 . The cor-
responding likelihood is denoted as P (X | Θk1,k2), the actual probability of X
is denoted as P (X | A). The maximum likelihood model is found from the
program that maximizes the expected log-likelihood:

Θ∗k1,k2 = arg max
Θk1,k2∈Mk1,k2

∑
X

P (X | A) logP (X | Θk1,k2)

= arg max
Θk1,k2∈Mk1,k2

∑
X

(
P (X|A) log

P (X|Θk1,k2)

P (X|A)
+ P (X|A) logP (X|A)

)
= arg max

Θk1,k2∈Mk1,k2

(−D(PA || PΘk1,k2
)−H(PA))

where D is the Kullback-Leibler divergence between distributions, H denotes
entropy and PA and PΘk1,k2

are the two families of Poisson distributions for the
matrix elements of X. Since H(PA) is independent of Θk1,k2 , it does not affect
the identification of the maximum likelihood model. Thus, the final program
for finding the optimal model is

Θ∗k1,k2 = arg min
Θk1,k2∈M

D(PA || PΘk1,k2
). (3.7)
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The description length of a model l(Θk1,k2 ∈Mk1,k2) consists of the description
length l(V ) + l(U) of the two partitions and the description length of the block
average matrix l(P (X)). For the latter we need to know only the integers
presenting the block sums of X, since the denominator is known for a fixed
partition (U, V ). The code lengths of such integers are, for large matrices,
simply the logarithms of the integers. For l(U) + l(V ) we use the same entropy
based formula as in (4.2). As a result we end up with the following expression for
the description length of the random multi-graph model A using the modeling
space Mk1,k2 :

lk1,k2(A) = D(PA || PΘ∗k1,k2
) + l(V ∗) + l(U∗)

+
∑

1≤α≤k1;1≤β≤k2

E (log(eα,β + 1 | P ∗Θk1,k2 ),

where
eα,β =

∑
i∈V ∗α ,j∈U∗β

xi,j .

The star superscript refers to parameters corresponding to the solution of the
program (3.7). The expectation of logarithm is not explicitly computable. How-
ever, we assume large matrices and blocks, and then Jensen’s inequality provides
a tight upper bound that can be used in practical computations. Thus, the final
expression for the description length of A is

lk1,k2(A) = D(PA || PΘ∗k1,k2
)+l(V ∗)+l(U∗)+

∑
1≤α≤k1;1≤β≤k2

log(aα,β+1), (3.8)

where
aα,β =

∑
i∈V ∗α ,j∈U∗β

ai,j .

The full two-part MDL would now be realized by finding the global minimum
of this expression over various (k1, k2). We return to this case in the algorithm
section 6.1. Although a heuristic one, we believe that our method for matrices
is both reasonable and easy to use and implement, see [21].

3.4 Refined MDL and asymptotic model complexity

Let us next consider Rissanen’s refined MDL variant (see [6]). The idea is
to generate just one distribution on Ωn, called the normalized maximum like-
lihood distribution Pnml. Then a graph G ∈ Ωn has the description length
− logPnml(G) which is at most as large as the one given by the two-part code
in (3.4). The function P (· | Θ̂k(·)) maps graphs of size n into [0, 1], and it is not
a probability distribution, because

∑
G∈Ω P (G|Θ̂k(G)) > 1. However, a related

true probability distribution can be defined as

Pnml(·) =
P (· | Θ̂k(·))∑

G∈Ω P (G|Θ̂k(G))
. (3.9)

The problem with this is that a computation of the normalization factor in
(3.9) is far too involved: finding a maximum likelihood parametrization for a
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single graph is a ‘macroscopic’ computational task by itself and it is not possible
to solve such a problem explicitly for all graphs. Therefore the two-part variant
is a more attractive choice in a practical context. However, the refined MDL
approach is useful as an idealized target object for justifying various approximate
implementations of the basic idea. It appears that in an asymptotic sense the
problem is solvable for large simple graphs. The logarithm of the normalization
factor in (3.9) is called the parametric complexity of the model space Mn/k:

COMP (Mn/k) := log

( ∑
G∈Ωn

P (G | Θ̂k(G))

)
. (3.10)

In a finite modelling space case like in ours, this can be considered as a definition
of model complexity. We have now the following simple bounds:

Proposition 3.5.

log (S2(n, k)) ≤ COMP (Mn/k) ≤ mk + 1,

where we use the same notation as in Proposition 3.3.

Proof. The lower bound follows from the fact that we can have at least this
number of graphs that have likelihood 1 in Mn/k. This corresponds to graphs
for which the nodes can be partitioned into k non-empty sets and inside each
set we have a full graph and no links between the distinct sets. Thus, for every
partition there is at least one graph that has likelihood one and all such graphs
are different from each other since there is a bijection between those graphs and
partitions.

For the upper bound, we notice that according to Proposition 3.3, there is
a prefix coding with code lengths that correspond to the two-part code. As a
result, Kraft’s inequality yields that

∑
G∈Ωn

2−lk(G) ≤ 1, or

1 ≥
∑
G∈Ωn

2−d− logP (G|Θ̂k(G))e−mk ≥
∑
G∈Ωn

2logP (G|Θ̂k(G))−1−mk ,

from which we get ∑
G∈Ωn

P (G | Θ̂k(G)) ≤ 2mk+1.

Taking logarithms, we arrive at the claimed upper bound.

When considering large-scale structures corresponding to moderate k, the
upper and lower bounds in Proposition 3.5 are asymptotically equivalent, and
we have

Corollary 3.6. Assume that k > 1 is fixed. Then

COMP (Mn/k) ∼ n log k, n→∞.

Proof. Denoting the lower and upper bound of parametric complexity in Propo-
sition 3.5 respectively by bl and bu, we argue that bu ∼ bl ∼ n log k asymptot-
ically when n → ∞. This follows from the fact that the dominant asymptotic
component of both bu and bl is logS2(n, k). Indeed, S2(n, k) ∼ kn

k! for fixed k,
the asymptotic of logS2(n, k) is linear in n, and all other terms of the asymp-
totics of both bounds are additive and at most logarithmic in n.

Remark 3.7. The speed of convergence of the upper and lower bounds in Propo-
sition 3.5 is of type log n/n.

13



3.5 ε-regularity vs. stochastic block models

Although the structure that a MDL-based algorithm finds typically looks like
an ε-regular structure, there is a principal difference. In particular cases, an
ε-regular graph can have a structure that allows much better compression than
that provided by the ε-regular partition. In this section we give an explicit
example of such a case.

An important point in SRL is that for any ε > 0, there is an upper bound for
the size of regular partition, M(ε) so that for any graph with size above some
finite threshold N(ε), all such graphs have a regular partition with at most
M(ε) sets. Based on this, we show that the ε-regular structure of SRL and the
structure induced by the MDL need not coincide. Let us fix an order of graph
2n, large enough so that SRL holds for some ε > 0, and that M(ε) < n1−α for
some fixed 0 < α < 1/2.

Proposition 3.8. There is a graph of order 2n such that it has a MDL structure
with code length o(n2) and an ε−regular structure that allows only Θ(n2) code
length, where Θ(n2) denotes any strictly linear function of n2.

Proof. Take n large enough as prescribed above. Then construct a bipartite
graph (X,Y ) with |X| = |Y | = n such that n is divisible by nα with some
rational α ∈ (0, 1/2). Assume that both parts of the bipartition are further
partitioned into equal size blocks: X =

∑
Xi, Y =

∑
Yi, |Xi| = |Yi| = nα.

Define then a random graph Gp = (X,Y,E) as follows. For each pair (Xi, Yj),
take e(Xi, Yj) = ξi,j |Xi|Yj |, where ξi,j ∼ Ber(p) is a Bernoulli random variable
with parameter 0 < p < 1, and the variables for different pairs are independent.
Assume that there are no other edges.

