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Causality-driven slow-down and speed-up of
diffusion in non-Markovian temporal networks
Ingo Scholtes1, Nicolas Wider1, René Pfitzner1, Antonios Garas1, Claudio J. Tessone1 & Frank Schweitzer1

Recent research has highlighted limitations of studying complex systems with time-varying

topologies from the perspective of static, time-aggregated networks. Non-Markovian

characteristics resulting from the ordering of interactions in temporal networks were

identified as one important mechanism that alters causality and affects dynamical processes.

So far, an analytical explanation for this phenomenon and for the significant variations

observed across different systems is missing. Here we introduce a methodology that allows

to analytically predict causality-driven changes of diffusion speed in non-Markovian temporal

networks. Validating our predictions in six data sets we show that compared with the

time-aggregated network, non-Markovian characteristics can lead to both a slow-down or

speed-up of diffusion, which can even outweigh the decelerating effect of community

structures in the static topology. Thus, non-Markovian properties of temporal networks

constitute an important additional dimension of complexity in time-varying complex systems.
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C
omplex systems in nature, society and technology are
rarely static but typically have time-varying network
topologies. The increasing availability of high-resolution

data on time-stamped or time-ordered interactions from a variety
of complex systems has fostered research on how different aspects
of the temporal dynamics of networks influence their properties.
Focusing on one particular aspect, a first line of research has
studied the concurrency and duration of interactions1–5. Some of
these works show that compared with systems where, similar to
static networks, most or all links are available concurrently,
dynamical processes such as epidemic spreading or diffusion
are slowed down by the continuously switching topologies
of temporal networks1,4,5. Other works show that the dynamics
of network topologies can introduce noise that fosters certain
types of consensus processes2,3. Assuming that network
topologies change in response to the dynamical process running
on top of it, another line of research has studied adaptive
networks, again highlighting that network dynamics have
important consequences for dynamical processes6,7. Considering
interactions in dynamic networks as a time series of events, a
number of recent works focused on the question of whether
observed inter-event times are consistent with the Poissonian
distribution expected from a memoryless stochastic process. For a
number of dynamic social systems, it has been shown that inter-
event times follow non-Poissonian, heavy-tail distributions, and
that the resulting bursty interaction patterns influence the speed
of dynamical processes such as spreading and diffusion8–18.
Although all of these works highlight the importance of temporal
information in the study of networks, there are a number of
questions that have not been answered satisfactorily. Most
empirical studies of dynamical processes in temporal networks
focus on the influence of heavy-tail inter-event time distributions
in dynamic social networks, which probably result from human
task-execution mechanisms19–21. However, inter-event time
distributions cannot explain temporality effects in other types
of dynamic complex systems in which interactions are distributed
homogeneously in time. Furthermore, this approach requires that
sufficiently precise time stamps can be assigned to interactions,
thus excluding path-based data where merely the ordering of
interactions can be inferred.

Although inter-event time statistics have been studied in much
detail, an important additional characteristic of temporal net-
works is that the ordering of interactions influences causality.
Different from static networks, the presence of two time-stamped
edges (a, b) and (b, c) in a temporal network does not necessarily
imply the existence of a path a-b-c, connecting node a to c via
b. Instead, so-called time-respecting paths must additionally
respect causality, that is, a time-respecting path only exists if edge
(a, b) occurs before edge (b, c)22,23. To additionally consider the
timing of interactions, it is common practice to impose the
additional constraint that edges (a,b) and (b,c) must occur within
a certain time window, thus imposing a limit on the time a
particular process can wait in node b. As such, both the order and
timing of interactions affect time-respecting paths—and thus
causality—in temporal networks. Compared with the rich
literature on node activities, a relatively smaller number of
studies empirically investigated effects of causality in temporal
networks22,24–30. Recent works have shown that order
correlations in temporal networks lead to causality structures,
which significantly deviate from what is expected based on paths
in the corresponding time-aggregated networks27–29. Studying
time-respecting paths a-b-c from the perspective of a
contact sequence a,b,c passing through node b, it was shown
that the next contact c not only depends on the current contact b
but also on the previous one28–31. As a consequence, contact
sequences in real-world temporal networks exhibit non-

Markovian characteristics that are in conflict with the
Markovian assumption implicitly made when studying temporal
networks from the perspective of time-aggregated networks, and
which can neither be attributed to inter-event time distributions
nor to the concurrency or duration of interactions27–30.
Furthermore, it was shown that causality structures resulting
from non-Markovian contact sequences influence both the speed
of and the paths taken by dynamical processes28,29. These works
not only question the applicability of the static network paradigm
when modelling dynamic complex systems, they also highlight a
temporal-topological dimension of temporal networks, which is
ignored when exclusively focusing on time distributions of events
and associated changes in the duration of dynamical processes. In
line with the general lack of analytical approaches to understand
and predict the effects of network dynamics on dynamical
processes4,32, an analytical explanation for the influence of
causality structures in real-world complex systems, as well as for
the significant variations observed across different systems, is
currently missing.

To fill these gaps, in this article we introduce an analytical
approach that allows to study dynamical processes in non-
Markovian temporal networks. In particular, we introduce
higher-order time-aggregated representations of temporal net-
works that preserve causality and use them to define Markov
models for non-Markovian interaction sequences. We show that
the eigenvalue spectrum of the associated transition matrices
explains the slow-down and speed-up of diffusion processes in
temporal networks compared with time-aggregated networks. We
derive an analytical prediction for direction and magnitude of the
change in a temporal network, validate it against six empirical
data sets and show that order correlations can both slow-down or
speed-up diffusion even in systems with the same static topology.
Our results highlight that non-Markovian characteristics of
temporal networks can either enforce or mitigate the influence
of topological properties on dynamical processes. As such, they
constitute an important additional dimension of complexity that
needs to be taken into account when studying time-varying
network topologies.

