
Sociometry is concerned with networks of relationship among groups of 
people. If the group is very large, the work of tracing all the relationships 
becomes tedious, and the task of describing the resulting net precisely be- 
comes impossible. Here the problem of such large sociometric nets is ap- 
proached with probabilistic and statistical methods. 
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HE use of mathematical models to T describe social structure has certain 
inherent advantages. A model which de- 
scribes all the essential features of a specific 
social organization may have a more general 
applicability in that it may be applied 
directly or with minor changes to describe 
the structure of similar organizations. In  
fact, such differences as are found by fitting 
similar models to a group of organizations 
may permit a quantitative differentiation 
into separate classes of what might other- 
wise have been considered identical struc- 
tures. 

It is our purpose in this study to apply a 
mathematical description to a body of data 
obtained by querying the population of a 
particular junior high school in Ann Arbor, 
RI ichigan, as to their friendship preferences. 
It is not expected that the actual numbers 
and detailed structural properties obtained 
in this study will be duplicated in any other 
junior high school, but certainly some of 
the gross structural properties which were 
found in this situation should apply to other 
similar organizations; and the particular 
approach descrihed here could serve as a 
prototype for other similar studies. 

DEFINITION OF A SOCIOGRAM 
h sociogram is a description of a popula- 

tion in terms of relations between pairs of 
people in that population. This relation 
may be “likes” (used in this study), “dis- 
likes,” “chooses as work companion,” or 
any of a number of others. This relation 
may be bivalent, e.g., “present or absent” 
or “positive or negative”, or it may be 

multivaleiit, e.g., “likes very much,” “likes 
a little,” “doesn’t know,” “dislikes,” and 
l 1  hates.” 

The set of values that the relation between 
A and B may take on is called the “range” 
of the function. The actual values are often 
expressed as numbers; 1 if the relation is 
present, 0 if it is absent, -1 if it is nega- 
tive, -2  if it is strongly negative, etc. The 
domain of the function is the set of all 
ordered (AB # BA) pairs in the population. 
At least temporarily, A may like B while B 
dislikes A ,  so we must distinguish between 
the pair ( A ,  B) and the pair (B, A). 

If a relation is bivalent and it is the only 
one being considered, the sociogram can be 
represented either by a directed linear graph 
or as a matrix (atJ),  where the entry a,J 
is the value of the relation which obtains 
between the ordered pair (i, j). 

If the population is very large, the speci- 
fication of the complete sociogram may be 
impractical; and even if such a description 
were available, the computational problems 
of treating linear graphs or matrices of such 
magnitude would be too formidable even 
for modern high-speed computers. The 
theoretician’s interest, however, is seldom 
focused on a particular large sociogram 
(although particular small sociograms may 
sometimes be of great interest). Rather, the 
interesting features of large sociograms are 
revealed in their gross, typical properties. 
Thus one seeks to define classes of socio- 
grams, or else to describe them by a few 
well-chosen parameters. It is perhaps natu- 
ral to consider statistical parameters, since 
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one is interested in trends or averages, or 
distribut,ions rather than part,iculars. 

As for the taxonomy of large sociograms, 
this apparently involves problems of great 
complexity. It would seem offhand that a 
taxonomy of “net’s” (t,he mathematical 
representations of sociograms) would arise 
nat,urally from the considerat’ion of t’he 
statistical parameters, e.g., as a continuum 
of nets in the parameter space. But the 
sta,tist,ical paramet’ers themselves are singled 
out on the basis of t,axonomic considerations, 
which have yet to be clarified. The nature 
of this met,hodological difficulty will become 
apparent. in the course of our discussion. 

The importance of an adequat’e theory of 
nets for yuantitat,ive sociology and social 
psychology is obvious. The social behavior 
of an individual is certainly strongly depend- 
ent on the behavior of ot’hers and perhaps 
most strongly on t,he behavior of certain 
ot,hers. The impact’s upon an individual of 
t,he influence of other individuals follow t’he 
paths determined by t,he relevant socio- 
metric net.. These paths may be lines of 
aut.horit.y, attraction, emot,ional involve- 
ment, Ctc. Also, the social behavior of the 
entire population is dependent on such 
pat,terns of relations, barring the trivial case 
when every member of the group is ent’irely 
and directly under the command of an out’- 
side aut’hority, e.g., a plat’oon executing in 
unison t,he commands of a drill sergeant,. 