We show that, with high probability, Gp is ε-regular with regular partition
{X,Y }. In the MDL-approach, such a structure has a coding length at least(
n
2

)
H(p+ o(1)) = O(n2). This comes from the log-likelihood part, and the o(1)

corresponds to very small deviations of link densities from the expected value
p that can be made arbitrarily small by increasing n. Now we check that the
ε-regularity of graph Gp has a positive probability, which implies that such an ε-
regular pair exists (actually, it appears that this happens with high probability).
ε-regularity means that for any X ′ ⊆ X, Y ′ ⊆ Y , | X ′ |, | Y ′ |> εn, the link
density d(X ′, Y ′) deviates from the link density of the pair, d(X,Y ), no more
than by ε. By definition,

d(X ′, Y ′) =

∑
i,j ξi,j | X ′ ∩Xi || Y ′ ∩ Yj |

| X ′ || Y ′ |
,

and as a result the expectation is

E d(X ′, Y ′) =

∑
i,j E ξi,j | X ′ ∩Xi || Y ′ ∩ Yj |

| X ′ || Y ′ |
= p.

Denote

xi,j :=
ξi,j | X ′ ∩Xi || Y ′ ∩ Yj |

| X ′ || Y ′ |
The range of xi,j is interval [0, 1] of unit length. Hoeffding’s inequality yields
for S =

∑
xi,j that

P (| S − ES |> t) ≤ 2e
− t2∑

b2
i,j ,
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where bi,j =
|X′∩Xi||Y ′∩Yj |
|X′||Y ′| is the range of variable xi,j . The denominator of the

exponent in the right hand-side of the Hoeffding inequality can be bounded as∑
b2i,j ≤

1

(εn)2

∑
| X ′ ∩Xi |2| Y ′ ∩ Yj |2≤

1

(εn)2
n2αn2α

( n
nα

)2

=
1

ε2
n2α.

By taking t = ε | X ′ || Y ′ |≥ ε(εn)2 we get for the link density:

P (| d(X ′, Y ′)− p |> ε) ≤ 2e−2ε8n2(1−α)

.

Finally, since there are at most 4n pairs of subsets (X ′, Y ′) from which to choose,
the probability that none of them violates regularity is lower bounded by

1− 2× 4ne−2ε8n2(1−α)

→ 1,

if the exponent has a positive power of n, and this happens when α < 1/2.
Thus, all large subsets have densities that deviate from expectation less than ε
with a probability tending to one. Thus, we have shown the ε-regularity of the
partition (X,Y ).

On the other hand, using MDL, we could reach the level of small sets Xi

and Yi, and the corresponding log-likelihood is zero. The model complexity is
o(n2), as can be easily seen from asymptotic formulas for the upper bound for
mk, with k = n1−α.

4 The Regular Decomposition approach to stochas-
tic block models

4.1 Block model codes

The previous section developed both the two-part and refined variants of the
MDL theory, as presented in [6], for the model space of stochastic block models.
In the following, we formulate a variant of two-part MDL that allows both prac-
tical implementations and a proof of consistency, i.e., that the MDL principle
identifies a correct block model. It was shown above that the most difficult task
in the description of a block model is identifying the partition. The same is
true for the model complexity, which is asymptotically just the logarithm of the
number of partitions. It appears that in order to prove consistency, we need
quite a delicate estimate for the description length of the partition. The asymp-
totic model complexity given in Corollary 3.6 seems to be too crude for proof
of consistency. A full resolution of this intriguing question is left for further
investigations.

We call our two-part MDL construction a block model code of a graph with
respect to a partition of its nodes that allows the computation of a tight up-
per bound of the code length. This upper bound is also consistent with a
more generic information theoretic point of view with a semi-constructive cod-
ing scheme.

We denote by H(·) both Shannon’s entropy function of a partition and the
entropy of a Bernoulli distribution, i.e.

H(ξ) = −
∑
A∈ξ

|A|
|V |

log
|A|
|V |

, H(p) = −p log p− (1− p) log(1− p).
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Remark 4.1. In the rest of this paper, we define also information-theoretic
functions in terms of natural logarithms, and certain notions like code lengths
should be divided by log 2 to obtain their values in bits.

Definition 4.2. A block model code of a graph G = (V,E) with respect to a
partition ξ of V is a code with the following structure:

The model part:

• first, the sizes of the blocks A ∈ ξ are given as integers;

• second, the edge density d(A) inside each block A ∈ ξ and the edge density
d(A,B) between each pair of distinct blocks A,B ∈ ξ are given as the
numerators of the rational numbers presenting the exact densities.

The aim of these two codes is to describe the parameters of two probability dis-
tributions, one for the links and the other for the membership of nodes in the
blocks of the partition.

The data part:

• third, the partition ξ is specified by a prefix code corresponding to mem-
bership distribution P (i ∈ A) = |A|/n, where all nodes are independent of
each other;

• fourth, the edges inside each block A ∈ ξ are specified by a prefix code
corresponding to a stochastic block model distribution of links inside each
block of ξ;

• fifth, the edges between each pair of blocks A,B ∈ ξ are specified by a prefix
code corresponding to a block model distribution of links between pairs of
blocks in ξ.

The description of link densities as link probabilities (the second code) is
natural, since conditionally to a partition the stochastic block model is just
a collection of Bernoulli models, where the best choice is to use averages as
parameters. Note that a block model code can be given for any graph with
respect to any partition of its nodes.

From Kraft’s inequality and the above definitions, it follows that there exists
a prefix code for a graph G = (V,E) with respect to a partition ξ = {A1, . . . , Ak}
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of V with length at most (and, for large graphs, typically close to)

L(G|ξ) = L1(G|ξ) + L2(G|ξ) + L3(G|ξ) + L4(G|ξ) + L5(G|ξ),

L1(G|ξ) =

k∑
i=1

l∗(|Ai|),

L2(G|ξ) =

k∑
i=1

l∗
((
|Ai|

2

)
d(Ai)

)
+
∑
i<j

l∗ (|Ai||Aj |d(Ai, Aj)) , (4.1)

L3(G|ξ) = |V |H(ξ),

L4(G|ξ) =

k∑
i=1

(
|Ai|

2

)
H(d(Ai)),

L5(G|ξ) =
∑
i<j

|Ai||Aj |H(d(Ai, Aj)),

where l∗(m) was defined by (3.5). Below we shall approximate l∗(m) by logm
without further mentioning, because their difference is insignificant in our con-
text. Similarly, we have dropped ceiling functions systematically. Also, recall
Remark 4.1 on the use of natural logarithms.

Next, we shall define block model codes for the Poissonian block models of
Definition 2.5. The entries of the random matrix E are Poisson distributed
integers. For a pair of disjoint sets A,B ⊂ V , the set {eij : i ∈ A, j ∈ B} is a
sample from a distribution R = (r`)`≥0 that is mixture of Poisson distributions.
It would be hard to encode the sample by first estimating the unknown mixture
distribution. Instead, we base the code simply on the sample mean

eAB =
1

|A||B|
∑

i∈A, j∈B
eij

and encode {eij : i ∈ A, j ∈ B} as if it came from a Poisson distribution P =
(p`) with parameter eAB . Thus, by Kraft’s inequality, a value eij = ` can be
well encoded by a codeword with approximate length

− log p` = − log

(
e`AB
`!

e−eAB
)
.

By the fundamental information inequality∑
`

r`(− log p`) ≥
∑
`

r`(− log r`) = H(R),

this encoding is suboptimal for arbitrary disjoint subsets A and B, but it is
optimal when A and B are blocks of the model partition ξ and R presents a
pure Poisson distribution. Thus, the suboptimality only improves the contrast
between ξ and other partitions of V .

For an arbitrary partition η = {B1, . . . , Bm}, the encoding of all e′ijs with
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the above rule requires about

m∑
i=1

(
|Bi|

2

)∑
`≥0

r
(Bi)
`

(
− log

(
e`Bi
`!
e−eBi

))

+
∑
i<j

|Bi||Bj |
∑
`≥0

r
(BiBj)
`

(
− log

(
e`BiBj
`!

e−eBiBj

))

=

m∑
i=1

(
|Bi|

2

)
(− log eBi)

∑
`≥0

`r
(Bi)
` +

∑
i<j

|Bi||Bj |(− log eBiBj )
∑
`≥0

`r
(BiBj)
`

+

m∑
i=1

(
|Bi|

2

)∑
`≥0

r
(Bi)
` log `! +

∑
i<j

|Bi||Bj |
∑
`≥0

r
(BiBj)
` log `!

+

m∑
i=1

(
|Bi|

2

)
eBi +

∑
i<j

|Bi||Bj |eBiBj

=
m∑
i=1

(
|Bi|

2

)
φ(eBi) +

∑
i<j

|Bi||Bj |φ(eBiBj )

+
1

2

∑
v,w∈V, v 6=w

log evw! +
∑

v,w∈V, v 6=w

evw,

where r-symbols refer to the empirical distribution of the evws,

eBi :=

∑
v,w∈Bi evw

|Bi|(|Bi| − 1)
, eBiBj :=

∑
v,w∈Bi evw

|Bi||Bj |
.

and
φ(x) = −x log x.