Results
Causality-driven changes of diffusive behaviour. We define a
temporal network to be a set of directed, time-stamped edges (v,
w; t) connecting node v to w at a discrete time step t. In this
framework, we assume time-stamped interactions (v, w; t) to be
instantaneous, occurring at time t for exactly one discrete time
step. However, interactions lasting longer than one time step can
still be represented by multiple interactions occurring at con-
secutive time steps. We further define a time-aggregated, or
aggregate, network to be a projection along the time axis, that is, a
directed edge (v, w) between nodes v and w exists whenever a
directed time-stamped edge (v, w; t) exists in the temporal net-
work for at least one time stamp t. Capturing the intensity of
interactions, we define edge weights in the time-aggregated net-
work as the number of times an edge occurs in the temporal
network. A convenient way to illustrate temporal networks are
time-unfolded representations. In this representation, time is
unfolded into an additional topological dimension by replacing
nodes v and w by temporal copies vt and wt for each time step t.
Time-stamped edges (v, w; t) are represented by directed edges
(vt, wtþ 1), whose directionality captures the directionality of time.
Finally, we define a time-respecting path of length n as a sequence
of n time-stamped edges (v1, v2; t1),(v2, v3; t2),y,(vn, vnþ 1; tn)
with t1ot2oyotn. In addition, it is common practice to
assume a limited waiting time t for time-respecting paths, addi-
tionally imposing the constraint that consecutive interactions
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occur within a time window of t, that is, 0oti� ti� 1rt for
i¼ 2,y,n. We refer to time-respecting paths of length two as
two-paths. Representing the shortest possible time-ordered
interaction sequence, two-paths are the simplest possible exten-
sion of edges (which can be viewed as ‘one-path’) that capture
causality in temporal networks. As such, two-paths are a parti-
cularly simple abstraction that allows to study causality in tem-
poral networks28,29.

Figure 1b shows time-unfolded representations of two
different temporal networks GT and ~GT consisting of four nodes
and 27 time steps. Although both examples correspond to the
same weighted time-aggregated network shown in Fig. 1a, the two
temporal networks differ in terms of the ordering of interactions.
As a consequence, assuming a limited waiting time of t¼ 1, the
time-unfolded representations reveal that a time-respecting path
d-b-c only exists in the temporal network ~GT , while it is
absent in GT. This simple example illustrates how the mere
ordering of interactions influences causality in temporal net-
works. In the following, we highlight the relevance of causality in
real-world systems by studying diffusion dynamics in six
empirical temporal network data sets: (AN) time-stamped
interactions between ants in a colony33; (RM) time-stamped
social interactions between students and academic staff at a
university campus34; (FL) time-ordered flight itineraries
connecting airports in the United States; (EM) time-stamped
E-mail exchanges between employees of a company35; (HO)
time-stamped interactions between patients and medical staff in a
hospital36; and (LT) passenger itineraries in the London Tube
metro system (see details in Methods section). For each system,
we study causality-driven changes of diffusion speed. In
particular, we use a random walk process and study the time
needed until node visitation probabilities converge to a stationary
state37,38. This convergence behaviour of a random walk is a
simple proxy that captures the influence of both the topology and
dynamics of temporal networks on general diffusive processes39.
For a given convergence threshold E, we compute a slow-down
factor S(E) that captures the slow-down of diffusive behaviour
between the weighted aggregated network and a temporal
network model derived from the empirical contact sequence,
respectively (details in Methods section). To exclude effects
related to node activities and inter-event time distributions, and
to exclusively focus on effects of causality observed in the real
data sets, this model only preserves the weighted aggregate
network as well as the statistics of two-paths in the data. Figure 2
shows the causality-driven slow-down factor for the six empirical
networks and different convergence thresholds E. Even though
networks are of comparable size, deviations from the
corresponding aggregate networks in the limit of small E (that

is, the long-term behaviour) are markedly different. For E¼ 10� 5

and (RM), the slow-down factor is SE7.68±0.01, while for (AN)
we obtain a slow-down SE2.11±0.02. For a threshold of
E¼ 10� 10 in the (HO) data set, we have SE5.63±0.019, while
for (EM) we get SE2.93±0.005. Although all these results
signify a slow-down of diffusion, for E¼ 10� 5, and (FL) and
(LT), we obtain SE0.957±0.002 and SE0.25±0.01, which
translate to a speed-up of diffusion by a factor of 1.04 and 4,
respectively. Although it is not surprising that the travel patterns
in (FL) and (LT) are ‘optimized’ in such a way that diffusion is
more efficient than in temporal networks generated by contacts
between humans (RM, EM and HO) or ants (AN), an analytical
explanation for the direction and magnitude of this phenomenon,
as well as for the variations across systems, is currently missing.