The spread of an attitude or of a piece of 
informat’ion through a large population is a 
case in point. There exist fairly sophist.icsted 
mat.hematiea1 t,heories of cont.agion, in 
which many of the obvious parameters are 
included, e.g., infectivity, immunit’y, incu- 
bation lag, recovery or removal rates, etc. 
Missing from most (t,hough not all) of these 
theories is a consideration of the contact 
struct’ure of the population. By and large, 
in most theories of contagion, t,he popula- 
t,ion is assumed to be “well-mixed.” That is 
t o  say, the probabilit,y of contagion in a 
given period of t’ime bet’ween any t’wo mem- 
bers of the popiilat,ion is taken as a param- 
eter which may be a function of t,imr (say 
t,he total duration of the contagion or the 
t,ime since “infec,tion” of the individuals 
concerned) but’ is the same for all pairs, 

implying that the probability of contact is 
independent of t.he pair. 

To whatever extent. this may be a fair 
approximation to a realist,ic theory of con- 
tagion, certainly an important next step is 
the consideration of cases where the prob- 
ability of contact is not’ the same for every 
pair. This involves the consideration of the 
contact structure of the net. 

The assumption of equiprobability of con- 
tact or well-mixedness is equivalent to t’he 
assumption of random contact st,ructure. 
A random net can be defined by the process 
of its construction as follows: 

From each individual or “node” let there 
be a choices or “axones” issuing.l Each of 
these axones settles on a target node within 
t,he population. Which particular node a 
particular axone settles on is determined by 
a chance device select,ing with equal prob- 
ability from the entire population. The 
resulting net is a “random net.” with an 
“axone density” of a. 

A net, which is not random will be called 
a “biased” net. Obviously a random net is :L 
special case of a biased net in which all the 
biases are zero. It is not easy, however, to 
define the various biases rigorously even 
though t,heir nat’ure can be intuit’ively 
grasped. For if the choices of the terminal 
points of the axones are not equiprobable, 
there arc! innumerable other ways in which 
t’hey can be assigned. In  part’icular, they 
can be assigned “absolutely” or “relat,ion- 
ally.” An absolute assignment is one where 
the probability assigned t,o a node of being 
the t.arget of an axone depends only on the 
former node. A relational assignment is one 
where t’his probability depends on bot’h the 
potential target and the origin of the axone. 

A bias would operate “absolutely” if 
sociometric choices depended entirely on 
the personal characteristics of the indi- 
viduals, c.g., on t’heir “popularity.” On the 
other hand, if a bias mere the reflect’ion of a 
“social distance” between the individual 
choosing and the individual chosen, one 
would have a “relational” bias. 

1 We will assume that a is equal for every mein- 
ber of our nets, but the concept of random nets 
map he generalized by allowing a to  be r:itidoin 
also. 
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Several different forms of bias have been 
investigated (Rapoport, 1951, 1953, 1956, 
1937; Solomonoff & Rapoport, 1951) and 
one previous experiment dealing with the 
determination of bias (Dodd, Rainboth, &. 
Xehnevajsa, unpublished) has been reported. 

THE DATA COLLECTION FOR THE 
PRESENT STUDY 

To develop further the techniques used 
in the previous investigations, data for the 
sociogram of a junior high school in the 
Ann Arbor area were collected shortly after 
the beginning of the 1960-61 school year. 
Each pupil in both schools was asked to 
write his name, age, grade, and home room 
number on a card and to fill in the blanks 
in the statements: 

“1. My best friend in (name of school) Junior 
High School is 

2 .  My second best friend. . . 
8. My eighth best friend. . . is 

Naturally some pupils were absent the first 
day and an attempt was made to cover 
thcm by returning a week later. Even so, 
there remained some absentees and some 
children who, though present, did not fill 
out their cards. ill1 of our analyses so far 
show that these “absentees” are a random 
samplc from the population and so no bias 
was introduced by this less-than-perfect 
data gathering. 

Of the many quantitative properties 
which may be studied in such a large socio- 
gram, we will report in this paper on just 
two, the popularity distribution, and the 
“connectivity” of the net. The first of these 
is a distributional property and the second 
a structural one. Other measures were 
applied as well and some of these may be 
reported in a later paper. 