Now, we define the Poissonian block model code length of E with respect to any
partition η = {B1, . . . , Bm} as

L(E|η) = L0(E|η) + L1(E|η) + L2(E|η) + L3(E|η) + L4(E|η) + L5(E|η),

L0(E|η) =
1

2

∑
v,w∈V, v 6=w

log evw! +
∑

v,w∈V, v 6=w

evw,

L1(E|η) =

m∑
i=1

log(|Bi|),

L2(E|η) =

m∑
i=1

log

((
|Bi|

2

)
eBi

)
+
∑
i<j

log
(
|Bi||Bj |eBiBj

)
, (4.2)

L3(E|η) = |V |H(η),

L4(E|η) =

m∑
i=1

(
|Bi|

2

)
φ(eBi),

L5(E|η) =
∑
i<j

|Bi||Bj |φ(eBiBj ).

Note that the term L0(E|η) is independent of the partition η and can be ne-
glected when minimizing over η.

18



The MDL for matrices, derived in Section 3.3, is essentially equivalent with
(4.2). Indeed, the first term of (3.8) can be written as

D(PA || PΘ∗k1,k2
) =

k1∑
α=1

k2∑
β=1

|Vα||Uβ |φ(āα,β) +
∑
i,j

ai,j log ai,j ,

where ai,j and aα,β are as in (3.8) and āα,β = aα,β/(|Vα||Uβ |). The latter sum
does not depend on the partitions and can be neglected in minimization.

4.2 Accuracy of block structure identification by MDL

The general idea of the Regular Decomposition method is to be a generic tool
for separating structure and randomness in large data sets of graph or matrix
form. A partition of a real-world data set that minimizes the (nominal) code
length given in (4.1) resp. (4.2) can often not be compared with a ‘true solution’
for the simple reason that there may not be any objective notion of a ‘true
structure’ of the data. However, it is important to analyse and understand
how the method performs when the data really originates from a stochastic
block model. This question is called the consistency of MDL. Our results on
this question are summarized in the following theorem, formulated in terms of
the asymptotic behavior of a model sequence as specified by Construction 2.3.
In such a framework, an event is said to happen with high probability, if its
probability tends to 1 when n→∞.

Theorem 4.1. Consider a sequence of stochastic block models (Gn, ξn) based
on a vector (γ1, . . . , γk) of relative block sizes and a matrix D = (dij)

k
i,j=1 of

link probabilities, as described in Definition 2.2 and Construction 2.3. With
high probability, the following hold:

1. Among all partitions η of Vn such that |η| ≤ k, ξn is the single minimizer
of L(Gn|η).

2. For any fixed ε ∈ (0,mini γi), ξn is the single minimizer of L(Gn|η) among
partitions η with minimal block size larger than nε.

3. No refinement η of ξn with |η| ≤ m improves L(Gn|ξn) by more than
const(k,m) log n.

The corresponding claims hold for the Poissonian block model mutatis mutandis.

Proof. The proof is given in the next section and structured into several propo-
sitions. Claim 1 follows from Proposition 5.1, Proposition 5.2 and Corollary 5.6.
Claim 2 is Proposition 5.7. Claim 3 is Proposition 5.5.

The results of Section 5 offer a richer picture than what was distilled into
Theorem 4.1. For example, Proposition 5.1 shows that if |η| = k and η differs
from ξn only a little, then the remaining misplaced nodes can be immediately
identified by computing their effect to the value of L(Gn|η). On the other hand,
we have not been able to exclude the possibility that a refinement of η could
yield a slight O(log n) improvement of the code length.
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Remark 4.3. It is rather obvious that with large n, the identification of the
block structure ξn is robust against independent noise. The simplest case is that
the Poissonian block model is disturbed by additive Poissonian noise to each
matrix element:

ẽij = eij + φij ,

where the φijs are i.i.d. with φij ∼ Poisson(ν), ν > 0. Then (ẽij) is again
an irreducible Poissonian block model with the same partition. More interesting
cases are binary flips in the graph case and multiplicative noise with mean 1 in
the case of non-negative matrices. We leave these for forthcoming work.

5 Proof of Theorem 4.1

Through this section, we consider a sequence (Gn|ξn) of increasing versions of a
fixed stochastic block model based on a vector (γ1, . . . , γk) of relative block sizes
and a matrix D = (dij)

k
i,j=1 of link probabilities, as specified in Construction

2.3.
Consider partitions η of Vn. Denote

d(η, ξn) =
1

n
max
B∈η

min
A∈ξn

|B \A|.

Thus, d(η, ξn) = 0 if and only if η is a refinement of ξn. If v ∈ Vn and B ∈ η,
denote by ηv,B the partition obtained from η by moving node v to block B (if
v ∈ B, then ηv,B = η).

Proposition 5.1. There is a number ε0 > 0 such that the following holds with
high probability: if |η| = k and d(η, ξn) ≤ ε0, then

if A ∈ ξn, B ∈ η,
1

n
|B \A| ≤ ε0 and v ∈ A \B, then L(Gn|ηv,B) < L(Gn|η).

Proof. Let ε, δ > 0 be small numbers and m a positive integer to be specified.
They can be chosen so that the following holds:

• ε is small so that η and ξn nearly overlap when d(η, ξn) ≤ ε:

mnε ≤ δ min
A∈ξn

|A|; (5.1)

• all the differing link probabilities are widely separated in δ units:

δ ≤ 1

m
min {|dij1 − dij2 | : i, j1, j2 ∈ {1, . . . , k} , dij1 6= dij2} ; (5.2)

• the empirical densities are close to their mean values: for any Ai, Aj ∈ ξn
(possibly i = j), we have, with high probability,

|d(Ai, Aj)− dij |+mε ≤ δ. (5.3)

Let η be a partition of Vn such that d(η, ξn) ≤ ε. Condition (5.1) entails that
for each block Ai ∈ ξn there is a unique block Bi ∈ η such that |Bi \ Ai| ≤ ε.
Let us now assume that v ∈ Ai ∩ Bj and i 6= j, and compare the partitions η
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and ηv,Bi . Denote bi = |Bi|, i = 1, . . . , k, and B̃i = Bi ∪ {v}, B̃j = Bj \ {v}.
Then

L4(Gn|η) + L5(Gn|η)− (L4(Gn|ηv,Bi) + L5(Gn|ηv,Bi))

=

(
bi
2

)
H(d(Bi)) +

(
bj
2

)
H(d(Bj))−

(
bi + 1

2

)
H(d(B̃i))−

(
bj − 1

2

)
H(d(B̃j))

+
∑
q 6=i,j

[
bibqH(d(Bi, Bq)) + bjbqH(d(Bj , Bq))

− (bi + 1)bqH(d(B̃i, Bq)) + (bj − 1)bqH(d(B̃j , Bq))
]

+ bibjH(d(Bi, Bj))− (bi + 1)(bj − 1)H(d(B̃i, B̃j)).

(5.4)

Consider first the sum over q. Leaving out the common factor bq, each term of
the sum can be written as

bj
[
H(d(Bj , Bq))−

bj − 1

bj
H(d(B̃j , Bq))

]
− (bi + 1)

[
H(d(B̃i, Bq))−

bi
bj + 1

H(d(Bi, Bq))
]

= bj

[
H

(
bj − 1

bj
d(B̃j , Bq) +

1

bj
d({v} , Bq)

)
− bj − 1

bj
H(d(B̃j , Bq))−

1

bj
H(d({v} , Bq))

]
− (bi + 1)

[
H

(
bi

bi + 1
d(Bi, Bq) +

1

bi + 1
d({v} , Bq)

)
− bi
bi + 1

H(d(Bi, Bq))−
1

bi + 1
H(d({v} , Bq))

]
(note the addition and subtraction of the term H(d({v} , Bq))). Using Lemmas
A.3 and A.7, and the assumptions on ε, δ and m, the last expression can be set
to be, with high probability, arbitrarily close to the number

DB(diq‖djq)−DB(diq‖diq) = DB(diq‖djq)

(the function DB(·‖·), the Kullback-Leibler divergence of Bernoulli distribu-
tions, is defined in (A.2)). Thus, the sum over q is, with high probability, close
to

bq
∑
q 6=i,j

DB(diq‖djq).

