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A Probabilistic Proof of an Asymptotic Formula for the Number of 
Labelled Regular Graphs 

BELA BOLLOBAS 

Let .J and n be natural numbers such that .Jn =2m is even and .J,; (2 log n)l-1. Then as n--> <Xl, 

the number of labelled .<:!-regular graphs on n vertices is asymptotic to 

(2m)! 
e m !2"'(.<1 !)"'' 

-,\-,\2 

where A = (.J -1)/2. As a consequence of the method we determine the asymptotic distribution of 
the number of short cycles in graphs with a given degree sequence, and give analogous formulae for 
hypergraphs. 

In 1959 Read [6] determined an exact formula for the number of labelled ..1-regular 
graphs on n vertices. This formula, whose proof is based on P6lya's enumeration theorem 
[5], is not easily penetrated. In particular, it seems that only for ..1 :!S: 3 can it be used to find 
its asymptotic value (see [ 4, p. 175]). Recently Bender and Canfield [1] gave an asymptotic 
formula for the number of labelled graphs with given degree sequences by enumerating 
certain classes of involutions. In this note we offer a somewhat different approach, allowing 
one to obtain a more general asymptotic formula without much effort and without any 
reference to an exact formula. In particular, our asymptotic formula holds not only for 
constant ..1 but also if ..1 increases rather slowly as n ~ oo. As a considerable bonus, the 
model presented here enables one to give asymptotic formulae for various subclasses of 
labelled regular graphs. We intend to exploit this possibility in the future. 

As customary, we use A-B to denote the relation A/B ~ 1 as n ~ oo. Furthermore, we 
write (a )b =a (a -1) · · · (a- b +1). Throughout the proof c1o c2, ••• denote positive 
constants. 

THEOREM 1. Let d 1 ;;;;. d 2 ;;;;. • • ·;;;;. dn be natural numbers with I7= 1 d; =2m even. 
Suppose 

..1 = d1 :!S:(2log n )~ -1 

and m;;;;. max{e..::ln, (1 + e )n} for some fixed e > 0. Then the number L(d) of labelled graphs 
with degree sequence d = (d;)'i satisfies 

where 

A=-1 t (d;).
2m i=l 2 

PROOF. We shall represent our graphs as images of so called "configurations". Let 
W = Ui= 1 W; be a fixed set of 2m= I7= 1 di labelled vertices, where IW;l = di. A 
configuration F is a partition of W into m pairs of vertices, called edges of F. Clearly there 
are 

(1) 

configurations. Furthermore, if we fix I independent (vertex disjoint) edges then there are 
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exactly 

N1(m)=(2m-2/)(2m-2/-2) ... (2)/cm-l)'= N 
2 2 2 · (2m-1)(2m-3) · · · (2m-2/+1) 

configurations containing I edges. Consequently if s, t,;; 8 log n then 

s t (log n)z 
1 ,;; (Ns+2t/N)(N/Nt) (N/ Nz) ,;; 1 + Ct -'---'=-- (2) 

n 

A k-cycle of a configuration is a set of k edges, say {et. e2, ... , ek} such that for some k 
distinct groups ~1 , ••• , Wi• the edge e; joins ~. to Wh+l' where ~.+, = Wh. We shall 
call a 1-cycle a loop and a 2-cycle a coupling. For u c V put w(u) =flea- d;(d; -1) and set 

Cdd) = !(k -1)! L w(u). (3) 
lul=k 

Clearly there are exactly Ck(d) k-sets of pairs of vertices that can be k-cycles of 
configurations. 

We shall need that if the sequence d is decreased a little then Ck (d) does not decrease by 
much. More precisely, given a non-negative integer q, denote by d- q the sequence dq+t. 
dq+ 2 , ••• , dn and define Cdd-q) by (3). Clearly 

Ct(d)- Ct(d-q) ,;;q(~) 
and 

From these it follows that if q,;; Slog n, say, then 
2 

(Ct(d-q)/Ct(d))q(C2(d-q)/Cz(d))q ~ 1-c2 (log n) (4) 
n 

Finally, we define a shackle of a configuration as a pair of loops in the same group ~or 
a pair of couplings joining the same two groups. (Note that in the latter case all we need is a 
set of three edges joining the same two groups.) Let et, e2, ... , e1 be independent edges 
not containing a shackle, where I~ 0. Denote by N*(et. ... , e1) the number of configura
tions that contain the edges et. ... , e1 and have a shackle. Then 

N*(et. ... ,e1 ),;;f(L1-1)2N1+ 1 (m)+n(~) 
2 

Nl+2(m)+G)(~) 
2 

3!NI+3(m). (5) 

Indeed, there are at most l(Li-1)2edges that can appear in a shackle containing some edge 
e;, 1,;; i,;; /, there are at most n (~)2 choices of a new "double loop" and at most (2)(~)23! 
choices of a new "triple edge". Denote by N1 the right-hand side of (5). Note that if 
l,;; 16log n then, rather crudely, 