Causality-preserving time-aggregated networks. In the follow-
ing, we provide an analytical explanation for the direction of this
change (that is, slow-down or speed-up) as well as for its mag-
nitude in specific temporal networks. We show that an accurate
analytical estimate S* for the slow-down S observed in empirical
temporal networks can be calculated based on the eigenvalue
spectrum of higher-order, time-aggregated representations of
temporal networks. Our approach uses a state space expansion to
obtain a higher-order Markovian representation of non-Marko-
vian temporal networks40. This means that a non-Markovian
sequence of interactions in which the next interaction only
depends on the previous one (that is, one-step memory) can be
modelled by a Markovian stochastic process that generates a
sequence of two-paths. Analogous to a first-order time-
aggregated network G(1) consisting of (first-order) nodes V(1)

and (first-order) edges E(1), we define a second-order time-
aggregated network G(2) consisting of second-order nodes V(2)

and second-order edges E(2). Similar to a directed line graph
construction41, each second-order node represents an edge in the
first-order aggregate network. As second-order edges, we define
all possible paths of length two in the first-order aggregate
network, that is, the set of all pairs (e1, e2) for edges e1¼ (a, b)
and e2¼ (b, c) in G(1). With this, second-order edge weights
w(2)(e1, e2) can be defined as the relative frequency of time-
respecting paths (a, b; t1)-(b, c; t2) of length two in a temporal
network. Although the full details of this construction can be
found in the Methods section, we illustrate our approach
using the two temporal networks shown in Fig. 1. Figure 1c,d
shows two second-order time-aggregated networks G(2) and ~Gð2Þ

corresponding to the temporal networks GT and ~GT , respectively.
In particular, the absence of a time-respecting path d-b-c in
GT is captured by the absence of the second-order edge between
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Figure 1 | Two temporal networks with the same first-order, but different second-order time-aggregated networks. (a) Time-aggregated network G(1),

whose edge weights capture the number of times each edge occurred in a temporal network. The time-aggregated network is consistent with both

temporal networks shown in b. (b) Time-unfolded representations of two temporal networks, each consisting of 4 nodes and 27 time steps, both consistent

with G(1). Differences in their causality structures are highlighted by the corresponding second-order aggregate networks shown in c and d. Both second-

order aggregate networks are consistent with G(1).
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the second-order nodes e1¼ (d, b) and e2¼ (b, c). Further
differences between the causality structures of GT and ~GT are
captured by different second-order edge weights. Notably, this
example illustrates that temporal networks giving rise to different
second-order time-aggregated networks can still be consistent
with the same first-order time-aggregated network.

This approach allows us to generate a second-order network
representation where each second-order node represents an edge
in the underlying temporal network, each second-order edge
represents a time-respecting path of length two and weights w(2)

capture the statistics of two-paths in the temporal network. An
interesting aspect of this construction is that it allows to easily
define second-order Markov models generating contact
sequences, which exhibit ‘one-step memory’ and which thus
correctly reproduce the statistics of time-respecting paths of
length two in the original temporal network. For this, one can
define a second-order transition matrix T(2) where transition
rates between second-order nodes are proportional to second-
order edge weights (see details in Methods section). In the
following, we illustrate the construction of second-order transi-
tion matrices using the examples in Fig. 1. For the second-order
aggregate network G(2) shown in Fig. 1c, corresponding to the
temporal network GT, the transition matrix T(2) (rows/columns
ordered as indicated) is

Tð2Þ ¼

ða; bÞ
ðb; cÞ
ðb; dÞ
ðc; aÞ
ðd; aÞ
ðd; bÞ

0 1=2 1=2 0 0 0
0 0 0 1 0 0
0 0 0 0 1=2 1=2
1 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

0
BBBBBB@

1
CCCCCCA
:

The leading eigenvector of a stochastic matrix captures the
stationary distribution of the associated Markov chain. As such,
the leading eigenvector p of the second-order transition matrix
captures the stationary activation frequencies of edges in contact
sequences generated by the corresponding second-order Markov
model. For the example above, we obtain a normalized leading
eigenvector p ¼ 1

4 ;
1
8 ;

1
4 ;

1
8 ;

1
8 ;

1
8

� �
, which reproduces the relative

weights of edges in the first-order aggregate network shown in
Fig. 1a. In summary, interpreting T(2) as transition matrix of a
random walker in the second-order aggregate network, we
obtain a second-order Markov model generating contact
sequences that preserve the relative weights in the first-order
aggregate network, as well as the statistics of two-paths. In line
with recent observations that one-step memory is often
sufficient to characterize time-respecting paths in empirical
temporal networks29, in the remainder of this article we focus on
such second-order models. However, our findings can be
generalized to n-th order networks G(n) and matrices T(n) that
capture the statistics of time-respecting paths of any length n.
From this perspective, the weighted first-order aggregate
network can be seen as a first-order approximation where
weights only capture the statistics of edges, that is, time-
respecting paths of length one. Contact sequences generated by a
random walk in the first-order time-aggregated network with
transition probabilities proportional to edge weights preserve
the statistics of edges but destroy the statistics of time-respecting
paths. As such, a random walker in the first-order time-
aggregate network must be interpreted as null model that
destroys causality, and which can thus not be used to gain
analytical insights about dynamical processes in non-Markovian
temporal networks42. A second-order representation of the same
null model can be constructed using a maximum entropy
second-order transition matrix ~T

ð2Þ
. For two links e1¼ (a, b) and

e2¼ (b, c), the transition probability ~Tð2Þe1e2 simply corresponds to

the transition rate of a random walk across the weighted link
(b, c) in the first-order aggregate network (see details in Methods
section). This definition ensures that the corresponding random
walker generates Markovian temporal networks, which are
consistent with a given weighted time-aggregated network, and
which exhibit a two-path statistic as expected based on paths in
the first-order aggregate network. We again illustrate our
approach using the first-order time-aggregated network G(1)

shown in the left panel of Fig. 1. For this example, the transition
matrix corresponding to a ‘Markovian’ temporal network is
given as