Let us then turn to the remaining parts of (5.4) that refer to two codings of
the internal links of Bi∪Bj . Similarly as above, we can add and subtract terms
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to transform these parts into(
bj
2

)[
H

((
bj−1

2

)(
bj
2

) d(B̃j) +
bj − 1(
bj
2

) d({v} , B̃j)

)

−
(
bj−1

2

)(
bj
2

) H(d(B̃j))−
bj − 1(
bj
2

) H(d({v} , B̃j))

]

−
(
bi + 1

2

)[
H

( (
bi
2

)(
bi+1

2

)d(Bi) +
bi(
bi+1

2

)d({v} , Bi)

)

−
(
bi
2

)(
bi+1

2

)H(d(Bi))−
bi(
bi+1

2

)H(d({v} , Bi))

]

+ bibj

[
H

(
bj − 1

bj
d(Bi, B̃j) +

1

bj
d({v} , Bi)

)

− bj − 1

bj
H(d(Bi, B̃j))−

1

bj
H(d({v} , Bi))

]

− (bi + 1)(bj − 1)

[
H

(
bi

bi + 1
d(Bi, B̃j) +

1

bi + 1
d({v} , B̃j)

)

− bi
bi + 1

H(d(Bi, B̃j))−
1

bi + 1
H(d({v} , B̃j))

]
≈ (bj − 1)DB(dij‖djj)− (bi + 1)DB(dii‖dii) + biDB(dii‖dij)− (bj − 1)DB(dij‖dij)
≈ bjDB(dij‖djj) + biDB(dii‖dij).

By the above analysis of (5.4), we have obtained

L4(Gn|η) + L5(Gn|η)− (L4(Gn|ηv,Bi) + L5(Gn|ηv,Bi))

≈ bq
∑
q 6=i,j

DB(djq‖diq) + bjDB(dij‖djj) + biDB(dii‖dij). (5.5)

By the irreducibility assumption (2.1), there is a block Aq such that dqi 6= dqj ,
with the possibility that q ∈ {i, j}. It follows that at least one of the DB(x‖y)’s
in (5.5) is positive. Denote

κ∗ = min {DB(dij1‖dij2) : dij1 6= dij2} .

Thus, with high probability,

L4(Gn|η) + L5(Gn|η)− (L4(Gn|ηv,Bi) + L5(Gn|ηv,Bi)) >
1

2
(κ∗min

i
γi)n.

On the other hand, it is easy to compute that

L3(Gn|η)− L3(Gn|ηv,Bi) = n(H(η)−H(ηv,Bi))→ log
γj
γi
.

The changes of L1 and L2 when moving from η to ηv,Bi are negligible. This
concludes the proof.
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The proof of Proposition 5.1 showed that when d(η, ξn) ≤ ε0, moving any
node to its correct block decreases L(Gn|η) at least by (1/2)(κ∗mini γi)n. In
particular, with high probability, ξn is the unique minimizer of L(Gn|η) among
k-partitions η satisfying d(η, ξn) ≤ ε0.

Proposition 5.2. For any ε ∈ (0, 1) and positive integer m, there is a constant
cε > 0 such that the following holds with high probability:

if |η| ≤ m and d(η, ξn) > ε, then
1

n2
(L(Gn|η)− L(Gn|ξn ∨ η)) ≥ cε.

Proof. Fix an ε ∈ (0, 1) and let η be a partition of Vn such that d(η, ξn) > ε.
By the concavity of H, we have

L4(Gn|η) + L5(Gn|η)

=
∑
B∈η

(
|B|
2

)
H(d(B)) +

1

2

∑
B,B′∈η

B 6=B′

|B||B′|H(d(B,B′))

≥
∑
B∈η

∑
A∈ξn

(
|A ∩B|

2

)
H(d(A ∩B))

+
∑
B∈η

1

2

∑
A,A′∈ξn
A6=A′

|A ∩B||A′ ∩B|H(d(A ∩B,A′ ∩B))

+
1

2

∑
B,B′∈η

B 6=B′

∑
A,A′∈ξn

|A ∩B||A′ ∩B′|H(d(A ∩B,A′ ∩B′))

= L4(Gn|η ∨ ξn) + L5(Gn|η ∨ ξn).

(5.6)

By assumption, there is B ∈ η such that |B \ A| > εn for every A ∈ ξn. It is
easy to see that there must be (at least) two distinct blocks, say Ai and Aj ,
such that

min {|Ai ∩B|, |Aj ∩B|} ≥
ε

k − 1
n. (5.7)

By the irreducibility assumption (2.1), there is a block Aq such that dqi 6= dqj ,
with the possibility that q ∈ {i, j}. Fix an arbitrary δ > 0 to be specified later.
By ε-regularity (claim 2 of Lemma A.7), with high probability, every choice of a
partition η with |B \A| > εn results in some blocks Ai, Aj , Aq with the above
characteristics plus the regularity properties

|d(Ai ∩B,Aq ∩B′)− diq| ≤ δ, |d(Aj ∩B,Aq ∩B′)− djq| ≤ δ, (5.8)

where B′ denotes a block of η that maximizes |Aq ∩ B′| (note that because

23



|η| ≤ m, |Aq ∩B′| ≥ |Aq|/m). By the concavity of H,

|Ai ∩B||Aq ∩B′|H(d(Ai ∩B,Aq ∩B′))
+ |Aj ∩B||Aq ∩B′|H(d(Aj ∩B,Aq ∩B′))

= |(Ai ∪Aj) ∩B||Aq ∩B′|
[

|Ai ∩B|
|(Ai ∪Aj) ∩B|

H(d(Ai ∩B,Aq ∩B′))

+
|Aj ∩B|

|(Ai ∪Aj) ∩B|
H(d(Aj ∩B,Aq ∩B′))

]
< |(Ai ∪Aj) ∩B||Aq ∩B′|H(d((Ai ∪Aj) ∩B,Aq ∩B′)).

In the case that q ∈ {i, j} and B = B′, we obtain a similar equation where
|Aq ∩ B| is partly replaced by |Aq ∩ B| − 1. Because of (5.8) and (5.7), the
difference between the sides of the equality has a positive lower bound that
holds with high probability. On the other hand, this difference is part of the
overall concavity inequality (5.6).

Proposition 5.3. For any refinement η of ξn, we have

L4(Gn|ξn) + L5(Gn|ξn)− (L4(Gn|η) + L5(Gn|η))
(st)

≤
M(|η|)−M(k)∑

j=1

(log 2 + Yi),

(5.9)

where (st) refers to stochastic order, the Yi’s are i.i.d. Exp(1) random variables,
and

M(x) =
x(x+ 1)

2
. (5.10)

Proof. Here we apply results presented in Appendix A. Denote by η ∩ Ai the
subset of η whose members are subsets of the block Ai of ξn. Writing the edge
code lengths of the coarser and finer partition similarly as in (5.6), taking the
difference and using (A.5), we obtain

L4(Gn|ξn) + L5(Gn|ξn)− (L4(Gn|η) + L5(Gn|η))

=

k∑
i=1

( ∑
B∈η∩Ai

(
|B|
2

)
DB(d(B)‖dii) +

1

2

∑
B,B′∈η∩Ai
B 6=B′

|B||B′|DB(d(B,B′)‖dii)

−
(
|Ai|

2

)
DB(d(Ai)‖dii)

)

+
∑
i<j

( ∑
B∈η∩Ai

∑
B′∈η∩Aj

|B||B′|DB(d(B,B′)‖dij)− |Ai||Aj |DB(d(Ai, Aj)‖dij)

)
.

(5.11)

Applying Proposition A.6 to each term of both outer sums now yields the claim,
because

k∑
i=1

(M(|η ∩Ai|)− 1) +
∑
i<j

(|η ∩Ai||η ∩Aj | − 1) = M(|η|)−M(k).
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Remark 5.4. It is rather surprising that the stochastic bound (5.9) depends
only on the number of blocks in η — not on their relative sizes, nor on the
overall model size n.

Proposition 5.5. For any positive integer m > k, the following holds with high
probability:

L(Gn|ξn)− min
η≥ξn, |η|≤m

L(Gn|η) ≤ (m+M(m− k)) log n,

where the relation η ≥ ξn means that η is a refinement of ξn, and M(·) was
defined in (5.10).

