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Heterogeneous k-core versus bootstrap percolation on complex networks
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We introduce the heterogeneous k-core, which generalizes the k-core, and contrast it with bootstrap percolation.
Vertices have a threshold ri , that may be different at each vertex. If a vertex has fewer than ri neighbors it is pruned
from the network. The heterogeneous k-core is the subgraph remaining after no further vertices can be pruned.
If the thresholds ri are 1 with probability f , or k � 3 with probability 1 − f , the process can be thought of as a
pruning process counterpart to ordinary bootstrap percolation, which is an activation process. We show that there
are two types of transitions in this heterogeneous k-core process: the giant heterogeneous k-core may appear
with a continuous transition and there may be a second discontinuous hybrid transition. We compare critical
phenomena, critical clusters, and avalanches at the heterogeneous k-core and bootstrap percolation transitions.
We also show that the network structure has a crucial effect on these processes, with the giant heterogeneous
k-core appearing immediately at a finite value for any f > 0 when the degree distribution tends to a power law
P (q) ∼ q−γ with γ < 3.
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I. INTRODUCTION

Bootstrap percolation and the k-core are closely related
concepts and, in fact, it is easy to confuse the two. Both belong
to a new class of systems with hybrid phase transitions, yet it
can be clearly shown that the two processes do not map onto
each other. Here, we elucidate the relationship and differences
between these two concepts by introducing a generalization of
the k-core, the heterogeneous k-core.

The k-core is the maximal subgraph in which all vertices
have an internal degree of at least k [1]. It has proved
to be a useful tool, giving insight into the deep structure
of complex networks [2–6], and has found applications in
diverse areas, from rigidity [7] and jamming [8] transitions
to social interactions [9], protein networks [10], real neural
networks [11,12], and evolution [13]. The k-core has been
extensively studied on treelike networks, starting with Bethe
lattices [14,15] and random graphs [16–18], before finally
being extended to arbitrary degree distributions [5,19–21].
Hyperbolic lattices have also been considered [22]. Other
studies, mostly numerical, have considered the sizes of culling
avalanches [23–25]. Results on nontreelike graphs have been
largely numerical [26,27], although some analytic results that
incorporate clustering have recently been obtained [28,29].
At the same time, bootstrap percolation has emerged as a
useful model for a variety of applications such as neuronal
activity [30–32], jamming and rigidity transitions and glassy
dynamics [33,34], and magnetic systems [35]. In bootstrap
percolation, a set of seed vertices is initially activated and other
vertices become active if they have k active neighbors. This
process has been investigated on two- and three-dimensional
lattices (see Refs. [36–39] and references therein). Bootstrap
percolation has been studied on the random regular graph
[40,41], on infinite trees [42], and, most recently, on general
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complex networks [43]. Finite random graphs have also been
studied [44]. An interesting alternative formulation is the Watts
model of opinions, in which the threshold is defined as a certain
fraction of the neighbors rather than an absolute number [45].
These processes may also be generalized so that the thresholds
may be different at each vertex [43,46].

Here, we introduce a generalization of the k-core, the
heterogeneous k-core. In the heterogeneous k-core, each vertex
i in a network has a hidden variable, its threshold value
ri . The heterogeneous k-core is the largest subgraph whose
members have at least as many neighbors within the subgraph
as their threshold value, ri . This may include finite clusters
as well as any giant component. If ri are all equal to each
other we recover the standard k-core. We define a simple
representative example of the heterogeneous k-core (HKC)
in which vertices have a threshold of either one or k � 3,
distributed randomly through the network with probabilities f

and (1 − f ), respectively. This can be directly contrasted with
bootstrap percolation, in which vertices can be of two types:
with probability f they are ‘seed’ vertices which are always
active, while with probability (1 − f ) vertices become active
only if their number of active neighbors reaches a threshold
k. The difference between these two processes arises because
bootstrap percolation is an activation process beginning from
a sparsely activated network while the heterogeneous k-core
is a pruning process [16,17] beginning from a complete
graph.

We observe two transitions in the size of the giant heteroge-
neous k-core (giant HKC): a continuous transition similar to
that found in ordinary percolation and a discontinuous hybrid
transition similar to that found for the ordinary k-core. We find
a complex phase diagram for this giant HKC with respect to the
proportion of each threshold and the amount of damage to the
network, in which, depending on the parameter region, either
transition may occur first. Two similar transitions are observed
in the phase diagram of the giant component of active vertices
in bootstrap percolation (which we will refer to as the giant
BPC).
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Finally, we show that network heterogeneity plays an
important role. When the second moment of the degree
distribution is finite but the third moment diverges, the giant
HKC (or giant BPC) appears at a finite threshold not linearly
but with a higher order transition. When the second moment of
the degree distribution diverges—as in scale-free networks—
the thresholds may disappear completely, so that the giant
HKC (or giant BPC) appears discontinuously at a finite value
for any f > 0 or p > 0.

II. THE HETEROGENEOUS k-CORE AND BOOTSTRAP
PERCOLATION

Consider an arbitrary uncorrelated sparse complex network
defined by its degree distribution P (q). In the infinite size limit
such networks are locally treelike, a property which enables
the analysis we will use. The network may be damaged to
some extent by the removal of vertices uniformly at random.
The fraction of surviving vertices is p.

In the heterogeneous k-core, each vertex of a network
is assigned a variable ri ∈ {0,1,2, . . .}. The ri values are
assumed to be uncorrelated, selected from a distribution Qk(r).
The heterogeneous k-core is then the largest subgraph of the
network for which each vertex i has at least ri neighbors within
the heterogeneous k-core. To find the heterogeneous k-core of
a given network we start with the full network and prune any
vertices whose degree is less than its value of ri . As a result
of this pruning, other vertices will lose neighbors and may
thus drop below their threshold, so we repeat the pruning until
a stationary state is reached. The remaining subgraph is the
heterogeneous k-core. If it occupies a non-vanishing fraction
of the original network in the limit that the size of the network
goes to infinity, we say it is a giant heterogeneous k-core
(giant HKC).

