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Introduction

1.1 Objectives of the Book

This book is about making valid inferences from scientific data when a mean-
ingful analysis depends on a model of the information in the data. Our general
objective is to provide scientists, including statisticians, with a readable text
giving practical advice for the analysis of empirical data under an information-
theoretic paradigm. We first assume that an exciting scientific question has been
carefully posed and relevant data have been collected, following a sound ex-
perimental design or probabilistic sampling program. Alternative hypotheses,
and models to represent them, should be carefully considered in the design
stage of the investigation. Often, little can be salvaged if data collection has
been seriously flawed or if the question was poorly posed (Hand 1994). We re-
alize, of course, that these issues are never as ideal as one would like. However,
proper attention must be placed on the collection of data (Chatfield 1991, 1995a
Anderson 2001). We stress inferences concerning the structure and function
of biological systems, relevant parameters, valid measures of precision, and
formal prediction.

There are many studies where we seek an understanding of relationships, es-
pecially causal ones. There are many studies to understand our world; models
are important because of the parameters in them and relationships expressed
between and among variables. These parameters have relevant, useful inter-
pretations, even when they relate to quantities that are not directly observable
(e.g., survival probabilities, animal density in an area, gene frequencies, and
interaction terms). Science would be very limited without such unobservables



2 1. Introduction

as constructs in models. We make statistical inferences from the data, to a real
or conceptual population or process, based on models involving such parame-
ters. Observables and prediction are often critical, but science is broader than
these issues.

The first objective of this book is to outline a consistent strategy for is-
sues surrounding the analysis of empirical data. Induction is used to make
statistical inference about a defined population or process, given an empirical
sample or experimental data set. “Data analysis” leading to valid inference
is the integrated process of careful a priori model formulation, model selec-
tion, parameter estimation, and measurement of precision (including a variance
component due to model selection uncertainty). We do not believe that model
selection should be treated as an activity that precedes the analysis; rather,
model selection is a critical and integral aspect of scientific data analysis that
leads to valid inference.

A philosophy of thoughtful, science-based, a priori modeling is advocated.
Often, one first develops a global model (or set of models) and then derives
several other plausible candidate (sub)models postulated to represent good ap-
proximations to information in the data at hand. This forms the set of candidate
models. Science and biology play a lead role in this a priori model building and
careful consideration of the problem. A simple example of models to represent
alternative scientific hypotheses might be helpful at this early point. Consider
the importance of an interaction between age (a) and winter severity (w) in
a particular animal population. A model including such an interaction would
have the main effects plus the interaction; a + w + a ∗ w, while the model
a + w lacks the interaction term. Information-theoretic methods allow several
lines of quantitative evidence concerning the importance of this hypothesized
interaction.

The modeling and careful thinking about the problem are critical elements
that have often received relatively little attention in statistics classes (especially
for nonmajors), partly because such classes rarely consider an overall strategy
or philosophy of data analysis. A proper a priori model-building strategy tends
to avoid “data dredging,” which leads to overfitted models, that is, to the “dis-
covery” of effects that are actually spurious (Anderson 2001a). Instead, there
has often been a rush to “get to the data analysis” and begin to rummage through
the data and compute various estimates of interest or conduct null hypothesis
tests. We realize that these other philosophies may have their place, especially
in more exploratory investigations.

The second objective is to explain and illustrate methods developed recently
at the interface of information theory and mathematical statistics for selection
of an estimated “best approximating model” from the a priori set of candidate
models. In particular, we review and explain the use of Akaike’s information
criterion (AIC) in the selection of a model (or small set of good models) for
statistical inference. AIC provides a simple, effective, and objective means
for the selection of an estimated “best approximating model” for data analy-
sis and inference. Model selection includes “variable selection” as frequently
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practiced in regression analysis. Model selection based on information theory
is a relatively new paradigm in the biological and statistical sciences and is
quite different from the usual methods based on null hypothesis testing. Model
selection based on information theory is not the only reasonable approach, but it
is what we are focusing on here because of its philosophical and computational
advantages.

The practical use of information criteria, such as Akaike’s, for model se-
lection is relatively recent (the major exception being in time series analysis,
where AIC has been used routinely for the past two decades). The marriage of
information theory and mathematical statistics started with Kullback’s (1959)
book. Akaike considered AIC to be an extension of R. A. Fisher’s likelihood
theory. These are all complex issues, and the literature is often highly technical
and scattered widely throughout books and research journals. Here we attempt
to bring this relatively new material into a readable text for people in (primar-
ily) the biological and statistical sciences. We provide a series of examples,
many of which are biological, to illustrate various aspects of the theory and
application.

In contrast, hypothesis testing as a means of selecting a model has had a
much longer exposure in science. Many seem to feel more comfortable with
the hypothesis testing paradigm in model selection, and some even consider
the results of a test as the standard by which other approaches should be
judged (we believe that they are wrong to do so). Bayesian methods in model
selection and inference have been the focus of much recent research. However,
the technical level of this material often makes these approaches unavailable
to many in the biological sciences. A variety of cross-validation and bootstrap-
based methods have been proposed for model selection, and these, too, seem
like very reasonable approaches. The computational demands of many of the
Bayesian and cross-validation methods for model selection are often quite high
(often 1–3 orders of magnitude higher than information-theoretic approaches),
especially if there are more than a dozen or so high-dimensional candidate
models.

The theory presented here allows estimates of “model selection uncertainty,”
inference problems that arise in using the same data for both model selec-
tion and the associated parameter estimation and inference. If model selection
uncertainty is ignored, precision is often overestimated, achieved confidence
interval coverage is below the nominal level, and predictions are less accu-
rate than expected. Another problem is the inclusion of spurious variables,
or factors, with no assessment of the reliability of their selection. Some gen-
eral methods for dealing with model- and variable-selection uncertainty are
suggested and examples provided. Incorporating model selection uncertainty
into estimators of precision is an active area of research, and we expect to see
additional approaches developed in the coming years.

The third objective is to present a number of approaches to making formal
inference from more than one model in the set. That is, rather than making
inferences from only the model estimated to be the best, robust inferences can
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be made from several, even all, models being considered. These procedures
are termed multimodel inference (MMI). Model averaging has been an active
research area for Bayesians for the past several years (Hoeting et al. 1999).
Model averaging can be easily done under an information-theoretic approach.
Model averaging has several practical and theoretical advantages, particularly
in prediction or in cases where a parameter of interest occurs in all the mod-
els. Confidence sets on models is another useful approach, particularly when
models in the set represent a logical ordering (e.g., a set of models represent-
ing chronic treatment effects over 1, 2, . . . , t time periods). Finally, the relative
importance of explantory variables in a general regression setting can be easily
assessed by summing certain quantities across models. MMI is also potentially
useful in certain conflict resolution issues (Anderson et al. 2001c).

Current practice often would judge a variable as important or unimportant,
based on whether that variable was in or out of the selected model (e.g., stepwise
regression, based on hypothesis testing). Such procedures provide a misleading
dichotomy (see Breiman 2001) and are not in the spirit of a weight of evidence.
MMI allows us to discard simplistic dichotomies and focus on quantitatively
ranking models and variables as to their relative value and importance.

Modeling is an art as well as a science and is directed toward finding a
good approximating model of the information in empirical data as the basis
for statistical inference from those data. In particular, the number of param-
eters estimated from data should be substantially less than the sample size,
or inference is likely to remain somewhat preliminary (e.g., Miller (1990: x))
mentions a regression problem with 757 variables and a sample size of 42 (it is
absurd to think that valid inference is likely to come from the analysis of these
data). In cases where there are relatively few data per estimated parameter, a
small-sample version of AIC is available (termed AICc) and should be used
routinely rather than AIC. There are cases where quasi-likelihood methods are
appropriate when count data are overdispersed; this theory leads to modified
criteria such as QAIC and QAICc, and these extensions are covered in the
following material.

Simple models with only 1-2 parameters are not the central focus of this
book; rather, we focus on models of more complex systems. Parameter esti-
mation has been firmly considered to be an optimization problem for many
decades, and AIC formulates the problem of model selection as an optimiza-
tion problem across a set of candidate models. Minimizing AIC is a simple
operation with results that are easy to interpret. Models can be clearly ranked
and scaled, allowing full consideration of other good models, in addition to
the estimated “best approximating model.” Evidence ratios allow a formal
strength of evidence for alternative hypotheses. Competing models, those with
AIC values close to the minimum, are also useful in the estimation of model
selection uncertainty. Inference should often be based on more than a single
model, unless the data clearly support only a single model fit to the data. Thus,
some approaches are provided to allow inference from several or all of the
models, including model averaging.
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This is primarily an applied book. A person with a good background in
mathematics and theoretical statistics would benefit from studying Chapter 7.
McQuarrie and Tsai (1998) present both theoretical and applied aspects of
model selection in regression and time series analysis, including extensive
results of large-scale Monte Carlo simulation studies.

1.2 Background Material

Data and stochastic models of data are used in the empirical sciences to make
inferences concerning both processes and parameters of interest (see Box et al.
1981, Lunneborg 1994, and Shenk and Franklin 2001 for a review of prin-
ciples). Statistical scientists have worked with researchers in the biological
sciences for many years to improve methods and understanding of biological
processes. This book provides practical, omnibus methods to achieve valid in-
ference from models that are good approximations to biological processes and
data. We focus on statistical evidence and try to avoid arbitrary dichotomies
such as “significant or not significant.” A broad definition of data is employed
here. A single, simple data set might be the subject of analysis, but more often,
data collected from several field sites or laboratories are the subject of a more
comprehensive analysis. The data might commonly be extensive and parti-
tioned by age, sex, species, treatment group, or within several habitat types or
geographic areas. In linear and nonlinear regression models there may be many
explanatory variables. There are often factors (variables) with small, moderate,
and large effects in these information-rich data sets (the concept of tapering
effect sizes). Parameters in the model represent the effects of these factors. We
focus on modeling philosophy, model selection, estimation of model param-
eters, and valid measures of precision under the relatively new paradigm of
information-theoretic methods. Valid inference rests upon these four issues, in
addition to the critical considerations relating to problem formulation, study
design, and protocol for data collection.

1.2.1 Inference from Data, Given a Model

R. A. Fisher (1922) discussed three aspects of the general problem of valid
inference: (1) model specification, (2) estimation of model parameters, and
(3) estimation of precision. Here, we prefer to partition model specification
into two components: formulation of a set of candidate models and selection
of a model (or small number of models) to be used in making inferences. For
much of the twentieth century, methods have been available to objectively and
efficiently estimate model parameters and their precision (i.e., the sampling
covariance matrix). Fisher’s likelihood theory has been the primary omnibus
approach to these issues, but it assumes that the model structure is known
(and correct, i.e., a true model) and that only the parameters in that structural
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model are to be estimated. Simple examples include a linear model such as
y � α+βx+ε where the residuals (ε) are assumed to be normally distributed,
or a log-linear model for the analysis of count data displayed in a contingency
table. The parameters in these models can be estimated using maximum likeli-
hood (ML) methods. That is, if one assumes or somehow chooses a particular
model, methods exist that are objective and asymptotically optimal for estimat-
ing model parameters and the sampling covariance structure, conditional on
that model. A more challenging example might be to assume that data are ap-
propriately modeled by a 3-parameter gamma distribution; one can routinely
use the method of maximum likelihood to estimate these model parameters
and the model-based 3 × 3 sampling covariance matrix. Given an appropriate
model, and if the sample size is “large,” then maximum likelihood provides
estimators of parameters that are consistent (i.e., asymptotically unbiased with
variance tending to zero), fully efficient (i.e., minimum variance among con-
sistent estimators), and normally distributed. With small samples, but still
assuming an appropriate model, ML estimators often have small-sample bias,
where bias ≡ E(θ̂ ) − θ . Such bias is usually a trivial consideration, as it is
often substantially less than the se(θ̂ ), and bias-adjusted estimators can of-
ten be found if this is deemed necessary. The sampling distributions of ML
estimators are often skewed with small samples, but profile likelihood inter-
vals or log-based intervals or bootstrap procedures can be used to achieve
asymmetric confidence intervals with good coverage properties. In general,
the maximum likelihood method provides an objective, omnibus theory
for estimation of model parameters and the sampling covariance matrix,
given an appropriate model.

1.2.2 Likelihood and Least Squares Theory

Biologists have typically been exposed to least squares (LS) theory in their
classes in applied statistics. LS methods for linear models are relatively simple
to compute, and therefore they enjoyed an early history of application (Weis-
burg 1985). In contrast, Fisher’s likelihood methods often require iterative
numerical methods and were thus not popular prior to the widespread avail-
ability of personal computers and the development of easy-to-use software. LS
theory has many similarities with likelihood theory, and it yields identical esti-
mators of the structural parameters (but not σ 2) for linear and nonlinear models
when the residuals are assumed to be independent and normally distributed. It
is now easy to allow alternative error structures (i.e., nonnormal residuals such
as Poisson, gamma or log-normal) for regression and other similar problems in
either a likelihood or quasi-likelihood framework (e.g., McCullagh and Nelder
1989, Heyde 1997), but more difficult in an LS framework.

The concepts underlying both estimation methods are relatively simple to
understand (Silvey 1975). Consider the simple linear regression, where a re-
sponse variable (y) is modeled as a linear function of an explanatory variable



1.2 Background Material 7

(x) as yi � β0 + β1 · xi + εi . The εi are error terms (residuals) which are often
modeled as independent normal random variables with mean 0 and constant
variance σ 2. Under LS the estimates of β0 and β1 are those that minimize∑

(εi)2− hence the name least squares. The parameter estimates β̂0 and β̂1

minimize the average squared error terms (εi) and define a regression line that
is the “best fit.” Hundreds of statistics books cover the theory and application
for least squares estimation in linear and nonlinear models, particularly when
the εi are assumed to be independent, normally distributed random variables.