Proof. Let η be a refinement of ξn. Refining the partition w.r.t. ξn yields a gain,
based on the concavity of H, in the code part L4 + L5, but costs in the parts
L1, L2 and L3. We have to relate these to each other.

Consider first the value of L2(Gn|η). In our analysis, it is important to
distinguish between ‘large’ and ‘tiny’ blocks, where the relative sizes of large
blocks exceed some pre-defined number ε and the rest can be arbitrarily small,
even singletons. Now, each block Ai ∈ ξn must contain at least one block
Bi ∈ η ∩Ai such that |Bi| ≥ |Ai|/m. Define

ε := min
j
|Aj |/(2mn).

Because no concavity gain can be obtained with an index pair {i, j} such that
dij ∈ {0, 1}, it does not restrict generality to assume that dij ∈ (0, 1) for all i, j.
Then, by (4.1),

L2(Gn|η) =

k∑
i=1

( ∑
B∈η∩Ai

log

((
|B|
2

)
dii

)
+

1

2

∑
B,B′∈η∩Ai
B 6=B′

log(|B||B′|dii)

)

+
∑
i<j

( ∑
B∈η∩Ai

∑
B′∈η∩Aj

log(|B||B′|dij)

)

≥
k∑
i=1

(
log

(
ε2n2

2
dii

)
+ (|η ∩Ai| − 1) log(εndii)

)
+
∑
i<j

(
log
(
ε2n2dij

)
+ (|η ∩Ai|+ |η ∩Aj | − 2) log(εndij)

)
= (k|η|+ k) log n+ c1(D, ε).

On the other hand, the bound |Ai| ≤ n yields

L2(Gn|ξn) ≤ (k2 + k) log n+ c2(D).

Thus,

L2(Gn|η)− L2(Gn|ξn) ≥ k(|η| − k) log n+ c1(D, ε)− c2(D). (5.12)

We obviously have also L1(Gn|η) ≥ L1(Gn|ξn), but this difference is insignificant
in the present context.
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The refinement gain in code parts L4 and L5 was bounded in Proposition 5.3
stochastically by Exp(1) random variables. The rate function (see the beginning
of Appendix A) of the distribution Exp(1) is

IE(x) = x− 1− log x.

Denote

Gainn(η) := L4(Gn|ξn) + L5(Gn|ξn)− (L4(Gn|η) + L5(Gn|η)).

Proposition 5.3 yields, using (A.1) and Proposition A.1, that for y > log 2

P (Gainn(η) > y)

≤ P

M(|η|)−M(k)∑
j=1

Yi > y − (M(|η|)−M(k)) log 2


≤ exp

(
−(M(|η|)−M(k))IE

(
y − (M(|η|)−M(k)) log 2

M(|η|)−M(k)

))
≤ exp

(
− y + (M(|η|)−M(k)) log y

)( 2e

M(|η|)−M(k)

)M(|η|)−M(k)

,

where the second factor is bounded and will be henceforth neglected.
For two refinements of ξn, write η′ ∼ η if the block sizes of η′ in each Ai

are identical to those of η. The number of refinements η′ of ξn with η′ ∼ η is
upperbounded by

exp

∑
A∈ξn

|A|H(η ∩A)

 = enH(η|ξn),

where H(η ∩A) denotes the entropy of the partition of A induced by η. On the
other hand, we have

L3(Gn|η)− L3(Gn|ξn) = nH(η)− nH(ξn) = nH(η|ξn).

Write

∆L123(η) = L1(Gn|η) + L2(Gn|η) + L3(Gn|η)

− (L1(Gn|ξn) + L2(Gn|ξn) + L3(Gn|ξn)),

∆L(η) = L(Gn|η|)− L(Gn|ξn|).

Denote z(η) := (|η|+M(|η|−k)) log n. Recalling (5.12), the union bound yields

P

(
sup
η′∼η

Gainn(η′) > ∆L123(η) + z(η)

)
≤ exp (nH(η|ξn)−∆L123(η)− z(η) + (M(|η|)−M(k)) log(∆L123(η) + z(η)))

≤ exp

(
− z(η) +

(
− k(|η| − k) +M(|η|)−M(k)

)
log n+ c3(D, ε)

)
.
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The number of different block size sequences `1 ≥ · · · ≥ `|η| is upper bounded

by n|η|−1 = e(|η|−1) logn. Thus, a second application of the union bound yields

P

(
sup

η≥ξn, |η|≤m
∆L(η) > z(η)

)

≤ me
(
−
[
k(m−k)

]
+
[
M(m)−M(k)

]
−
[
m+M(m−k)

]
+
[
m−1

])
logn+const

=
const

n
→ 0, as n→∞.

Corollary 5.6. ξn is the unique minimizer of L(Gn|η) among partitions η with
|η| = k.

Proof. By Proposition 5.1,

min
|η|=k, d(η,ξn)≤ε0

L(Gn|η) > L(Gn|ξn)

with high probability. On the other hand, Proposition 5.2 yields that, with high
probability,

min
|η|=k, d(η,ξn)>ε0

L(Gn|η) > L(Gn|ξn ∨ η) + cε0n
2.

By Proposition 5.5,

min
|η|=k

L(Gn|ξn ∨ η) > L(Gn|ξn)− (k +M(k2 − k)) log n

with high probability. It remains to note that n2 grows faster than log n.

Proposition 5.7. Let ε ∈ (0,mini γi). Consider refinements η of ξn with rela-
tive minimal block size ε, i.e. the set

B(n)
ε = {η ≥ ξn : |B| ≥ nε ∀B ∈ η} . (5.13)

With high probability,

min
η∈B(n)

ε \{ξn}
L(Gn|η) > L(Gn|ξn). (5.14)

Proof. The restriction η ∈ B(n)
ε implies |η| ≤ b1/εc =: m. The difference to

the conditions of Proposition 5.5 is now just the magnitude of L2(η). When
η ∈ B(n),

L2(Gn|η) ≥M(|η|) log n2 + c(D, ε, |η|),
so that

L2(Gn|η)− L2(Gn|ξn) ≥ 2(M(|η|)−M(k)) log n+ c(D, ε, |η|).

By a corresponding computation as in the proof of Proposition 5.5, we obtain

for any fixed η ∈ B(n)
ε that

P

(
sup
η′∼η

Gainn(η′) > ∆L123(η)− 1

2
log n

)
≤ exp (−(M(|η|)−M(k)) log n+ const) .
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Proceeding with a second union bound like in the proof of Proposition 5.5 yields

P

(
min

η∈B(n)
ε \{ξn}

L(Gn|η) ≤ L(Gn|ξn) +
1

2
log n

)

≤ max
q≤m

exp

(([
− (M(q)−M(k))

]
+

[
q − 1

]
+

1

2

)
log n+ const

)
= exp

(
−1

2
log n+ const

)
=

const√
n
→ 0, as n→∞,

where the maximum over q was obtained with the smallest value q = k+ 1.

6 Algorithms, codes and illustrations

6.1 Regular decomposition algorithms based on MDL

In this section we present algorithms that we have used in actual computa-
tions of regular decompositions of graph and matrix data. These are written
for standard two-part MDL, where the code lengths L4 and L5 have a usual
interpretation as a minus log-likelihood of a graph corresponding to a stochastic
block model.

Thus, we use link coding lengths found in the upper bound of Proposition
3.3. In many cases, this is all that can be computed realistically. Moreover
such overestimating is not critical since the over-fitting seems to be a common
problem, because the minimum of MDL tend to be very shallow and is easily
passed unnoticed. We can obviously describe a partition into k nonempty sets
using an n× k binary matrix with all row sums equal to one and requiring that
none of the column sums equals zero. The space of all such matrices we denote
as Rk and the members of this set as R ∈ Rk.

Definition 6.1. For a given graph G ∈ Ωn with adjacency matrix A and a
partition matrix R ∈ Rk, denote

P1(R) := RTAR,

where ·T stands for matrix transpose, the column sums of R are denoted as

nα := (RTR)α,α, 1 ≤ α ≤ k,

and the number of links within each block and between block pairs as

eα,β(R) = (1− 1

2
δα,β)(P1(R))α,β ,

where δα,β = 1 if α = β and δα,β = 0 otherwise. Then define

(P (R))α,α := 1{nα>1}
eα,β(R)(

nα
2

) , (P (R))α,β :=
eα,β(R)

nαnβ
, α 6= β.

