
PHYSICAL REVIEW E 99, 042301 (2019)

Fast consensus clustering in complex networks
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Algorithms for community detection are usually stochastic, leading to different partitions for different choices
of random seeds. Consensus clustering has proven to be an effective technique to derive more stable and accurate
partitions than the ones obtained by the direct application of the algorithm. However, the procedure requires the
calculation of the consensus matrix, which can be quite dense if (some of) the clusters of the input partitions
are large. Consequently, the complexity can get dangerously close to quadratic, which makes the technique
inapplicable on large graphs. Here, we present a fast variant of consensus clustering, which calculates the
consensus matrix only on the links of the original graph and on a comparable number of additional node pairs,
suitably chosen. This brings the complexity down to linear, while the performance remains comparable as the
full technique. Therefore, our fast consensus clustering procedure can be applied on networks with millions of
nodes and links.
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I. INTRODUCTION

Detecting communities in networks is a fundamental part
of network analysis [1–3]. It is an unsupervised classification
problem and as such it is ill-defined: different techniques
typically find different partitions on the same network, un-
less the latter has a clear-cut community structure, with
very dense groups which are very loosely connected to each
other.

Another important problem of the field is that community
detection algorithms are noisy. Since many algorithms require
the use of random numbers, for initialization, optimization,
tie-breaks, etc., different random seeds may lead to different
outcomes, even when the same method is applied on the same
network. Consensus clustering is an effective technique to
decrease the noise induced by the stochasticity of methods.
The procedure consists of “averaging” over a set of input
partitions: the result, called median or consensus partition is
usually more robust and accurate than the input partitions [4].
Consensus clustering is now regularly used in the network
science community [5–10]. It requires the computation of a
consensus matrix, expressing how often any pair of nodes
is found in the same cluster in the input partitions. The
calculation concerns only the pairs of nodes that happen to
be co-clustered at least once. This means that all pairs of
nodes of any cluster of the input partitions will give non-
vanishing entries in the consensus matrix. In particular, if
the largest cluster in any input partition has a non-negligible
size with respect to the whole network, the consensus matrix
can become quite dense and both the space and the time
complexity of the calculation could get close to O(n2), where
n is the number of nodes of the graph. Such high complexity
limits the applicability of the procedure to networks which are
not too large.

In this paper we propose a fast consensus clustering tech-
nique, which is applicable to large networks. The basic idea
is to compute the consensus matrix for a very small set of
properly selected pairs of nodes. This way the matrix will
be sparse all along the calculation, which can reach linear
complexity, if the clustering technique used to detect the
communities has itself linear complexity. If instead we have
reasons to prefer to use a slower clustering algorithm its
complexity will be dominating compared to the other steps
of the fast consensus clustering routine developed here.

II. THE METHOD

Before we get into the details of our technique, we
briefly summarize the consensus clustering method exposed
in Ref. [4], which will be our reference and will be called
LF consensus throughout. We start from a graph G, with n
nodes and m links, and a clustering algorithm of our choice.
We apply the algorithm np times on G, with different random
seeds, obtaining np partitions, which are the input partitions
of the method. The consensus matrix D is an n × n matrix.
Each entry Di j corresponds to the fraction of input partitions
in which nodes i and j belong to the same cluster. For instance,
if nodes 3 and 8 are put in the same cluster in 10 out of 20
input partitions, D38 = D83 = 10/20 = 1/2. By construction,
the consensus matrix is then a weighted matrix, and its entries
are real numbers between zero and one. Once the consensus
matrix has been constructed, the original community detection
algorithm is applied on it np times. Since all pairs of nodes
in the same cluster in any partition yield a contribution, the
consensus matrix can be very dense, even if the initial network
is sparse. This could be a problem when we apply the clus-
tering algorithm on it, for two reasons: 1) many algorithms
have troubles to detect communities on dense matrices; 2)
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the computational complexity of the procedure could get very
high. Therefore, before the clustering algorithm is applied, D
is filtered, in that all entries below a certain threshold τ are
set to zero. Then a new consensus matrix D′ is built from
the new partitions, and so on. The process is repeated until
all partitions are identical, i.e., the consensus matrix has only
entries equal to zero and one.

This procedure can considerably improve the accuracy of
the result, with respect to the set of initial partitions, but the
construction of the consensus matrix has a worst time and
space complexity of O(n2), irrespective of the sparsity of the
original network, which makes the technique prohibitively
expensive on large networks.