Likelihood methods are much more general, far less taught in applied statis-
tics courses, and slightly more difficult to understand at first. The material in
much of this book relies on an understanding of likelihood theory, so some
brief introduction is given here. While likelihood theory is a paradigm under-
lying both frequentist and Bayesian statistics, there are no more than a handful
of applied books solely on this important subject (good examples include Mc-
Cullagh and Nelder 1989, Edwards 1992, Azzalini 1996, Morgan 2000, and
Severini 2000).

The theory underlying likelihood begins with a probability model, given the
parameters (θ). Specifically, model g describes the probability distribution of
the data, given the model parameters and a specific model form; denoted by
g(x|θ, model). A simple example is the binomial probability function where
θ is the probability of a “success”; let this be the parameter p � 0.4. The data
could be the observation of y � 15 successes out of n � 40 independent trials.
Then, the discrete probability of getting 15 successes out of 40 trials, given the
parameter (p ≡ 0.4) and the binomial model, is

g(y, n|p, binomial) �
(

n

y

)
py(1 − p)n−y,

g(15, 40|p � 0.4, binomial) � 40!

15!25!
(0.4)15(1 − 0.4)25 � 0.123.

The key point is that for this calculation, the model (here a binomial model)
and its parameters (here p � 0.4) are known in advance (i.e., they are given).
In very simple problems such as this, an excellent model is available and can
be considered given (such is rarely the case in the real world, where one is
not sure what model might be used). Then one observes the data (y � 15 and
n � 40) and can compute the probability of the data, given the model and its
parameters.

In much of science, neither the model parameters nor the model is known.
However, data can be collected in a way that allows the parameters to be
estimated if a good model can be found or assumed. The likelihood function
is the basis for such parameter estimation and is a function of the parameter
p, given the data and the binomial model:

L(p|y, n, binomial) �
(

n

y

)
py(1 − p)n−y
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or

L(p|15, 40, binomial) � 40!

15!25!
(p)15(1 − p)25.

Clearly, the likelihood is a function of (only) the unknown parameter (p in
this example); everything else is known or assumed. The probability model
and the associated likelihood function differ only in terms of what is known or
given. In the probability model, the parameters, the model, and the sample size
are known, and interest lies in the probability of observing a particular event
(the data, y given n in this simple example). In the likelihood function, the
data are given (observed) and the model is assumed (but given), and interest
lies in estimating the unknown parameters; thus, the likelihood is a function
of only the parameters. The probability model of the data and the likelihood
function of the parameters are closely related; they merely reverse the roles
of the data and the parameters, given a model. The binomial coefficient

(
n

y

)
does not contain the unknown parameter p and is often omitted (it does not
contain any information about the unknown parameters and is often difficult
to compute if n > 50).

The notation for the likelihood function is very helpful in its understanding;
consider the general expression L(θ |data, model). If we follow the usual con-
vention of letting x represent the empirical data and g a given approximating
model, then L(θ |x, g) is read as “the likelihood of a particular numerical value
of the unknown parameter θ (θ is usually a vector), given the data x and a
particular model g.”

A well-known example will help illustrate the concept. Consider flipping
n pennies and observing y “heads.” Assuming that the flips are independent
and that each penny has an equal probability of a head, the binomial model
is an obvious model choice in this simple setting. The likelihood function is
L(p|y, n, binomial), where p is the (unknown) probability of a head. Thus,
given the data (y and n) and the binomial model, one can compute the likeli-
hood that p is 0.15 or 0.73 or any other value between 0 and 1. The likelihood
(a relative, not absolute, value) is a function of the unknown parameter p.
Given this formalism, one might compute the likelihood of many values of
the unknown parameter p and pick the most likely one as the best estimate of
p, given the data and the model. It seems compelling to pick the value of p

that is “most likely.” This is Fisher’s concept of maximum likelihood estima-
tion; he published this when he was 22 years old as a third-year undergraduate
at Cambridge University! He reasoned that the best estimate of an unknown
parameter (given data and a model) was that which was the most likely; thus
the name maximum likelihood, ML. The ML estimate (MLE) for the bino-
mial model happens to have a closed-form expression that is well known:
p̂ � y/n � 7/11 � 0.6363. That is, the numerical value of y/n exactly
maximizes the likelihood function. In most real-world cases a simple, closed
form estimator either does not exist or cannot be found without substantial
difficulty.
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Likelihood theory includes asymptotically optimal methods for estimation
of unknown parameters and their variance–covariance matrix, derivation of
hypothesis tests, the basis for profile likelihood intervals, and other important
quantities (such as model selection criteria). More generally, likelihood theory
includes the broad concept of support (Edwards 1992). Likelihood is also
the essential basis for Bayesian approaches to statistical inference. In fact,
likelihood is the backbone of statistical theory, whereas least squares can be
viewed as a limited special case and, while very useful in several important
applications, is not foundational in modern statistics.

For many purposes the natural logarithm of the likelihood function is essen-
tial; written as log(L(θ |data, model)), or log(L(θ |x, model)), or if the context
is clear, just log(L(θ )) or even just log(L). Often, one sees notation such as
log(L(θ |x)), without it being clear that a particular model is assumed. An ad-
vanced feature of log(L) is that it, by itself, is a type of information concerning
θ and the model (Edwards 1992:22–23). The log-likelihood for the binomial
model where 11 pennies are flipped and 7 heads are observed is

log(L(p|y, n, binomial)) � log

(
n

y

)
+ y · log(p) + (n − y) · log(1 − p),

� log

(
11

7

)
+ 7 · log(p) + (11 − 7) · log(1 − p)

� 5.79909 + 7 · log(p) + (4) · log(1 − p).

A property of logarithms for values between 0 and 1 is that they lie in the
negative quadrant; thus, values of discrete log-likelihood functions are negative
(unless some additive constants have been omitted). Figure 1.1 shows a plot
of the likelihood (a) and log-likelihood (b) functions where 11 pennies were
flipped, 7 heads were observed, and the binomial model was assumed. The
value of p � 0.636 maximizes both the likelihood and the log-likelihood
function; this value is denoted by p̂ and is the maximum likelihood esti-
mate (MLE). Relatively little information is contained in such a small sample
size (n � 11) and this is reflected in the broad shape of the plots. Had the
sample size been 5 times larger, with n � 55 and 35 heads observed, the
likelihood and log-likelihood functions would be more peaked (Figure 1.1c
and d). In fact, the sampling variance is derived from the shape of the log-
likelihood function around its maximum point. In the usual case where θ is a
vector, a variance–covariance matrix can be estimated based on partial deriva-
tives of the log-likelihood function. These procedures will not be developed
here.

The value of the log-likelihood function at its maximum point is a very
important quantity, and it is this point that defines the maximum likelihood
estimate. In the example with 11 flips and 7 heads, the value of the maximized
log-likelihood is −1.411 (Figure 1.1b). This result is computed by taking the
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FIGURE 1.1. Plots of the binomial likelihood (a) and log-likelihood (b) function, given
n � 11 penny flips and the observation that y � 7 of these were heads. Also shown are
plots of the binomial likelihood (c) and log-likelihood (d) function, given a sample size 5
times larger; n � 55 penny flips and the observation that y � 35 of these were heads. Note
the differing scales on the Y axis.

log-likelihood function

log(L(p|y, n, binomial)) � log

(
n

y

)
+ y · log(p) + (n − y) · log(1 − p)

and substituting the MLE (p̂ � 0.6363) and the data (y and n),

−1.411 � 5.79909 + 7 · log(0.6363) + (4) · log(1 − 0.6363).

Thus, when one sees reference to a maximized log(L(θ )) this merely represents
a numerical value (e.g., −1.411).

Many do not realize that the common procedure for setting a 95% confidence
interval (i.e., θ̂ ± 1.96 · ŝe(θ̂ )) is merely an approximation. The estimator θ̂ is
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only asymptotically normal, and if the sample size is too small, the sampling
distribution will often be nonnormal and the approximation will be poor (i.e.,
achieved confidence interval coverage can be much less than the nominal value,
say, 95%). For example, if the binomial parameter is near 0 or 1, the distribution
of the estimator θ̂ will be nonnormal (asymmetric) unless the sample size is
very large. In general, rather than use the simple approximation, one can set
a 95% interval using the log-likelihood function; this procedure, in general,
is called a profile likelihood interval. This is not a simple procedure; thus the
approximation has seen heavy use in applied data analysis. We cannot provide
the full theory for profile likelihood intervals here, but will give an example for
the binomial case where n � 11, y � 7, p̂ � 0.6363, and the maximized log-
likelihood value is −1.411. Here, we start with 3.84, which is the 0.05 point of
the chi-squared distribution with 1 degree of freedom. One-half of this value is
1.92, and this value is subtracted from the maximum point of the log-likelihood
function: −1.411 − 1.92 � −3.331. Now, numerically, one must find the 2
values of p that are associated with the values of the log-likelihood function at
−3.331. These 2 values are the endpoints of an exact 95% likelihood confidence
interval. In this example, the 95% likelihood interval is (0.346, 0.870).

Biologists familiar with LS but lacking insight into likelihood methods might
benefit from an example. Consider a multiple linear regression model where a
dependent variable y is hypothesized to be a function of r explanatory (predic-
tor) variables xj (j � 1, 2, . . . , r). Here the residuals εi of the n observations
are assumed to be independent, normally distributed with a constant variance
σ 2, and the model structure is expressed as

yi � β0 + β1x1 + β2x2 + · · · + βrxr + εi, i � 1, . . . , n.

Hence

E(yi) � β0 + β1x1 + β2x2 + · · · + βrxr, i � 1, . . . , n,

and E(yi) is a linear function of r + 1 parameters. The conceptual residuals,

εi � yi − (β0 + β1x1 + β2x2 + · · · + βrxr ) � yi − E(yi),

have the joint probability distribution g(ε|θ ), where θ is a vector of K � r +2
parameters (β0, β1, . . . , βr , and σ ). Here, corresponding to observation i one
has the model

g(εi |θ ) � 1√
2πσ

e− 1
2 [ εi

σ ]2

.

The likelihood is simply the product of these over the n observations, inter-
preted as a function of the unknown parameters, given the data, the linear
model structure, and the normality assumption:

L(θ |x) �
n∏

i�1

1√
2πσ

e− 1
2 [ εi

σ ]2 �
(

1√
2πσ

)n

e− 1
2

∑n
i�1[ εi

σ ]2

.



12 1. Introduction

Here we use “x” in L(θ |x) to denote the full data. When the εi are normally dis-
tributed with constant variance σ 2, the maximum likelihood estimator (MLE)
of β is identical to the usual LS regression estimators (however, the estima-
tor of σ 2 differs slightly). This formalism shows, given the model, the link
between the data, the model, and the parameters to be objectively estimated,
using either LS or ML.

In all fitted linear models the residual sum of squares (RSS) is

RSS �
n∑

i�1

ε̂2
i ,

where

ε̂i � yi − (β̂0 + β̂1x1 + β̂2x2 + · · · + β̂rxr ),

� yi − Ê(yi)

The ML estimator is σ̂ 2 � RSS /n, while the estimator universally used in the
LS case is σ̂ 2 � RSS /(n − (r + 1)). This shows that ML and LS estimators
of σ 2 differ by a factor of n/(n − (r + 1)); often a trivial difference unless the
sample size is small. The maximized likelihood is

L(θ̂ |x) �
[

1√
2πσ̂

]n

e− 1
2 n,

or

log(L(θ̂ )) � −1

2
n log(σ̂ 2) − n

2
log(2π) − n

2
.

The additive constants can often be discarded from the log-likelihood because
they are constants that do not influence likelihood-based inference. Thus for
all standard linear models, we can take

log(L(θ̂ )) ≈ −1

2
n log(σ̂ )2.

This result is important in model selection theory because it allows a simple
mapping from LS analysis results (e.g., the RSS or the MLE of σ 2) into the
maximized value of the log-likelihood function for comparisons over such
linear models with normal residuals. Note that the log-likelihood is defined up
to an arbitrary additive constant in this usual case. If the model set includes
linear and nonlinear models or if the residual distributions differ (e.g., normal,
gamma, and log-normal), then all the terms in the log-likelihood must be
retained, without omitting any constants. Most uses of the log-likelihood are
relative to its maximum, or to other likelihoods at their maxima, or to the
curvature of the log-likelihood function at the maximum.

The number of parameters K � r+2 in these linear models must include the
intercept (say, β0), the r regression coefficients (β1, . . . , βr ), and the residual
variance (σ 2). Often, one (erroneously) considers only the number of param-
eters being estimated as the intercept and the slope parameters (ignoring σ 2);
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Sir Ronald Aylmer Fisher was born in 1890 in East Finchley, London, and died in Adelaide,
Australia, in 1962. This photo was taken when he was approximately 66 years of age. Fisher
was one of the foremost scientists of his time, making incredible contributions in theoretical
and applied statistics and genetics. Details of his life and many scientific accomplishments
are found in Box (1978). He published 7 books (one of these had 14 editions and was
printed in 7 languages) and nearly 300 journal papers. Most relevant to the subject of this
book is Fisher’s likelihood theory and parameter estimation using his method of maximum
likelihood.

however, in the context of model selection, the number of parameters must
include σ 2 and thus K � r + 2. If the method of LS is used to obtain pa-
rameter estimators, one must use the regression-based estimate of σ 2 times
(n − (r + 1))/n � (n − K + 1)/n to obtain the ML estimator of σ 2. In LS
estimation, we minimize RSS � nσ̂ 2, which for all parameters other than σ 2

itself is equivalent to maximizing − 1
2 · n log(σ̂ 2).