If all ri = 1, then the HKC is simply the connected
component of the network and the giant HKC is the giant
connected component, exactly as in ordinary percolation. As is
well known [6,47,48], this appears with a continuous transition
at the critical point pc = 〈q〉/[〈q2〉 − 〈q〉], where 〈qn〉 =∑

i q
nP (q). If k = 2, we again have a continuous transition

similar to ordinary percolation, as the 2-core is obtained by
simply pruning all dangling branches from the 1-core. If all
ri are equal to k � 3, then we have the ordinary k-core. In
this case, the giant k-core appears with a discontinuous hybrid
transition [5,8,19,49].

Let us briefly discuss the nature of hybrid phase transi-
tions. These transitions form a specific new kind of phase
transition that combines a discontinuity, like a first-order
phase transition, with a critical singularity, like a continuous
phase transition. Strong analogies between bootstrap perco-
lation and metastable behavior in systems with first-order
phase transitions were remarked upon in Ref. [50]. Here,
we discuss this question from a physical point of view. In
thermodynamics, where the changes of a control parameter
(e.g., decreasing or increasing temperature) are assumed to
be infinitely slow, a first-order transition has no hysteresis.
In reality, the changes always occur with a small but finite
rate and the “heating” and “cooling” branches of a first-order
transition do not coincide, which indicates the presence of a
metastable state and hysteresis. The width of the hysteresis

increases with this rate until it reaches a limit that corresponds
to the limiting metastable state. The resulting limiting curve
for the order parameter has a square-root singularity at the
breakdown point. For example, if we heat a ferromagnet
with a first-order phase transition sufficiently fast, the curve
“magnetization M versus temperature T ” has a singularity
M(T ) − M(Tb − 0) ∝ √

Tb − T at the breakdown point, Tb,
and a discontinuity, that is, M(Tb − 0) > M(Tb + 0) = 0. One
can see this, for example, using the Landau theory with a
free energy F (M) = −MH + a(T − T0)M2 − bM4 + cM6,
where the coefficients a, b, and c are positive and H is a mag-
netic field. A common simple analysis shows that metastable
states with M �= 0 emerge below the critical temperature Tb =
T0 + b2/(3ac) with a jump M(Tb − 0) = √

b/3c. The first-
order phase transition takes place at a lower temperature, Tc,
below which only the state with M �= 0 is stable (whereas the
state with M = 0 is stable for T > Tc). After the breakdown,
there is no singularity. The susceptibility χ (T ) ≡ dM/dH

also shows a singularity χ (T < Tb) ∝ 1/
√

Tb − T but has
no singularity above Tb. As we will show below, the hybrid
(mixed) transition is analogous to a limiting metastable state
for a first-order phase transition. The important property
is that the transition is asymmetrical. This is evident from
Eqs. (2) and (3) below, that are related to the divergence of the
mean size of critical clusters appearing only on one side of the
hybrid transition. These critical phenomena will be discussed
further in Sec. III. There are critical fluctuations and a divergent
correlation length on only one side of the critical point.
A similar asymmetrical hybrid transition has been observed
in the Kuramoto model of oscillator synchronization [51].
Compare this with the first-order phase transitions in which
there are no critical fluctuations, and the correlation length is
finite everywhere, including at the critical point Tc. On the
other hand, continuous phase transitions demonstrate critical
fluctuations and divergent correlation length on both sides of
the transition.

In general, we might expect a combination of continuous
and hybrid transitions. To this end, we first consider the simple
case where ri are distributed between two values, controlled
by a parameter f . With probability f a vertex has a threshold
equal to one, while with probability (1 − f ) the threshold is k

for some integer k � 3. This condition allows for the presence
of the hybrid transitions seen in the k-core when k � 3, but
which is absent when k = 1 or 2. The threshold distribution is
then

Qk(r) = δr,1f + δr,k(1 − f ). (1)

This parametrized the HKC has as its two limits ordinary
percolation (f = 1) and the original k-core (f = 0).

We now contrast this model with bootstrap percolation.
In bootstrap percolation, with probability f a vertex is a
“seed” that is initially active and remains active. The remaining
vertices (a fraction 1 − f ) become active if their number of
active neighbors reaches or exceeds a threshold value k. Once
activated a vertex remains active. The activation of vertices
may mean that new vertices now meet the threshold criterion
and, hence, become active. This activation process continues
iteratively until a stationary state is reached. The seed and
activated vertices in bootstrap percolation are analogous to the
threshold one and threshold k groups in the heterogeneous
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k-core. We might expect that the subgraph formed by the
active vertices in the stationary state of bootstrap percolation
might be related to the heterogeneous k-core. In fact, the two
subgraphs are necessarily different, as we will describe in
detail in Sec. III. Nevertheless, the two processes have some
similar or analogous critical behaviors. Note that we are using
a lower threshold of one for the generalized k-core, meaning
isolated vertices are not counted as part of the HKC. We could
also use a lower threshold of zero, which would include more
vertices in the HKC, but it would yield an identical giant HKC.
For this reason we can compare with bootstrap percolation, in
which the seed vertices have effectively a threshold of zero.