DISTRIBUTION OF POPULARITY 

Tabulations were made of the number of 
individuals who received a given number of 
votes as first, second, t’hird, etc., friend. 
This is shown in Table 1.  According to this 
tabulation 380 persons received no votes as 
first friend, 248 received 1 vote as first 

TABLE 1 
XGMBER OF PERSONS RECEIVING GIVEN NUMBER 

O F  VOTES 

Number 
of votes 
received 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
Unused 

bnllots 

- - 

-2 e.2 .* & 
b. 
- 

380 
284 
136 
42 
11 
5 
0 
0 
0 
0 
1 

98 

- - 

5- c a  
z.2 
3- - 
399 
257 
145 
33 
19 
3 
1 
1 
1 

101 

- - 

P 
2 9  .-.- p 
- 

413 
263 
112 
38 
22 
10 
0 
1 

113 

- - 

c u  - f i  

5.2 
2- 
- 

413 
265 
116 
35 
18 
8 
3 
1 

120 

- - 

-0 

5.G s - 
407 
257 
133 
41 
11 
10 
0 
0 

119 

- - 

P 

M ’i: z- 
417 
252 
122 
50 
12 
2 
2 
2 

5 9  

- 

129 

- - 

55 
9 9  
2 ’i: 
0- 

v1 
- 

418 
264 
118 
35 
17 
3 
4 
0 

147 

friend, etc., 1 person receiving 10 votes as 
first friend. 

The only consistent difference among 
the votes received for first, second, third, 
etc., friend as revealed by this table is the 
gradual increase in number of persons receiv- 
ing zero votes in going from the first friend 
to eighth friend choices. This is largely 
accounted for by the increase in unmarked, 
missing, and mistaken ballots as the voting 
progressed from the first friend to the eighth 
friend. There were 98 such ballots in the 
first friend balloting and 173 in the eighth 
friend. Thus the increased number of persons 
receiving one and two votes as the first 
friend are transferred to the zero vote cate- 
gory in the eighth friend balloting by 
approximately the increased number of 
unused ballots. 

Th? nature of the distribution func’ion 
A study of the mathematical form of the 

distribution of votes among the school 
population can give some insight into the 
process of choice used by the students in 
picking friends. For example, if everyone 
in school were equally popular and all 
students submitted ballots, then we would 
expect an average of one vote per person for 
the nth friend and the distribution of the 
number of zero, one, two, three, etc., votes 
would be given by the Poisson distribution - 

Ne-I Ne-’ with expected value 1;  Ne-I, ~ - ~- I !  , 2 !  ’ 
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distribution 

Ne-' , etc., where N is the total school popu- 

lation and e is 2.718. In  Table 2 we have 
fitted Poisson distributions to the observed 
vote distributions for second and fourth 
friends using the expected values found 
from the data of votes per person of 0.882 
and 0.860. Comparisons were also made for 
ballots for the other friends but these two 
sets of data typify the results. In  all cases 
the Poisson distribution predicts a higher 
than observed value of one vote and lower 
values of zero and four, five, six and more 
votes. A Chi-square test shows that dis- 
crepancies of this magnitude are beyond the 
.05 % level of chance fluctuations. 

Greenwood and Yule (1920), in a study 
of accident statistics, have suggested a 
modification of the Poisson distribution to 
take into account the fact that not every 
person has the same expectation (of receiv- 
ing a vote). Thc probability of receiving x 
votes is then given by 

3!  

m 

(1) p ( z )  = 1 p(., d p ( 4  ( J Z .  

p(x ,  z) is the Poisson distribution with ex- 
pectation x ,  and p ( z )  is the probability that 
a person chosen at  random has an cxpecta- 
tion lying hetween x and x + dx. For the 
function p ( z )  they chose the I'cnrson Type 
111 function 

p ( x )  = K C - y " Z a - 1  ( 2 )  
where a and y are constants, and the nor- 

Yule distri- Ohserved Poisson 
value distribution bution 

malization constaiit, K = __ . Evaluation 

of the function p(z)  with the distribution 
function given in (2) leads to the negative 
binomial distribution in (3) below : 

v4 

_ _ _ ~  

413 
265 
116 
35 
18 
8 
3 
1 

O I  

(3 )  p ix )  = (-;)(qy=L) r + l  r + l  

363 
313 
134 
38.5 
8.25 
1.45 

.18 

.02 
- 

The distribution (3) is sometimes called the 
Compound Poisson but' since the Poisson 
distribution can be combined with other 
types of weight'ing funct.ions, we shall call 
it t,he Greenwood-Yule distribution. 