~T
ð2Þ ¼

ða; bÞ
ðb; cÞ
ðb; dÞ
ðc; aÞ
ðd; aÞ
ðd; bÞ

0 1=3 2=3 0 0 0
0 0 0 1 0 0
0 0 0 0 1=2 1=2
1 0 0 0 0 0
1 0 0 0 0 0
0 1=3 2=3 0 0 0

0
BBBBBB@

1
CCCCCCA
:

Again, as leading eigenvector we obtain p ¼ 1
4 ;

1
8 ;

1
4 ;

1
8 ;

1
8 ;

1
8

� �
,

confirming that the stationary activation frequencies of edges
correspond to the relative weights of edges in the first-order time-
aggregated network. From the perspective of statistical ensembles,
which is commonly applied in the study of complex networks,
each second-order transition matrix whose leading eigenvector p
satisfies (p)e¼w(1)(a, b) (8 edges e¼ (a, b)) defines a statistical
ensemble of temporal networks constrained by a weighted time-
aggregated network G(1) and a given two-path statistics. The
entropy H(T(2)) of this ensemble can be defined as the entropy
growth rate of the Markov chain described by the corresponding
transition matrix (details in Methods section)43. Different from
entropy measures previously applied to dynamic networks44, this
measure quantifies to what extent the next step in a contact
sequence is determined by the previous one. For a specific
second-order transition matrix T(2) and a corresponding
maximum entropy model ~T

ð2Þ
, we define the entropy growth

rate ratio as

LHðTð2ÞÞ :¼ HðTð2ÞÞ=Hð~Tð2ÞÞ: ð1Þ
This ratio ranges between a minimum of zero for transition

matrices corresponding to contact sequences that are completely
deterministic and a maximum of one for transition matrices
corresponding to Markovian temporal networks. In general, an
entropy growth rate ratio smaller than one highlights that the
statistics of two-paths—and thus causality in the temporal
network—deviates from what is expected based on the first-order
aggregate network. As such, LH is a simple measure that
quantifies the importance of non-Markovian properties in
temporal networks. We illustrate this using the simple example
introduced in Fig. 1. For the second-order transition matrices T(2)

and ~T
ð2Þ

, we obtain LH(T(2))¼ 0.84 and thus LH(T(2))o1. This
confirms that T(2) corresponds to a non-Markovian temporal
network, and that the statistics of time-respecting paths in GT

deviates from what one could expect based on edge frequencies in
the first-order aggregate network. Considering the temporal
network ~GT , one easily verifies that edge weights in the
corresponding second-order aggregate network ~Gð2Þ coincide
with the transition matrix ~T

ð2Þ
. The resulting entropy growth rate

ratio of one for ~GT verifies that this temporal network does not
exhibit non-Markovian characteristics and that two-path statistics
do not deviate from what is expected based on the first-order
aggregate network.

Predicting causality-driven changes of diffusion speed. A par-
ticularly interesting aspect of the second-order network repre-
sentation introduced above is that temporal transitivity is
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preserved, that is, the existence of two second-order edges (e1,
e2) and (e2, e3) implies that a time-respecting path e1-e2-e3

exists in the underlying temporal network. Notably, the same is
not true for first-order aggregate networks, which do not
necessarily preserve temporal transitivity in terms of time-
respecting paths, that is, the existence of two first-order edges (a,
b) and (b, c) does not imply that a time-respecting path a-b-c
exists. Transitivity of paths is a precondition for the use of
algebraic methods in the study of dynamical processes. As such,
it is possible to study diffusion dynamics in temporal networks
based on the spectral properties of the matrix T(2), while the
same is not true for a transition matrix defined based on edge
weights in the first-order aggregate network. In particular, the
convergence time of a random walk process (and thus diffusion
speed) can be related to the second largest eigenvalue of its
transition matrix45. For a primitive stochastic matrix with (not
necessarily real) eigenvalues 1¼ l14|l2|4|l3|ZyZ|ln|, one
can show that the number of steps k after which the total
variation distance D(pk, p) between the visitation probabilities
pk and the stationary distribution p of a random walk falls below
E is proportional to 1/ln(|l2|) (see Supplementary Note 1 for a
detailed derivation). For a matrix T(2) capturing the statistics of
two-paths in an empirical temporal network, and a matrix ~T

ð2Þ

corresponding to the ‘Markovian’-null model derived from the
first-order aggregate network, an analytical prediction S* for
causality-driven changes of convergence speed can thus be
derived as

S�ðTð2ÞÞ :¼ lnð j~l2 j Þ=lnð jl2 j Þ; ð2Þ
where l2 and ~l2 denote the second largest eigenvalue of T(2) and
~T
ð2Þ

, respectively. Depending on the eigenvalues l2 and ~l2, both
a slow-down (S*(T(2))41) or speed-up (S*(T(2))o1) of
diffusion can occur.