Then the coding length of the graph corresponding to A using the model R
is:
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Definition 6.2.

lk(G(A) | R ∈ Rk) :=
∑

1≤i<j≤k

ninjH((P (R))i,j) +
∑

1≤i≤k

(
ni
2

)
H((P (R))i,i)

+ lk(R),

where
lk(R) =

∑
1≤i≤k

niH(ni/n) +
∑

1≤i≤j≤k

l∗(ei,j(R))

is the code length of the model, according to our theory and notation.

The two-part MDL program of finding the optimal model, denoted as
Rk∗ , can now be written as:

(k∗, Rk∗) := arg min
1≤k≤n

min
R∈Rk

lk(G(A) | R ∈ Rk) (6.1)

To solve this program approximately, we can use the following greedy algorithm.

Algorithm 6.3. Greedy Two-part MDL
Input: G = G(A) ∈ Ωn a simple graph of size n.
Output: (k∗, Rk∗ ∈ Rk∗), such that the two-part code for G is shortest possible
for all models in Mn by using this pair as a model.
Start: k = 1, l∗ = ∞, R ∈ R1 = {I}, k∗ = 1, where I is denotes the n × 1
matrix with all elements equal to 1.
1. Find

R̂k(G) := arg min
R∈Rk

(lk(G | R)

using subroutine ARGMAX k (Algorithm 6.5).
2. Compute lk(G) = dlk(G | R̂(G))e+ lk(R̂(G))
3. If lk(G) < l∗ then l∗ = lk(G), Rk∗ = R̂k(G) , k∗ = k
4. k = k + 1
5. If k > n, Print (Rk∗ , k

∗) and STOP the program.
6. GoTo 1.

Definition 6.4. Matrices noted as LogP (R) and Log(1−P (R)) are defined as:

(LogP (R))α,β := log(P (R)α,β),

(Log(1− P (R)))α,β := log(1− P (R)α,β),

L(R) := −ARLogP (R)− (1−A)RLog(1− P (R)),

where we set log 0 = 0 (all log 0 values will be later multiplied by 0),

β(i, R) := inf{β : β = arg min
1≤α≤k

(L(R))i,α}, 1 ≤ i ≤ n.

A mapping Φ : Rk → Rk is defined as follows:

Φ(R)i,α = δα,β(i,R).

The mapping Φ(R) moves each node to a possibly different block in such a
way that the description length would be minimized if all other nodes stay in
their current blocks. A Python code with generating synthetic binary graphs is
given in [20].
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Algorithm 6.5. ARGMAX k
Algorithm for finding optimal regular decomposition for fixed k
Input: A: the adjacency matrix of a graph (an n×n symmetric binary matrice
with zero trace); N : an integer (the number of iterations in the search of a global
optimum); k: a positive integer.
Start: m = 1.
1. i := 0; generate a uniformly random element Ri ∈ Rk.
2. If at least one of the column sums of Ri is zero, GoTo 1. Otherwise, set

Ri+1 := Φ(Ri).

3. If Ri+1 6= Ri, set i := i+ 1 and GoTo 2.
4. R(m) := Ri; m = m+ 1; l(m) :=

∑n
i=1 min1≤α≤k(L(R(m)))i,α.

5. If m < N , GoTo 1.
6. M := {m : l(m) ≤ l(i), i = 1, 2, ..., N}; m∗ := inf M .
Output optimal solution: R(m∗).

For very large graphs, the program may not be solvable in the sense that it is
not possible and reasonable to go through all possible values of k ∈ {1, 2, · · · , n}.
One option is to limit the range of k. In case that no minimum is found, then
use as an optimal choice the model found for the largest k within this range.
Another option is to find the first minimum with smallest k and stop. When
the graph is extremely large, it makes sense to use only a randomly sampled
sub-graph as an input — indeed, when k∗ << n, a large-scale structure can be
estimated from a sample [24].

Our algorithm for Poissonian block models and matrices is essentially similar,
with certain differences in formulae as detailed below. Algorithms for other
cases like directed graphs and non-quadratic matrices are written very similarly,
although two partitions are needed, one for rows and one for columns. The logic
of the solution remains the same however.

A semi-heuristic two-part MDL algorithm for finding a regular decomposi-
tion for an n × m matrix A with non-negative entries works as follows. The
decomposition takes a form of a bi-clustering: there are two partitions, one for
rows and one for columns. Such partitions are described by binary matrices
with row sums equal to one. The two-part MDL program to find an optimal
regular decomposition is written as follows:

The row partition-matrices are denoted as R ∈ Rk1 with dimensions n× k1,
1 ≤ k1 ≤ n, and the column partition matrices as C ∈ Ck2 with dimensions
m× k2, 1 ≤ k2 ≤ m.

Let us formulate the cost function for the matrix case that is derived from
Eq (9). The number of matrix elements in row group α and column group β
can be written as a matrix element:

(N)α,β = (RTR)α,α(CTC)β,β := nαmβ .

Assuming that all blocks are non-empty, all Nα,β > 0, we can define an average
matrix element of block α, β. First compute the sum of all matrix elements of
A over such a block:

eα,β = (RTAC)α,β .

The corresponding block averages form a k1 × k2 P -matrix with elements

(P )α,β =
eα,β

(N)α,β
.
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The coding length of the matrix A using a two-part MDL code with partitions
(R,C) can be written as

lk1,k2(G(A) | R ∈ Rk1 , C ∈ Ck2))

=
∑

1≤α≤k1,1≤β≤k2

{
eα,β(1− log((P )α,β) + l∗([eα,β ])

}
+

∑
1≤α≤k1

nαH
(nα
n

)
+

∑
1≤β≤k2

mβH
(mβ

m

)
+ k1 × k2c.

Here we assume a similar handling of log 0’s as in the binary case. nα and mβ

are the sizes of row and column blocks, and [eα,β ] denotes the integer part of
eα,β ; it is assumed that such block sums are large numbers with finite decimal
precision c > 0. The description length of such decimals is the last term and it
is small compared with other terms for large matrices and can be safely ignored.
Similarly to the binary case, the two-part MDL program is defined as:

Definition 6.6.

(k∗1 , k
∗
2 , R, C)

:= arg min
(k1,k2)

(
min

R∈Rk1 ,C∈Ck2
lk1,k2(G(A) | R ∈ Rk1 , C ∈ Ck2)

)
(6.2)

where
1 ≤ k1 ≤ n, 1 ≤ k2 ≤ m.

The greedy algorithm for solving this program is very similar to the case
of a binary matrix. The difference is that two parametric sequences of parti-
tions must be searched, Ri and Cj , and in the subroutine that finds the optimal
partitions for fixed i and j. One may consider different strategies in the corre-
sponding search of an optimal pair. For instance, moving first along the diagonal
i = j, and finding the value where the cost function (coding length of A) has a
knee-point, and after that make an off-diagonal search near that value. Another
option could be moving along the steepest descent direction of the cost func-
tion, or alternating the directions of increments in i and j, until a saturation is
reached in one direction, and then keeping that parameter fixed and finding the
optimum on the second parameter. This question is a subject to further exper-
imenting with real and artificial data. Therefore we write only the subroutine
that finds the optimal partitioning with fixed k1 and k2 in a greedy fashion.
First we need

Definition 6.7. Define the mappings ΦR : Rk1 × Ck2 → Rk1 and ΦC : Rk1 ×
Ck2 → Ck2 as follows. Let E be an n × m matrix with all elements equal to
1. Then, using the definition of P -matrix and LogP -matrix (related to P as in
binary case), define two matrices using a block-matrix notation:

L(R,C) =
(
E A

)( CPT

−C(LogP )T

)
and

M(R,C) =
(
ET AT

)( RP
−RLogP

)
.
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Define

β1(i, R,C) = inf{β : β = arg min
1≤α≤k1

(L(R,C))i,α}, 1 ≤ i ≤ n,

and
β2(i, R,C) = inf{β : β = arg min

1≤α≤k2
(M(R,C))i,α}, 1 ≤ i ≤ m.

Then,
ΦR(R,C)i,α = δα,β1(i,R,C), 1 ≤ α ≤ k1, 1 ≤ i ≤ n,

and
ΦC(R,C)i,α = δα,β2(i,R,C), 1 ≤ α ≤ k2, 1 ≤ i ≤ m.