An entirely different, derivation of (3) may 
be obtained from the theory of st.ochastic 
processes, where one assumes a time-depend- 
ent process such that the probability that' 
at, any given t'ime, t ,  an event will occur in 
t.he int.erva1 (t, t + dt) increases linearly 
with the number, x:, of the events which 
have occurred in (0, t ) ,  and for a given 
valuc of IC the probahility decreases with 
increasing value of t .  This particular con- 
tagious distribution is callcd a Polya process 
and has been used t'o describe t'he morbidity 
in epidemics. It is int.erestiiig that t,he 
idcnt.ica1 distribution can result, from two 
very different' processes; Greenwood and 
l.'ule assume that, the event's are mutually 
independent, and that the intensities vary 
from individual t.0 individual, while Polya 
assumes that' the events are st'ochastically 
dependent), t'he occurrence of an event 
increasing t'he probability that further 
events will occur. Thus, a good agreement 

Number of votes 
per person 

TABLE 2 
COMPARISON OF OBSERVED AND FITTED VALUES 

Second Fr:end Fourth Friend 

Observed 
value 

399 
257 
145 
33 
19 
3 
1 
1 
1 

356 
314 
138 
40.5 
8.90 
1.54 

.23 

.029 ~ 

.0032 

399 
267 
122 
46.6 
16.2 
5 .3  
1 .6  

.49 

.15 

Greenwood- 
Yule distri. 

bution 

420 
253 
114 
45.9 
17.2 
G.2 
2.18 
. 75 
- 
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TABLE 3 

I )I STRI B  TIO ON 
COIVSTkNTS FOR THE GREENWOOD-YULE 

_- 
Friend Y ff 

4.45 
3.18 
2.41 
2.35 
3.59 
2.91 
2.99 
2.53 

3.95 
2.80 
2.09 
2.02 
3.09 
2.47 
2.48 
2.18 

Average all 
friends 3.03 2 . N  

bctwwn an observed distribution and the 
distribution (3 )  may be interpreted in two 
ways, and further analysis will be needed to 
determine which model offers the best 
txplanation for the generation of the 
observed values. 

The distribution (3)  wa8 tested against 
the same set of data shown in Table 2 for 
which the Poisson distribution gave a poor 
fit. The constants y and CY were evaluated 
iising the observed means, 2,  and variances, 
s?, according to  the expressions2 

The fitted values were then calculated and 
the results are presented in Table 2 .  The 
fit to the observed value is rather close. The 
Chi-square test shows agreement with the 
observed value at the 20% level for the 
second friend data and 60% level for the 
fourth friend. The fitted values for the 
other friends were all within this range of 
closeness. 

The values of a and y calculated from 
the relations (4) above have been tabulated 
in Table 3 .  Except for the fact that the 
values for the first friend are slightly higher 
than for the other choices, there is no 
noticeable trend in the values. The prob- 
ability density function, p ( x ) ,  of equation 
( 2 )  has been plotted in Fig. 1 for the first, 
third, fifth, and seventh friend choices. 
The ciirves are seen to be extremely close 

* For approximate methods of fitting the nega- 
tive hinomid see Hald (1955, p. 727-731). 

together with no significant trend in going 
from the higher to the lower order of friends. 
The close agreement in the “Popularity 
Intensity Functions” among the different 
orders of friends suggests that an average 
curve derived from the data can be used to 
describe the situation for any order of 
friend. One might also infer from this that 
if a certain person has a high intrinsic 
“popularity intensity” for first friend, he 
would have this same value for second, 
third, etc., friend. 

If we make the assumption that the same 
intensity function applies to all order of 
friends, then it is possible to calculate the 
joint probabilities of being chosen x1 times 
as first friend and xz times as second friend. 
This will be given by 

( 5 )  p ( x d d  = p h ,  Z)P(XI, ZMZ) dz 

substituting the Poisson functions and the 

OD 

EXPECTED VOTE PER PERSON 

FIG. 1. Popularity intensity functions obtained 
from best fit of Greenwood-Pule function t o  
observed popularity distribution. 
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First friend 0 1 
___.__ 

Second friend Obs. Calc. Obs. ~ Calc. 
~ ~ _ _ _ _ _ _ _ ~ _ _ _ _  
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2 3 1  

Obs. I Calc. Obs. 