This approach allows us to analytically study the effect of
non-Markovian characteristics in the empirical data sets
introduced above. For each data set, we construct matrices
T(2) and ~T

ð2Þ
(see equations (4) and (5) in Methods), and

compute the entropy growth rate ratio LH for the corresponding
statistical ensembles. For (RM) we obtain LH(T(2))E0.40, for
(AN) LH(T(2))E0.42, for (EM) we get LH(T(2))E0.62 and for
(HO) we obtain LH(T(2))E0.71. For (LT) we obtain
LH(T(2))E0.30, while for (FL) we have LH(T(2))E0.82. This
indicates that the topologies of time-respecting paths in all six
cases differ from what is expected from the first-order time-
aggregated networks. The impact of these differences on
diffusion can be quantified by means of the analytical prediction
S*(T(2)): for (RM) we obtain S*(T(2))E7.77, for (AN)
S*(T(2))E2.05, for (EM) we get S*(T(2))E3.01 and for (HO)
we obtain S*(T(2))E5.75. Considering the two data sets that
show a speed-up of diffusion, we get S*(T(2))E0.93 for (FL),
while for (LT) we obtain S*(T(2))E0.23. All six predictions are
consistent with the diffusion behaviour observed in numerical
simulations in the limit of small E (see Fig. 2). As argued above,
the significantly smaller magnitude of the slow-down effect in
(AN) compared with that in (RM) can neither be attributed to
differences in system size nor inter-event time distributions. A
spectral analysis of T(2) can explain the smaller slow-down of
(AN) compared with that of (RM) by a ‘better-connected’ causal
topology indicated by a smaller S*. Similarly, the large slow-
down observed in (HO) can be related to a ‘badly connected’
causal topology indicated by a large value of S*. For (FL), the
analytical prediction S*(T(2))E0.93 is consistent with the
asymptotic empirical speed-up observed in Fig. 2. Similarly,
the prediction S*(T(2))E0.23 for (LT) is in line with the speed-
up observed in Fig. 2. Here, the small value of S*(T(2))
highlights that the empirical second-order aggregate network is
much better connected than the one expected from a Markovian
temporal network, thus explaining the large speed-up by a factor
of four. The nonlinear behaviour of S(E) can be understood by
recalling that equation (2) makes the simplifying assumption
that only l2 contributes to the convergence time, which holds in
the limit of small E. As E increases, an increasing number of
eigenvalues and eigenvectors have non-negligible contributions
to the empirical slow-down S.

2

3

4
a

AN

3

6

9

12
b

RM

1

1.5

c
FL

10–1010–810–610–410–210010–1010–810–610–410–2100
1

1.5

2

2.5

3

3.5d
EM

1
2

3
4
5
6

7e
HO

10–510–410–310–210–1100

10–510–410–310–210–110010–510–410–310–210–110010–510–410–310–210–1100

f
LT

0.5

1

1.5

2

2.5

Figure 2 | Causality-driven changes of diffusion speed. We investigate the causality-driven changes of diffusive behaviour by an empirical study of

the convergence time of random walks. For a given convergence threshold E, we compute a slow-down factor S(E), which captures the slow-down of

diffusion in a temporal network model that preserves the weighted aggregate network as well as the statistics of time-respecting paths of length two in the

data, compared with diffusion in the weighted aggregate network. The six panels show the E-dependent slow-down factor for (a) the (AN) data set covering

interactions between 89 ants, (b) the (RM) data on proximity relations between 64 academic staff members and students, (c) the (FL) data on flight

itineraries connecting 116 airports, (d) the (EM) data covering E-mail exchanges between 167 employees in a company, (e) the (HO) data on

contacts between 75 patients and health-care workers in a hospital and (f) the (LT) data on passenger journeys between 309 London Tube stations. Each

result is the mean of random walks starting at every node; error bars indicate the s.e.m. The predicted S* value (see equation (2)) is shown by the

horizontal dashed line.
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Causality structures can slow-down or speed-up diffusion. In
the above we have shown that non-Markovian characteristics
alter the causal topology of time-varying complex systems, and
that the dynamics of diffusion in such systems can be explained
by the resulting changes in the eigenvalue spectrum of higher-
order aggregate networks, compared with the first-order aggre-
gate network. We further analytically found that depending on
the system under study, non-Markovian characteristics can both
slow down or speed up diffusion dynamics. In the following, we
further investigate the mechanism behind the speed-up and slow-
down by a model in which order correlations can mitigate or
enforce topology-driven limitations of diffusion speed. The model
generates non-Markovian temporal networks consistent with a
uniformly weighted aggregate network with two interconnected
communities, each consisting of a random 4-regular graph with
50 nodes. A parameter sA(� 1,1) controls whether time-
respecting paths between nodes in different communities are—
compared with a ‘Markovian’ realization—over- (s40) or
underrepresented (so0). The Markovian case coincides with
s¼ 0. An important aspect of this model is that realizations
generated for any parameter s are consistent with the same
weighted aggregate network. The parameter s exclusively influ-
ences the temporal ordering of interactions, but neither their
frequency, topology nor their temporal distribution (see
Supplementary Note 1 for model details and mathematical
proofs). Figure 3a shows the effect of s on the entropy growth
rate ratio LH (blue, dashed line) and the predicted slow-down S*
(black, solid line). All non-Markovian realizations of the model
(that is, sa0) exhibit an entropy growth rate ratio LHo1 (blue
dashed line), which signifies the presence of order correlations.
Whether these correlations result in a speed-up (S*o1) or slow-
down (S*41) depends on how order correlations are aligned
with community structures. For so0, time-respecting paths
across communities are inhibited and diffusion slows down
compared with the time-aggregated network (S*41). For s40,
non-Markovian properties enforce time-respecting paths across
communities and thus mitigate the decelerating effect of com-
munity structures on diffusion dynamics (S*o1)46. We
analytically substantiate this intuitive interpretation by means of
a a spectral analysis provided in Fig. 3b. For each s, we compute
the algebraic connectivity of the causal topology, that is, the
second-smallest eigenvalue l2(L) of the normalized Laplacian
matrix L¼ In�T(2) corresponding to the second-order aggregate