In Fig. 1 we compare the activation in each case for the same
parameters. Because bootstrap percolation is an activation
process while the heterogeneous k-core is found by pruning,
the curves are different for the two processes. Consider starting
from a completely inactive network (that may be damaged so
that some fraction p of vertices remains). As we gradually
increase f from zero, under the bootstrap percolation process,
more and more vertices become active (always reaching
equilibrium before further increases of f ) until at a certain
threshold value, fc1−b, a giant active component appears. As
we increase f further, the size of the giant BPC traces the
dashed curves shown in Fig. 1; see also Ref. [43]. The direction
of this process is indicated by the arrows on these curves.
Finally, at f = 1 all undamaged vertices are active. Now we
reverse the process, beginning with a fully active network
and gradually reducing f , deactivating (which is equivalent
to pruning) vertices that fall below their threshold ri under
the heterogeneous k-core process. As f decreases, the solid
curves in Fig. 1 will be followed in the direction indicated by
the arrows. Notice that the size of the giant HKC for given
values of f and p is always larger than the giant BPC. The
explanation for this difference will be explored in the following
section.

Let Sk be the fraction of vertices that are in the hetero-
geneous k-core. That is, the total of all components, whether
finite or infinite, that meet the threshold conditions. This is
equal to the probability that an arbitrarily chosen vertex of
the original network is in the heterogeneous k-core. Let Sgc-k

be the relative size of the giant heterogeneous k-core (that is,
the subset of the heterogeneous k-core which forms a giant
component)—also the probability that an arbitrarily chosen
vertex is in the giant heterogeneous k-core. The fraction of
vertices forming finite clusters is therefore Sk − Sgc-k. Note
that in the standard k-core this is negligibly small. Similarly, let
Sb be the fraction of active vertices in the bootstrap percolation
model, and Sgc-b be the size of the giant component of active
vertices. We construct self-consistency equations for Sk and
Sgc-k in Appendix A. In networks without heavy-tailed degree
distributions, i.e., whose second moments do not diverge in
the infinite size limit, we find two different transitions for each
process.

We first briefly describe the transitions observed in boot-
strap percolation before comparing them with those found
in the new heterogeneous k-core process. For bootstrap
percolation above a certain value of p, the giant active
component (giant BPC) may appear continuously from zero at
a finite value of f , fc1−b, and grow smoothly with f (see
the dashed lines 1 and 2 in the top panel of Fig. 1). For

FIG. 1. (a) Relative size of the heterogeneous k-core, Sk (solid
curves), which is the subgraph that includes all vertices that meet the
threshold requirements of Eq. (1), and the fraction of active vertices
in bootstrap percolation, Sb (dashed curves) as a function of f for the
same network—an Erdős-Rényi graph of mean degree five—with the
same k = 3 at three different values of p corresponding to different
regions of the phase diagrams (see Fig. 2): (1) p = 0.5, which is
between pc and ps for both models, (2) p = 0.61, which is above
ps-k but still below ps-b, and (3) p = 0.91, which is above pf-k and
ps-b. Each numbered pair indicates the same choice of parameters p

and k with the activation process of bootstrap percolation indicated
by arrows to the right and the pruning process of the heterogeneous
k-core by arrows to the left. (b) Size Sgc-k of the giant heterogeneous
k-core (solid) and the sizeSgc-b of the giant BPC (dashed) as a function
of f for the same network and the same values of p.

larger p, after the giant active component appears, there may
also be a second discontinuous hybrid phase transition at fc2−b ,
as seen in Fig. 1 (see the dashed line 3). There is a jump in
the size of the giant active component, Sgc-b, from the value
at the critical point (marked by a circle on the dashed line 3).
When approaching from below, the difference of Sgc-b from
the critical value goes as the square root of the distance from
the critical point:

Sb(f ) = Sb(fc2-b) − a(fc2-b − f )1/2. (2)
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FIG. 2. (Color online) (a) Phase diagram for the heterogeneous k-core in the f -p plane. The giant HKC is absent in region I. In region II
the giant HKC is present but vertices with threshold k do not form a giant component within it. In region III the vertices with threshold k in
the HKC form a giant connected component. The giant HKC appears continuously at the threshold marked by the thin black curve. The hybrid
discontinuous transition occurs at the points marked by the heavy black line beginning from ps−k . The giant component of threshold vertices
appears with a continuous transition marked by a thin dashed curve. Above pt−k the first appearance of the giant HKC is with a discontinuous
transition. Above pf −k the giant HKC appears discontinuously for any f > 0. (b) Phase diagram for boostrap percolation. The giant BPC is
absent in region I. The giant BPC is present in region II. In region III the giant BPC is present and the active vertices with threshold k form a
giant connected component. The continuous appearance of the giant BPC is marked by the thin solid curve and the hybrid transition (beginning
at ps−b) by a heavy solid curve. These diagrams are for a Bethe lattice with degree five and for k = 3, but the diagram for any network with
finite second moment of the degree distribution will be qualitatively the same. Note that the locations of the continuous transitions from region
I to II and from II to III for BPC with k → k − 1 coincide (up to the point where the discontinuous transition is encountered) with those for the
heterogeneous k-core. The special critical point, ps−b, with k reduced by 1 also coincides with ps−k (see also Appendix A).

See Ref. [43] for a complete description of the bootstrap
percolation results.

For the heterogeneous k-core we see a different but
analogous pair of transitions. Again, for a given p the giant
HKC appears continuously from zero above some critical value
of f , fc1−k . There may also be a second transition at fc2−k ,
where, again, we see a discontinuity in the size of the giant
HKC. Now, however, the square-root scaling occurs as the
critical point is approached from above:

Sk(f ) = Sk(fc2-k) + a(f − fc2-k)1/2, (3)

this occurs in the solid line 2 in Fig. 1. Another important
difference is that for bootstrap percolation the discontinuous
transition is always above the first appearance of the giant BPC,
i.e., fc2−b > fc1−b, but for the heterogeneous k-core fc2−k may
be greater than fc1−k—so that the first appearance of the giant
HKC is similar to that found in ordinary percolation—or less
than fc1−k , with the giant HKC appearing discontinuously
from zero, as in the ordinary k-core [8,19,49] (see Fig. 1).