TABLE 4 

NUMBER OF VOTES AS SECOND FRIEND AFTER RECEIVIXG A STATED NUMBER OF 
VOTES AS FIRST FRIEND 

COMPARISON OF OBSERVED A N D  CALCULATED NUMBER OF PERSONS RECEIVING GIVEN 

~ _ _  
Calc. 

14.3 
15.5 
9.5 
6.6 

____ 
Obs. 

4 
2 
3 
1 

193 
114 
56 
10 
5 
2 

Obs. 

1 
1 
2 
0 
1 
0 

__ 

197 
121 
46.5 
14.3 
3.9 
1 .0 

Calc. 

1.0 
1.3 
1.0 
1.4 
1.8 
1.8 

___ 
131 
91 
46 
11 
5 
0 

46.5 
43.0 
23.1 
9 .5  
3.3 I 1.0 

121 
93 
43 .O 
15.5 
4.8 
1.3 

16 
12 
8 
4 
0 
1 

53 
37 
30 
7 
7 
0 

Intensity function from (2) we get 

r ( a ) ~ l  ! x2 1 

Table 4 compares the values calculated 
from this formula for thenumber of per- 
sons receiving a given number of votes as 
second friend after having received 0, 1, 2, 3,  
4, or 5 votes as first friend. The values of 
a and y were obtained by fitting the Green- 
wood-Yule function to the first friend data. 
The observed values are shown side by side 
in the same table. Although the observed 
and calculated values are quite close, a 
model assuming complete independence 
between the choice of first and second friends 
gives almost as good agreement. For ex- 
ample, 380 persons received no votes as 
first friend and 399 no votes as second 
friend. Assuming complete independence 
and random choice we would expect 
380 x 399 

850 
= 179 t'o receive zero votes for 

first and second friend. This is not quite as 
good a fit to 193 as the 197 calculated by 
formula (6) but is actually fairly close. The 
number expected to receive 1 vote for both 
first and second friend on the assumption of 
random choice is 88 compared with 93 for 
the correlated choice model. Again the 
observed value, 91, falls between the two 
calculated values. 

Apparently the observed Intensity Func- 
tion produces only a minor perturbation in 

4 

Calc. 

3.9 
4.8 
3.3 
3.4 
2.9 
1.8 

5 

TABLE 5 

OF VOTES FOR ALL EIGHT FRIENDS 
N LibrBER O F  PERSONS RECEIVING GIVEN NUMBER 

Observed 
Number of votes Calculated number 

votes 

0 2G 29.7 
1 43 56.5 
2 61 74.5 
3 82 83.2 
4 95 85.0 
5 83 81.8 
G 93 75.4 
7 68 67.5 
8 49 58.9 
9 63 50.5 

10 42 42.6 
11 32 35.5 
12 30 29.2 
13 17 23.8 
14 12 19.3 
15 19 15.5 
16 9 12.4 
17 5 9.9 
18 6 7.8 
19 7 6.2 
20 1 4.8 
21 5 3.8 
22 2 2.9 
23 2 2.3 
24 2 1.8 
25 1 1.4 
26 1 1 .0 
27 1 .8 
28 1 .6 
29 1 . 5  

the random choice model if only the first 
and second conditional choice probabilities 
are considered. However, we can also calcu- 
late the distribution of the number of votes 



STUDY OF A LL4RGE: SOCIOGIlrlM 285 

rcccived for all eight friends on the assump- 
tion of an average Intensity Function which 
is identical for all friends. The convolution 
integral in this case can be reduced to the 
following rather simple expression: 

where n is the number of votes received for 
all eight friends, a and y are the average 
values from Table 3, and P8(n) gives the 
probability that a person received n votes 
for all eight friends. 

The observed and calculated values have 
been tabulated in Table 5 .  The agreement 
between formula (7) and the observed 
values is excellent. A Chi-square test gives a 
probability of 0.55 that the observed varia- 
tions are due to chance. The independent 
choice model would predict only two persons 
to  receive zero votes for all eight friends 
compared with the observed value of 26 
and the calculated value of 30 from formula 
(7). 