network (In being the n-dimensional identity matrix). Larger
values l2(L) indicate ‘better-connected’ topologies that do not
exhibit small cuts47,48. The effect of non-Markovian
characteristics on l2(L) validates that the speed-up and slow-
down is due to the ‘connectivity’ of the causal topology. In
addition, the insets in Fig. 3b show entries (v2)i of the Fiedler
vector, that is, the eigenvector v2(L) corresponding to eigenvalue
l2(L). The distribution of entries of v2(L) is related to
community structures and is frequently used for divisive
spectral partitioning of networks49. For s¼ � 0.75, the strong
community structure in the causal topology shows up as two
separate value ranges with different signs, while the two entries
close to zero represent edges that interconnect communities.
Apart from the larger algebraic connectivity, the distribution of
entries in the Fiedler vector for s¼ 0.75 shows that the separation
between communities is less pronounced. This highlights that
non-Markovian properties can effectively outweigh the
decelerating effect of community structures in the time-
aggregated network, and that the associated changes in the
causality structures can be understood by an analysis of the
spectrum of higher-order time-aggregated networks.

Discussion
In summary, we introduce higher-order aggregate representations
of temporal networks with non-Markovian contact sequences.
This abstraction allows to define Markov models generating
statistical ensembles of temporal networks that preserve the
weighted aggregate network as well as the statistics of time-
respecting paths. Focusing on second-order Markov models, we
show how transition matrices for such models can be computed
based on empirical contact sequences. The ratio of entropy
growth rates (see equation (1)) between this transition matrix and
that of a null model, which can easily be constructed from the
first-order aggregate network, allows to assess the importance of
non-Markovian properties in a particular temporal network.
Considering six different empirical data sets, we show that
spectral properties of the transition matrices capture the
connectivity of the causal topology of real-world temporal
networks. We demonstrate that this approach allows to
analytically predict whether non-Markovian properties slow-
down or speed-up diffusive processes, as well as the magnitude of
this change (see equation (2)). With this, we provide the first
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Figure 3 | Slow-down and speed-up regimes in a temporal network model. We analytically study a model of non-Markovian temporal networks
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analytical explanation for both the direction and magnitude of
causality-driven changes in diffusive dynamics observed in
empirical systems. Focusing on the finding that non-Markovian
characteristics of temporal networks can both slow down or speed
up diffusion processes, we finally introduce a simple model that
allows to analytically investigate the underlying mechanisms. Our
results show that the mere ordering of interactions can either
mitigate or enforce topological properties that limit diffusion
speed. Both our empirical and analytical studies confirm that
causality structures in real-world systems have large and
significant effects, slowing down diffusion by a factor of more
than seven in one system, while other systems experience a speed-
up by a factor of four compared with what is expected from the
first-order time-aggregated network. These findings highlight that
the causal topologies of time-varying complex systems constitute
an important additional temporal dimension of complexity,
which can reinforce, mitigate and even outweigh effects that are
due to topological features such as community structures.

Different from studies exclusively considering how interactions
are distributed in time, in our study we focus on how their
ordering influences causality structures in temporal networks.
The finding that causality structures alone can lead to both a
speed-up or a slow-down of diffusion highlights that, to
understand the influence of the temporal dynamics in real-world
systems, effects both activity patterns and causality must be taken
into account. Considering temporal networks in which interac-
tions are homogeneously distributed in time, our approach
further provides a novel explanation for changes in dynamical
processes that cannot be explained in terms of bursty node
activity patterns. An additional benefit of our approach is that it
can be used for the network-based study of systems for which
causal relations between different links can be inferred even
though links cannot be assigned absolute time stamps. The data
on airline and subway passenger itineraries analysed in our article
are two examples for such systems where only the ordering of
links is known.

Our approach of constructing higher-order Markov models
that preserve the statistics of time-respecting paths allows to
study the temporal-topological dimension of time-varying
complex systems—a dimension that is often ignored when
exclusively focusing on changes in the duration of dynamical
processes. The higher-order time-aggregated networks introduced
in this study are simple static representations of temporal
networks, which compared with first-order aggregate networks
preserve causality better. This approach provides interesting
perspectives not only for analytical studies of further classes of
dynamical processes in complex systems with time-varying
interaction topologies. It is also a promising approach for the
development of novel temporal community detection algorithms
using, for example, spectral clustering or random walk based
methods as well as for the design of refined eigenvector-based
centrality measures taking into account the ordering of links in
dynamic networks. Finally, we foresee applications in the
development of novel temporal network visualization methods,
such as layout algorithms that make use of both the first- and the
second-order time-aggregated networks.

Methods
Details on empirical data sets. In our work, we study diffusion dynamics in
temporal networks constructed from six different empirical data sets: (AN) cap-
tures pairwise interactions between individuals in an ant colony, (RM) is based on
contact networks of students and academic staff members at a university campus,
(EM) covers E-Mail exchanges between employees of a company, (FL) represents
multi-segment itineraries of airline passengers in the United States and (LT)
captures passenger journeys in the London underground transportation network.