To save both space and time, the consensus matrix should
be computed only for a small subset of all eligible node
pairs. The natural candidates are the pairs of nodes which
are connected to each other [10]. This choice proves to be
a valid one. However, there are cases in which the gain in
the accuracy of the consensus partitions is very modest if we
consider only the pairs of neighboring nodes. Therefore we
added some additional pairs, chosen such that they close triads
with the links of the original graph, provided the weights of
those links in the consensus matrix are sufficiently large. This
leads to the following routine:

(1) Derive the input partitions. Apply the clustering
algorithm on the network at study np times, to obtain the input
partitions. In all the tests shown here we took np = 20.

(2) Construct the consensus matrix. Compute only the
elements Di j , where i and j are neighbors in G.

(3) Thresholding. Set to zero all elements of D below a
threshold value τ . This removes weak links and speeds up
convergence. By doing so, some nodes might get disconnected
from the graph corresponding to the matrix. If a node gets
disconnected, keep it attached to the rest of the graph by
preserving the link with the highest weight. This way the
graph is connected at all times.

(4) Triadic closure. Select m random nodes. For each
node select at random a pair of neighboring nodes j and k.
If the entry D jk = 0, then we set it equal to the fraction of
partitions in which nodes j and k co-occur in the same cluster.

(5) Apply the clustering algorithm on the new weighted
graph D repeatedly to get np new partitions.

(6) Repeat steps 2–5 until convergence.
Convergence is reached when less than 2% of all non-zero

entries of D have weights smaller than one (a weight of one
implies that the two nodes co-occur in the same cluster in all
input partitions). The output is the matrix Dout. We then apply
the community detection algorithm on Dout to get the final
set of partitions, which represent the output of our technique.
The 2% threshold is suggested by our numerical experiments:
for 1%, which was our initial choice, the number of steps
required until convergence sensibly increases. However, we
have verified that results are stable for thresholds at least up
to 10%, so the actual value is not important, provided it is not
too low.

The main difference from the procedure of Ref. [4] is
the fact that we compute up to 2m elements of D, which is
then very sparse. The advantage is that the calculation of D
has space and time complexity O(m), which is much lower
than the O(n2) of the full method when the graph at hand is

sparse (m ∝ n), as it usually happens for real networks. On
the downside, the partitions obtained by running a clustering
algorithm on D are a bit more noisy than in the full procedure
and it is unlikely to converge to a set of identical partitions
in the end. This is why we accept to stop when Dout has but
a modest proportion of entries different from zero and one.
However, with our criterion convergence is usually reached
within a handful of iterations, and the output partitions turn
out to be of superior quality than the set of input partitions,
for all community detection methods we have used in our
experiments.

For our calculations we used Python implementations of
the algorithms from the NetworkX [11] and igraph [12] li-
braries. The software to perform our fast consensus clustering
procedure can be found in Ref. [13].

III. RESULTS

For our tests we used artificial benchmark graphs with
a built-in community structure. Specifically, we adopted the
Lancichinetti-Fortunato-Radicchi (LFR) benchmark graphs,
which have become a standard in the evaluation of the per-
formance of clustering algorithms [14,15]. LFR graphs are
characterized by power-law distributions of node degree and
community size, features that frequently occur in real world
networks. The mixing parameter μ is the ratio between the
external degree of a node with respect to its community
(i.e., the number of links joining the node to its neighbors
outside its community) and its total degree. So, when μ is
close to zero, the nodes have most of their neighbors within
their communities, which are then well separated from each
other and easily detectable. The larger μ the fuzzier the
communities and the more difficult it gets to identify them.
The performance of a method on the LFR networks will be
estimated by computing the normalized mutual information
(NMI) between the built-in partition of the graph and the
one detected by the clustering algorithm, as a function of
μ. We used the modified version of the NMI introduced
by Lancichinetti, Fortunato, and Kertész [16], to make the
results comparable with those of Ref. [4]. For each μ-value
we created 20 benchmark graphs (unless specified otherwise)
and averaged the corresponding NMI scores among them.

We will show the results obtained by integrating our
consensus technique with the following three clustering
algorithms:

(i) Fast greedy modularity optimization. It is a technique
developed by Clauset, Newman, and Moore (CNM) [17], that
performs a quick maximization of the modularity by Newman
and Girvan [18].

