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Model assessment of the stochastic block model is a crucial step in identification of modular
structures in networks. Although this has typically been done according to the principle that a
parsimonious model with a large marginal likelihood or a short description length should be selected,
another principle is that a model with a small prediction error should be selected. We show that
the leave-one-out cross-validation estimate of the prediction error can be efficiently obtained using
belief propagation for sparse networks. Furthermore, the relations among the objectives for model
assessment enable us to determine the exact cause of overfitting.

Introduction — Mathematical tools for graph or net-
work analysis have wide applicability in various disci-
plines of science. In fact, many datasets, e.g., biological,
information, and social data, that represent interactions
or relations among elements have been successfully stud-
ied as networks in machine learning, computer science,
and statistical physics. In a broad sense, a major goal
is to identify macroscopic structures, including tempo-
ral structures, hidden in the data. To this end, for ex-
ample, degree sequences, community and core–periphery
structures, and various centralities have been extensively
studied. In this Letter, we focus on identifying modu-
lar structures including community structures, bipartite
structure, and a type of core–periphery structure through
graph clustering. Bayesian approaches using the stochas-
tic block model [1] are a powerful tool for this task.
Graph clustering consists of two steps: selecting the num-
ber of clusters and determining the cluster assignment
of each vertex. These steps may be performed repeat-
edly. Some methods require the number of clusters as an
input, whereas others determine it automatically. In a
Bayesian framework, the former step is called model se-
lection, and this is our major focus. Model selection and
its assessment for modular networks have been discussed
in several ways. A classical prescription is to optimize an
objective function, e.g., modularity [2, 3] and the map
equation [4], or to utilize the spectral method and count
the number of eigenvalues outside of the spectral band
[5, 6]. In the Bayesian framework, one principle is to se-
lect a model that maximizes the model’s posterior prob-
ability [7–10] or the one with the minimum description
length [11]. Finally, minimization of the prediction er-
ror is a well-accepted principle, and cross-validation esti-
mates it adequately [12, 13]. Unfortunately, a straightfor-
ward implementation of cross-validation is computation-
ally expensive when the number of samples for validation
is large; for instance, for leave-one-out cross-validation
(LOOCV), to assess q ∈ {2, . . . , qmax}, one has to run
the learning algorithm a total of N(qmax − 1) times for
very similar training sets. Nevertheless, we show that
the LOOCV is an exception and can be applied without
the need to perform learning N times by exploiting the

fact that the cavity biases in belief propagation (BP) are
exactly the ingredients of the LOOCV. Throughout this
Letter, we consider undirected sparse networks, and we
ignore multi-edges and self-loops for simplicity. We de-
note by E the set of edges in the network. We denote by
N and L the total numbers of vertices and edges, respec-
tively. All the detailed derivations of the results can be
found in the Supplemental Material.

Stochastic block model — The hyperparameters that
specify the standard stochastic block model are the num-
ber of clusters q, the fraction of the cluster size γσ,
and the so-called affinity matrix ωσσ′ , which indicates
the connection probabilities within and between clusters,
where σ is the cluster label. Because the networks we
consider are sparse, ω = O(N−1). Assuming that the
edges are generated independently and randomly on the
basis of the affinity matrix, the probability that an ad-
jacency matrix A is generated, i.e., the likelihood of the
model, is expressed as

p(A,σ|γ,ω, q) =
N
∏

i=1

γσi

∏

i<j

ωAij
σiσj

(

1− ωσiσj

)1−Aij
. (1)

The cluster assignment of the vertices σ is the hidden
variable, and one usually conducts hyperparameter learn-
ing with respect to (γ,ω) and cluster inference using
the expectation–maximization (EM) algorithm so that
the marginal log-likelihood, or the negative free energy,
log
∑

σ p(A,σ|γ,ω, q), is maximized.
BP and the Bethe free energy — The EM algorithm

for a block model inference requires computation of the
marginal probability of cluster assignment ψiσ for each
vertex. Under the tree approximation, BP offers its es-
timate by calculating the cavity bias ψi→j

σ , which is the
marginal probability of vertex i without the marginaliza-
tion of vertex j. (See Ref. [9] or the Supplemental Ma-
terial for details.) Using the cavity biases, the negative
marginal log-likelihood per vertex is estimated as

fBethe = −
1

N

∑

i

logZi +
1

N

∑

(i,j)∈E

logZij −
c

2
, (2)
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where c is the average degree. Each term in the summa-
tions is

Zi =
∑

σi

γσi
e−hσi

∏

k∈∂i

(

∑

σk

ψk→i
σk

ωσkσi

)

, (3)