For the (AN) data set, we used the largest data set from an empirical study of ant
interactions33, that is, the first filming of colony 1 with a total of 1,911 antenna–body

interactions between 89 ants recorded over a period of 1,438 s. For the (RM) data set,
we used time-stamped proximity data on students and academic staff members
recorded via Bluetooth-enabled phones at a university campus over a period of more
than 6 months34. For computational reasons, we used a subset covering the week
from 8 to 15 September 2004, which comprises a total of 26,260 time-stamped
interactions between 64 individuals. The (EM) data set covers E-mail exchanges
recorded over a period of 9 months between 167 employees of a medium-size
manufacturing company35. Here we use a subset covering close to 11,000 E-mail
exchanges occurring during the first month of the observation period. The (HO)
data set contains time-stamped contacts between 46 health-care workers and 29
patients in a hospital in Lyon36. Contacts have been recorded via proximity
sensing badges in the week from 6 to 10 December 2010. For our analysis, we use a
subset of more than 15,000 contacts occurring within the first 48 h of the observation
period. The (FL) data set has been extracted from the freely available RITA TranStats
Airline Origin and Destination Survey (DB1B) database50, which contains 10%
samples of all airline tickets sold in the United States for each quarter since 1993. For
our study we extracted 230,000 multi-segment flights ticketed by American Airlines
in the fourth quarter of 2001, which connect a total of 116 airports in the United
States. For each ticket number i, an itinerary consists of a time-ordered sequence of
multiple flight segments between airports indicated by their three-letter IATA code.
An example for a time-ordered itinerary with ticket number i is given in the
following:

i;CLT;ORF

i;ORF; LGA

i; LGA;ORF

i;ORF;CLT

Although no precise time stamps are known for individual segments, their
ordering allows to directly construct time-respecting flight paths taken by
individual passengers. For the example above, a time-respecting path
(CLT, ORF;1)-(ORF, LGA;2)-(LGA, ORF;3)-(ORF, CLT;4) can be constructed.
Here, time-respecting paths necessarily consist of interactions that immediately
follow each other in subsequent time steps, as otherwise a spurious flight path
(CLT, ORF;1)-(ORF, CLT;4) would be inferred for the example above.
Furthermore, a time-respecting path is only inferred if the ticket number of
consecutive flight segments is identical. We used the same approach in the (LT)
data set, which has been extracted from the freely available Rolling Origin and
Destination Survey database51 provided by the London Underground. The Rolling
Origin and Destination Survey database covers a 5% sample of all journeys made
by passengers who used the Oyster electronic ticketing card during a period of 1
week. This amounts to a total of more than four million passenger flows between
309 London Underground stations. By mapping those passenger flows to a network
representation of the London Underground, we extracted detailed itinerary data
just like those in the example for the (FL) data set. We then computed time-
respecting paths based on directly consecutive travel segments in the same way as
for the (FL) data set. Although the condition of directly consecutive travel segments
is crucial for the (FL) and the (LT) data set, for the (AN), (RM), (HO) and (EM)
data sets we relax this definition of a time-respecting path and additionally consider
time-respecting paths if links occur within a certain time period. In particular,
following arguments that many dynamical processes set limitations on how long
paths are allowed to wait at certain nodes23, we limit the waiting time on time-
respecting paths to a maximum of t. In other words, we assume that a time-
respecting path between nodes a and c exists whenever two time-stamped edges
(a,b;t1) and (b,c;t2) exist for 0ot2� t1rt. In general, we have chosen the
maximum waiting time t as the smallest possible value such that the set of nodes
that can mutually influence each other via time-respecting paths (that is, the
strongly connected component) represents a sizeable fraction of the network. For
the (AN) data, a maximum waiting time t of 6 s was applied, which gives rise to a
subset of 61 nodes that can reach each other via time-respecting paths. For the
(RM) and (HO) data sets, we used a maximum waiting time t of 5 min, which
resulted in a subset of 58 and 53 individuals, respectively, who can mutually reach
each other via time-respecting paths. For the (EM) data set, we used a maximum
waiting time t of 60 min, resulting in a subset of 96 employees mutually connected
via time-respecting paths. For the (FL) data set, the strongly connected component
comprises 116 airports, while it comprises 132 underground stations in the (LT)
data set.

Diffusion dynamics in empirical temporal networks. We study causality-driven
changes of diffusive behaviour in the six temporal network data sets (AN), (RM),
(FL), (EM), (HO), (FL) and (LT) described above. We use the convergence
behaviour of a random walk process as a proxy that captures the influence of both
the topology and dynamics of temporal networks on general diffusive processes.
For this, we first consider a random walk process in the weighted, time-aggre-
gated network and study the time needed until node visitation probabilities
converge to a stationary state. Starting from a randomly chosen node, in each step
of the random walk the next step is chosen with probabilities proportional to the
weights of incident edges. A standard approach to assess the convergence
time of random walks is to study the evolution of the total variation distance
between observed node visitation probabilities and the stationary distribution52.
For a distribution pk of visitation probabilities (pk)u of nodes u after k steps of a
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random walk and a stationary distribution p, the total variation distance is
defined as

Dðpk; pÞ :¼ 1
2

X
u

j pð Þu � pkð Þuj :