(ii) Louvain method, by Blondel et al. [19]. The goal is
still the optimization of modularity, by means of a hierarchical
approach. We will be using the first (bottom) level of the
hierarchy generated by the method, the one with the smallest
communities. This partition gives an excellent performance
on LFR benchmark graphs [15]. The actual outcome of the
procedure, which corresponds to the top level partition and
the largest modularity, is known to be poorly correlated with
the built-in partitions of the benchmark [3], mostly because of
the resolution limit of modularity [20].
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FIG. 1. Importance of triadic closure in the construction of a
sparse consensus matrix. The accuracy of the resulting partition
rapidly increases as we compute additional elements of the consensus
matrix, by randomly closing triads formed by the (weighted) links of
the initial matrix, after thresholding. Closing a modest number of
triads suffices to outperform the direct application of the clustering
method (here the Louvain algorithm), whose accuracy is indicated
by the horizontal yellow line. The accuracy quickly climbs up to that
of LF consensus (magenta line) and reaches about 0.87 for about m
closed triads, remaining remarkably stable thereafter. The thickness
of the blue line indicates the standard error of the mean. For the LFR
benchmark graph used in this test we chose the following parameters:
number of nodes n = 10 000, mixing parameter μ = 0.75, degree
exponent τ1 = 2, community size exponent τ2 = 3, average degree
kavg = 20, maximum degree kmax = 50, minimum community size
cmin = 10, maximum community size cmax = 100.

(iii) Label propagation method (LPM) by Raghavan et al.
[21]. This method simulates the spreading of labels based on
the simple rule that at each iteration a given node takes the
most frequent label in its neighborhood.

We also run tests with the well-known INFOMAP algorithm
[22], but this method has a great performance on LFR bench-
mark graphs [15], so the consensus procedure can lead just to
a modest improvement and we do not show it here. We have
however verified that our technique delivers higher quality
results than the input partitions for INFOMAP as well.

Before showing the performance of our method we would
like to discuss two issues. In Fig. 1 we show that triadic
closure helps to improve the accuracy of the results. The
test was carried out by using the Louvain algorithm on LFR
benchmark graphs with 10 000 nodes. The value of the mixing
parameter μ was set to 0.75, which is in the area where the
performance starts degrading (see Fig. 3). The other param-
eters are given in the caption. On the x-axis we report the
maximum number of triads that can be closed at each iteration,
in multiples of the number of links m. When the number
of triads exceeds about m, a plateau is reached, yielding a
superior accuracy compared to the input partitions and LF
consensus.

In Ref. [4] it was shown that consensus clustering leads to
more stable partitions compared to the input ones. We want
to check if this holds true for our method as well. This anal-
ysis is illustrated in Fig. 2, where we computed the average
NMI scores between any two input and output partitions,
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FIG. 2. Stability of consensus clustering partitions. Average
value of the NMI for all pairs of partitions returned by our technique,
compared with the corresponding average score for the input parti-
tions. The thickness of the lines indicate the standard error of the
average. The test uses the Louvain algorithm on LFR benchmarks.
When communities are easy to find (low to intermediate μ-values),
partitions are essentially identical in both cases and the pairwise
NMI is equal to one. Interestingly, for our consensus clustering
procedure the resulting partitions are very similar even when com-
munities are harder to find, whereas the input partitions become
less and less similar to each other. The parameters used to gener-
ate the LFR benchmark graphs are: number of nodes n = 10 000,
degree exponent τ1 = 2, community size exponent τ2 = 3, average
degree kavg = 20, maximum degree kmax = 50, minimum community
size cmin = 10, maximum community size cmax = 100.

respectively, for the Louvain method on LFR benchmarks.
We see that for the consensus partitions the average is very
close to one for any value of the mixing parameter μ, in-
cluding those corresponding to the regime where the clusters
are not detected. In contrast, the input partitions become
progressively uncorrelated when communities become fuzzy
and undetectable. We stress that the result is non-trivial here
because we deal with a sparse consensus matrix through the
whole calculation, which could introduce a significant amount
of noise in the output compared to LF consensus, where
the consensus matrix is dense and the community structure
considerably enhanced.

In Fig. 3 we compare the accuracy of our method with
LF consensus. For each method we identified the value of
the threshold parameter τ that yields the best performance,
which is 0.7 for CNM, 0.2 for Louvain, and 0.8 for LPM. We
used these thresholds systematically. For Louvain and LPM
our method has the same performance as LF consensus across
all values of μ. For CNM our method does not perform as well
as LF consensus, but its accuracy is still way above that of the
CNM algorithm itself, especially on the larger graphs.