The overall behavior with respect to the parameters p and
f of each model is summarized by the phase diagrams in
Fig. 2. The diagrams are qualitatively the same for any degree
distribution with a finite second moment. Considering first the
heterogeneous k-core, a giant HKC is absent in region I. It
is present in region II but the vertices with threshold k do
not form a giant component. A giant HKC is present also in
region III and now the threshold-k vertices also form a giant
connected component within the giant HKC. For p below
the percolation threshold pc the giant HKC never appears for
any f . Above pc the giant HKC appears with a continuous

transition growing linearly with f (or p for that matter) close
to the critical point. The threshold is indicated by the thin
black line in the Figure, which divides regions I and II. From
ps−k a second discontinuous hybrid transition appears. This is
marked by the heavy black curve in Fig. 2. As already noted
in Eq. (3), the size of the giant HKC grows as the square root
of the distance above this second critical point. At the special
point ps−k , however, the size of the discontinuity reduces to
zero and the scaling near the critical point is cube root:

Sk(f ) = Sk(fc2-k) + a(f − fc2-k)1/3. (4)

At first, the hybrid transition occurs after the continuous
appearance of the giant HKC (see line 2 in Fig. 1), but at pt−k

the two transitions cross and the giant HKC begins to appear
immediately with a jump. Finally, at pf −k the giant HKC
begins to appear discontinuously immediately from f = 0
(see line 3 in Fig. 1). Thus, the first appearance of the giant
HKC has a classical percolation-like transition below pt−k ,
while above pt−k the appearance is similar to that found in the
ordinary k-core. Within the heterogeneous k-core, the vertices
with threshold k may form a giant component themselves. This
occurs in the region labeled III. This giant component appears
with a continuous transition.

For bootstrap percolation the giant active component
again appears only above the percolation threshold, pc.
It also first appears with a linear continuous transition
(when the degree distribution has finite third moment)
but at a larger value of f . The point of appearance
is marked by the thin curve in Fig. 2 that divides re-
gions I and II. Again, a second transition appears for
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larger p beginning at the special critical point, ps−b. This
transition is marked by the heavy solid curve in the Figure (see
also line 3 of Fig. 1). The scaling near the hybrid transition
is again square root but this time only when approaching the
transition from below. At the special critical point, ps−b, the
scaling becomes cube root:

Sb(f ) = Sb(fc2-b) − a(fc2-b − f )1/3. (5)

Note the difference between Eqs. (2) and (3) and between (5)
and (4). In bootstrap percolation the hybrid transition always
occurs above the continuous one and neither reaches f = 0.
Again, the active threshold k vertices form a giant component
in region III. Note also that at the special critical point, ps−b >

pf −k , so that for a given p we may have a hybrid transition
for the HKC or BPC but not for both. It turns out that the
special critical point, ps−b, for bootstrap percolation, whose
value of k is one less, coincides with the special critical point
for the heterogeneous k-core. Furthermore, the location of
the continuous appearance of the giant heterogeneous k-core
for a given k also coincides with the appearance of the giant
component of bootstrap percolation for k − 1. The same is also
true for the appearance of the giant components of vertices
with threshold k. This is clear from the equations given in
Appendix A. If the value of k is increased, the locations of the
hybrid transitions move toward larger values of p and there
is a limiting value of k after which these transitions disappear
altogether. For both the heterogeneous k-core and bootstrap
percolation this limit is proportional to the mean degree. Note
also that the continuous transition also moves slightly with
increasing k and in the limit k → ∞ tends to the line pf = pc

for both processes.

III. SUBCRITICAL CLUSTERS, CORONA CLUSTERS,
AND AVALANCHES

It is clear from Figs. 1 and 2 that even though bootstrap
percolation and the heterogeneous k-core described above
have the same thresholds and proportions of each kind of
vertex, the equilibrium size of the respective giant components
is very different. The difference results from the top-down
versus bottom-up ways in which they are constructed. To find
the heterogeneous k-core we begin with the full network and
prune vertices which do not meet the criteria until we reach
equilibrium. In contrast, bootstrap percolation begins with a
largely inactive network and successively activatable vertices
until equilibrium is reached. To see the effect of this difference
we now describe an important concept: the subcritical clusters
of bootstrap percolation.

A subcritical cluster in bootstrap percolation is a cluster of
activatable vertices (i.e., not seed vertices) that have exactly
k − 1 active neighbors external to the cluster. Under the
rules of bootstrap percolation such clusters cannot become
activated. The vertices within the cluster block each other from
becoming active (see Fig. 3). Now compare the situation for the
heterogeneous k-core. Any cluster of threshold-k vertices with
k − 1 neighbors in the core external to the cluster is always
included in the heterogeneous k-core. The HKC vertices in
clusters like those in Fig. 4 assist one another. Thus the
exclusion of subcritical clusters from activation in bootstrap

percolation accounts for the difference in sizes of the BPC and
the HKC.

Subcritical clusters have another important property, which
helps us to understand the discontinuity at the second tran-
sition. A vertex in a subcritical cluster becomes active if it
gains an extra active neighbor (e.g., through an infinitesimal
change in p or f ). This in turn allows each of its neighbors
in the cluster to activate. A domino-like effect ensues leading
to an avalanche of activations—one extra active neighbor of
any vertex in the subcritical cluster leads to the whole cluster
becoming active. Thus the rate of change of Sb is related to
the sizes of the subcritical clusters. Almost everywhere, if
we choose a subcritical vertex at random, the mean size of
the subcritical cluster to which it belongs is finite. However,
exactly at the second threshold, the mean size of the subcritical
cluster to which a randomly chosen vertex belongs diverges as
we approach from below. This was shown in Ref. [43]. Thus,
approaching this point, an infinitesimal increase in f (or p)
leads to a finite fraction of the network becoming activated,
hence, a discontinuity in Sb (and also in Sgc-b) appears. The
distribution of avalanche sizes near the transition is determined
by the size distribution G(s) of subcritical clusters, which at the
critical point follows G(s) ∼ s−3/2. This can be shown using
a generating function approach, as demonstrated in Ref. [43].
A similar method can be found in Refs. [19,49,52,53].