For a given threshold distance E, we define the convergence time tagg(E) as the
minimum number of steps k after which D(pk, p)oE. The random walk itineraries
produced by this simple random walk model correctly reproduce edge weights in
the time-aggregated network and the use of random walk itineraries, as a model for
temporal networks has been proposed before42. However, random walk itineraries
do not preserve statistics of longer time-respecting paths and thus alter causality.
To derive a causality-driven slow-down factor, we thus contrast the convergence
time tagg(E) with the convergence time ttemp(E) of a second model that additionally
preserves the statistics of time-respecting paths of length two in the real data sets
(see previous section for details on how we define time-respecting paths in the
different data sets). Again starting with a random node, this model randomly
chooses two-paths according to their relative frequencies in the data set, thus
corresponding to a walk process that is advanced by two steps at a time. The
random itineraries generated by this model correctly reproduce edge weights in the
time-aggregated network, and—different from a random walk in the time-
aggregated network—the statistics of time-respecting paths of length two. For a
given threshold distance E, we again define the convergence time ttemp(E) as the
minimum number of steps k after which D(pk, p)oE. For a convergence threshold
E, this allows us to define a causality-driven slow-down factor S(E):¼ ttemp(E)/
tagg(E) that is due to the temporal-topological characteristics of time-respecting
paths, while ruling out effects of inter-event time distributions or bursty node
activities.

Constructing higher-order time-aggregated networks. Extracting time-
respecting paths in the six data sets allows us to construct higher-order time-
aggregated representations of the underlying temporal interaction sequences. In the
following, we provide a detailed description of this construction. We consider a
temporal network GT consisting of directed time-stamped edges (u,w; t) for nodes u
and w, and discrete time stamps t. A first-order time-aggregated network G(1) can
then be defined, where a directed edge (v,w) between nodes v and w exists
whenever a time-stamped edge (v,w; t) exists in GT for some time stamp t. In
addition, edge weights w(1) (v,w) can be defined as the (relative) number of edge
occurrences in the temporal network. Considering that edges can be thought of as
time-respecting paths of length one, we can similarly construct a second-order
time-aggregated network by considering time-respecting paths of length two. For
this, we define a second-order time-aggregated network G(2) as tuple (V(2), E(2))
consisting of second-order nodes V(2) and second-order edges E(2). Second-order
nodes eAV(2) represent edges in the first-order aggregate network G(1). Second-
order edges E(2) represent all possible time-respecting paths of length two in G(1).
Based on the definition of time-respecting paths with a limited waiting time t,
second-order edge weights w(2)(e1,e2) can be defined based on the frequency of
two-paths, that is, the frequency of time-respecting paths (a, b; t1)-(b, c; t2) of
length two in GT (for 0ot2� t1rt). As multiple two-paths (a0 , b; t)-(b, c0 ; t0) can
pass through node b at the same time, it is necessary to proportionally correct
second-order edge weights for all multiple occurrences. For the simple case t¼ 1,
one can define second-order edge weights as

wð2Þ e1; e2ð Þ :¼
X

t

dða; b; t� 1Þdðb; c; tÞP
a0 ;c02V

dða0 ; b; t� 1Þdðb; c0 ; tÞ
; ð3Þ

where d(a, b; t)¼ 1 if edge (a, b; t) exists in the temporal network GT and d(a, b; t)¼ 0
otherwise. Following the arguments above, it is simple to generalize weights to
capture two-paths (a, b; t1)� (b, c; t2) for 0ot2� t1rt. The software used to infer
time-respecting paths and to construct weighted second-order time-aggregated
networks from the six empirical data sets is available online53.

Higher-order Markov models for temporal networks. Using the second-order
time-aggregated network G(2) and second-order edge weights w(2) defined above,
for all time-respecting paths e1-e2 of length two we define the entries of the
transition matrix T(2) for a random walk in the weighted network G(2) as

Tð2Þe1e2
:¼ wð2Þ e1; e2ð Þ

X
e02Vð2Þ

wð2Þ e1; e0ð Þ
 !� 1

: ð4Þ

In line with the standard way of defining random walks on weighted networks,
transition rates between nodes e1 and e2 are defined to be proportional to edge
weights and are normalized by the cumulative weight of all edges (e1, e0) emanating
from node e1. If the transition matrix T(2) is primitive, the Perron–Frobenius
theorem guarantees that a unique leading eigenvector p of T(2) exists. Note that
T(2) can always be made primitive by restricting it to the largest strongly connected
component of G(2) and adding small positive diagonal entries.

Although the transition matrix T(2) captures the statistics of two-paths in a
given temporal network, we can additionally define a maximum entropy
transition matrix ~T

ð2Þ
, which captures the two-path statistics one would expect

based on the relative edge weights in the first-order time-aggregated network.

For e1¼ (a, b) and e2¼ (b, c), the entries ~Tð2Þe1e2 corresponding to a two-path e1-e2

are given as

~Tð2Þe1 e2
:¼ wð1Þ b; cð Þ

X
c02V ð1Þ

wð1Þ b; c0ð Þ
 !� 1

: ð5Þ

This second-order Markov model preserves the weights w(1) of edges in G(1)

and creates ‘Markovian’ temporal networks in which consecutive links are
independent from each other.

The entropy of a second-order Markov model for a particular temporal network
can be quantified in terms of the entropy growth rate of a transition matrix T(2).
This notion of entropy quantifies the amount of information that is lost about the
current state of a Markov process based on a given transition matrix. We define the
entropy growth rate of a second-order transition matrix as

HðTð2ÞÞ :¼ �
X

e2Eð1Þ

pð Þe
X

e02Eð1Þ

Tð2Þee0 log2 Tð2Þee0

� �
: ð6Þ

For a transition matrix, which only consists of deterministic transitions with
probability 1, the entropy growth rate is zero, while it reaches a (size-dependent)
maximum for a transition matrix where every state can be reached with equal
probability in every step.
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