Zij =
∑

σσ′

ωσσ′ψi→j
σ ψj→i

σ′ for (i, j) ∈ E, (4)

where ∂i indicates the set of neighboring vertices of i,
and hσ =

∑N
k=1

∑

σk
ψkσk

ωσkσ. Note that undirected net-
works have the symmetry ωσσ′ = ωσ′σ. Although the re-
sult of BP is generally an approximation, it is exact when
the network is a tree and is quite accurate when the net-
work is sparse. The function fBethe is called the Bethe
free energy, and the parsimonious model that minimizes
it is expected to give the correct number of clusters q
of the generative model, which corresponds to the max-
imum likelihood estimation of the hyperparameters. In
[9], −c logN/2 is added to (2) to make the Bethe free en-
ergy extensive [14]; in numerical experiments, we follow
their convention.

Bayes prediction error — The need to evaluate the
predictability of the learned model is another principle
of model assessment. In the context of a network, we
quantify how well our model predicts the existence or
nonexistence of edges for “new data.” In reality, how-
ever, we do not have the “new data” in a given dataset.
Therefore, we consider the cross-validation estimate as a
proxy of the prediction error; we select a model with a
small value of the error. We denote by A\(i,j) the adja-
cency matrix of a network in which Aij is missing, i.e.,
in which it is unknown whether Aij = 0 or Aij = 1.
The posterior predictive distribution p̂(Aij = 1|A\(i,j))
of the model in which vertices i and j are connected given
dataset A\(i,j), or the marginal likelihood of the learned
model for the vertex pair, is

p̂(Aij = 1|A\(i,j)) =
∑

σi,σj

p̂(Aij = 1|σi, σj)p(σi, σj |A
\(i,j)).

(5)

The error should be small when the prediction of edge
existence for every vertex pair is accurate. Thus, the
probability distribution (5) is close, in the sense of the
Kullback–Leibler (KL) divergence, to the actual distribu-
tion, which is given as the empirical distribution. There-
fore, it is natural to employ, as a measure of the predic-
tion error, the cross-entropy error function [15]

EBayes(q) = −log p(Aij |A\(i,j))

= −
1

L

∑

i<j

[

Aij log p̂(Aij = 1|A\(i,j))

+ (1 −Aij) log p̂(Aij = 0|A\(i,j))

]

, (6)

where X ≡
∑

i<j

∑

Aij={0,1} P (Aij)X(Aij)/L. Note
that we chose the normalization so that EBayes is typ-
ically O(1) in sparse networks. We refer to (6) as the
Bayes prediction error, which corresponds to the LOOCV
estimate of the stochastic complexity [16]. As long as
the model we use is consistent with the data, the pos-
terior predictive distribution is optimal as an element
of the prediction error, because the intermediate depen-
dence (σi, σj) is fully marginalized and gives the small-
est error. In (5), p̂(Aij = 1|σi, σj) = ωσiσj

by model
definition. An important observation is that, because
the cavity bias ψi→j

σi
represents the marginal probabil-

ity without the information for vertex j, this is exactly
what we need for prediction in the LOOCV, that is,
p(σi, σj |A\(i,j)) = ψi→j

σi
ψj→i
σj

. On the other hand, we

have p(σi, σj |Aij = 1, A\(i,j)) = ψi→j
σi

ωσiσj
ψj→i
σj

/Zij for

the conditional probability, where Zij is defined in (4),
and p(Aij = 1|A\(i,j)) = Zij . Note that utilizing BP
for the LOOCV itself is not totally new; this idea has
been addressed in a different context in the literature,
e.g., Ref. [17]. By using the fact that L = O(N) and
p̂(Aij = 1|A\(i,j)) = O(N−1), EBayes(q) can be written
as

EBayes(q) = −
1

L

∑

(i,j)∈E

logZij + const.+O(N−1). (7)

Equation (7) indicates that the prediction with respect to
the non-edges contributes only as a constant, so EBayes(q)
essentially measures whether the existence of edges is cor-
rectly predicted in a sparse network. Using the relation
Zi→j = Zi/Zij , where Zi→j is the normalization factor
of ψi→j

σ , we can also write (7) as

EBayes(q) = −
1

2L

∑

i

∑

k∈∂i

(

logZi − logZk→i
)

, (8)

where we ignored the constant and O(N−1) factors.
Gibbs prediction error — Although the prediction er-

ror using the posterior predictive distribution is the best
choice when the model we use is consistent with the data,
this assumption is often invalid in practice. In that case,
the Bayes prediction error may no longer be optimal
for prediction. In (6), we employed − log p(Aij |A\(i,j))
as the error of a vertex pair. Instead, we can consider
the log-likelihood of cluster assignment E(Aij |σi, σj) =
− log p̂(Aij |σi, σj) as a fundamental element and measure
〈E〉 as the prediction error of a vertex pair, where 〈· · ·〉
is the average over p(σi, σj |A