The conclusion to be drawn from this 
analysis is that the observed distribution of 
votes among the school population can be 
satisfactorily explained by the Compound 
Poisson distribution of Greenwood and 
S7ule or alternatively as a Polya “Con- 
tagion Process.” Whatever the mechanism 
leading to this result, it may be viewed as 
though each person had a characteristic 
popularity intensity which is the same for 
all ballots from the first to eighth friend. 

CONNECTIVITY 

Consider a net (random or biased) with 
axone density a (small) and population N 
(large). Arbitrarily select a small fraction of 
nodes p a .  IJrom these nodes apoN axones 
issue, which terminate on some set of nodes. 
Among these target nodes, some may be 
members of the starting set. Others will be 
newly contacted. Call the fraction of the 
population represented by the newly con- 
tacted nodes p , .  Continue the process, 
calling each newly contacted fraction p~ , 
p ,  , . . p ,  . . . . Thus the nodes represented 

by p i  are those t times removed from the 
starters. Eventually some p ,  will be zero 
because all of the nodes contacted on the 
previous remove will be among the 
p , ( j  = 0, I . - - t - I), and no new ones will 
have been contacted. At this point our 
tracing procedure is ended. 

We shall be interested in the expected 
values of p t  and of the derived variables. 

X = C p,  and its asymptotic value, 

X , ,  as functions of a and of the bias 
parameters. 

The expected values of p t  in a random net 
have been previously derived by one of us 
(Rapoport, 1951). They are given by the 
f ollo wing iteration formula 

(8) p,+l = (I - X J  (I - e-’P’). 

It has also been showii (Solomonoff &- 
Rapoport, 1951) that the expected cumu- 
lated fraction of the population so traced 
satisfies the transcendental equation 

(9) X ,  = 1 - (1 - po)e-aX,. 

If the number of possible targets for each 
axone is reduced from N (the total popula- 
tion) to q (the size of an “acquaintance 
circle”), formulas (8) and (9) still hold 
even if q << N ,  so long as q >> 1 and provided 
the intersection of the acquaintance circles 
of two individuals who are themselves 
acquainted has the same expected number 
of individuals in common as the intersection 
of two arbitrarily selected acquaintance 
circles. 

On the other hand, if we assume that the 
acquaintance circles of two acquainted 
individuals are identical, this amounts to 
the assumption that the entire population 
“falls apart” into a set of mutually exclusive 
cliques of size q. If within the cliques, 
targets are arbitrarily chosen, we have 
several small random nets instead of a 
single large one. In a previous treatment of 
the problem (Rapoport, 1953), bias was 
defined in such a way that the “overlap” 
between the acquaintance circles of ac- 
quainted individuals was denoted by a 
parameter 8, 0 < 0 6 1. The case 6 = 0 
corresponded to the random net, while 
8 = 1 was a reflection of a very tight bias 

t 

j = O  
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in which friends of friends were very likely 
(but not certain) to be friends. The itera- 
tion formula for the biased case will then 
be given by an expression identical to (8) 
except that an “apparent axone density” (Y 

replaces the a in (8). After the first remove cy 
is given by the approximate expression 

(10) 

It is substantially independent of t and 
varies from 1 - c - ~  for 0 = 1 (strongest 
bias) to a for 8 = 0 (random net). 

a E I - e-ae + (1 - 0)a. 

“TRACING” THE SOCIOGRAM 

The information obtained from the 
ballots returned by the students was coded 
and tabulated on punched paper tape so 
that it could be stored on the drum of an 
LGP 30 computer. A number of different 
programs were prepared for the analysis of 
the net structure. The particular data 
reported on in this paper were obtained by 
starting with a random sample of nine 
ballots and tracing two choices at a time, 
for example the nth and (n + 11th friends. 

The number of new nth and (n + 1)th 
friends contacted on each remove was deter- 
mined until the chain ended either on a 
person previously contacted or a person who 
did not return a ballot. The whole procedure 
was then repeated on another random sample 
of nine. A total of a t  least 30 such random 
samplings were made and the chain of nth 
and (n + 1)th friends was traced forward 
each time until no further new contacts 
were made and the chain terminated. 