*/N (log n )2N I I ,;;C3 · (6) 
n 

Now we are ready to proceed to the essential part of the proof. Let 1J be the set of all 
configurations and let 1J0 c 1J be the set of configurations without shackles. Put Mo = 
Mo(m) = I1Jol. Then by (5) and (6) we have 

(log n )2) * * 0N ( 1-c3 n ,;;N-N0 ,;;N-N ( )=M0 ,;;N. (7) 



313 Labelled regular graphs 

Let us turn l/>0 into a probability space by giving each configuration F E l/>0 the same 
probability, M 01. Given a configuration FE l/>0 , denote by X 1(F) the number of loops ofF 
and by X 2(F) the number of couplings. Put X= X 1+ X 2. Our aim is to determine the 
asymptotic value of P(X = 0) = P(X1 + X2 = 0). We shall do this by estimating E(s, t), the 
expected number of (s +!)-tuples consisting of s loops and t couplings, provided s + t"'" 
Slog n. 

Note that there are C1(d) edges that can be lcops of configurations and C2(d) pairs of 
edges that can form couplings. Since in l/>0 the s loops and t couplings determine s + 2t 
edges, we find that 

C1(d))(C2(d))E(s, t)"'" ( s t Ns+2r/Mo. 

Therefore if we write A 1 = C1(d)NdN and A2 = C2(d)N2/ N then (2) and (7) give 

A~A~ ( 1 (log n) 
2
)

E (s, t) "'"-- + C4 • (8)
s !t! n 

To get a lower bound, we count only those (s +!)-tuples of loops and couplings whose 
end vertices belong to distinct groups ~: 

) >-(C1(d-s-2t))(C2(d-s-2t)(N -N* )/ME(S, f ~ s+2t s+2t 0· s t 

Hence (4), (6) and (7) give 

A~A~ ( (log n )
2
)E(s, t) ;;;;.-- 1 -cs . (9)

s!t! n 

From (8) and (9) we find that if s + t"'" 8 log n then 

I ( ) A~A~~ 
2A~A~ (log n)E s, t --- "'"--c6 .

s!t! s!t! n 

This shows that X 1 and X 2 behave like independent Poisson random variables with 
means A1 and A2. Straightforward calculations show that 

1 n 1 L12 
A1 + A2 = 2(2m _ 1) ~ d;(d; -1)+ (2m _ )(2m _ ) i~i d;(d; -1)di(di -1) <4 (10)2 1 3

and in fact A1- A-+ 0 and A2- A2-+ 0. 
Put E, = £((~)), i.e. denote by E, the expected number of r-tuples of loops and 

couplings. Clearly 
r 

E,= L E(s, r-s) 
s~o 

and 

I A~A;-s =(A1+A2)' 
s~os!(r-s)! r! 

Consequently for r"'" 8 log n we have 
2 

E, _ (A 1 +A 2)' I"'" (A 1 +A 2)' c (log n ) . (11)
I r! r! 6 n 
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As is well known, the values E, are closely related to P(X = 0). By the Jordan 
inequalities (see Comtet [3, p. 195]) if u is a natural number then 

2u+l 2u 
L: (-1)'E,~P(X=O)~ L: (-1)'E,. (12) 

r=O 

Let us choose u so that 2log n < u < 3 log n. Then from (10), (11) and (12) we find that 

leA,+Azp(X=0)-1I~eA,+Az{ ~ (Al +Az)' C6 (logn)2 +2 (Al +Az)2u} 
r=O r! n (2u)! 

< J.2fz (log n )z + (1)- (1)-c6e o - o . 
n 

Therefore 

P(X = 0) = P(X1+ X 2 = 0) -e-A,-Az- e -A-A2, (13) 

since A1-A ~o and Az-A 2 ~0. 
The rest of the proof is straightforward. Put 

n ={FE cPo: X(F) = 0}. 

Then (13) states exactly that 
lfll- e -A-AzlcPol = e -A-A2Mo- e -A-AzN, 

where the last step follows from (7). Let <'§ be the set of all graphs with vertex set 
V ={WI. W 2 , ••• , Wn} in which vertex lVj has degree l-wjl. Then by definition L(d) =I WI. 
Given FE n, define a graph </J (F) with vertex set V by selecting an edge ( W;, lVj) if and 
only if the configuration F contains an edge from W; to "Wj. Then </J(il) =<'§and for each 
G E <'§we have I<P -\G)I = rr=l d;! since if <!J(F) = G then <P -\G) consists of the images of 
F under permutations of W leaving each W; invariant. Hence 

as claimed by the theorem. 

On putting d1= d 2 = · · · = dn = L1 we find that 2m= Lin and 

A= _1 (Ll) = L1 -1 
2m n 2 2 ' 

which implies the formula given in the abstract. 
It is perhaps worth noting that the proof would have been considerably simpler if we had 

confined our attention to degree sequences in which L1 = d1 is bounded. To show this, we 
use the probabilistic model to determine the asymptotic distribution of the number of short 
cycles in labelled graphs with a given degree sequence. 