\(i,j)); that is, the cluster
assignment (σi, σj) is drawn from the posterior distribu-
tion, and the error of the vertex pair is measured with
respect to this fixed assignment. Then, the correspond-
ing cross-entropy error function is

EGibbs(q) = 〈E(Aij |σi, σj)〉

= −
1

L

∑

(i,j)∈E

∑

σi,σj

ψi→j
σi

ψj→i
σj

logωσiσj
. (9)
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Again, we omitted the constant and O(N−1) factors. We
refer to (9) as the Gibbs prediction error. If the proba-
bility distribution of cluster assignment is highly peaked,
EGibbs will be close to EBayes, and EGibbs and EBayes

will be very small if those assignments predict the actual
network well. Alternatively, the maximum a posteriori

(MAP) estimate of (9) is often measured for the Gibbs
prediction error; hence, we refer to EMAP(q) as the pre-
diction error with ψi→j

σi
replaced by δσi,argmax{ψi→j

σ } in

(9).
Gibbs training error — Finally, we define the BP esti-

mate of the training error. That is, not only do we use
A\(i,j), but we also use Aij for cluster inference. This can
be done by taking the average over p(σi, σj |A) instead in
(9). Thus, omitting the constant and O(N−1) factors,
we have

Etraining(q) = −
1

L

∑

(i,j)∈E

∑

σi,σj

ψi→j
σi

ωσiσj
ψj→i
σj

Zij
logωσiσj

,

(10)

which measures the goodness of fit of the assumed model
to the given data. We refer to Etraining as the Gibbs
training error. Interestingly, as shown in the Supplemen-
tal Material, this quantity appears in the free energy (not
the Bethe free energy) as a part of the internal energy.
Relations among the errors — By exploiting Bayes’

rule, we have

log p̂(Aij |A
\(i,j)) = log p̂(Aij |σi, σj , A

\(i,j))

+ log
p(σi, σj |A\(i,j))

p(σi, σj |A)
. (11)

Note here that the left-hand side does not depend on
σi and σj . If we take the average with respect to
p(σi, σj |A\(i,j)) on both sides,

log p̂(Aij |A
\(i,j)) =

〈

log p̂(Aij |σi, σj , A
\(i,j))

〉

+DKL

(

p(σi, σj |A
\(i,j)) || p(σi, σj |A)

)

,

(12)

whereDKL(p||q) is the KL divergence. Taking the sample
average of the edges, we obtain

EBayes = EGibbs −DKL

(

p(σi, σj |A\(i,j))||p(σi, σj |A)
)

.
(13)

If we take the average over p(σi, σj |A) in (12) instead,

EBayes = Etraining +DKL

(

p(σi, σj |A)||p(σi, σj |A\(i,j))
)

.
(14)

Because the KL divergence is non-negative, Etraining <
EBayes < EGibbs. Essentially the same relations as (13)
and (14) were derived in the context of neural networks in

FIG. 1. (Color online) Bethe free energies (left) and pre-
diction errors (right) of the standard stochastic block model
(top) and the stochastic block model with a power-law degree
distribution (bottom). Both models consist of four equal-size
clusters, and N = 10, 000 in total. For the standard stochas-
tic block model, we set the average degree c to 6 and ǫ to
0.1, where ǫ = ωout/ωin, and ωσσ′ = ωin for σ = σ′ and ωout

otherwise. For the other model, which we generated as the
LFR network, we set the average degree c to 9.58, mixing pa-
rameter µ to 0.01, and exponent of the degree distribution τ
to −2, with a maximum degree dmax of 100. The four data in
the right panel are the Bayes prediction errors EBayes (red cir-
cles), Gibbs prediction errors EGibbs (green triangles), Gibbs
training errors Etraining (blue diamonds), and MAP estimates
EMAP of EGibbs (yellow squares).

a slightly different manner [16]. We can go even further.
If the cluster assignment distributions with small q can
be regarded as the coarse graining of that with a larger
q, the information monotonicity [18, 19] of the KL di-
vergence ensures that EGibbs always estimates a smaller
number of clusters q than EBayes and Etraining. (See the
Supplemental Material for the detailed argument.) When
the inference of BP correctly predicts the edges, EMAP is
biased so that the error becomes small. Therefore, EMAP

tends to be smaller than EGibbs. As we will observe later,
EGibbs typically performs better than EBayes in practice.
Equation (13) implies that detailed information about
the difference in the cluster assignment distribution is of-
ten not relevant and simply causes overfitting. As shown
in Fig. 1, when the network is truly generated by the
stochastic block model, the Bethe free energy and all the
prediction errors saturate at the planted value of q, as
they should.