Since no behavioral process is involved 
in such a tracing, obviously explanations 
baaed on motivation and the like should not 
enter into the theory. Therefore we expect 
that if the theory of biased nets leading to 
equation (10) is correct, then the equation 
involving 0 as a constant shonld adequately 
describe the tracing. 

If we confined ourselves to a tracing over 
the first and second friends only, we obtained 
an average a of about 1.75 instead of 2.0, 
because of the axones “lostj” in the blanks. 
(Absentees appeared in our population as 
cards with no blanks filled.) This reduction 
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FIG. 2. Cumulative Number of New Contacts as a Function of the Xumber of Removes Compared with 
Random Net Theory. First and Second Friends. 
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FIG. 4. Cumulative Number of New Contacts Compared with Biased Net Theory e = 0.77 and N* = 

parameters: N ,  the total population; a,  the 
effective axone density, to be estimated by 
comparing po  and pl via equation (8); and 
8, to be estimated so as to give the best fit 
to the remaining curve. 

Fig. 2 shows the comparison of the data 

601. First and Second Friends. 

of the “intended” a to an “effective” a makes 
for no theoretical difficulty since, as we have 
noted, only the expected number of axones 
appears as a variable in the successive steps 
of our tracing. 

Thus we have to deal with the following 
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FIG. 5.  Cumulative XLiiiiber of New Contacts Compared with Biased Net Theory 8 = .G7 and N* = 
861. Second and Third Friends. 
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FIG 6 .  Cuninlative Xilniber of Piew Contacts Compared with Biased Kpt Theory e = .50 and ;”\’* = 
620. Third and Fonrth Friends. 

wit’h the null hypothesis, namely that the marked improvement in t,he fit, hut still a 
sociometric choice patt,erii constitutes a sizeable discrepancy between the theorebi- 
random net’. There is little doubt’ that, the cally predicted arid t’he observed curves 
hypothesis should be rejected. for X t  . 

Fig. 3 shows tjhe same comparison wider It. appears, t.herefore, that’ “cliquishness, ” 
thc assumphion of a bias given by 8 = 0.8 as measured by a single paramet’er, does not, 
(henw a ( t )  = 1.15 for t 3 1). There is a entirely account for the discrepancy between 
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implied by our acquaintance circle overlap 
parameter 0. We can, however, introduce a 
bias governing the absolute assignment of 
axones to targets, i.e., a “popularity” bias, 
which, one feels intuitively, ought to be 
independent of relational biases. 

The question before us is how such a 
bias would be reflected in the trueing formula. 
Again a lack of rigorous theory compels us 
to venture a guess, namely, that the intro- 
duction of a popularity bias is tantamount 
to a reduction of the “effective” population, 
i.e., the value of N which is implicit in the 
calculation of the p i  and I L ~ .  This inter- 
pretation is obvious in the special extreme ’ 
case where the entire population consists of FIG. 7. Cumulative number of new contacts 

conlpared with biased net theory fl = .10 and t ~ o  c1aSses, the “popu~ar” and the “un- 
S* = 631. Fourth and fifth friends. popular,” meaning that the unpopular 

NUMBER OF REMOVES 

FIG. 8. Cumulative Number of New Contacts Compared with Biased Net Theory 0 = 30 and N* = 
700. Seventh and Eighth Friends. 

the data obtained from average tracings 
and the expected tracing curve for a ran- 
dom net. The search for a second parameter 
seems indicated. But we caiinot introduce a 
second relational parameter without risking 
a contradiction, for we have no way of 
knowing what relational biases are already 

receive no sociometric choices, so that they 
all go to the popular. 

Less extreme forms of the popularity bias 
should have a similar effect, namely a reduc- 
tion of the “effective” population as it is 
reflected in the tracings. Introducing now 
N* = 601 instead of N = 861 to calculate 
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601 
861” 
620 
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___ 

TABLE 6 
MEASURED VALUES OF CONSTANTS IN BIASED 

NET THEORY 

Rank order 
of friends 1 a 

a This value s e e m  momalou It appears to 
indicate that popularity bias does not operate in 
the tracings of second and third friends. The 
value 861 was chosen as giving the best fit under 
the restriction N* 5 N and this fit is still the 
worst among the tracings. The remaining values 
of N* increase with numerical rank order suggest- 
ing a weakening of the popularity hias. This 
apparently is not the case since direct examination 
of the distributions of sociometric choice show 
no such effect. 

the p ,  from the observed P, , we obtain the 
theoretical curve for the average tracing 
through friends 1 and 2 as shown in Fig. 4. 