In general, our fast consensus clustering algorithm can be
applied to large network sizes, which were hitherto out of
reach for LF consensus as well as all consensus clustering
techniques relying on the calculation of the full consensus
matrix. In Fig. 4 we show the performance plot of the Louvain
algorithm on LFR graphs with 100 000 nodes. As for the
smaller network sizes, our technique outperforms the direct
application of the clustering algorithm. The margin is small
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FIG. 3. Performance of fast consensus clustering on LFR benchmark graphs with 1000 (left) and 10 000 (right) nodes. The algorithms are
fast greedy modularity maximization by Clauset, Newman, and Moore [CNM, (a) and (b)], Louvain [(c) and (d)], and the label propagation
method [LPM, (e) and (f)]. The three curves in each plot correspond to the performance of the community detection method (brown), LF
consensus (magenta), and fast consensus (blue). The thickness of the lines indicates the standard error of the mean. The parameters used to
generate the LPM benchmark graphs are: degree exponent τ1 = 2, community size exponent τ2 = 3, average degree kavg = 20, maximum
degree kmax = 50, minimum community size cmin = 10, maximum community size cmax = 50 for n = 1000 nodes and cmax = 100 for n =
10 000 nodes. For each μ-value we generated 20 benchmark configurations, for the LPM and μ = 0.6 (1000 nodes) and μ = 0.75 (10 000
nodes) we used 100 configurations to reduce the error.

because the Louvain algorithm (first level communities, see
earlier in Sec. III) has already a good performance on the LFR
benchmark [15].

Figure 5 compares the time complexity of the consensus
clustering procedure presented here with that of Ref. [4].
Calculations were executed on an iMac with a 3.2 GHz Intel
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FIG. 4. Fast consensus clustering on large networks. Compar-
ative analysis of the performance of the Louvain algorithm, with
and without consensus clustering, on LFR benchmark graphs with
100 000 nodes. The thickness of the lines indicates the standard error
of the mean. The other parameters to construct the graphs are: degree
exponent τ1 = 2, community size exponent τ2 = 3, average degree
kavg = 20, maximum degree kmax = 50, minimum community size
cmin = 10, maximum community size cmax = 1000.

Core i5 processor. We have been able to run our technique
on networks with 106 nodes in a few hours. Getting con-
sensus partitions from LF consensus on networks of this
size is impossible because of the high memory and time
demands. The complexity of both methods scales as a power
of the number of nodes of the network, with exponents 1.6
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FIG. 5. Time complexity of LF consensus and our fast consensus
clustering procedure. The clustering algorithm is Louvain, the tests
were done on LFR benchmark graphs with the following parameters:
degree exponent τ1 = 2, community size exponent τ2 = 3, average
degree kavg = 20, maximum degree kmax = 50, minimum community
size cmin = 10, maximum community size cmax = n/10 (n being the
number of nodes of the graph). The mixing parameter μ is set to the
value 0.3. The error bars indicate the standard deviation of the mean.
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(LF consensus) and 1.2 (fast), respectively. Also, the prefactor
for the complexity of our method is significantly smaller than
for LF consensus. For our method, the complexity of the cal-
culation of the consensus matrix is exactly linear, as we have
seen (proportional to m, where m ∼ n if the network is sparse),
and the number of iterations required to reach convergence
increases very slowly with the network size. So the final com-
plexity matches that of the clustering algorithm. Indeed, we
have verified that the igraph implementation of the Louvain
algorithm we have used has slightly superlinear complexity, in
accord with the exponent 1.2. For LF consensus, instead, the
complexity is dominated by the construction of the consensus
matrix and it can get actually close to quadratic if the input
partitions have large clusters, which severely constrains its
applicability. Naturally, if the chosen clustering algorithm has
complexity significantly larger than linear, there is no gain in
using a fast consensus approach.

IV. CONCLUSIONS

We have devised an algorithm to implement a fast variant
of the consensus clustering routine introduced in Ref. [4].
This procedure consists in sampling the consensus matrix,
instead of computing all its elements, which could lead to a

worst-case quadratic space and time complexity. The elements
of the consensus matrix which are actually computed are
those corresponding to the pairs of neighbors of the network
at study, plus at most as many pairs closing triangles with
those. The performance remains the same or close to that of
the full procedure in all cases we have examined, while the
complexity becomes linear, which enables clustering analy-
ses of large networks. The idea of sampling the consensus
matrix can be easily integrated in other consensus clustering
approaches [7–9]. We expect that also in those cases the
accuracy will remain comparable as in the corresponding
original methods. In particular deducting a random baseline
from the elements of the consensus matrix, as it is done in the
techniques of Refs. [7,9], might lead to better results than the
simple procedure presented here.
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