Degree-corrected stochastic block model — In practice,
it is observed that the standard stochastic block model



4

is often not flexible enough to fit real-world data with
heterogeneous degree distributions. In such a case, the
assessment of the number of clusters q may not make any
sense. Therefore, in addition, we conduct the analysis for
the degree-corrected stochastic block model [20] in par-
allel. In the degree-corrected stochastic block model of
a simple graph, the probability p(Aij = 1|σi, σj) that a
pair of vertices is connected given their cluster assign-
ments σi and σj is θiωσi,σj

θj instead of ωσi,σj
. With this

replacement, we can obtain the corresponding Bethe free
energy and error functions analogously. Figure 1 shows
an equal-size stochastic block model with a power-law
degree distribution, which we generated as an instance
of the LFR network [21]. The mixing parameter µ is
set to 0.1. The planted number of clusters is correctly
estimated using both the Bethe free energy and the pre-
diction and training errors in this case.

Real-world networks — Finally, and most importantly,
model assessment using various error functions is ap-
plied to real-world networks. Unlike the case for syn-
thetic networks, the selection of q is not very obvious
for many networks because the error functions do not
saturate clearly as q increases. This makes sense, be-
cause real-world networks may not have a clear simple
modular structure; thus, they may not be perfectly fit-
ted by either the standard or degree-corrected stochastic
block models. In other words, by plotting the error func-
tions, we can see how confident we can be about our
model selection. Recall that each cross-validation esti-
mate is given as an average error per edge, so we can also
measure its standard errors. To select the parsimonious
model, the “one-standard error” rule [22] is often used,
in which the most parsimonious model whose error is no
more than one standard error above the error of the best
model is selected. To apply this empirical rule, we plot-
ted the standard errors of the cross-validation estimates
as shadows. For example, although the best model of
the network of books about US politics (which we refer
to as political books) is q = 7 for the standard stochastic
block model, we choose q = 5 as the most parsimonious
model. Although the estimated q from the Bethe free en-
ergy and prediction errors coincide in some cases, as far
as we examined, the Bethe free energy does not saturate
at a reasonable value of q, as already pointed out in [23].
The Bayes prediction error EBayes and Gibbs training er-
ror Etraining perform similarly. In contrast, the Gibbs
prediction error EGibbs shows good performance in the
sense that its suggestion often coincides with the number
of “ground-truth” communities of well-studied networks.
Note that, even when we do not measure the Bethe free
energy for model assessment, we still minimize the Bethe
free energy in the cluster inference step.

Summary and Discussion — We derived cross-
validation estimates for various types of errors in terms
of the distribution obtained by BP. This approach is in-
comparably more efficient than a straightforward appli-

FIG. 2. (Color online) Bethe free energies (left) and predic-
tion errors (right) of the network of books about US politics
[24] as functions of the number of clusters q. They are plot-
ted in the same manner as in Fig. 1. The standard errors are
shown as shadows.

cation of LOOCV and offers a reasonable model assess-
ment. Moreover, we also showed the relations between
the objectives for model assessment. This is quite im-
portant, because we can determine the exact cause of
overfitting. The codes we used can be found at [25]. Al-
though the generation of edges is highly correlated, the
validity of the cross-validation is justified because we fit
the data based on a stochastic block model, which as-
sumes that every edge is generated independently and
randomly. In addition, although one may expect that
the LOOCV estimates the conditional prediction error
because it uses very similar training sets, it reportedly
estimates rather the expected prediction error [22]. Fit-
ting with the stochastic block models is flexible, so the
algorithm can infer not only the assortative structure,
but also more complex structures. However, this is not al-
ways an advantage in practice. The flexibility also means
that slightly different models may fit the data as well as
the best model. Therefore, as a trade-off, model selection
becomes more difficult. By restricting the structure that
we can detect, it is possible to find a good balance of the
cluster inference and model selection performance. We
will address this problem in a future publication.

This work was supported by JSPS KAKENHI No.
26011023 (TK) and No. 25120013 (YK).
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Supplemental Material: Cross-validation model assessment for modular networks

BP INFERENCE OF CLUSTER ASSIGNMENT AND HYPERPARAMETER LEARNING FOR THE

STOCHASTIC BLOCK MODEL

For self-containedness, we briefly summarize the EM algorithm with BP of a stochastic block model introduced in
[9, 23]. The goal of cluster assignment inference is to evaluate the marginal probability of the cluster assignment ψiσ
for each vertex, provided that the hyperparameter set, γ and ω, is fixed at the estimated values. To this end, we
iteratively compute the BP equation based on the likelihood p(A,σ|γ, ω, q); that is, for an edge (i, j) ∈ E,