We can understand the hybrid transition in the heteroge-
neous k-core by considering the relevant clusters with similar
properties, the so-called corona clusters. Corona clusters
are clusters of vertices with threshold k that have exactly
k neighbors in the HKC. These clusters are part of the
heterogeneous k-core, but if any member of a cluster loses
a neighbor a domino-like effect leads to an avalanche as the
entire cluster is removed from the HKC. The corona clusters
are finite everywhere except at the discontinuous transition,
where the mean size of corona cluster to which a randomly
chosen vertex belongs diverges as we approach from above

(a)

(b)

FIG. 3. (Color online) (a) Subcritical clusters of different sizes
in bootstrap percolation. Left: Because they start in an inactive state
two connected vertices (shaded area) cannot become active if each
has k − 1 active neighbors (in this example k = 3). The same follows
for clusters of three (center) or more vertices (right). If any member
of a subcritical cluster gains another active neighbor, an avalanche of
activations encompasses the whole cluster. (b) Similar clusters would
be included in the heterogeneous k-core.
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FIG. 4. (Color online) Corona clusters of different sizes in
heterogeneous k-core. Left: Because they are included unless pruned,
two connected vertices (whose threshold is k) form part of the
heterogeneous k-core if each has k − 1 other neighbors in the core,
as each is “assisted” by the other. Right: In general, a corona cluster
consists of vertices (with threshold k) that each have exactly k active
neighbors, either inside or outside the cluster. If one neighbor of any
of the cluster vertices is removed from the core (for example, the one
indicated by the arrow), an avalanche is caused as the entire cluster
is pruned.

[6,19,49]. Thus, an infinitesimal change in f (or p) leads to
a finite fraction of the network being removed from the HKC,
hence, a discontinuity in Sk (and also in Sgc-k) arises. The size
distribution of corona clusters and, hence, avalanches at this
transition also goes as a power law with exponent −3/2.

IV. SCALE-FREE NETWORKS

The results presented above, in Sec. II and in Figs. 1
and 2, are qualitatively the same for networks with any degree
distribution that has finite second and third moments. When
only the second moment is finite, the phase diagram remains
qualitatively the same but the critical behavior is changed.
Instead of a second-order continuous transition, we have a
transition of a higher order. When the second moment diverges,
we have quite different behavior.

To examine the behavior when the second and third
moments diverge we consider scale-free networks with degree
distributions of the form

P (q) ≈ q−γ (6)

for large q. At present we consider only values of γ > 2.
To find the behavior near the critical points we begin with a

self-consistency equation for X, which is the probability that
an arbitrarily chosen edge leads to an infinite (ri − 1) tree [see
Eq. (A4)]. The probability Sgc-k can be written in terms of X

and, in fact, both X and Sgc-k grow with the same exponent
near the appearance of the giant active component. We expand
the right-hand side of Eq. (A4) near the appearance of the giant
HKC (i.e., near X = 0). When γ < 4, the third and possibly
second moments of the degree distribution diverge. This means
that coefficients of integral powers of X diverge and we must
instead find leading nonintegral powers of X.

When γ > 4, the second and third moments of the distribu-
tion are finite, so the behavior is the same as already described
in Sec. II. Equation (A4) leads to

X = c1X + c2X
2 + higher order terms, (7)

which gives the critical behavior X ∝ (f − fc2-k)β with β = 1.

When 3 < γ � 4, the linear term in the expansion of
Eq. (A4) survives but the second leading power is γ − 2:

X = c1X + c2X
γ−2 + higher terms, (8)

where the coefficients c1 and c2 depend on the degree
distribution, the parameters p and f , and the (nonzero) value
of Z. The presence of the linear term means that the giant HKC
appears at a finite threshold, but because the second leading
power is not 2, the giant HKC grows not linearly but with an
exponent β = 1/(γ − 3). This means that the phase diagram
remains qualitatively the same as in Fig. 2; however, the size of
the giant HKC grows as (f − fc1)β with β = 1/(γ − 3). This
is the same scaling as was found for ordinary percolation [54].

For values of γ below 3, the change in behavior is more
dramatic. When 2 < γ � 3, the second moment of P (q) also
diverges, meaning the leading order in the equation for X is
no longer linear but γ − 2:

X = d1X
γ−2 + higher terms. (9)

From this equation it follows that there is no threshold for
the appearance of the giant HKC (or giant BPC). The giant
HKC appears immediately and discontinuously for any f > 0
(or p > 0) and there is also no upper limit to the threshold
k. This behavior is the same for bootstrap percolation, so the
(featureless) phase diagram is the same for both processes,
even though the sizes of the giant HKC and giant BPC are
different.

The critical thresholds are affected by finite-size effects
when γ � 3. In finite networks, the degree distribution has an
upper cutoff that depends on the system size N . For γ > 3 this
does not have a significant effect. However, for 2 < γ � 3, the
leading term in Eq. (9) results from a singularity that occurs
only in the limit N → ∞. For finite N the leading terms are
of order X and X2, so the giant HKC appears at finite values
of f and p. These thresholds tend to zero as N → ∞.