We have now obtained the best possible 
fit to the data on an average tracing through 
first and second friends by adjusting two 
free parametcrs, a and N*.  There are, how- 
ever, some restraints on both parameters. 
The parameter a is determined by e and a 
(cf. equation 10). Of these, 0 lies between 0 
and 1, and a can be empirically determined 
by counting failures to name friends of the 
respective rank orders. It can also be com- 
puted from 

The two quantities agree closely throughout. 
The “effective” population N* is subject 

to the restriction N* < N (iV = 861), by 
our argument above concerning the nature 
of the popularity bias. Aside from these 
restrictions, 0 and N* (hence a and N*)  are 
free parameters. Curves as smooth as the 
cumulative tracing curves can probably be 
comfortably fitted by two almost free 
parameters regardless of the underlying 
model, so long as the mathematical function 
to be fitted has the required properties (i.e., 

almost a constant slope initially and hori- 
zontal asymptote). Thus the fits in them- 
selves do not, imply a strong corroboration 
of our theory. Intuitively we would expect, 
however, t’hat 0 should monotonically de- 
crease as the numerical rank order of the 
friends through which t,racings are made 
increases. This is because one would expect 
the friendship relat’ions, and therefore t,he 
overlap bias of t’he acquaintance circles, to 
become less tight wit,h increasing numerical 
rank order. 

Since we have interpreted N* as an “effec- 
tive” populat,ion from which choices are 
act,ually made, we would not expect it to 
vary greatly with increasing rank order of 
the friendship, since, as we have previously 
shown, the popularity int.ensity function 
does not change significantly in going from 
the first t’o the eighth friend. 

The data which are exhibited in Figs. 5-8 
show comparisons bet ween t,heoretical curves 
and data in tracings through successive 
consecutive pairs of friends. Table 6 sum- 
marizes the behavior of the parameters a, a, 
0, and N*. 

We see that a [calculated from ( l l ) ]  re- 
mains almost exactly constant in the first 
four tracings and drops somewhat in the 
last’. This drop is exactly account.ed for by a. 
dircct, count, of “failures t’o name.” The 
paramet,er a increases in t’he first four trac- 
ings but remains shout t’he same in t’he 
7-8 tracing as in 4-5. However, since a 
decreases, e also decreases. The monotone 
decrease of 0 wit’h rank order makes reason- 
able our interpretat’ion of that parameter 
as a measure of tightness of acquaintance 
circles and corroborates our hypothesis con- 
cerning t,he relaxation of this tightness with 
increasing rank order. The effective popula- 
t.ioii N*,  on t.he ot,her hand, tends to increase 
st,eadily somewhat with rank order of the 
friendship choice, except’ for one anomalous 
value in t’he 2-3 tracing. Since we woiild 
expect’ no increase because of tjhe constancay 
of the popularity bias, the significance, if 
any, of this variation cannot be explained 
in terms of our present t’heoretical frame- 
work. 
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There are two equal and eternal ways of looking at this twilight 
world of ours: we may see it as the twilight of evening or the twi- 
light of morning; we may think of anything down to a fallen acorn 
as a descendant or as an ancestor. There are times when we are 
almost crushed, not so much with the load of evil as with the load 
of the goodness of humanity, when we feel that we are nothing 
but the inheritors of an ancient splendor. But there are other times 
when everything seems primitive, when the ancient stars are only 
sparks blown from a boy’s bonfire, when the whole earth seems so 
young and experimental that even the white hair of the aged, in 
the fine Biblical phrase, is like almond trees that blossom, like the 
white hawthorn grown in May. That it is good for a man to realize 
that he is “the heir of all the ages” is pretty commonly admitted; 
i t  is a less popular but equally important point that it is good for 
him sometimes to  realize that he is not only an ancestor, but an 
ancestor of primal antiquity; it is good for him to wonder whether 
he is not a hero, and to  experience ennobling doubts as to whether 
he is not a solar myth. 

G. I(. CHESTERTON, A Defence of AVonsense 