There is a close relationship between LS and ML methods for linear and
nonlinear models, where the εi are assumed to be normally distributed. For
example, the LS estimates of the structural model parameters (but not σ 2) are
equivalent to the MLEs. Likelihood (and related Bayesian) methods allow easy
extensions to the many other classes of models and, with the exploding power
of computing equipment, likelihood methods are finding increasing use by both
statisticians and researchers in other scientific disciplines (see Garthwaite et al.
1995 for background).

1.2.3 The Critical Issue: “What Is the Best Model to Use?”

While hundreds of books and countless journal papers deal with estimation of
model parameters and their associated precision, relatively little has appeared
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concerning model specification (what set of candidate models to consider)
and model selection (what model(s) to use for inference) (see Peirce 1955).
In fact, Fisher believed at one time that model specification was outside the
field of mathematical statistics, and this attitude prevailed within the statistical
community until at least the early 1970s. “What is the best model to use?”
is the critical question in making valid inference from data in the biological
sciences.

The likelihood function L(θ |x, model) makes it clear that for inference about
θ , data and the model are taken as given. Before one can compute the likelihood
that θ � 5.3, one must have data and a particular statistical model. While
an investigator will have empirical data for analysis, it is unusual that the
model is known or given. Rather, a number of alternative model forms must be
somehow considered as well as the specific explanatory variables to be used
in modeling a response variable. This issue includes the variable selection
problem in multiple regression analysis. If one has data and a model, LS or
ML theory can be used to estimate the unknown parameters (θ) and other
quantities useful in making statistical inferences. However, which model is
the best to use for making inferences? What is the basis for saying a model is
“best”?

Model selection relates to fitted models: given the data and the form of the
model, then the MLEs of the model parameters have been found (“fitted”).
Inference relates to theoretical models. It is necessary to consider four cases;

(1) models as structure only (θ value irrelevant),
(2) models as structure, plus specific θo (this is the theoretical best value),
(3) models as structure, plus MLE θ̂ , fitted to data,
(4) models as structure by fitting, downplaying θ .

If a poor or inappropriate model (3, above) is used, then inference based
on the data and this model will often be poor. Thus, it is clearly important to
select (i.e., infer) an appropriate model (1, above) for the analysis of a specific
data set; however, this is not the same as trying to find the “true model.” Model
selection methods with a deep level of theoretical support are required and,
particularly, methods that are easy to use and widely applicable in practice. Part
of “applicability” means that the methods have good operating characteristics
for realistic sample sizes. As Potscher (1991) noted, asymptotic properties are
of little value unless they hold for realized sample sizes.

A simple example will motivate some of the concepts presented. Flather
(1992 and 1996) studied patterns of avian species-accumulation rates among
forested landscapes in the eastern United States using index data from the
Breeding Bird Survey (Bystrak 1981). He derived an a priori set of 9 candidate
models from two sources: (1) the literature on species area curves (most often
the power or exponential models were suggested) and (2) a broader search of
the literature for functions that increased monotonically to an asymptote (Table
1.1). Which model should be used for the analysis of these ecological data?
Clearly, none of these 9 models are likely to be the “truth” that generated
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TABLE 1.1. Summary of a priori models of avian species-accumulation curves from Breed-
ing Bird Survey index data for Indiana and Ohio (from Flather 1992:51 and 1996). The
response variable (y) is the number of accumulated species, and the explanatory variable
(x) is the accumulated number of samples. Nine models and their number of parameters are
shown to motivate the question, “Which fitted model should be used for making inference
from these data?”

Model Number of
structure parameters (K)a

E(y) � axb 3
E(y) � a + b log(x) 3
E(y) � a(x/(b + x)) 3
E(y) � a(1 − e−bx) 3
E(y) � a − bcx 4
E(y) � (a + bx)/(1 + cx) 4
E(y) � a(1 − e−bx)c 4
E(y) � a

(
1 − [1 + (x/c)d ]−b

)
5

E(y) � a[1 − e−(b(x−c))d ] 5

aThere are K−1 structural parameters and one residual variance parameter, σ 2. Assumed: y � E(y)+ε,
E(ε) � 0, V(ε) � σ 2.

the index data from the Breeding Bird Survey over the years of study. Instead,
Flather wanted an approximating model that fit the data well and could be used
in making inferences about bird communities on the scale of large landscapes.
In this first example, the number of parameters in the candidate models ranges
only from 3 to 5. Which approximating model is “best” for making inferences
from these data is answered philosophically by the principle of parsimony
(Section 1.4) and operationally by several information-theoretic criteria in
Chapter 2. Methods for estimating model selection uncertainty and incorpo-
rating this into inferences are given in Chapter 2 and illustrated in Chapters 4
and 5.

Note, in each case, that the response variable y is being modeled, rather
than mixing models of y with log(y), or other transformations of the response
variable (Table 1.1). These models are in the sense of 1 above, as the structure
is given but the parameter values are unspecified. Given appropriate data, ML
can be used to obtain θ̂ in the sense of 3 above. In some of the physical sciences
the model parameters are derived from theory, without the need for problem-
specific empirical data. Such cases seem to be the exception in the biological
sciences, where model parameters must usually be estimated from the data
using least squares or likelihood theory.

1.2.4 Science Inputs: Formulation of the Set of Candidate Models

Model specification or formulation, in its widest sense, is conceptually more
difficult than estimating the model parameters and their precision. Model for-
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mulation is the point where the scientific and biological information formally
enter the investigation. Building the set of candidate models is partially a sub-
jective art; that is why scientists must be trained, educated, and experienced
in their discipline. The published literature and experience in the biological
sciences can be used to help formulate a set of a priori candidate models. The
most original, innovative part of scientific work is the phase leading to the
proper question. Good approximating models, each representing a scientific
hypothesis, in conjunction with a good set of relevant data can provide insight
into the underlying biological process and structure.

Lehmann (1990) asks, “where do models come from,” and cites some bio-
logical examples (also see Ludwig 1989, Walters 1996, Lindsey 1995). Models
arise from questions about biology and the manner in which biological sys-
tems function. Relevant theoretical and practical questions arise from a wide
variety of sources (see Box et al. 1978, O’Connor and Spotila 1992). Tradition-
ally, these questions come from the scientific literature, results of manipulative
experiments, personal experience, or contemporary debate within the scien-
tific community. More practical questions stem from resource management
controversies, biomonitoring programs, quasi-experiments, and even judicial
hearings.

Chatfield (1995b) suggests that there is a need for more careful thinking
(than is usually evident) and a better balance between the problem (biological
question), analysis theory, and data. This suggestion has been made in the
literature for decades. One must conclude that it has not been taught sufficiently
in applied science or statistics courses. Our science culture does not regularly
do enough to expect and enforce critical thinking. Too often, the emphasis
is focused on the analysis theory and data analysis, with too little thought
about the reason for the study in the first place (see Hayne 1978 for convincing
examples).

Tukey (1980) argues for the need for deep thinking and early exploratory data
analysis, and that the results of these activities lead to good scientific questions
and confirmatory data analysis. In the exploratory phases, he suggests the
importance of a flexible attitude and plotting of the data. He does not advocate
the computation of test statistics, P -values, and so forth during exploratory
data analysis. Tukey concludes that to implement the confirmatory paradigm
properly we need to do a lot of exploratory work.

The philosophy and theory presented here must rest on well-designed studies
and careful planning and execution of field or laboratory protocol. Many good
books exist giving information on these important issues (Burnham et al. 1987,
Cook and Campbell 1979, Mead 1988, Hairston 1989, Desu and Roghavarao
1991, Eberhardt and Thomas 1991, Manly 1992, Skalski and Robson 1992,
Thompson 1992, Scheiner and Gurevitch 1993, Cox and Reid 2000, and Guisan
and Zimmermann 2000). Chatfield (1991) reviews statistical pitfalls and ways
that these might be avoided. Research workers are urged to pay close attention
to these critical issues. Methods given here should not be thought to salvage
poorly designed work. In the following material we will assume that the data
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are “sound” and that inference to some larger population is reasonably justified
by the manner in which the data were collected.

Development of the a priori set of candidate models often should include
a global model: a model that has many parameters, includes all potentially
relevant effects, and reflects causal mechanisms thought likely, based on the
science of the situation. The global model should also reflect the study de-
sign and attributes of the system studied. Specification of the global model
should not be based on a probing examination of the data to be analyzed. At
some early point, one should investigate the fit of the global model to the data
(e.g., examine residuals and measures of fit such as R2, deviance, or formal
χ2 goodness-of-fit tests) and proceed with analysis only if it is judged that
the global model provides an acceptable fit to the data. Models with fewer
parameters can then be derived as special cases of the global model. This set
of reduced models represents plausible alternatives based on what is known or
hypothesized about the process under study. Generally, alternative models will
involve differing numbers of parameters; the number of parameters will often
differ by at least an order of magnitude across the set of candidate models.
Chatfield (1995b) writes concerning the importance of subject-matter con-
siderations such as accepted theory, expert background knowledge, and prior
information in addition to known constraints on both the model parameters
and the variables in the models. All these factors should be brought to bear on
the makeup of the set of candidate models, prior to actual data analysis.

The more parameters used, the better the fit of the model to the data that is
achieved. Large and extensive data sets are likely to support more complexity,
and this should be considered in the development of the set of candidate models.
If a particular model (parametrization) does not make biological sense,
this is reason to exclude it from the set of candidate models, particularly
in the case where causation is of interest. In developing the set of candidate
models, one must recognize a certain balance between keeping the set small
and focused on plausible hypotheses, while making it big enough to guard
against omitting a very good a priori model. While this balance should be
considered, we advise the inclusion of all models that seem to have a reasonable
justification, prior to data analysis. While one must worry about errors due
to both underfitting and overfitting, it seems that modest overfitting is less
damaging than underfitting (Shibata 1989). We recommend and encourage a
considerable amount of careful, a priori thinking in arriving at a set of candidate
models (see Peirce 1955, Burnham and Anderson 1992, Chatfield 1995b).

Freedman (1983) noted that when there are many, say 50, explanatory
variables (x1, x2, . . . , x50) used to predict a response variable (y), variable-
selection methods will provide regression equations with high R2 values,
“significant” F values, and many “significant” regression coefficients, as
shown by large t values, even if the explanatory variables are independent
of y. This undesirable situation occurs most frequently when the number of
variables is of the same order as the number of observations. This finding,
known as Freedman’s paradox, was illustrated by Freedman using hypothe-
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sis testing as a means to select a model of y as a function of the x’s, but the
same type of problematic result can be found in using other model selection
methods. Miller (1990) notes that estimated regression coefficients are biased
away from zero in such cases; this is a type of model selection bias. The partial
resolution of this paradox is in the a priori modeling considerations, keeping
the number of candidate models small, achieving a large sample size relative
to the number of parameters to be estimated, and basing inference on more
than one model.

It is not uncommon to see biologists collect data on 50–130 “ecological”
variables in the blind hope that some analysis method and computer system
will “find the variables that are significant” and sort out the “interesting” results
(Olden and Jackson 2000). This shotgun strategy will likely uncover mainly
spurious correlations (Anderson et al. 2001b), and it is prevalent in the naive
use of many of the traditional multivariate analysis methods (e.g., principal
components, stepwise discriminant function analysis, canonical correlation
methods, and factor analysis) found in the biological literature. We believe
that mostly spurious results will be found using this unthinking approach (also
see Flack and Chang 1987 and Miller 1990), and we encourage investigators
to give very serious consideration to a well-founded set of candidate models
and predictor variables (as a reduced set of possible prediction) as a means of
minimizing the inclusion of spurious variables and relationships. Ecologists
are not alone in collecting a small amount of data on a very large number of
variables. A. J. Miller (personal communication) indicates that he has seen
data sets in other fields with as many as 1,500 variables where the number of
cases is less than 40 (a purely statistical search for meaningful relationships in
such data is doomed to failure).

After a carefully defined set of candidate models has been developed, one is
left with the evidence contained in the data; the task of the analyst is to interpret
this evidence from analyzing the data. Questions such as, “What effects are
supported by the data?” can be answered objectively. This modeling approach
allows a clear place for experience (i.e., prior knowledge and beliefs), the
results of past studies, the biological literature, and current hypotheses to enter
the modeling process formally. Then, one turns to the data to see “what is
important” within a sense of parsimony. In some cases, careful consideration
of the number and nature of the predictor variables to be used in the analysis
will suffice in defining the candidate models. This process may result in an
initial set of, say, 15–40 predictor variables and a consolidation to a much
smaller set to use in the set of candidate models. Using AIC and other similar
methods one can only hope to select the best model from this set; if good
models are not in the set of candidates, they cannot be discovered by model
selection (i.e., data analysis) algorithms.