V. DISCUSSION

We have introduced a new concept, the heterogeneous
k-core (HKC), an extension of the well-known k-core of
complex networks in which the thresholds may be different
at each vertex. The HKC has potential applications in models
of neuronal networks, as real neurons may have different
activation thresholds from one another.

A simple representative example of the HKC has ver-
tices with randomly assigned thresholds of either one (with
probability f ) or k � 3 (with probability 1 − f ). This HKC
has a complex phase diagram including two types of phase
transition: a continuous transition at the appearance of the
giant HKC, similar to the ordinary percolation transition, and
a second discontinuous hybrid phase transition. This second
transition is similar to the ordinary k-core but it may occur after
the first continuous appearance of the giant HKC or before. The
first transition occurs when the vertices of both kinds reaching
their threshold form a giant percolating cluster. The second
transition occurs when the mean size of avalanches of pruned
vertices diverges. This can be understood by considering
corona clusters (clusters of vertices that exactly meet the upper
threshold). The mean size of the corona cluster to which an
arbitrarily chosen vertex belongs diverges as we approach the

051134-6



HETEROGENEOUS k-CORE VERSUS BOOTSTRAP . . . PHYSICAL REVIEW E 83, 051134 (2011)

second transition from above. The size of pruning avalanches
are determined by these corona clusters and so the transition
is discontinuous.

We have contrasted the heterogeneous k-core with bootstrap
percolation, in which there are also two kinds of vertices,
but the core is defined by an activation process, rather than a
pruning process. The phase diagram for the BPC therefore does
not coincide with that of the HKC. The difference between the
giant HKC and the giant BPC results from the subcritical
clusters of bootstrap percolation. These clusters cannot be
activated because all members have k − 1 active neighbors
outside the cluster. However, the equivalent clusters would be
included in the giant HKC.

All of these results are strongly dependent on the network
structure. If the third moment of the degree distribution is
finite, we obtain the described results with the giant HKC
growing linearly above the continuous threshold. This is the
case if the degree distribution decays faster than a power law
q−γ with γ > 4 for large degree q. If instead the degree
distribution tends to a power law with 3 < γ � 4, so that
the second moment is finite while the third moment diverges,
the phase diagram is qualitatively the same but the continuous
transition is of higher order. If 2 < γ � 3, the second moment
of the degree distribution diverges and the situation is more
extreme. The giant HKC appears immediately at a finite size
for any f > 0 or p > 0, showing that, in common with similar
behavior found in other systems, such scale-free networks are
extremely resilient to damage.
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APPENDIX A: SELF-CONSISTENCY EQUATIONS

Here, we construct the self-consistency equations that the
probabilities Sk, Sgc-k, Sb, and Sgc-b must obey. The (usually
numerical) solution of these equations leads to the phase
diagrams and other results presented in Sec. II. We have
already given them for the case of bootstrap percolation [43].

The probability Sk that an arbitrarily chosen vertex belongs
to the heterogeneous k-core (HKC) is the sum of the proba-
bilities that it has ri = 1 and at least one neighbor in the core,
or ri = k and has at least k neighbors in the core. We can
represent this diagrammatically as

We define Z in terms of an (ri − 1)-ary tree, a generalization
of the (k − 1)-ary tree. An (ri − 1)-ary tree is a subtree in
which, as we traverse the tree, each encountered vertex has
at least ri − 1 child edges (i.e., edges leading from the vertex
not including the one by which we entered). The variable ri

can be different at each vertex. In our example, ri is either 1,
in which case the vertex does not need to have any children

FIG. 5. Symbols used in graphical representations of self-
consistency equations for the heterogeneous k-core.

(though it may have them) and is only required to be connected
to the tree, or ri = k, in which case it must have at least k − 1
children.

The probability Z can then be very simply stated as the
probability that, on following an arbitrarily chosen edge in the
network, we reach a vertex that is a root of a (ri − 1)-ary tree.
For the specific case considered in this paper, the encountered
vertex either has ri = 1 or it has k − 1 children leading to the
roots of (ri − 1)-ary trees. The probability Z is represented
by a square in the diagram. A bar represents the probability
(1 − Z), a black circle represents a vertex with ri = 1, and
a white circle is for a vertex with ri = k (see Fig. 5). These
conditions can be written as binomial terms and sums over
all possible values of the degree of i, so this diagram can be
written in a mathematical form as

Sk = pf

∞∑
q=1

P (q)
q∑

l=1

(
q

l

)
Zl(1 − Z)q−l

+p(1 − f )
∞∑

q=k

P (q)
q∑

l=k

(
q

l

)
Zl(1 − Z)q−l , (A1)

where the factor p accounts for the probability that the vertex
has not been damaged.

To calculate Z we construct a recursive (self-consistent)
expression in a similar way based on the definition given above.
This is represented by the diagram

which in equation form is

Z = pf +

×p(1 − f )
∑
q�k

qP (q)

〈q〉
q−1∑

l=k−1

(
q − 1

l

)
Zl(1 − Z)q−1−l

≡ �(Z,p,f ). (A2)

We have used the fact that qP (q)/〈q〉 is the probability that the
vertex reached along an arbitrary edge has degree q. Solving
Eq. (A2), usually numerically, for Z and then substituting into
Eq. (A1) allows the calculation of Sk.
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We follow a similar procedure to calculate the size of
the giant HKC that is equal to the probability Sgc-k that an
arbitrarily chosen vertex is a member of a the HKC component
of infinite size. We denote by X the probability that an
arbitrarily chosen edge leads to a vertex that is the root of an
infinite (ri − 1)-ary tree. This definition is similar to Z but with
the extra condition that the subtree must extend indefinitely.
We represented X by an infinity symbol (see Fig. 5). The
diagram for Sgc-k is

which is equivalent to the equation

Sgc-k = pf

∞∑
q=0

P (q)
q∑

m=1

(
q

m

)
Xm(1 − X)q−m

+p(1 − f )
∞∑

q=k

P (q)
q∑

l=k

(
q

l

)
(1 − Z)q−l

×
l∑

m=1

(
l

m

)
Xm(Z − X)l−m. (A3)