THEOREM 2. Let L1 be a fixed natural number and let L1 = d 1 ?! d2 • • ·?! dn be such that 
L:~ d; =2m is even and 2m- n ~ oo as n ~ oo. Consider the probability space<'§ ofall graphs 
with vertex set {1, 2, ... , n} in which the degree of vertex i is d;. For G E <'§and i?! 3 denote by 
X;(G) the numberofi-cycles in G. Then for any fixed k the random variablesX3, X4, ... , Xk 
are asymptotically independent Poisson random variables with X; having mean 

1n (d·)where A = m ~ ' .2 
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PROOF. As in the proof of Theorem 1, consider the set f/J of all configurations. Define a 
p-shackle of a configuration FE f/J as a set of I+ 1 :,;;; p + 1 edges that join vertices of some I 
groups W;. (Thus every shackle is a 2-shackle but not conversely.) Given a set 
{e1. e2, ... , eq} of independent edges not containing a p-shackle, denote by 
N*(e1. e2, ... , eq) the number of configurations containing these edges and at least one 
p-shackle. Put N: =max N*(e1. ... , eq) where the maximum is over all q-sets of 
independent edges. Choose p=p(n)-+oo so that N: =o(Nq) for every fixed q; it is 
immediate that this can be done. Put Mq = Nq- N:. Note that for every fixed i and q we 
have 

(14) 

and 

(15) 

And now for the actual proof. Let f/J0 c f/J be the set of configurations without shackles 
and let n be the set of configurations without loops and couplings. As before, we consider 
f/J, l/Jo and n as probability spaces in which all configurations have the same probability. 
The map c/J : fl -+ CIJ shows that X 3 , X 4 , ••• have the same distribution over fl as over CIJ. Our 
aim is to determine the asymptotic distribution over n. Note that llPI = N- Mo = llPoi. For 
FE f/J let Xk(F) be the number of k-cycles in F, and write E<Po(t1. t2, ... , tk) for the 
expectation (in f/J0 ) of the number of t-tuples consisting of t1 1-cycles, t2 2-cycles, ... , ft 
/-cycles, where t = L~ t;. Now if p = p(n) ~ t then these t cycles determine q = L~ it; edges 
so 

t (C;(d))E<Po(t1. ... , ft).;;; IJ t; Nq/ Mo. 
1 

On the other hand, if we select the cycles one by one, for each i-cycle we have at least 
C;(d-q) choices, so 

(C(d -q))B<Po(tb ... , ft)~ IJ1 

' t; Mq/Mo. 
1 

Because of (14) and (15) these inequalities give 
l 

E<Po(t1. ... , ft)- f1 A :•/ t;!. 
i=l 

Since the quantity on the right is the appropriate moment of a joint Poisson distribution, 
this implies (see e.g. Chung [2]) that far every fixed sequence t1. t2, ... , ft we have 

l 

P<P0 (X; = t;, i = 1, ... , I)- e-r.p, f1 Ahd. 
i=l 

As M 0 - N, the same holds over f/J. Since n ={FE f/J: X 1(F)= X2(F) = 0} it gives also 
l 

Pn(X; = t;: i = 3, ... , /)- e -r.p,, f1 A :•/ td, 
i=3 

completing the proof. 

Note that for regular graphs, that is d1 = d2= · · · = dn = Ll and Lln even, we have 
A;= (Ll-1)2/2i. 

The method is easily adapted to find asymptotic formulae for various classes of 
hypergraphs. In conclusion we state a simple result of this kind. 
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THEOREM 3. Let r ;c. 3 and .:l ;c. 2 be fixed and let .:l = d1 ;c. d 2 ;c.· · ·;c. dn be such that 
m = 1/r I~ d;isan integer and rm- n ~ oo. Then the number oflabelled r-graphs with degree 
sequence (d;)~ is asymptotic to 

-A (rm)! /(fin ')
e '( ')m ·- d;. ' m. r. 1-1 

where 

A=~I(d;). 
rm 1 2 

Furthermore, the number of r-graphs in which no two hyperedges have more than one vertex 
in common is asymptotic to 

-A-A2 (rm)! /{fin d·'}
e '( ')m . I• •m. r. ~~1 

We only give a brief sketch. Consider a set W = U~ Wj of rm labelled vertices, where 
IWJI =db and define a configuration as a partition of W into m sets of r vertices. Let l/J be 
the probability space of all configurations. Define a loop ofF E l/J as a pair of vertices of the 
same group Wj contained in a hyperedge of F. Let X 1(F) be the number of loops of F. 
Then, as in the proofs of the earlier theorems, one can show that the distribution of X 1 

tends to the Poisson distribution with mean A. Since 

(rm)! /{ n }ll/JI = I( l)m II d;! ' m. r. 1-1 

this gives the first assertion. The second is proved similarly. 
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