ψi→j
σi

=
1

Zi→j
γσi

e−hσi

∏

k∈∂i\j

(

∑

σk

ψk→i
σk

ωσkσi

)

, (S1)

where ∂i\j indicates the set of neighboring vertices of i in the network except for j, and ψi→j
σi

and Zi→j are the
marginal probability of vertex i without the marginalization from vertex j and its normalization factor as defined in
the main text. The external field, hσ =

∑N
k=1

∑

σk
ψkσk

ωσkσ, is due to the effect of non-edges (i, k) /∈ E, where the

full marginal ψiσi
is

ψiσi
=

1

Zi
γσi

e−hσi

∏

k∈∂i

(

∑

σk

ψk→i
σk

ωσkσi

)

. (S2)

As defined in the main text, Zi is the normalization factor of the full marginal. With these marginals in hand, we
can update the estimate of the hyperparameters to γ̂ and ω̂ as

γ̂σ =
1

N

N
∑

i=1

ψiσ, (S3)

ω̂σσ′ =
1

N2γσγσ′

∑

(i,j)∈E

ωσσ′(ψi→j
σ ψj→i

σ′ + ψj→i
σ ψi→j

σ′ )

Zij
. (S4)

BP INFERENCE OF CLUSTER ASSIGNMENT AND HYPERPARAMETER LEARNING FOR THE

DEGREE-CORRECTED STOCHASTIC BLOCK MODEL

Because the degree distribution of the standard stochastic block model is always the Poisson distribution, it is
sometimes not flexible enough to fit the data. To overcome this issue, the degree-corrected stochastic block model was
proposed [20]. Although the EM algorithm with BP updates was discussed in [26], we write it in a form similar to
those for the standard stochastic block model in the previous section. The likelihood of the degree-corrected stochastic
block model is

p(A,σ | γ,ω, θ) =
∏

i

γσi

∏

i<j

(θiωσiσj
θj)

Aij

Aij !
e−θiωσiσj

θj , (S5)

where θi is an arbitrary hyperparameter for degree correction. By grouping vertices into clusters, the likelihood can
be rewritten as





∏

i<j

1

Aij !





∏

i

γσi

∏

i

θdii
∏

σσ′

ω
1

2
mσσ′

σσ′ e
− 1

2
ωσσ′(

∑

i
δσσi

θi)
(

∑

j
δσ′σj

θj
)

, (S6)

where mσσ′ =
∑

ij Aijδσσi
δσ′σj

is the number of edges between clusters σ and σ′ if σ 6= σ′, and it is doubly counted if
σ = σ′. By assuming that Aij is either zero or one for any vertex pair, we neglect the first product. As a normalization
constraint of θ,

∑

i δσσi
θi = nσ is usually imposed, where nσ is the number of vertices within cluster σ. Then, the

log-likelihood reads

log p(A,σ | γ,ω, θ) =
∑

i

(log γσi
+ di log θi) +

1

2

∑

σσ′

(mσσ′ logωσσ′ − ωσσ′nσnσ′) + const. (S7)
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The BP equation corresponding to (S5) is

ψi→j
σi

=
1

Zi→j
γσi

∏

k\j

[

∑

σk

ψk→i
σk

(θiωσiσj
θj)

Aij e−θiωσiσj
θj

]

. (S8)

The expansion that ignores the O(N−1) factors yields, analogously to (S2),

ψiσi
=

1

Zi
γσi

e−θihσi

∏

k∈∂i

[

∑

σk

ψk→i
σk

θkωσkσi
θi

]

, (S9)

hσ =
∑

k

θk
∑

σk

ψkσk
ωσkσ, (S10)

and the BP equation (S8) for (i, j) ∈ E is approximated as

ψi→j
σi

=
1

Zi→j
γσi

e−θihσi

∏

k∈∂i\j

[

∑

σk

ψk→i
σk

θkωσkσi
θi

]

. (S11)

By setting θi = 1 for every vertex, (S1) is recovered. According to the saddle-point conditions of (S7), the hyperpa-
rameters γσ and ωσσ′ should be updated as (S3) and (S4). For θi of vertex i with degree di,

θ̂i =
di
dσ
, dσ =

1

nσ

∑

i

δσσi
di. (S12)

The cluster assignment σi is determined as that with the maximum value in ψiσ. The Bethe free energy can also be
written analogously to that in the standard stochastic block model.

fBethe = −
1

N

∑

i

logZi +
1

N

∑

(i,j)∈E

logZij +
1

N

∑

(i,j)/∈E

log Z̃ij . (S13)

The first and second terms are

Zi =
∑

σ

γσi
e−θihσi

∏

k∈∂i

[

∑

σk

ψk→i
σk

θkωσkσi
θi

]