We lament the practice of generating models (i.e., “modeling”) that is done
in the total absence of real data, and yet “inferences” are made about the status,
structure, and functioning of the real world based on studying these models.
We do not object to the often challenging and stimulating intellectual exercise



1.2 Background Material 19

of model construction as a means to integrate and explore our myriad ideas
about various subjects. For example, Berryman et al. (1995) provide a nice list
of 26 candidate models for predator–prey relationships and are interested in
their “credibility” and “parsimony.” However, as is often the case, there are no
empirical data available on a variety of taxa to pursue these issues in a rigor-
ous manner (also see Turchin and Batzli (2001), who suggest 8 models, each
a system of 2–3 differential equations, for vegetation–herbivore population
interactions). Such exercises help us sort out ideas that in fact conflict when
their logical consequences are explored. Modeling exercises can strengthen
our logical and quantitative abilities. Modeling exercises can give us insights
into how the world might function, and hence modeling efforts can lead to
alternative hypotheses to be explored with real data. Our objection is only to
the confusing of presumed insights from such models with inferences about
the real world (see Peters 1991, Weiner 1995). An inference from a model
to some aspect of the real world is justified only after the model has been
shown to adequately fit relevant empirical data (this will certainly be the case
when the model in its totality has been fit to and tested against reliable data).
Gause (1934) had similar beliefs when he stated, “Mathematical investigations
independent of experiments are of but small importance . . . .”

The underlying philosophy of analysis is important here. We advocate a
conservative approach to the overall issue of strategy in the analysis of data in
the biological sciences with an emphasis on a priori considerations and models
to be considered. Careful, a priori consideration of alternative models will
often require a major change in emphasis among many people. This is often
an unfamiliar concept to both biologists and statisticians, where there has been
a tendency to use either a traditional model or a model with associated computer
software, making its use easy (Lunneborg 1994). This a priori strategy is in
contrast to strategies advocated by others who view modeling and data analysis
as a highly iterative and interactive exercise. Such a strategy, to us, represents
deliberate data dredging and should be reserved for early exploratory phases
of initial investigation. Such an exploratory avenue is not the subject of this
book.

Here, we advocate the deliberate exercise of carefully developing a set of,
say, 4–20 alternative models as potential approximations to the population-
level information in the data available and the scientific question being
addressed (Lytle 2002 provides an advanced example). Some practical prob-
lems might have as many as 70–100 or more models that one might want to
consider. The number of candidate models is often larger with large data sets.
We find that people tend to include many models that are far more general
than the data could reasonably support (e.g., models with several interaction
parameters). There need to be some well-supported guidelines on this issue
to help analysts better define the models to be considered. This set of mod-
els, developed without first deeply examining the data, constitutes the “set of
candidate models.” The science of the issue enters the analysis through the a
priori set of candidate models.
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1.2.5 Models Versus Full Reality

Fundamental to our paradigm is that none of the models considered as the basis
for data analysis are the “true model” that generates the biological data we ob-
serve (see, for example, Bancroft and Han 1977). We believe that “truth” (full
reality) in the biological sciences has essentially infinite dimension, and hence
full reality cannot be revealed with only finite samples of data and a “model” of
those data. It is generally a mistake to believe that there is a simple “true model”
in the biological sciences and that during data analysis this model can be un-
covered and its parameters estimated. Instead, biological systems are complex,
with many small effects, interactions, individual heterogeneity, and individual
and environmental covariates (most being unknown to us); we can only hope
to identify a model that provides a good approximation to the data available.
The words “true model” represent an oxymoron, except in the case of Monte
Carlo studies, whereby a model is used to generate “data” using pseudorandom
numbers (we will use the term “generating model” for such computer-based
studies). The concept of a “true model” in biology seems of little utility and
may even be a source of confusion about the nature of approximating models
(e.g., see material on BIC and related criteria in Chapter 6).

A model is a simplification or approximation of reality and hence will not
reflect all of reality. Taub (1993) suggests that unproductive debate concerning
true models can be avoided by simply recognizing that a model is not truth by
definition. Box (1976) noted that “all models are wrong, but some are useful.”
While a model can never be “truth,” a model might be ranked from very useful,
to useful, to somewhat useful to, finally, essentially useless. Model selection
methods try to rank models in the candidate set relative to each other; whether
any of the models is actually “good” depends primarily on the quality of the
data and the science and a priori thinking that went into the modeling. Full truth
(reality) is elusive (see deLeeuw 1988). Proper modeling and data analysis tell
what inferences the data support, not what full reality might be (White et al.
1982:14–15, Lindley 1986). Models, used cautiously, tell us “what effects are
supported by the (finite) data available.” Increased sample size (information)
allows us to chase full reality, but never quite catch it.

The concept of truth and the false concept of a true model are deep and
surprisingly important. Often, in the literature, one sees the words correct
model or simply the model as if to be vague as to the exact meaning intended.
Bayesians seem to say little about the subject, even as to the exact meaning
of the prior probabilities on models. Consider the simple model of population
size (n) at time t ,

nt+1 � nt · st ,

where s is the survival probability during the interval from t to t + 1. This is
a correct model in the sense that it is algebraically and deterministically cor-
rect; however, it is not an exact representation or model of truth. This model
is not explanatory; it is definitional (it is a tautology, because it implies that
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st � nt+1/nt ). For example, from the theory of natural selection, the sur-
vival probability differs among the n animals. Perhaps the model above could
be improved if average population survival probability was a random vari-
able from a beta distribution; still, this is far from a model of full reality or
truth, even in this very simple setting. Individual variation in survival could
be caused by biotic and abiotic variables in the environment. Thus, a more
exact model of full reality would have, at the very least, the survival of each
individual as a nonlinear function of a large number of environmental variables
and their interaction terms. Even in this simple case, it is surely clear that one
cannot expect any mathematical model to represent full reality; there are no
true models in the biological sciences. We will take a set of approximating
models gi , without pretending that one represents full reality and is therefore
“true.”

In using some model selection methods it is assumed that the set of candidate
models contains the “true model” that generated the data. We will not make
this assumption, unless we use a data set generated by Monte Carlo methods
as a tutorial example (e.g., Section 3.4), and then we will make this artificial
condition clear. In the analysis of real data, it seems unwarranted to pretend
that the “true model” is included in the set of candidate models, or even that the
true model exists at all. Even if a “true model” did exist and if it could be found
using some method, it would not be good as a fitted model for general inference
(i.e., understanding or prediction) about some biological system, because its
numerous parameters would have to be estimated from the finite data, and the
precision of these estimated parameters would be quite low.

Often the investigator wants to simplify some representation of reality in
order to achieve an understanding of the dominant aspects of the system under
study. If we were given a nonlinear formula with 200 parameter values, we
could make correct predictions, but it would be difficult to understand the
main dynamics of the system without some further simplification or analysis.
Thus, one should tolerate some inexactness (an inflated error term) to facilitate
a simpler and more useful understanding of the phenomenon.

In particular, we believe that there are tapering effect sizes in many biological
systems; that is, there are often several large, important effects, followed by
many smaller effects, and, finally, followed by a myriad of yet smaller effects.
These effects may be sequentially unveiled as sample size increases. The main,
dominant, effects might be relatively easy to identify and support, even using
fairly poor analysis methods, while the second-order effects (e.g., a chronic
treatment effect or an interaction term) might be more difficult to detect. The
still smaller effects can be detected only with very large sample sizes (cf.
Kareiva 1994 and related papers), while the smallest effects have little chance of
being detected, even with very large samples. Rare events that have large effects
may be very important but quite difficult to study. Approximating models must
be related to the amount of data and information available; small data sets will
appropriately support only simple models with few parameters, while more
comprehensive data sets will support, if necessary, more complex models.



22 1. Introduction

This tapering in “effect size” and high dimensionality in biological
systems might be quite different from some physical systems where a small-
dimensioned model with relatively few parameters might accurately represent
full truth or reality. Biologists should not believe that a simple “true model”
exists that generates the data observed, although some biological questions
might be of relatively low dimension and could be well approximated using a
fairly simple model. The issue of a range of tapering effects has been realized
in epidemiology, where Michael Thun notes, “. . . you can tell a little thing
from a big thing. What’s very hard to do is to tell a little thing from nothing
at all” (Taubes 1995). Full reality will always remain elusive in the biological
sciences.

At a more advanced conceptual level, these is a concept that “information”
about the population (or process or system) under study exists in the data
and the goal is to express this information in a more compact, understandable
form using a “model.” Conceptually, this is a change in coding system, similar
to using a different “alphabet.” The data have only a finite, fixed amount of
information. The goal of model selection is to achieve a perfect one-to-one
translation so that no information is lost; in fact, we cannot achieve this ideal.
The data can be ideally partitioned into information and noise. The noise part
of the data is not information. However, noise could contain information that
we cannot decode. Conceptually, the role of a good model is to filter the data
so as to separate information from noise.

Our main emphasis in modeling empirical data is to understand the biolog-
ical structure, process, or system. Sometimes prediction will be of interest;
here, however, one would hopefully have an understanding of the structure
of the system as a basis for making trustworthy predictions. We recommend
developing a set of candidate models prior to intensive data analysis, select-
ing one that is “best,” and estimating the parameters of that model and their
precision (using maximum likelihood or least squares methods). This unified
strategy is a basis for valid inferences, and there are several more advanced
methods to allow additional inferences and insights. In particular, models exist
to allow formal inference from more than one model, and this has a number of
advantages (Hoeting et al. 1999). Statistical science is not so much a branch
of mathematics, but rather it is concerned with the development of a practical
theory of information using what is known or postulated about the science
of the matter. In our investigations into these issues we were often surprised
by how much uncertainty there is in selecting a good approximating model;
the variability in terms of what model is selected or considered best from
independent data sets, for example, is often large.

1.2.6 An Ideal Approximating Model

We consider some properties of an ideal model for valid inference in the anal-
ysis of data. It is important that the best model is selected from a set of models
that were defined prior to data analysis and based on the science of the issue
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at hand. Ideally, the process by which a “best” model is selected would be
objective and repeatable; these are fundamental tenets of science. The ideal
model would be appropriately simple, based on concepts of parsimony. Fur-
thermore, precise, unbiased estimators of parameters would be ideal, as would
accurate estimators of precision. The best model would ideally yield achieved
confidence interval coverage close to the nominal level (often 0.95) and have
confidence intervals of minimum width. Achieved confidence interval cover-
age is a convenient index to whether parameter estimators and measures of
precision are adequate. Finally, one would like as good an approximation of
the structure of the system as the information permits. Thus, in many cases
adjusted R2 can be computed and σ 2 estimated as a measure of variation ex-
plained or residual variation, respectively. Ideally, the parameters in the best
model would have biological interpretations. If prediction was the goal, then
having the above issues in place might warrant some tentative trust in model
predictions. There are many cases where two or more models are essentially
tied for “best,” and this should be fully recognized in further analysis and infer-
ence, especially when they produce different predictions. In other cases there
might be 4–10 models that have at least some support, and these, too, deserve
scrutiny in reaching conclusions from the data, based on inferences from more
than a single model.

1.3 Model Fundamentals and Notation

This section provides a conceptualization of some important classes of models
as they are used in this book. Some of these classes are particularly important in
model selection. A general notation is introduced that is intended to be helpful
to readers.

1.3.1 Truth or Full Reality f

While there are no models that exactly represent full reality (cf. Section 1.2.5),
full truth can be denoted as f . The concept of f is abstract. It is this truth to
which we want to make inferences, based on data and approximating models.
We use the notation f (x) to denote that integration is over the variable x, but
we do not want to convey the notion that f is a function of the data x. Data
arise from full reality and can be used to make formal inferences back to this
truth, if data collection has been carefully planned and proper sampling or
experimental design has been achieved.

1.3.2 Approximating Models gi(x|θ )

We use the notation gi(x|θ) or often, if the context is clear, gi to denote the
ith approximating model. We use θ to represent generally a parameter or
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vector of parameters. Thus, θ is generic and might represent parameters in a
regression model (β0, β1, β2) or the probability of a head in penny flipping
trials (p). The models gi are discrete or continuous probability distributions,
and our focus will be on their associated likelihoods, L(θ |data, model) or
log-likelihoods log(L(θ |data, model)). Notation for the log-likelihood will
sometimes be shortened to log(L(θ |x, g)) or even log(L). Ideally, the set of
R models will have been defined prior to data analysis. These models specify
only the form of the model, leaving the unknown parameters (θ) unspecified.

A simple example will aid in the understanding of this section. Consider
a study of mortality (µc) as a function of concentration (c) of some chem-
ical compound. The size (s) of the animal (binary as small or large) and a
group covariate (z, such as gender) are also recorded, because they are hypoth-
esized to be important in better understanding the concentration–mortality
function. Investigators might consider mortality probability during some fixed
time interval to be a logistic function of concentration, where, for example,
c � 0, 1, 2, 4, 8, and 16. The full structure of the logistic model when all 3
variables are included in the model can be written as,

µc � 1

1 + exp{−(β0 + β1c + β2s + β3z)} .

Use of the logistic link function allows the expression to be written as a linear
model structure,

logit(µc) � loge

(
µc

1 − µc

)
� β0 + β1c + β2s + β3z.

Here the data (y) are binary for mortality (dead or alive), size (small or large),
and gender (male and female), while concentration is recorded at 6 fixed levels.
The response variabley � 1 if the animal died and 0 if it lived, given a particular
concentration. Then,

Prob{y � 1|c, s, z} � µc

for n individuals at concentration c, size s, and gender z. Then, the likelihood
is proportional to

L(µc|data, model) �
n∏

i�1

(µc(i))
yi (1 − µc(i))

1−yi .