To find X, we construct a self-consistency equation from
the diagram

leading to

X = pf

∞∑
q=0

qP (q)

〈q〉
q−1∑
m=1

(
q − 1

m

)
Xm(1 − X)q−1−m

+p(1 − f )
∞∑

q=k

qP (q)

〈q〉
q−1∑

l=k−1

(
q − 1

l

)
(1 − Z)q−1−l

×
l∑

m=1

(
l

m

)
Xm(Z − X)l−m. (A4)

The solution of Eqs. (A2) and (A4) allows the calculation
of Sgc-k through Eq. (A3). Note that when there are multiple
solutions of Z, we choose the largest solution as the “physical”
one.

To find the appearance of the giant component for a given p,
we find leading terms for X  1, and solve for f , as described
in Sec. IV. To calculate the location of the hybrid transition
we note that at this critical point a second solution to Eq. (A2)
appears. This occurs when the function �(Z) just touches the
line Z, which must be at a local extremum of �/Z,

d

dZ

(
�

Z

)
= 0. (A5)

The scaling near the critical point, fc2-k, is found by expanding
Eq. (A2) to leading orders about Zc. Making use of the fact
that Eq. (A5) is satisfied at Zc, we find

Z ≈ Zc + c(f − fc2-k)1/2. (A6)

Substituting this into Eq. (A1) gives Eq. (3).
Furthermore, at the special point, ps−k , where the second

transition disappears, by a similar argument a further condition
must also be satisfied:

d2

dZ2

(
�

Z

)
= 0. (A7)

Thus, ps−k is determined by a simultaneous solution of
Eqs. (A2), (A5), and (A7). This in turn leads to cube-root
scaling above the threshold, hence, Eq. (4).

For bootstrap percolation we can construct similar self-
consistency equations in order to calculate Sb and Sgc-b. Let
Y be the probability (counterpart of Z) that while following
an arbitrary edge we encounter a vertex that is either a
seed or has k active children. As discussed in Sec. III, an
activation in bootstrap percolation must spread through the
network, meaning that the vertex needs k active downstream
neighbors in order to become active (and thus provide an
active neighbor to its upstream “parent”). Repeating the
diagrammatic method described above, we arrive at the
equation

Y = pf + p(1 − f )
∑

q�k+1

qP (q)

〈q〉

×
q−1∑
l=k

(
q − 1

l

)
Y l(1 − Y )q−1−l

≡ �(Y,p,f ). (A8)

Note that Eq. (A8) differs from Eq. (A2) because the number of
children required is k not k − 1. This is equivalent to excluding
the subcritical clusters represented in Fig. 3. As an aside,
consider the probability Psub that an arbitrary edge leads to
a vertex in a subcritical cluster. This is simply the probability
that the vertex has exactly k − 1 active neighbors, and thus

Psub = p(1 − f )
∑
q�k

qP (q)

〈q〉
(

q − 1

k − 1

)
Y k−1(1 − Y )q−k.

(A9)

Comparing Eqs. (A2) and (A8), we see that the right-hand side
of Eq. (A9) contains precisely the terms that are counted in
Eq. (A2) but absent from Eq. (A8). Thus clusters of vertices
all having exactly k − 1 active neighbors are excluded from
the active component in bootstrap percolation, while vertices
having k − 1 neighbors in the HKC are always included in the
HKC. Of course, because of the self-recursion the value of Z

is necessarily different from that of Y by more than just the
amount of these terms.

Drawing diagrams similar to those given for the HKC
allows the construction of further self-consistency equations
for the remaining quantities of interest. The probability that
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an arbitrarily chosen vertex is active, Sb, is then identical to
Eq. (A1) but with Y replacing Z,

Sb = pf

∞∑
q=1

P (q)
q∑

l=1

(
q

l

)
Y l(1 − Y )q−l

+p(1 − f )
∞∑

q=k

P (q)
q∑

l=k

(
q

l

)
Y l(1 − Y )q−l .

(A10)

The construction of the equation for Sgc-b is similar. We
introduce the probability W that, upon following an arbitrary
edge, we reach a vertex that is active and also has at least one
edge leading to an infinite active subtree. Then W obeys

W = pf

∞∑
q=0

qP (q)

〈q〉
q−1∑
m=1

(
q − 1

m

)
Wm(1 − W )q−1−m

+p(1 − f )
∞∑

q=k+1

qP (q)

〈q〉
q−1∑
l=k

(
q − 1

l

)
(1 − Y )q−1−l

×
l∑

m=1

(
l

m

)
Wm(Y − W )l−m, (A11)

which again differs from Eq. (A4) since the limit is k − 1 not
k. Then Sgc-b obeys

Sgc-b = pf

∞∑
q=0

P (q)
q∑

m=1

(
q

m

)
Wm(1 − W )q−m

+p(1 − f )
∞∑

q=k

P (q)
q∑

l=k

(
q

l

)
(1 − Y )q−l

×
l∑

m=1

(
l

m

)
Wm(Y − W )l−m, (A12)

which is identical in form to Eq. (A3), though the values of
Y and W (for bootstrap percolation) will be different from
those of Z and X (for the HKC). Note also that, for bootstrap
percolation the physical solution for Y is always the smallest
of Eq. (A8). The discontinuous transition occurs at the point
where

d

dY

(
�

Y

)
= 0 (A13)

and at the special point, ps−b, one more condition,

d2

dY 2

(
�

Y

)
= 0, (A14)

has to be satisfied, where the function �(Y ) is defined by
Eq. (A8).