, (S14)

Zij =
∑

σσ′

ψi→j
σ θiωσσ′θjψ

j→i
σ′ . (S15)

Note again that we have the symmetry ωσσ′ = ωσ′σ. The non-edge part of (S13) is

∑

(i,j)/∈E

log Z̃ij =
∑

(i,j)/∈E

log
∑

σσ′

ψi→j
σ (1− θiωσσ′θj)ψ

j→i
σ′

≈ −
1

2

∑

σσ′

(

∑

i

ψiσθi

)

ωσσ′





∑

j

θjψ
j
σ′





= L. (S16)

DERIVATION OF THE ERROR FUNCTIONS

In this section, we explain the derivation of the Bayes prediction error EBayes(q), Gibbs prediction error EGibbs(q),
and Gibbs training error Etraining(q). Because L = O(N) and p̂(Aij = 1|A\(i,j)) = O(N−1), the Bayes prediction
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error EBayes(q) is

EBayes(q) = −
1

L

∑

i<j

[

Aij log p̂(Aij = 1|A\(i,j)) + (1−Aij) log
(

1− p̂(Aij = 1|A\(i,j))
)]

= −
1

L

∑

(i,j)∈E

log p̂(Aij = 1|A\(i,j)) +
1

L

∑

i<j

p̂(Aij = 1|A\(i,j)) +O(N−1)

= −
1

L

∑

(i,j)∈E

log
∑

σi,σj

ψi→j
σi

ωσiσj
ψj→i
σj

+ const.+O(N−1)

= −
1

L

∑

(i,j)∈E

logZij + const.+O(N−1), (S17)

where we used

1

L

∑

i<j

p̂(Aij = 1|A\(i,j)) =
1

L

∑

i<j

Zij = const. (S18)

Precisely speaking, the quantity above is a function of the hyperparameters, because
∑

i<j Z
ij is the expectation of

the total number of edges. However, we can assume that its dependence is negligible because the total number of
edges is a macroscopic quantity. Analogously to EBayes(q), the Gibbs prediction error EGibbs(q) is

EGibbs(q) = −
1

L

∑

i<j

[

Aij
∑

σi,σj

p(σi, σj |A
\(i,j)) log p̂(Aij = 1|σi, σj)

+ (1−Aij)
∑

σi,σj

p(σi, σj |A
\(i,j)) log p̂(Aij = 0|σi, σj)

]

= −
1

L

∑

(i,j)∈E

∑

σi,σj

p(σi, σj |A
\(i,j)) log p̂(Aij = 1|σi, σj) +

1

L

∑

i<j

Zij +O(N−1)

= −
1

L

∑

(i,j)∈E

∑

σi,σj

ψi→j
σi

ψj→i
σj

logωσiσj
+ const.+O(N−1). (S19)

Finally, the training error Etraining(q) is

Etraining = −
1

L

∑

i<j

[

Aij
∑

σi,σj

p(σi, σj |Aij = 1, A\(i,j)) log p̂(Aij = 1|σi, σj)

+ (1−Aij)
∑

σi,σj

p(σi, σj |Aij = 0, A\(i,j)) log p̂(Aij = 0|σi, σj)

]

= −
1

L

∑

i<j

[

Aij
∑

σi,σj

ψi→j
σi

ωσiσj
ψj→i
σj

Zij
logωσiσj

+ (1−Aij)
∑

σi,σj

ψi→j
σi

(

1− ωσiσj

)

ψj→i
σj

1− Zij
log(1 − ωσiσj

)

]

= −
1

L

∑

(i,j)∈E

∑

σi,σj

ψi→j
σi

ωσiσj
ψj→i
σj

Zij
logωσiσj

+
1

L

∑

i<j

Zij

1− Zij
+O(N−1)

= −
1

L

∑

(i,j)∈E

∑

σi,σj

ψi→j
σi

ωσiσj
ψj→i
σj

Zij
logωσiσj

+
1

L

∑

i<j

Zij +O(N−1)

= −
1

L

∑

(i,j)∈E

∑

σi,σj

ψi→j
σi

ωσiσj
ψj→i
σj

Zij
logωσiσj

+ const.+O(N−1). (S20)
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This training error can be interpreted as a part of the internal energy, as follows. Let θ be the set of hyperparameters.
Because

∑

σ′

p(A,σ′|θ) = p(A|θ) =
p(A,σ|θ)

p(σ|A, θ)
(S21)

holds for an arbitrary σ, we can decompose the free energy (not the Bethe free energy) − log
∑

σ′ p(A,σ′|γ, ω, q)/N
as

f = −
1

N
log

p(A,σ|θ)

p(σ|A, θ)
. (S22)