Thus, a set of approximating structural models might be defined, based on the
science of the issue. The stochastic part of the model is assumed to be Bernoulli.
The models are alternatives, defined prior to data analysis, and the interest is
in the strength of evidence for each of the alternative hypotheses, represented
by models. Five (R � 5) structural models will be used for illustration:

g1(x) : logit(µc) � β0 + β1c + β2s + β3z,

g2(x) : logit(µc) � β0 + β1c + β2s,

g3(x) : logit(µc) � β0 + β1c + β3z,
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g4(x) : logit(µc) � β0 + β1c,

g5(x) : logit(µc) � β0.

These models specify the structural form (including how the parameters and
covariates enter), but not the parameter values (the βi); each assumes that the y

are independent Bernoulli random variables. The first model serves as a global
model. The second model represents the hypothesis that the group covariate
(z) is unimportant, while the third model is like the first, except that the size
is hypothesized to be unimportant. The fifth model implies that mortality is
constant and not a function of concentration. Often, enough is known about
the compound that model g5 is not worth exploration. Of course, the log-log
or complementary log-log, or probit function could have been used to model
the hypothesized relationships in this example, rather than the logistic.

1.3.3 The Kullback–Leibler Best Model gi(x|θ0)

For given full reality (f ), data (x), sample size (n), and model set (R) there
is a best model in the sense of Kullback-Leibler information (introduced in
Chapter 2). That is, given the possible data, the form of each model, and the
possible parameter values, K-L information can be computed for each model
in the set and the model best approximating full reality determined.

The parameters that produce this conceptually best single model, in the class
g(x|θ), are denoted by θ0, Of course, this model is generally unknown to us
but can be estimated; such estimation involves computing the MLEs of the
parameters in each model (θ̂ ) and then estimating K-L information as a basis
for model selection and inference. The MLEs converge asymptotically to θ0

and the concept of bias is with respect to θ0, rather than our conceptual “true
parameters” associated with full reality f .

1.3.4 Estimated Models gi(x|θ̂ )

Estimated models have specific parameter values from ML or LS estimation,
based on the given data and model. If another, replicate data set were available
and based on the same sample size, the parameter estimates would differ some-
what; the amount of difference expected is related to measures of precision
(e.g., standard errors and confidence intervals). It is important to keep separate
the model form gi(x|θ) from specific estimates of this model, based on data
and the process of parameter estimation, gi(x|θ̂ ).

In the models of mortality as a function of concentration and other variables
(above), there are associated likelihoods and log-likelihoods. Likelihood theory
can be used to obtain the MLEs β̂0 and β̂1 for model g4, for example. The
likelihood function is

L(β0, β1|data, model) �
n∏

i�1

(µc(i))
yi (1 − µc(i))

1−yi ,
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where

µc � 1

1 + exp{−(β0 + β1c)} .

Thus, the only parameters in the likelihood are β0 and β1 and given the data,
one can obtain the MLEs. The value of the maximized log-likelihood and the
estimated variance–covariance matrix can also be computed. In a sense, when
we have only the model form g(x|θ) we have an infinite number of models,
where all such models have the same form but different values of θ . Yet, in
all of these models there is a unique K-L best model. Conceptually, we know
how to find this model, given f .

1.3.5 Generating Models

Monte Carlo simulation is a very useful and general approach in theoretical
and applied statistics (Manly 1991). These procedures require that a model be
specified as the basis for generating Monte Carlo data. Such a model is not full
reality, and thus we call it a generating model. It is “truth” only in the sense
of computerized truth. One should not confuse a generating model or results
based on Monte Carlo data with full reality f .

1.3.6 Global Model

Ideally, the global model has in it all the factors or variables thought to be
important. Other models are often special cases of this global model. There
is not always a global model. If sample size is small, it may be impossible to
fit the global model. Goodness-of-fit tests and estimates of an overdispersion
parameter for count data should be based (only) on the global model. The con-
cept of overdispersion is relatively model-independent; however, some model
must be used to compute or model any overdispersion thought to exist in count
data. Thus, the most highly parametrized model will serve best as the basis
for assessing overall fit and estimating a parameter associated with overdisper-
sion. In the models of mortality (above), model g1 would serve as the global
model.

The advantage of this approach is that if the global model fits the data
adequately, then a selected model that is more parsimonious will also fit the
data (this is an empirical result, not a theorem). Parsimonious model selection
should not lead to a model that does not fit the data (this property seems to hold
for the selection methods we advocate here). Thus, goodness-of-fit assessment
and the estimation of overdispersion parameters should be addressed using the
global model (this could also be computed for the selected model).

In summary, we will use the word “model” to mean different things; hope-
fully, the context will be clear. Certainly it is important to distinguish clearly
between f and g. The general structural form is denoted by g(x|θ), without
specifying the numerical value of the parameter θ (e.g., models given in Table
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1.1). If one considers estimation of θ , then there are an infinite number of pos-
sible values of θ . Therefore, there is an entire class of models g(x|θ), defined
by the space over which θ varies. Frequently, we will refer to the model where
MLEs (the most likely, given the data and the model) have been found. In other
cases we will mean the best model, g(x|θ0), which is one specific model (the
K-L best relative to f ).

1.3.7 Overview of Stochastic Models in the Biological Sciences

Models are useful in the biological sciences for understanding the structure
of systems, estimating parameters of interest and their associated variance–
covariance matrix, predicting outcomes and responses, and testing scientific
hypotheses. Such models might be used for “relational” or “explanatory” pur-
poses or might be used for prediction. In the following material we will review
the main types of models used in the biological sciences. Although the list is not
meant to be exhaustive, it will allow the reader an impression of the wide class
of models of empirical data that we will treat under an information-theoretic
framework.

Simple linear and multiple linear regression models (Seber 1977, Draper and
Smith 1981, Brown 1993) have seen heavy use in the biological sciences over
the past four decades. These models commonly employ one to perhaps 8–12
parameters, and the statistical theory is fully developed (either based on least
squares or likelihood theory). Similarly, analysis of variance and covariance
models have been widely used, and the theory underlying these methods is
closely related to regression models and is fully developed (both are examples
of general linear models). Theory and software for this wide class of methods
are readily available.

Nonlinear regression models (Gallant 1987, Seber and Wild 1989, Carroll
et al. 1995) have also seen abundant use in the biological sciences (logistic
regression is a common example). Here, the underlying theory is often like-
lihood based, and some classes of nonlinear models require very specialized
software. In general, nonlinear estimation is a more advanced problem and is
somewhat less well understood by many practicing researchers.

Other types of models used in the biological sciences include generalized
linear (McCullagh and Nelder 1989, Morgan 1992, 2000) and generalized
additive (Hastie and Tibshirani 1990) models (these can be types of nonlinear
regression models). These modeling techniques have seen increasing use in the
past decade. Multivariate modeling approaches such as multivariate ANOVA
and regression, canonical correlation, factor analysis, principal components
analysis, and discriminate function analysis have had a checkered history in the
biological and social sciences, but still see substantial use (see review by James
and McCulloch 1990). Log-linear and logistic models (Agresti 1990) have
become widely used for count data. Time series models (Brockwell and Davis
1987, 1991) are used in many biological disciplines. Various models of an
organism’s growth (Brisbin et al. 1987, Gochfeld 1987) have been proposed and
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used in biology. Caswell (2001) provides a large number of matrix population
models that have seen wide use in the biological sciences.

Compartmental models are a type of state transition in continuous time and
continuous response and are usually based on systems of differential or partial
differential equations (Brown and Rothery 1993, Matis and Kiffe 2000). There
are discrete state transition models using the theory of Markov chains (Howard
1971); these have found use in a wide variety of fields including epidemiolog-
ical models of disease transmission. More advanced methods with potentially
wide application include the class of models called “random effects” (Kreft
and deLeeuw 1998).

Models to predict population viability (Boyce 1992), often based on some
type of Leslie matrix, are much used in conservation biology, but rarely are
alternative model forms given serious evaluation. A common problem here is
that these models are rarely based on empirical data; the form of the model and
its parameter values are often merely only “very rough guesses” necessitated
by the lack of empirical data (White 2000).

Biologists in several disciplines employ differential equation models in their
research (see Pascual and Kareiva 1996 for a reanalysis of Gause’s competition
data and Roughgarden 1979 for examples in population genetics and evolution-
ary ecology). Many important applications involve exploited fish populations
(Myers et al. 1995). Computer software exists to allow model parameters to
be estimated using least squares or maximum likelihood methods (e.g., SAS
and Splus). These are powerful tools in the analysis of empirical data, but also
beg the issue of “what model to use.”

Open and closed capture–recapture (Lebreton et al. 1992) and band recov-
ery (Brownie et al. 1985) models represent a class of models based on product
multinomial distributions (see issues 5 and 6 of volume 22 of the Journal
of Applied Statistics, 1995). Distance sampling theory (Buckland et al. 1993,
2001) relies on models of the detection function and often employs semipara-
metric models. Parameters in these models are nearly always estimated using
maximum likelihood.

Spatial models (Cressie 1991 and Renshaw 1991) are now widely used in
the biological sciences, allowing the biologist to take advantage of spatial data
sets (e.g., geographic information systems). Stein and Corsten (1991) have
shown how Kriging (perhaps the most widely used spatial technique) can be
expressed as a least squares problem, and the development of Markov chain
Monte Carlo methods such as the Gibbs sampler (Robert and Casella 1999,
Chen et al. 2000) allow other forms of spatial models to be fitted by least
squares or maximum likelihood (Augustin et al. 1996). Further unifying work
for methods widely used on biological data has been carried out by Stone
and Brooks (1990). Geographic information systems potentially provide large
numbers of covariates for biological models, so that model selection issues are
particularly important.

Spatiotemporal models are potentially invaluable to the biologist, though
most researchers model changes over space or time, and not both simultane-
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ously. The advent of Markov chain Monte Carlo methods (Gilks et al. 1996,
Gamerman 1997) may soon give rise to a general but practical framework for
spatiotemporal modeling; model selection will be an important component of
such a framework. A step towards this general framework was made by Buck-
land and Elston (1993), who modeled changes in the spatial distribution of
wildlife.

There are many other examples where modeling of data plays a fundamen-
tal role in the biological sciences. Henceforth, we will exclude only modeling
that cannot be put into a likelihood or quasi-likelihood (Wedderburn 1974)
framework and models that do not explicitly relate to empirical data. All least
squares formulations are merely special cases that have an equivalent likeli-
hood formulation in usual practice. There are general information-theoretic
approaches for models well outside the likelihood framework (Qin and Law-
less 1994, Ishiguo et al. 1997, Hurvich and Simonoff 1998, and Pan 2001a
and b). There are now model selection methods for nonparametric regression,
splines, kernel methods, martingales, and generalized estimation equations.
Thus, methods exist for nearly all classes of models we might expect to see in
the theoretical or applied biological sciences.

1.4 Inference and the Principle of Parsimony

1.4.1 Avoid Overfitting to Achieve a Good Model Fit

Consider two analysts studying a small set of biological data using a multiple
linear regression model. The first exclaims that a particular model provides an
excellent fit to the data. The second notices that 22 parameters were used in
the regression and states, “Yes, but you have used enough parameters to fit an
elephant!” This seeming conflict between increasing model fit and increasing
numbers of parameters to be estimated from the data led Wel (1975) to answer
the question, “How many parameters does it take to fit an elephant?” Wel finds
that about 30 parameters would do reasonably well (Figure 1.2); of course,
had he fit 36 parameters to his data, he could have achieved a perfect
fit.

Wel’s finding is both insightful and humorous, but it deserves further inter-
pretation for our purposes here. His “standard” is itself only a crude drawing—it
even lacks ears, a prominent elephantine feature; hardly truth. A better target
would have been a large, digitized, high-resolution photograph; however, this,
too, would have been only a model (and not truth). Perhaps a real elephant
should have been used as truth, but this begs the question, “Which elephant
should we use?” This simple example will encourage thinking about full re-
ality, “true models,” and approximating models and motivate the principle of
parsimony in the following section. William of Occam suggested in the four-
teenth century that one “shave away all that is unnecessary”—a dictum
often referred to as Occam’s razor. Occam’s razor has had a long history
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FIGURE 1.2. “How many parameters does does it take to fit an elephant?” was answered
by Wel (1975). He started with an idealized drawing (A) defined by 36 points and used
least squares Fourier sine series fits of the form x(t) � α0 +∑

αi sin(itπ/36) and y(t) �
β0 +∑βi sin(itπ/36) for i � 1, . . . , N . He examined fits for K � 5, 10, 20, and 30 (shown
in B–E) and stopped with the fit of a 30 term model. He concluded that the 30-term model
“may not satisfy the third-grade art teacher, but would carry most chemical engineers into
preliminary design.”

in both science and technology, and it is embodied in the principle of par-
simony. Albert Einstein is supposed to have said, “Everything should be made
as simple as possible, but no simpler.”

Success in the analysis of real data and the resulting inference often depends
importantly on the choice of a best approximating model. Data analysis in the
biological sciences should be based on a parsimonious model that provides an
accurate approximation to the structural information in the data at hand; this
should not be viewed as searching for the “true model.” Modeling and model
selection are essentially concerned with the “art of approximation” (Akaike
1974).
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FIGURE 1.3. The principle of parsimony: the conceptual tradeoff between squared bias
(solid line) and variance vs. the number of estimable parameters in the model (K). All model
selection methods implicitly employ some notion of this tradeoff. The best approximating
model need not occur exactly where the two curves intersect. Full truth or reality is not
attainable with finite samples and usually lies well to the right of the region in which the best
approximating model lies (the tradeoff region). Bias decreases and variance (uncertainty)
increases as the number of parameters in a model increases.