The main greedy subroutine is:

Algorithm 6.8. ARGMAX (k1, k2)
Algorithm for finding optimal regular decomposition for fixed (k1, k2).
Input: A: a real n×m matrix with non-negative entries; N : a positive integer
(the number of iterations in the search of a global optimum); (k1, k2): a pair of
positive integers.
Start: m = 1.
1. i = 0; generate uniformly random elements Ri ∈ Rk1 . and Ci ∈ Ck2 .
2. If at least one of column sums of Ri or Ci is zero, GoTo 1. Otherwise, set

Ri+1 := ΦR(Ri, Ci), Ci+1 := ΦC(Ri, Ci).

3. If Ri+1 6= Ri or Ci+1 6= Ci, set i := i+ 1 and GoTo 2.
4. R(m) := Ri; C(m) := Ci; m := m+ 1;

eα,β :=
(
TT (m)AC(m)

)
α,β

, 1 ≤ α ≤ k1, 1 ≤ β ≤ k2;

Nα,β :=
(
RT (m)R(m)

)
α,α

(
CT (m)C

)
β,β

, 1 ≤ α ≤ k1, 1 ≤ β ≤ k2;

l(m) :=
∑

1≤α≤k1,1≤β≤k2

eα,β

(
1− log

eα,β
Nα,β

)
.

5. If m < N , GoTo 1.
6. M := {m : l(m) ≤ l(i), i = 1, 2, ..., N}; m∗ := inf M .
OUTPUT optimal solution: (R(m∗), C(m∗)).

Remark 6.9. It is also possible to find regular decompositions in the case of
partly missing matrix elements [23, 24]and also in the case of mixed positive
and negative entries. In the latter case, we can use the idea of directed links
already used in[13]. In the first case, we note that the main characteristic of
the regular decomposition is the P -matrix with elements that are averages of the
data matrix over large blocks that can be estimated, in many cases, despite a
portion of data is missing.

6.2 Simulations

To illustrate MDL based RD, we run several computer experiments. The pur-
pose was to verify whether the right numbers of blocks could be found.
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We used a simple stochastic block model for this purpose. There were k = 5
blocks and each node was placed in a block uniformly at random. The number of
nodes was 1000. Link probabilities in blocks and between them were uniformly
random reals in range [0, 1]. After the probabilities were generated they were
multiplied by a constant factor p. These factors had values 0.1, 0.3, 0.5, 0.7, 0.9
and experiments were run for each value. The aim of the factor was to generate
graphs with different densities.

For each set of parameters, experiments were repeated 8 times to get diver-
sity of samples. RD algorithm was run in one node of a high power computation
cluster at VTT. The whole experiment took several days to complete.

The result in most cases is that the right number of blocks can be identified.
The results are presented graphically in the series of figures in Figure 1. The cost
function is the smallest found - log-likelihood + the complexity term k log n +
.5k(k+ 1) log((n− k)(n− k+ 1)). The first corresponds to the length of a code
that encodes the partition and the last one to the coding length of the number
of links between and inside the block. The cost function shows a characteristic
kink at value k = 5. After this value of k is exceeded the cost function remains
almost flat.

The main observation is that RD must be done carefully, meaning that the
greedy algorithm must be rerun many times in order to find a good approxima-
tion of the global optimum. In our case 2000 runs seems to work.

In [24] we showed that RD can work on very large graphs generated from
a SBM, provided k is a known constant and the graph is dense with fixed link
probabilities independent on graph size. When MDL is used in RD, it is very
likely that the right structure can be found from samples of a very large graph
without knowing the right k.

SBM is called sparse when link probabilities tend to 0 as n → ∞. In this
case we suggested [22] to use RD to analyze the graph distance matrix instead
of the adjacency matrix. In cases when the graph distances can be estimated,
this could be used to find block structures of very large graphs using a similar
sampling approach as in the dense graph case.

A Chernoff bounds and other information-theoretic
preliminaries

Consider a random variable X with moment generating function

φX(β) = E eβX ,

and denote DX = {β : φX(β) <∞}. We restrict to distributions of X for which
DX is an open (finite or infinite) interval. The corresponding rate function is

IX(x) = − inf
β∈DX

(log φX(β)− βx).

IX(x) is a strictly convex function with minimum 0 at EX and value +∞
outside the range of X. For the mean X̄n = 1

n

∑n
1 Xi of i.i.d. copies of X, we

have
IX̄n(x) = nIX(x). (A.1)

The Chernoff bound (also known as Cramér-Lundberg bound):
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Figure 1: Normalized cost functions as a function of number of blocks k. From
top left to down expected density of the graph grows according to factor p in
each figure. Each line corresponds to an independent repetition of experiments.
In most cases k = 5 is clearly identified as a value after which the function
becomes almost flat.

Proposition A.1.

P (X < x) ≤ e−IX(x) for x < EX,

P (X > x) ≥ e−IX(x) for x > EX.

This has the following simple consequence that plays an important role be-
low. Let the convex hull of the support of X be the closure of (x−, x+), and
denote

a− := lim
x↓x−

IX(x) = − logP
(
X = x−

)
, a+ := lim

x↑x+
IX(x) = − logP

(
X = x+

)
(a < ∞ if and only if the distribution of X has an atom at x−, similarly for
a+). We can now write

IX(x) = I−X(x)1{(x−,EX]}(x) + I+
X(x)1{[EX,x+)}(x)

+ a− · 1{x−}(x) + a+ · 1{x+}(x) +∞ · 1{R\[x−,x+]}(x).
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With the assumptions made above, the functions I−X(x) and I+
X(x) are, respec-

tively, bijections from (x−,EX] and [EX,x+) to [0, a−) and [0, a+).

Lemma A.2.

IX(X)
(st)

≤ log 2 + Y,

where
(st)

≤ denotes stochastic order and Y is a random variable with distribution
Exp(1).

Proof. For any z ≥ 0, we have

P (IX(X) > z) = P
(
1{X<EX}IX(X) > z or 1{X>EX}IX(X) > z

)
= P

(
1{X<EX}I

−
X(X) > z

)
+ P

(
1{X>EX}I

+
X(X) > z

)
= 1{z<a−}P

(
X < I

−(−1)
X (z)

)
+ 1{z<a+}P

(
X > I

+(−1)
X (z)

)
≤ 1{z<a−} exp(−IX(I

−(−1)
X (z))) + 1{z<a+} exp(−IX(I

+(−1)
X (z)))

≤ 2e−z

= e−(z−log 2),

where the first inequality comes from Proposition A.1. Thus,

P (IX(X) > z) ≤ min
{

1, e−(z−log 2)
}

= e−(z−log 2)+ = P (log 2 + Y > z) .

In the case that X has the Bernoulli(p) distribution, we have

IX(x) = DB(x‖p) := x log
x

p
+ (1− x) log

1− x
1− p

. (A.2)

Lemma A.3. The first and second derivatives of the functions H(x) and x 7→
DB(x‖p) are

H ′(x) = log
1− x
x

, H ′′(x) = − 1

x(1− x)
, (A.3)

D′B(x‖p) = H ′(p)−H ′(x), D′′B(x‖p) =
1

x(1− x)
. (A.4)

Since DB(p‖p) = D′B(p‖p) = 0 and D′′B(p‖p) = −H ′′(p), we also have

H(q)− (H(p) +H ′(p)(q − p)) = −DB(q‖p), (A.5)

and

lim
n→∞

n

[
H

(
(1− 1

n
)p+

1

n
q

)
−
(

(1− 1

n
)H(p) +

1

n
H(q)

)]
= (q − p)H ′(p)− (H(q)−H(p))

= DB(q‖p).
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Proposition A.4. Let n ≥ 2 and let X1 and X2 be independent random
variables with distributions Bin(m, p) and Bin(n −m, p), respectively. Denote
X12 = X1 + X2 and X̄1 = X1/m, X̄2 = X1/(n −m), X̄12 = X12/n. Then the
following identities hold:

mDB(X̄1‖p) + (n−m)DB(X̄2‖p)− nDB(X̄12‖p) (A.6)

= X12DB

(
X1

X12

∥∥∥∥ mn
)

+ (n−X12)DB

(
m−X1

n−X12

∥∥∥∥ mn
)

(A.7)

= mDB(X̄1‖X̄12) + (n−m)DB

(
X12 −X1

n−m

∥∥∥∥ X̄12

)
. (A.8)

The identities in Proposition (A.4) are obtained by writing the full expression
of (A.6) and re-arranging the log terms in two other ways. Formulae (A.7)
and (A.8) are written without X2, expressing the fact that any two of the
three random variables X1, X2 and X12 contain same information as the full
triple. Note that (A.7) and (A.8) do not contain p. This reflects the fact
that the conditional distribution of X1 given X12, known as the hypergeometric
distribution, does not depend on p. The identity of (A.6) and (A.8) can be
interpreted so that the two positive terms of (A.6) measure exactly same amount
of information about p as what is subtracted by the negative term. Moreover,
(A.8) has the additional interpretation of presenting the rate function of the
hypergeometric distribution:

Proposition A.5. Let X have the distribution Hypergeometric(n,m, z), i.e. the
conditional distribution of X1 of Proposition A.4 given that X12 = z. The rate
function of X is

IX(x) = mDB

( x
m

∥∥∥ z
n

)
+ (n−m)DB

(
z − x
n−m

∥∥∥∥ zn
)
. (A.9)

Proof. Define the bivariate moment-generating function of (X1, X2)

φ(α, β) = E eαX1+βX2 .