Taking the average over a probability distribution q(σ) on both sides, we obtain the following variational expression.

f = −
1

N

∑

σ

q(σ) log
p(A,σ|θ)

q(σ)

q(σ)

p(σ|A, θ)

=
1

N

[

−
∑

σ

q(σ) log p(A,σ|θ) +
∑

σ

q(σ) log q(σ)−DKL (q(σ)||p(σ|A, θ))

]

. (S23)

When q(σ) is the correct marginal, p(σ|A, θ), the KL divergence disappears. We can interpret the first and second
terms as corresponding to the internal energy and negative entropy, respectively, and (S23) as the thermodynamic
relation of the free energy. Substituting the specific form of log p(A,σ|θ), we have

u = −
1

N

∑

σ

q(σ) log p(A,σ|θ) = −
1

N

∑

σ

q(σ)





∑

i

log γσi
+
∑

i<j

(

Aij logωσiσj
+ (1 −Aij) log(1− ωσiσj

)
)





=
1

N

∑

i

∑

σ

qiσ log γσ +
1

N

∑

(i,j)∈E

∑

σσ′

qijσσ′ logωσσ′ +
c

2
+O(N−1), (S24)

where qiσ = 〈δσσi
〉σ and qijσσ′ =

〈

δσ,σi
δσ′σj

〉

σ are the marginalized probabilities, where 〈· · ·〉σ is the average over

q(σ). The second term with qijσσ′ estimated by the Bethe approximation is the essential factor of the Gibbs training
error (S20). Sometimes, the fractions of the size of clusters γ are not included in the log-likelihood. In that case, up
to a constant factor, the Gibbs training error is exactly the internal energy.

INFORMATION MONOTONICITY AND THE RELATIONS AMONG THE ERRORS

Recall that the Bayes prediction error EBayes, Gibbs prediction error EGibbs, and Gibbs training error Etraining

are related via (13) and (14) in the main text. We select the number of clusters q as the point at which the error
function saturates (i.e., stops decreasing) with increasing q. For a smaller q to be selected by EBayes than by EGibbs,

the gap between them, DKL

(

p(σi, σj |A\(i,j))||p(σi, σj |A)
)

, must decrease (see Fig. S1). In this section, we explain the
information monotonicity of the KL divergence and when it is applicable in the present context. Let us consider sets
of variables A = {A1, . . . , Am} and x = {x1, . . . , xn} (n > m). We define the probability distributions p(x) and q(x)
as refinements of the probability distributions p̄(A) and q̄(A), respectively, if there exists a family of sets {xµ}mµ=1

that is a partition of x, i.e., xµ ∩ xµ
′

= ∅ for µ 6= µ′ and ∪µxµ = x, that satisfies p(xµ) = p̄(Aµ) and q(x
µ) = q̄(Aµ)

for any µ. In other words, A can be regarded as the coarse graining of x. An example is given in Fig. S2. Note,
however, that if A is actually constructed as the coarse graining of x, the above condition trivially holds for p̄ = p
and q̄ = q. In general, a family that satisfies the above condition may not exist; even if it exists, it may not be unique.
The information monotonicity of the KL divergence states that, for p(x) and q(x), which are the refinements of p̄(A)
and q̄(A), respectively,

DKL(p||q) ≥ DKL(p̄||q̄), (S25)

which is natural, because the difference between distributions is more visible at finer resolution. Equation (S25) is
deduced by the convexity of the KL divergence. First, we can rewrite the right-hand side of (S25) in terms of p and
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FIG. S1. Schematic picture of the shapes of the error functions. As long as the gap between the Bayes prediction error (bottom)
and the Gibbs prediction error (top) is nondecreasing, the former does not saturate earlier than the latter.

FIG. S2. Example of refinement of probability distributions. We can regard p(x) and q(x) as the refinements of p̄(A) and q̄(A),
respectively, with x

1 = {x1, x2}, x
2 = {x3}, x

3 = {x4, x5, x6}, x
4 = {x7}, and x

5 = {x8, x9} as a possible correspondence.
Note that the correspondence is not unique. If we refer only to q(x) and q̄(A), the assignment of {x1, x2}, {x3}, and {x8, x9}
is exchangeable within A1, A2, and A5. However, p̄(A5) does not coincide with p({x1, x2}) or p(x3); therefore, only A1 and A2

are exchangeable between {x1, x2} and {x3}. The same goes for {x4, x5, x6} and {x8, x9}.