1.4.2 The Principle of Parsimony

If the fit is improved by a model with more parameters, then where should one
stop? Box and Jenkins (1970:17) suggested that the principle of parsimony
should lead to a model with “. . . the smallest possible number of parameters
for adequate representation of the data.” Statisticians view the principle of
parsimony as a bias versus variance tradeoff. In general, bias decreases and
variance increases as the dimension of the model (K) increases (Figure 1.3). Of-
ten, we may use the number of parameters in a model as a measure of the degree
of structure inferred from the data. The fit of any model can be improved by
increasing the number of parameters (e.g., the elephant-fitting problem); how-
ever, a tradeoff with the increasing variance must be considered in selecting a
model for inference. Parsimonious models achieve a proper tradeoff between
bias and variance. All model selection methods are based to some extent on
the principle of parsimony (Breiman 1992, Zhang 1994).

In understanding the utility of an approximate model for a given data set, it
is convenient to consider two undesirable possibilities: underfitted and over-
fitted models. Here, we must avoid judging a selected model in terms of some
supposed “true model,” as occurs when data are simulated from a known, often
very simple, model using Monte Carlo methods. In this case, if the generating
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model had 10 parameters, it is often said that an approximating model with
only 7 parameters is underfitted (compared with the generating model with
10 parameters). This interpretation is often of little value, because it largely
ignores the principle of parsimony and its implications and hinges on the mis-
conception that such a simple true model exists in biological problems. If we
believe that truth is essentially infinite-dimensional, then overfitting is not even
defined in terms of the number of parameters in the fitted model. We will avoid
this use of the terms “underfitted” and “overfitted” that suppose the existence
of a low-dimensional “true model” as a “standard.”

Instead, we reserve the terms underfitted and overfitted for use in relation
to a “best approximating model” (Section 1.2.6). Here, an underfitted model
would ignore some important replicable (i.e., conceptually replicable in most
other samples) structure in the data and thus fail to identify effects that were
actually supported by the data. In this case, bias in the parameter estimators
is often substantial, and the sampling variance is underestimated, both factors
resulting in poor confidence interval coverage. Underfitted models tend to
miss important treatment effects in experimental settings. Overfitted models,
as judged against a best approximating model, are often free of bias in the
parameter estimators, but have estimated (and actual) sampling variances that
are needlessly large (the precision of the estimators is poor, relative to what
could have been accomplished with a more parsimonious model). Spurious
treatment effects tend to be identified, and spurious variables are included
with overfitted models. Shibata (1989) argues that underfitted models are a
more serious issue in data analysis and inference than overfitted models. This
assessment breaks down in many exploratory studies where sample size might
be only 35–80 and there are 20–80 explanatory variables. In these cases, one
may expect substantial overfitting and many effects that are actually spurious
(Freedman 1983, Anderson et al. 2001b).

The concept of parsimony and a bias versus variance tradeoff is very im-
portant. Thus we will provide some additional insights (also see Forster 1995,
Forster and Sober 1994, and Jaffe and Spirer 1987). The goal of data collec-
tion and analysis is to make inferences from the sample that properly apply to
the population. The inferences relate to the information about structure of the
system under study as inferred from the models considered and the parameters
estimated in each model. A paramount consideration is the repeatability, with
good precision, of any inference reached. When we imagine many replicate
samples, there will be some recognizable features common to almost all of the
samples. Such features are the sort of inference about which we seek to make
strong inferences (from our single sample). Other features might appear in,
say, 60% of the samples yet still reflect something real about the population or
process under study, and we would hope to make weaker inferences concerning
these. Yet additional features appear in only a few samples, and these might
be best included in the error term (σ 2) in modeling. If one were to make an
inference about these features quite unique to just the single data set at hand,
as if they applied to all (or most all) samples (hence to the population), then
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we would say that the sample is overfitted by the model (we have overfitted
the data). Conversely, failure to identify the features present that are strongly
replicable over samples is underfitting. The data are not being approximated;
rather we approximate the structural information in the data that is replica-
ble over such samples (see Chatfield 1996, Collopy et al. 1994). Quantifying
that structure with a model form and parameter estimates is subject to some
“sampling variation” that must also be estimated (inferred) from the data.

True replication is very advantageous, but this tends to be possible only
in the case of strict experiments where replication and randomization are a
foundation. Such experimental replication allows a valid estimate of residual
variation (σ 2). An understanding of these issues makes one realize what is lost
when observational studies seem possible and practical, and strict experiments
seem less feasible.

A best approximating model is achieved by properly balancing the errors
of underfitting and overfitting. Stone and Brooks (1990) comment on the
“. . . straddling pitfalls of underfitting and overfitting.” The proper balance
is achieved when bias and variance are controlled to achieve confidence inter-
val coverage at approximately the nominal level and where interval width is at a
minimum. Proper model selection rejects a model that is far from reality and at-
tempts to identify a model in which the error of approximation and the error due
to random fluctuations are well balanced (Shibata 1983, 1989). Some model
selection methods are “parsimonious” (e.g., BIC, Schwarz 1978) but tend, in
realistic situations, to select models that are too simple (i.e., underfitted); thus,
bias is large, precision is overestimated, and achieved confidence interval cov-
erage is well below the nominal level. Such instances are not satisfactory for
inference. One has only a highly precise, quite biased result.

Sakamoto et al. (1986) simulated data to illustrate the concept of parsimony
and the errors of underfitting and overfitting models (Figure 1.4). Ten data sets
(each with n � 21) were generated from the simple model

y � e(x−0.3)2 − 1 + ε,

where x varied from 0 to 1 in equally spaced steps of 0.05, and ε ∼ N(0, 0.01).
Thus, in this case, they considered the generating model to have K � 3 pa-
rameters: 0.3, −1, and 0.01. They considered the set of candidate models (i.e.,
the approximating models) to be simple polynomials of order 0 to 5, as in the
table below.

Order K Approximating Model

0 2 E(y) � β0

1 3 E(y) � β0 + β1(x)
2 4 E(y) � β0 + β1(x) + β2(x2)
3 5 E(y) � β0 + β1(x) + β2(x2) + β3(x3)
4 6 E(y) � β0 + β1(x) + β2(x2) + β3(x3) + β4(x4)
5 7 E(y) � β0 + β1(x) + β2(x2) + β3(x3) + β4(x4) + β5(x5).

Thus, each of these 6 models was fit to each of the 10 simulated data sets.
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FIGURE 1.4. Ten Monte Carlo repetitions of data sets (n � 21) generated from the model
y � e(x−0.3)2 −1+ε; 0 ≤ x ≤ 1, ε ∼ N (0, .01) (from Sakamoto et al. 1986:164–179). A 1st-
order polynomial (A) clearly misidentifies the basic nonlinear structure, and is underfitted
and unsatisfactory. A 5th-order polynomial (B) has too many parameters, an unnecessarily
large variance, and will have poor predictive qualities because it is unstable (overfitted).
Neither A nor B is properly parsimonious, nor do they represent a best approximating model.
A 2nd-order polynomial seems quite good as an approximating model (C). If it is known
that the function is nonnegative and has its minimum at x � 0.3, then the approximating
model that enforces these conditions is improved further (D). In more realistic situations,
one lacks the benefit of simple plots and 10 independent data sets, such as those shown in
A–D. See Section 3.7 for a full analysis of these data.
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Strong model bias occurs when an underfitting (e.g., the mean-only model
with K � 2 or the linear, 1st order, K � 3) model is employed (Figure
1.4A). Here bias is obvious, the nonlinear structure of the generating model is
poorly approximated, and confidence interval coverage and predictions from
the model will be quite poor. Of course, there is some model bias for each of the
5 models because they are only simple polynomial approximations. Overfitting
is illustrated in Figure 1.4B, where a 5th-order polynomial (K � 7) is used
as an approximating model. Here, there is little evidence of bias (an average
quantity), precision is obviously poor, and it is difficult to identify the simple
structure of the model. Prediction will be quite imprecise from this model,
and it has features that do not occur in the generating model, particularly if
one extrapolates beyond the range of the data (always a risky practice). Both
underfitting and overfitting are undesirable in judging approximating models
for data analysis.

If a second-order polynomial (K � 4) is used as the approximating model,
the fits seem quite reasonable (Figure 1.4C), and one might expect valid in-
ference from this model. Finally, if it were known a priori from the science
of the situation that the function was nonnegative and had a minimum of zero
at x � 0.3, then an improved quadratic approximating model could use this
information very effectively (Figure 1.4D). The form of this model is

E(y) � β0(x + β1)2

with K � 3 (i.e., β0, β1, and σ 2), whereas the second-order polynomial has
4 parameters. This example illustrates that valid statistical inference is only
partially dependent on the analysis process; the science of the situation must
play an important role through modeling. This particular example provides a
visual image of underfitting and overfitting in a simple case where the gener-
ating model and various approximating models can be easily graphed in two
dimensions. Parsimony issues with real data in the biological sciences nearly
always defy such a simple graphical approach because truth is not known; one
rarely has 10 independent data sets on exactly the same process, and plots in
high dimensions are problematic to produce and interpret. Note, also, that the
generating model contained no tapering effects. However, the approximating
models do have tapering effects. Therefore, objective and effective methods
are needed that do not rely on simple graphics and can cope with the real-world
complexities and high dimensionality.

1.4.3 Model Selection Methods

Model selection has most often been viewed, and hence taught, in a context of
null hypothesis testing. Sequential testing has most often been employed, either
stepup (forward) or stepdown (backward) methods. Stepwise procedures allow
for variables to be added or deleted at each step. These testing-based methods
remain popular in many computer software packages in spite of their poor
operating characteristics. Testing schemes are based on subjective α levels;
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commonly 0.05 or 0.01; however, Rawlings (1988) recommends 0.15 in the
context of stepwise regression. The multiple testing problem is serious if many
tests are to be made (see Westfall and Young 1993), and the tests are not
independent. Tests between models that are not nested are problematic. A
model is nested if it is a special case of another model; for example, a third-
degree polynomial is nested within a fourth-degree polynomial. Generally,
hypothesis testing is a very poor basis for model selection (Akaike 1974 and
Sclove 1994b). McQuarrie and Tsai (1998) do not even treat this subject except
for a short appendix on stepwise regression—the final three pages in their book.

Cross-validation has been suggested and well studied as a basis for model
selection (Mosteller and Tukey 1968, Stone 1974, 1977; Geisser 1975). Here,
the data are divided into two partitions. The first partition is used for model
fitting; and the second is used for model validation (sometimes the second
partition has only one observation). Then a new partition is selected, and this
whole process is repeated hundreds or thousands of times. Some criterion is
then chosen, such as minimum squared prediction error, as a basis for model
selection. There are several variations on this theme, and it is a useful method-
ology (Craven and Wahba 1979, Burman 1989, Shao 1993, Zhang 1993a, and
Hjorth 1994). These methods are quite computer intensive and tend to be im-
practical if more than about 15–20 models must be evaluated or if sample
size is large. Still, cross-validation offers an interesting alternative for model
selection.

Some analysts favor using a very general model in all cases (e.g., an over-
fitted model). We believe that this is generally poor practice (Figure 1.3B).
Others have a “favorite” model that they believe is good, and they use it in
nearly all situations. For example, some researchers always use the hazard rate
model (Buckland et al. 1993) with 2 parameters (K � 2) as an approximating
model to the detection function in line transect sampling. This might be some-
what reasonable for situations where a simple model suffices (e.g., K � 2
to 3), but will be poor practice in more challenging modeling contexts where
10 ≤ K ≤ 30 or more is required. These ad hoc rules ignore the principle of
parsimony and data-based model selection, in which the data help select the
model to be used for inference.

If goodness-of-fit tests can be computed for all alternative models even if
some are not nested within others, then one could use the model with the fewest
parameters that “fits” (i.e., P > 0.05 or 0.10). However, increasingly better
fits can often be achieved by using models with more and more parameters
(e.g., the elephant-fitting problem), and this can make the arbitrary choice of
α very critical. A large α-level leads to overfitted models and their resulting
problems. In addition, other problems may be encountered such as over- or
underdispersion and low power if one must pool small expectations to ensure
that the test statistic is chi-square distributed. Perhaps, most importantly, there
is no theory to suggest that this approach will lead to selected models with
good inferential properties (i.e., an adequate bias vs. variance tradeoff or good
achieved confidence interval coverage and width).
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The adjusted coefficient of multiple determination has been used in model
selection in an LS setting (the adjusted coefficient � 1 − (1 − R2)

(
n−1
n−p

)
,

where R2 is the usual coefficient of multiple determination; Draper and Smith
1981:91–92). Under this method, one selects the model in which this adjusted
statistic is largest. McQuarrie and Tsai (1998) found this approach to be very
poor (also see Rencher and Pun (1980). While adjusted R2 is useful as a de-
scriptive statistic, it is not useful in model selection. Mallows’s Cp statistic
(Mallows 1973, 1995) is also used in LS regression with normal residuals and
a constant variance and in this special case provides a ranking of the candi-
date models that is the same as the rankings under AIC (the numerical values,
Cp vs. AIC, will differ, see Atilgan 1996). The selection of models using the
adjusted R2 statistic and Mallows’s Cp are related for simple LS problems
(see Seber 1977:362–369). Hurvich and Tsai (1989) and McQuarrie and Tsai
(1998) provide some comparisons of AICc vs. several competitors for linear
regression problems.