Finally, we note that the appearance of the giant component
of threshold-k vertices in the HKC process can be found
in a similar way as the appearance of the giant HKC. We
define R to be the probability that an arbitrarily chosen
edge leads to the root of an infinite subtree that is an
(ri − 1)-ary tree with all of the ri = 1 vertices removed. This

probability obeys a self-consistency equation similar to that
for X:

R = p(1 − f )
∞∑

q=k

qP (q)

〈q〉
q−1∑

l=k−1

(
q − 1

l

)
(1 − Z)q−1−l

×
l∑

m=1

(
l

m

)
Rm(Z − R)l−m. (A15)

The appearance of the giant component of threshold-k vertices
is then found by expanding this equation to leading order with
respect to R and solving for f . This leads to an equation that
gives the dashed line in Fig. 2. Recall that Z(f,p) is determined
by Eq. (A2). A similar procedure yields the corresponding
transition in bootstrap percolation.

APPENDIX B: GENERAL FORM OF EQUATIONS

In this paper, we have examined only a special case of the
HKC, in which the vertices have a threshold value equal to
either one or k � 3. For completeness, we now give the self-
consistency equations for an arbitrary threshold distribution
Q(r). The size Sk of the HKC is

Sk = p
∑
r�1

Q(r)
∞∑

q=r

P (q)

[
q∑

l=r

(
q

l

)
Zl(1 − Z)q−l

]
,

(B1)

where, as above, Z is the probability of encountering a vertex
i, which is the root of an (ri − 1)-ary tree,

Z = p
∑
r�1

Q(r)
∞∑

q=r

(q)P (q)

〈q〉
q−1∑

l=r−1

(
q − 1

l

)
Zl(1 − Z)q−1−l .

(B2)

Similarly, the equation for the size of the giant active
component is

Sgc-k = p
∑
r�1

Q(r)
∞∑

q=r

P (q)
q∑

l=r

(
q

l

)
(1 − Z)q−l

×
l∑

m=1

(
l

m

)
Xm(Z − X)l−m,

where X obeys

X = p
∑
r�1

Q(r)
∞∑

q=r

qP (q)

〈q〉
q−1∑

l=r−1

(
q − 1

l

)
(1 − Z)q−1−l

×
l∑

m=1

(
l

m

)
Xm(Z − X)l−m.

We do not derive any results for this general case but we
can speculate that a more complicated phase diagram would
appear. If any vertices have threshold less than three, that is,
Q(1) + Q(2) > 0, we would find a continuous appearance of
the giant HKC. Thresholds of three or more, on the other hand,
contribute to discontinuous transitions, and it may be that there
are multiple such transitions.
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A 41, 385003 (2008).
[22] F. Sausset, C. Toninelli, G. Biroli, and G. Tarjus, J. Stat. Phys.

138, 411 (2009).
[23] C. L. Farrow, P. Shukla, and P. M. Duxbury, J. Phys. A 40, F581

(2007).
[24] P. Shukla, Pramana J. Phys. 71, 319 (2008).
[25] M. Iwata and S. Sasa, J. Phys. A 42, 075005 (2009).
[26] P. M. Kogut and P. L. Leath, J. Phys. C 14, 3187 (1981).

[27] G. Parisi and T. Rizzo, Phys. Rev. E 78, 022101 (2008).
[28] J. P. Gleeson and S. Melnik, Phys. Rev. E 80, 046121 (2009).
[29] J. P. Gleeson, S. Melnik, and A. Hackett, Phys. Rev. E 81, 066114

(2010).
[30] J.-P. Eckmann, O. Feinerman, L. Gruendlinger, E. Moses,

J. Soriano, and T. Tlusty, Phys. Rep. 449, 54 (2007).
[31] J. Soriano, M. R. Martı́nez, T. Tlusty, and E. Moses, Proc. Natl.

Acad. Sci. USA 105, 13758 (2008).
[32] A. V. Goltsev, F. V. de Abreu, S. N. Dorogovtsev, and J. F. F.

Mendes, Phys. Rev. E 81, 061921 (2010).
[33] M. Sellitto, G. Biroli, and C. Toninell, Europhys. Lett. 69, 496

(2005).
[34] C. Toninelli, G. Biroli, and D. S. Fisher, Phys. Rev. Lett. 96,

035702 (2006).
[35] S. Sabhapandit, D. Dhar, and P. Shukla, Phys. Rev. Lett. 88,

197202 (2002).
[36] A. E. Holroyd, Probab. Theory Relat. Fields 125, 195

(2003).
[37] A. E. Holroyd, Electron. J. Probab. 11, 418 (2006).
[38] J. Balogh and B. Bollobas, Probab. Theory Relat. Fields 134,

624 (2006).
[39] R. Cerf and E. N. Cirillo, Ann. Probab. 27, 1837 (1999).
[40] J. Balogh and B. G. Pittel, Random Struct. Algorithms 30, 257

(2007).
[41] L. R. G. Fontes and R. H. Schonmann, J. Stat. Phys. 132, 839

(2008).
[42] J. Balogh, Y. Peres, and G. Pete, Combin. Probab. Comput. 15,

715 (2006).
[43] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.

Mendes, Phys. Rev. E 82, 011103 (2010).
[44] D. E. Whitney, e-print arXiv:0911.4499.
[45] D. J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766

(2002).
[46] J. P. Gleeson, Phys. Rev. E 77, 046117 (2008).
[47] R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47

(2002).
[48] S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079

(2002).
[49] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Physica

D 224, 7 (2006).
[50] M. Aizenman and J. L. Lebowitz, J. Phys. A 21, 3801

(1988).
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