Write

P[X1 = m |X12 = z] =
P (X1 = m, X2 = z −m)

P (X12 = z)
,

and note that we can assume p = z/n. We can now derive the claim using
φ(α, β) in similar manner as in the well-known proof of the one-dimensional
Chernoff bound.

Proposition A.6. Let k ≥ 2 and let Xi, i ∈ {1, . . . , k}, be independent ran-

dom variables with distributions Bin(ni, p), respectively. Denote n =
∑k
i=1 ni,

X1...j =
∑j
i=1Xi, X̄i = Xi/ni and X̄1...j = X1...j/

∑j
i=1 ni. Then

k∑
i=1

niDB(X̄i‖p)− nDB(X̄1...k‖p)
(st)

≤
k−1∑
i=1

(log 2 + Yi) , (A.10)

(A.11)

where Y1, . . . , Yk−1 are independent Exp(1) random variables.
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Proof. For k = 2, the left hand side of (A.10) equals

n1DB(X̄1‖X̄12) + n2DB

(
X12 −X1

n2

∥∥∥∥ X̄12

)
(A.12)

by Proposition A.4. For any N ∈ {0, . . . , n}, consider the conditional distribu-
tion of (A.12), given that X12 = N . By Proposition A.5, this is the distribution
of the Hypergeometric(n, n1, N) rate function taken at the random variable X1

with the same distribution. The claim now follows by Lemma A.2, because the
stochastic upper bound does not depend on N , i.e. on the value of X12.

For k > 2 we proceed by induction. Assume that the claim holds for k − 1
and write

k∑
i=1

niDB(X̄i‖p)− nDB(X̄12‖p)

=

k−1∑
i=1

niDB(X̄i‖p)− (n− nk)DB(X̄1...(k−1)‖p)

+ nkDB(X̄k‖p) + (n− nk)DB(X̄1...(k−1)‖p)− nDB(X̄1...k‖p).

By the induction hypothesis, the first row of the second expression is stochasti-
cally bounded by

∑k−2
i=1 (log 2 +Yi), irrespective of the value of X1...(k−1). Simi-

larly, the second row is stochastically bounded by log 2+Yk, where Yk ∼ Exp(1),
irrespective of the value of X1...k. It remains to note that Yk can be chosen to
be independent of (Y1, . . . , Yk−2), because Xk is independent of (X1, . . . , Xk−1),
and of X̄1...(k−1) in particular.

Lemma A.7. Consider the sequence (Gn, ξn) of stochastic block models as in
Theorem 4.1. Then the following holds.

1. For any blocks Ai and Aj such that dij 6∈ {0, 1}, it holds for an arbitrary
ε > 0 with high probability that

min
v∈Ai

|e({v} , Aj)|
|Aj |

≥ dij − n−
1
2 +ε, max

v∈Ai

|e({v} , Aj)|
|Aj |

≤ dij + n−
1
2 +ε.

2. For any ε > 0, the partition ξn is ε-regular with high probability.

Proof. Claim 1: By Proposition A.1 and (A.4),

P

(
max
v∈Ai

|e({v} , Aj)|
|Aj |

> dij + h

)
≤
∑
v∈Ai

P

(
|e({v} , Aj)|
|Aj |

> dij + h

)
≤ |Ai| exp (−|Aj |DB(dij + h ‖ dij))

= |Ai| exp

(
−|Aj |

(
h2

2dij(1− dij)
+
h3

6
D′′′B (z‖dij)

))
.

The last expression converges to zero with the choice h = n−
1
2 +ε (recall that

|Ai| ∼ nγi and |Aj | ∼ nγj), which proves the claim on the maximum. The case
of the minimum is symmetric.
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Claim 2: Fix ε > 0 and consider any i, j. Let U1 ⊆ Ai and U2 ⊆ Aj such
that |U1| ≥ ε|Ai| and |U2| ≥ ε|Aj |. By Proposition A.1,

P (|d(U1, U2)− dij | > ε) ≤ e−|U1||U2|DB(dij+ε‖dij) + e−|U1||U2|DB(dij−ε‖dij).

Let ι(ε) = min {DB(dij + ε‖dij), DB(dij − ε‖dij)}. The union bound yields

P (∃U1 ⊆ Ai, U2 ⊆ Aj : |U1| ≥ ε|Ai|, |U2| ≥ ε|Aj |, |d(U1, U2)− dij | > ε)

≤ 2|Ai||Aj | exp
(
(|Ai|+ |Aj |) log 2− ε2|Ai||Aj |ι(ε)

)
≤ 2n2 exp

(
n2

(
(γi + γj) log 2

n
− γiγjε2ι(ε)

))
→ 0 as n→∞,

because ι(ε) > 0.

Remark A.8. Because ι(ε) ∝ ε2 as ε → 0, the proof of claim 2 indicates that
with a fixed ε, ε-regularity starts to hold when n >> ε−4.

Preliminaries for the Poissonian block model

By the Poissonian block model, the function φ(x) = −x log x replaces binomial
entropy in the counterparts of code lengths L4 + L5. We indicate below how
the crucial steps of the proofs would change.

Denote by DP (b‖a) the Kullback-Leibler divergence between distributions
Poisson(a) and Poisson(b)

DP (b‖a) = a− b+ b log b− b log a. (A.13)

For a counterpart to Lemma A.3, note that, for any z > 0,

φ′′(x) = − 1

x
= − d2

dx2
DP (x‖z). (A.14)

Lemma A.9. For any α ∈ [0, 1] and x, y > 0, denote z = αx+ (1−α)y. Then
we have

φ(z)− (αφ(x) + (1− α)φ(y)) = αDP (x‖z) + (1− α)DP (y‖z) (A.15)

= zIBer(α)(
αx

z
). (A.16)

Proof. The equality (A.15) follows from (A.14) similarly as the derivation of
(A.5). The expression (A.16) is obtained by writing the right hand side of
(A.15) with the substitution y = (z − αx)/(1 − α) and re-combining the log
terms.

The Poissonian counterpart of Proposition A.6 is the following.

Proposition A.10. Let a > 0, k ≥ 2, ni ≥ 1, i = 1, . . . , k, and n =∑
i ni. Let Xi, i ∈ {1, . . . , k}, be independent random variables with distri-

butions Poisson(nia), respectively. Denote X1...j =
∑j
i=1Xi, X̄i = Xi/ni and

X̄1...j = X1...j/
∑j
i=1 ni. Then

nφ(X̄1...k)−
k∑
i=1

niφ(X̄i)
(st)

≤
k−1∑
i=1

(log 2 + Yi) , (A.17)

where Y1, . . . , Yk−1 are independent Exp(1) random variables.

38



Proof. The proof of Proposition A.6 can be imitated as follows:

• Using induction, it suffices to consider the case k = 2.

• Apply Lemma A.9 to the left hand side of (A.17) with x = X̄1, y = X̄2,
z = X̄12 and α = n1/n. This yields

X12IBer(
n1
n )

(
X1

X12

)
= IBin(X12,

n1
n )(X1).

• Now, the conditional distribution of X1 given X12 is the above binomial
distribution. Thus, we can apply Lemma A.2 in a similar way as in the
proof of Proposition A.6.
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