Bayesian researchers have taken somewhat different approaches and as-
sumptions, and have proposed several alternative methods for model selection.
Methods such as CAIC, BIC (SIC), WIC, and HQ are mentioned in Section 2.8,
as well as full Bayesian model selection (see especially Hoeting et al. 1999).
These other Bayesian approaches to model selection and inference are at the
current state of the art in statistics but may seem very difficult to understand
and implement and are very computer intensive (e.g., Laud and Ibrahim 1995
and Carlin and Chib 1995). Draper (1995) provides a recent review of these
advanced methods (also see Potscher 1991). Spiegelhalter et al. (2002) have
developed a deviance information criterion (DIC) from a Bayesian perspective
that is analogous to AIC. This seems to represent a blending of frequentist and
Bayesian thinking, resulting in an AIC-like criterion.

The general approach that we advocate here is one derived by Akaike (1973,
1974, 1977, 1978a and b, and 1981a and b), based on information theory, and
it is discussed at length in this book. Akaike’s information-theoretic approach
has led to a number of alternative methods having desirable properties for the
selection of best approximating models in practice (e.g., AIC, AICc, QAICc,
and TIC—Chapters 2 and 7). Our general advocacy concerning AIC and the
associated criteria is somewhat stronger than that of Linhart and Zucchini
(1986) but similar in that they also recommend objective procedures based on
some well-defined criterion with a strong, fundamental basis.

1.5 Data Dredging, Overanalysis of Data,
and Spurious Effects

The process of analyzing data with few or no a priori questions, by subjec-
tively and iteratively searching the data for patterns and “significance,” is often
called by the derogatory term “data dredging.” Other terms include “post hoc
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data analysis” or “data snooping,” or “data mining,” but see Hand (1998) and
Hand et al. (2000) for a different meaning of data mining with respect to very
large data sets. Often the problem arises when data on many variables have
been taken with little or no a priori motive or without benefit of supporting
science. No specific objectives or alternatives were in place prior to the analy-
sis; thus the data are submitted for analysis in the hope that the computer and
a plethora of null hypothesis test results will provide information on “what
is significant.” A model is fit, and variables not in that model are added to
create a new model, letting the data and intermediate results suggest still fur-
ther models and variables to be investigated. Patterns seen in the early part
of the analysis are “chased” as new variables, cross products, or powers of
variables are added to the model and alternative transformations tried. These
new models are clearly based on the intermediate results from earlier waves of
analyses. The final model is the result of effective dredging, and often nearly
everything remaining is “significant.” Under this view, Hosmer and Lemeshow
(1989:169) comment that “Model fitting is an iterative procedure. We rarely
obtain the final model on the first pass through the data.” However, we believe
that such a final model is probably overfitted and unstable (i.e., likely to vary
considerably if other sample data were available on the same process) with
actual predictive performance (i.e., on new data) often well below what might
be expected from the statistics provided by the terminal analysis (e.g., Chat-
field 1996, Wang 1993). The inferential properties of a priori versus post hoc
data analysis are very different. For example, (traditionally) no valid estimates
of precision can be made from the model following data dredging (but see Ye
1998).

1.5.1 Overanalysis of Data

If data dredging is done, the resulting model is very much tailored (i.e., over-
fitted) to the data in a post hoc fashion, and the estimates of precision are likely
to be overestimated. Such tailoring overdescribes the data and diminishes the
validity of inferences made about the information in the data to the popula-
tion of interest. Many naive applications of classical multivariate analyses are
merely “fishing trips” hoping to find “significant” linear relationships among
the many variables subjected to analysis (Rexstad et al. 1988, 1990, Cox and
Reid 2000).

Computer routines (e.g., SAS INSIGHT) and associated manuals make data
dredging both easy and “effective.” Some statistical literature deals with the
so-called iterative process of model building (e.g., Henderson and Velleman
1981). One looks for patterns in the residuals, employs various tests for select-
ing variables in their decreasing order of “importance,” and tries all possible
models. Stepwise regression and discriminant functions, for example, are used
to search for “significant” variables; such methods are especially problematic
if many variables (Freedman’s paradox) are available for analysis (sometimes
data are available on over 100 variables, and the sample size may often be less
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than the number of variables). These problems of overfitting can escalate when
flexible generalized linear or generalized additive models are employed.

White (2000:1097) notes, “It is widely acknowledged by empirical re-
searchers that data snooping [dredging] is a dangerous practice to be avoided,
but in fact it is endemic.” Examples of data dredging include the examina-
tion of crossplots or a correlation matrix of the explanatory variables versus
the response variable. These data-dependent activities can suggest apparent
linear or nonlinear relationships and interactions in the sample and therefore
lead the investigator to consider additional models. These activities should be
avoided, because they probably lead to overfitted models with spurious param-
eter estimates and inclusion of unimportant variables as regards the population
(Anderson et al. 2001b). The sample may be well fit, but the goal is to make a
valid inference from the sample to the population. This type of data-dependent,
exploratory data analysis has a place in the earliest stages of investigating a bi-
ological relationship but should probably remain unpublished. However, such
cases are not the subject of this book, and we can only recommend that the
results of such procedures be treated as possible hypotheses (Lindsey 1999c,
Longford and Nelder 1999). New data should be collected to address these
hypotheses effectively and then submitted for a comprehensive and largely a
priori strategy of analysis such as we advocate here.

Two types of data dredging might be distinguished. The first is that described
above; a highly interactive, data dependent, iterative post hoc approach. The
second is also common and also leads to likely overfitting and the finding of
effects that are actually spurious. In this type, the investigator also has little
a priori information; thus “all possible models” are considered as candidates
(e.g., SAS PROC REG allows this as an option). Note that the “all possible
models” approach usually does not include interaction terms (e.g., x2 ∗ x5) or
various transformations such as (x1)2 or 1/x3 or log(x2). In even moderate-sized
problems, the number of candidate models in this approach can be very large
(e.g., 20 variables > a million models, 30 variables > a billion models). At
least this second type is not explicitly data dependent, but it is implicitly data
dependent and leads to the same “sins.” Also, it is usually a one-pass strategy,
rather than taking the results of one set of analyses and inputting some of these
into the consideration of new models. Still, in some applications, computer
software often can systematically search all such models nearly automatically,
and thus the strategy of trying all possible models (or at least a very large num-
ber of models) continues, unfortunately, to be popular. We believe that many
situations could be substantially improved if the researcher tried harder to fo-
cus on the science of the situation before proceeding with such an unthoughtful
approach.

Standard inferential tests and estimates of precision (e.g., ML or LS estima-
tors of the sampling covariance matrix, given a model) are invalid when a final
model results from the first type of data dredging. Resulting “P -values” are
misleading, and there is no valid basis to claim “significance.” Even conceptu-
ally there is no way to estimate precision because of the subjectivity involved
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in iterative data dredging and the high probability of overfitting. In the sec-
ond type of data dredging one might consider Bonferroni adjustments of the
α-levels or P -values. However, if there were 1,000 models, then the α-level
would be 0.00005, instead of the usual 0.05! Problems with data dredging
are often linked with the problems with hypothesis testing (Johnson 1999,
Anderson et al. 2000). This approach is hardly satisfactory; thus analysts have
ignored the issue and merely pretended that data dredging is without peril and
that the usual inferential methods somehow still apply. Journal editors and
referees rarely seem to show concern for the validity of results and con-
clusions where substantial data dredging has occurred. Thus, the entire
methodology based on data dredging has been allowed to be perpetuated
in an unthinking manner.

We certainly encourage people to understand their data and attempt to answer
the scientific questions of interest. We advocate some examination of the data
prior to the formal analysis to detect obvious outliers and outright errors (e.g.,
determine a preliminary truncation point or the need for grouping in the analysis
of distance sampling data). One might examine the residuals from a carefully
chosen global model to determine likely error distributions in the candidate
models (e.g., normal, lognormal, Poisson). However, if a particular pattern
is noticed while examining the residuals and this leads to including another
variable, then we might suggest caution concerning data dredging. Often, there
can be a fine line between a largely a priori approach and some degree of data
dredging.

Thus, this book will address primarily cases where there is substantial a
priori knowledge concerning the issue at hand and where a relatively small set
of good candidate models can be specified in advance of actual data analysis.
Of course, there is some latitude where some (few) additional models might be
investigated as the analysis proceeds; however, results from these explorations
should be kept clearly separate from the purely a priori science. We believe
that objective science is best served using a priori considerations with very
limited peeking at plots of the data, parameter estimates from particular mod-
els, correlation matrices, or test statistics as the analysis proceeds. We do not
condone data dredging in confirmatory analyses, but allow substantial latitude
in more preliminary explorations. If some limited data dredging is done after a
careful analysis based on prior considerations, then we believe that these two
types of results should be carefully explained in resulting publications (Tukey
1980). For this philosophy to succeed, there should be more careful a priori
consideration of alternative candidate models than has been the case in the
past.

1.5.2 Some Trends

At the present time, nearly every analysis is done using a computer; thus
biologists and researchers in other disciplines are increasingly using likelihood
methods for more generalized analyses. Standard computer software packages
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Data Dredging
Data dredging (also called data snooping, data mining, post hoc data analysis)
should generally be avoided, except in (1) the early stages of exploratory work
or (2) after a more confirmatory analysis has been done. In this latter case,
the investigator should fully admit to the process that led to the post hoc
results and should treat them much more cautiously than those found under
the initial, a priori, approach. When done carefully, we encourage people to
explore their data beyond the important a priori phase.
We recommend a substantial, deliberate effort to get the a priori thinking and
models in place and try to obtain more confirmatory results; then explore
the post hoc issues that often arise after one has seen the more confirmatory
results.
Data dredging activities form a continuum, ranging from fairly trivial (venial)
to the grievous (mortal). There is often a fine line between dredging and not;
our advice is to stay well toward the a priori end of the continuum and thus
achieve a more confirmatory result.
One can always do post hoc analyses after the a priori analysis; but one can
never go from post hoc to a priori. Why not keep one’s options open in this
regard?
Grievous data dredging is endemic in the applied literature and still frequently
taught or implied in statistics courses without the needed caveats concerning
the attendant inferential problems.
Running all possible models is a thoughtless approach and runs the high risk
of finding effects that are, in fact, spurious if only a single model is chosen
for inference. If prediction is the objective, model averaging is useful, and
estimates of precision should include model selection uncertainty. Even in
this case, surely one can often rule out many models on a priori grounds.

allow likelihood methods to be used where LS methods have been used in
the past. LS methods will see decreasing use, and likelihood methods will
see increasing use as we proceed into the twenty-first century. Likelihood
methods allow a much more general framework for addressing statistical issues
(e.g., a choice of link functions and error distributions as in log linear and
logistic regression models). Another advantage in a likelihood approach is that
confidence intervals with good properties can be set using profile likelihood
intervals. Edwards (1976), Berger and Wolpert (1984), Azzalini (1996), Royall
(1997), and Morgan (2000) provide additional insights into likelihood methods,
while Box (1978) provides the historical setting relating to Fisher’s general
methods.

During the past twenty years, modern statistical science has been moving
away from traditional formal methodologies based on statistical hypothe-
sis testing (Clayton et al. 1986, Jones and Matloff 1986, Yoccoz 1991,
Bozdogan 1994, Johnson 1995, Stewart-Oaten 1995, Nester 1996, Johnson
1999, Anderson et al. 2000). The historic emphasis on hypothesis testing will
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continue to diminish in the years ahead (e.g., see Quinn and Dunham 1983,
Bozdogan 1994), with increasing emphasis on estimation of effects or effect
sizes and associated confidence intervals (Graybill and Iyer 1994:35, Cox and
Reid 2000).

Most researchers recognize that we do not conduct experiments merely to
reject null hypotheses or claim statistical significance; we want deeper insights
than this. We typically want to compare meaningful (i.e., plausible) alterna-
tives, or seek information about effects and their size and precision, or are
interested in causation. There has been too much formalism, tradition, and
confusion that leads people to think that statistics and statistical science
is mostly about testing uninteresting or trivial null hypotheses, whereas
science is much more than this. We must move beyond the traditional
testing-based thinking because it is so uninformative.

In particular, hypothesis testing for model selection is often poor (Akaike
1981a) and will surely diminish in the years ahead. There is no statistical
theory that supports the notion that hypothesis testing with a fixed α level is
a basis for model selection. There are not even general formal rules (or even
guidelines) that rigorously define how the various P -values might be used to
arrive at a final model. How does one interpret dozens of P -values, from tests
with differing power, to arrive at a good model? Only ad hoc rules exist in
this case and generally fail to result in a final parsimonious model with good
inferential properties. The multiple testing issue is problematic as is the fact
that likelihood ratio tests exist only for nested models. Tests of hypotheses
within a data set are not independent, making inferences difficult. The order
of testing is arbitrary, and differing test order will often lead to different final
models. Model selection is dependent on the arbitrary choice of α, but α should
depend on both n and K to be useful in model selection; however, theory for
this is lacking. Testing theory is problematic when nuisance parameters occur
in the models being considered. Finally, there is the fact that the so-called
null is probably false on simple a priori grounds (e.g., H0: the treatment had
no effect, so the parameter θ is constant across treatment groups or years,
θ1 � θ2 � · · · � θk). Rejection of such null hypotheses does not mean that the
effect or parameter should be included in the approximating model! The entire
testing approach is both common and somewhat absurd. All of these problems
have been well known in the literature for many years; they have merely been
ignored in the practical analysis of empirical data. Nester (1996) provides an
interesting summary of quotations regarding hypothesis testing.