q as

DKL(p̄||q̄) =
m
∑

µ=1

p(xµ) log
p(xµ)

q(xµ)
; (S26)

thus, if

∑

x∈xµ

p(x) log
p(x)

q(x)
≥ p(xµ) log

p(xµ)

q(xµ)
(S27)

holds for an arbitrary µ, then (S25) holds. We split xµ into x1 ∈ xµ and xµ\x1 and denote the corresponding
probabilities as p1 := p(x1), q1 := q(x1), p

c
1 := p(xµ\x1), and qc1 := q(xµ\x1). The right-hand side of (S27) is then

(p1 + pc1) log

(

p1 + pc1
q1 + qc1

)

= (p1 + pc1) log

(

q1
q1 + qc1

p1
q1

+
qc1

q1 + qc1

pc1
qc1

)

≥ q1 log
p1
q1

+ qc1 log
pc1
qc1
, (S28)

where we used the convexity of the logarithmic function. By repeating the same argument for the second term of
(S28), we obtain (S27). Although the KL divergence is our focus, the information monotonicity holds more generally,
e.g., for f -divergence [19]. We now use the information monotonicity to estimate the error functions. In the present
context, the sets of variables A and x correspond to the cluster assignments of different q’s, (σi, σj) with q and (σ′

i, σ
′
j)

with q′ (q′ > q), for a vertex pair i and j. Because the labeling of the clusters is common to all vertices, we require
that the refinement condition is satisfied with the common family of sets for every vertex pair. Under this condition,
the KL divergence is nondecreasing as a function of q, which means EBayes does not saturate earlier than EGibbs.
Similarly, Etraining does not saturate earlier than EBayes. Although the refinement condition we required above is
too strict to be satisfied exactly in numerical calculation, it is what we naturally expect when the algorithm detects
hierarchical structure or the same structure with excess numbers of clusters. Moreover, the argument above is only
a sufficient condition. Therefore, we naturally expect that EGibbs suggests a smaller number of clusters than EBayes

and Etraining quite commonly in practice. Note also that, if we use a different criterion for the selection of q, e.g.,
variation of the slope of the error function, the above conclusion can be violated.
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DETAILS OF THE ALGORITHM AND FURTHER RESULTS FOR REAL-WORLD NETWORKS

The EM algorithm with BP for cluster inference and hyperparameter learning is based on [9]. When there are
multiple local minima in the Bethe free energy, the resulting fixed point varies depending on the initial condition. For
the initial values of the hyperparameters γ and ω, we examined (i) the values estimated by the spectral method using
the normalized Laplacian and k-means algorithm, (ii) equal-size assortative clusters that have equally large values for
the diagonal elements of the affinity matrix, and (iii) equal-size clusters with a randomly polarized affinity matrix in
which only one element has a large value. We tried these three initial states multiple times and selected the one with
the minimum error and Bethe free energy. Note that, although the eigenvectors of the normalized Laplacian might
be localized, because the resulting partition obtained by the Bayesian framework is not necessarily close to that of
the spectral method, we do not regard the emergence of such eigenvectors as a deterioration. More results on the
real-world networks are presented in Fig. S4. The data labels are the same as in the main text. Overall, the Bethe
free energy fBethe, Bayes prediction error EBayes, and Gibbs training error Etraining do not exhibit good saturation.
In contrast, the Gibbs prediction error EGibbs often suggests a reasonable number of clusters. The MAP estimate of
the Gibbs prediction error EMAP also behaves well in many cases; it tends to suggest a slightly larger q.
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FIG. S3. Bethe free energies and various errors of real-world networks: Zachary’s karate club network (karate club) [27],
social network of frequent associations between dolphins (dolphins) [28], coappearance network of characters in the novel Les
Miserables (Les Miserables) [29], network of American football games (football) [30], and coauthorship network of scientists
working on network theory and experiment (network science) [31]. All networks are converted to undirected, unweighted,
simple graphs, and only the largest connected components are analyzed. Left two columns show the Bethe free energy and the
errors for the standard stochastic block model. Right two columns show the same plot for the degree-corrected stochastic block
model. As in the main text, the standard errors of the error functions are plotted as shadows.
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FIG. S4. More examples of real-world networks: adjacency network of common adjectives and nouns in a novel (word
adjacencies) [31], metabolic network of C. elegans (c-elegans) [32], and network of hyperlinks between blogs on US politics
(political blog) [33]. The panels are placed in the same order as in Fig. S4. The word adjacencies network is known to have a
bipartite structure. Again, the networks are converted to undirected, unweighted, simple graphs. The c-elegans network and
political blog network have hub structures, which are inconsistent with the standard stochastic block model; this inconsistency
can be observed clearly for the political blog network. Although the Gibbs prediction error EGibbs often saturates at a value
slightly larger than the number of ground-truth communities, its performance is much better than that of the Bethe free energy
and other error functions, as is the case for other real-world networks.