Unfortunately, it has become common to compute estimated test power after
a hypothesis test has been conducted and found to be nonsignificant. Such post
hoc power is not valid (Goodman and Berlin 1994, Gerard et al. 1998, Hoenig
and Heisey 2001). While a priori power and sample size considerations are
important in planning an experiment or observational study, estimates of post
hoc power are not valid and should not be reported (Anderson et al. 2001d).

Computational restrictions prevented biologists from evaluating alternative
models until the past two decades or so. Thus, people tended to use an available
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model, often without careful consideration of alternatives. Present computer
hardware and software make it possible to consider a number of alternative
models as an integral component of data analysis. Computing power has per-
mitted more computer-intensive methods such as the various cross-validation
and bootstrapping approaches and other resampling schemes (Mooney and
Duval 1993, Efron and Tibshirani 1993), and such techniques will see ever
increasing use in the future.

The size or dimension (K) of some biological models can be quite high, and
this has tended to increase over the past two decades. Open capture–recapture
and band recovery models commonly have 20–40 estimable parameters for a
single data set and might have well over 200 parameters for the joint analysis
of several data sets (see Burnham et al. 1987, Preface, for a striking example of
these trends). Analysis methods for structural equations commonly involve 10–
30 parameters (Bollen and Long 1993). These are applications where objective
model specification and selection is essential to answer the question, “What
inferences do the data support about the population?”

1.6 Model Selection Bias

The literature on model selection methods has increased substantially in the
past 15–25 years; much of this has been the result of Akaike’s influential papers
in the mid-1970s. However, relatively little appears in the literature concerning
the properties of the parameter estimators, given that a data-dependent model
selection procedure has been used (see Rencher and Pun 1980, Hurvich and
Tsai 1990, Miller 1990, Goutis and Casella 1995, Ye 1998). Here, data are
used to both select a parsimonious model and estimate the model parameters
and their precision (i.e., the conditional sampling covariance matrix, given the
selected model). These issues prompt a concern for both model selection bias
and model selection uncertainty (Section 1.7).

Bias in estimates of model parameters often arises when data-based selec-
tion has been done. Miller (1990) provides a technical discussion of model
selection bias in the context of linear regression. He notes his experience in the
stepwise analysis of meteorological data with large sample sizes and 150 candi-
date models. When selecting only about 5 variables from the 150 he observed,
he found t statistics as large as 6, suggesting that a particular variable was
very highly significant, and yet even the sign of the corresponding regression
coefficient could be incorrect. Miller warns that P -values from subset selec-
tion software are totally without foundation, and large biases in regression
coefficients are often caused by data-based model selection.

Consider a linear model where there is a response variable (y) and 4 ex-
planatory variables xj , where j � 1, . . . , 4. Order is not important in this
example, so for convenience let x1 be, in fact, very important, x2 important, x3

somewhat important, while x4 is barely important. Given a decent sample size,
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nearly any model selection method will indicate that x1 and probably x2 are
important (Miller called such variables “dominant”). If one had 1,000 replicate
data sets of the same size, from the same stochastic process, x1 (particularly)
and x2 would be included in the model in nearly all cases. In these cases, an
inference from a sample data set to the population would be valid. For models
selected that included predictors x1 and x2 (essentially all 1,000 models), the
estimators of the regression coefficients associated with variables x1 and x2

would have good statistical properties with respect to bias and precision (i.e.,
standard theory tends to hold for the estimators β̂1 and β̂2).

Variable x3 is somewhat marginal in its importance; assume, for example,
that |β3|/se(β3) ≈ 1, and thus its importance is somewhat small. This variable
might be included in the model in only 15–30% of the 1,000 data sets. In data
sets where it is selected, it tends to have an estimated regression coefficient
that is biased away from zero. Thus, an inference from one of the data sets
concerning the population tend to exaggerate the importance of the variable x3.
An inference from a data set in one of the remaining 70–85% of the data sets
would imply that x3 was of no importance. Neither of these cases is satisfactory.

Variable x4 is barely important at all (a tapering effect), and it might have
|β4|/se(β4) ≈ 1

4 . This variable might be included in only a few (e.g., 5–10%)
of the 1,000 data sets and, when it is selected, there will likely be a large bias
(away from 0) in the estimator of this regression parameter. Inference from a
particular sample where this variable is included in the model would imply that
the variable x4 was much more important than is actually the case (of course,
the investigator has no way to know that β̂4, when selected, might be in the
upper 5–10% of its sampling distribution). Then, if one examines the usual
t-test, where t � β̂4/ ŝe(β̂4), the likely decision will often be that the variable
x4 is significant, and should be retained in the model. This misleading result
comes from the fact that the numerator in the test is biased high, while the
denominator is biased low. The analyst has no way to know that this test result
is probably spurious.

When predictor variables x3 and x4 are included in models, the associated
estimator for a σ 2 is negatively biased and precision is exaggerated. These two
types of bias are called model selection bias and can often be quite serious
(Miller 1990, Ye 1998). Ye (1998) warns, “. . . the identification of a clear
structure bears little cost [i.e., including variables x1 and x2], whereas searching
through white noise has a heavy cost [i.e., including variable x4 in a model].”
Of course, in the analysis of real data, the investigator typically does not know
which (if any) variables are dominant versus those that are, in fact, of marginal
importance. Model selection bias is related to the problem of overfitting, the
notion of tapering effect sizes, and Freedman’s (1983) paradox.

The problem of model selection bias is particularly serious when little theory
is available to guide the analysis. Many exploratory studies have hundreds or
even thousands of models, based on a large number of explanatory variables;
very often the number of models exceeds the size of the sample. Once a final
model has been (somehow) selected, the analyst is usually unaware that this
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model is likely overfit, with substantially biased parameter estimates (i.e., both
the estimated structural regression coefficients, which are biased away from
0 and the estimated residual variation, which is biased low). They have un-
knowingly extracted some of the residual variation as if it represented model
structure. When sample size is large, true replication exists, and there are
relatively few models, these problems may be relatively unimportant. How-
ever, often one has only a small sample size, no true replication, and many
models and variables; then model selection bias is usually severe (Zucchini
2000).

If, for example, x3 is uncorrelated with x1, x2, and x4, then the distribution
of β̂3 is symmetric around β3 and bias, given that x3 is selected, is nil (i.e., if
β3 � 0, then E(β̂3) � 0). This is an interesting result, but probably uncommon
in practice because predictor variables are almost always correlated. Consider
the case where β3 � 0, but x3 is highly correlated with x1 and β1 > 0. If
the correlation between x1 and x3 is high (even 0.5) and positive, then when
variable x3 is selected, it is much more likely to be when β̂3 > 0. In all samples
where x3 is selected, β̂3 tends to be positive. In cases where the correlation
between x1 and x3 is negative, then β̂3 tends to be negative. In either case, σ̂ 2 is
biased low. By itself, x3 would have some predictive value, but only because of
its correlation with x1, which is actually correlated with the response variable.

If sample size is small and there are many variables and hence models, then
the negative bias in σ̂ 2 is often severe. If the predictor variables are highly
intercorrelated and only one (say x11) is actually correlated with the response
variable, then the estimates of the regression coefficients will likely be sub-
stantially biased away from 0 in the subset of models where the associated
predictor variable is selected. Leamer (1978), Copas (1983), Lehmann (1983)
Gilchrist (1984), Breiman (1992), Zhang (1992a), and Chatfield (1995b, 1996)
give insights into problems that arise when the same data are used both to select
the model and to make inferences from that model.

1.7 Model Selection Uncertainty

Model selection uncertainty also arises when the data are used for both model
selection and parameter estimation (Hjorth 1994:15–23). If a best model has
been selected from a reasonable set of candidate models, bias in the model pa-
rameter estimators might be small for several of the more important variables,
but might be substantial for variables associated with tapering effects. How-
ever, there is uncertainty as to the best model to use. From the example above,
one must ask whether β3 or β4 should be in the model; this model uncertainty
is a component of variance in the estimators.

Denote the sampling variance of an estimator θ̂ , given a model, by
var(θ̂ |model). More generally, the sampling variance of θ̂ should have two
components: (1) var(θ̂ |model) and (2) a variance component due to not know-
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ing the best approximating model to use (and, therefore, having to estimate
this). Thus, if one uses a method such as AIC to select a parsimonious model,
given the data, and estimates a conditional sampling variance, given the se-
lected model. Then estimated precision will be too small because the variance
component for model selection uncertainty is missing. Model selection uncer-
tainty is the component of variance that reflects that model selection merely
estimates which model is best, based on the single data set; a different model
(in the fixed set of models considered) may be selected as best for a different
replicate data set arising from the same experiment.

Failure to allow for model selection uncertainty often results in estimated
sampling variances and covariances that are too low, and thus the achieved
confidence interval coverage will be below the nominal value. Optimal methods
for coping with model selection uncertainty are at the forefront of statistical
research; better methods might be expected in the coming years, especially with
the continued increases in computing power. Model selection uncertainty is
problematic in making statistical inferences; if the goal is only data description,
then perhaps selection uncertainty is a minor issue.

One must keep in mind that there is often considerable uncertainty in the se-
lection of a particular model as the “best” approximating model. The observed
data are conceptualized as random variables; their values would be different
if another, independent sample were available. It is this “sampling variability”
that results in uncertain statistical inference from the particular data set being
analyzed. While we would like to make inferences that would be robust to
other (hypothetical) data sets, our ability to do so is still quite limited, even
with procedures such as AIC, with its cross-validation properties, and with in-
dependent and identically distributed sample data. Various computer-intensive
resampling methods will further improve our assessment of the uncertainty of
our inferences, but it remains important to understand that proper model se-
lection is accompanied by a substantial amount of uncertainty. The bootstrap
technique can effectively allow insights into model uncertainty; this and other
similar issues are the subject of Chapter 5.

Perhaps we cannot totally overcome problems in estimating precision, fol-
lowing a data-dependent selection method such as AIC (e.g., see Dijkstra 1988,
Ye 1998). This limitation certainly warrants exploration because model selec-
tion uncertainty is a quite difficult area of statistical inference. However, we
must also consider the “cost” of not selecting a good parsimonious model for
the analysis of a particular data set. That is, a model is just somehow “picked”
independent of the data and used to approximate the data as a basis for in-
ference. This procedure simply ignores both the uncertainty associated with
model selection and the benefits of selection of a model that is parsimonious.
This naive strategy certainly will incur substantial costs in terms of reliable in-
ferences because model selection uncertainty is ignored (assumed to be zero).
Alternatively, one might be tempted into an iterative, highly interactive strat-
egy of data analysis (unadulterated data dredging). Again, there are substantial
costs in terms of reliable inference using this approach. In particular, it seems
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impossible to objectively and validly estimate the precision of the estimators
following data dredging.

1.8 Summary

Truth in the biological sciences and medicine is extremely complicated, and
we cannot hope to find exact truth or full reality from the analysis of a fi-
nite amount of data. Thus, inference about truth must be based on a good
approximating model. Likelihood and least squares methods provide a rigor-
ous inference theory if the model structure is “given.” However, in practical
scientific problems, the model is not “given.” Thus, the critical issue is, “what
is the best model to use.” This is the model selection problem.

The emphasis then shifts to the careful a priori definition of a set of candidate
models. This is where the science of the problem enters the analysis. Ideally,
there should be a good rationale for including each particular model in the
set, as well as a careful justification for why other models were excluded. The
degree to which these steps can be implemented suggests a more confirmatory
analysis, rather than a more exploratory analysis. Critical thinking about the
scientific question and modeling alternatives, prior to looking at the data, have
been underemphasized in many statistics classes in the past. These are impor-
tant issues, and one must be careful not to engage in data dredging, because
this weakens inferences that might be made. Information-theoretic methods
provide a simple way to select a best approximating model from the candidate
set of models.

In general, the information-theoretic approach should not mean merely
searching for a single best model as a basis for inference. Even if model selec-
tion uncertainty is included in estimates of precision, this is a poor approach
in many cases. Instead, multimodel inference should be the usual approach
to making valid inference. Here, models are ranked and scaled to enhance an
understanding of model uncertainty over the set. These methods are easy to un-
derstand and compute. Specific methodologies for this more general approach
are the subject of this book.

We cannot overstate the importance of the scientific issues, the careful
formulation of multiple working hypotheses, and the building of a small set
of models to clearly and uniquely represent these hypotheses. The methods
to be presented in the following chapters are “easy” to understand, compute,
and interpret; however, they rest on both good science and good data that relate
to the issue. We try to emphasize a more confirmatory endeavor in the applied
sciences, rather than exploratory work that has become so common and has
often led to so little (Anderson et al. 2000).

Data analysis is taken to mean the entire integrated process of a pri-
ori model specification, model selection, and estimation of parameters and
their precision. Scientific inference is based on this process. Information-
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theoretic methods free the analyst from the limiting concept that the proper
approximating model is somehow “given.”

The principle of parsimony is fundamental in the sciences. However, data-
based selection of a parsimonious model is challenging. There are substantial
rewards for proper model selection in terms of valid inferences; there are
substantial dangers in either underfitting or overfitting. However, even if one
has selected a good approximating model, there are issues of model selection
bias and model selection uncertainty. Perhaps these cannot be fully overcome,
but their effects can be lessened. These issues will be addressed in the material
to follow.

Zhang (1994) notes that for the analyst who is less concerned with theoretical
optimality it is more important to have available methods that are simple but
flexible enough to be used in a variety of practical situations. The information-
theoretic methods fall in this broad class and, when used properly, promote
reliable inference.


