
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference 140 (2010) 2991–3002
0378-37

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jspi
Exact and Monte Carlo calculations of integrated likelihoods for the
latent class model
C. Biernacki a,�, G. Celeux b, G. Govaert c
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c CNRS & Université de Technologie de Compi�egne, Compi�egne, France
a r t i c l e i n f o

Article history:

Received 10 June 2009

Received in revised form

24 March 2010

Accepted 30 March 2010
Available online 7 April 2010

Keywords:

Categorical data

Bayesian model selection

Jeffreys conjugate prior

Importance sampling

EM algorithm

Gibbs sampler
58/$ - see front matter & 2010 Elsevier B.V. A

016/j.jspi.2010.03.042

responding author. Tel.: +33 3 20 43 68 76; fa

ail addresses: christophe.biernacki@math.univ
a b s t r a c t

The latent class model or multivariate multinomial mixture is a powerful approach for

clustering categorical data. It uses a conditional independence assumption given the

latent class to which a statistical unit is belonging. In this paper, we exploit the fact that

a fully Bayesian analysis with Jeffreys non-informative prior distributions does not

involve technical difficulty to propose an exact expression of the integrated complete-

data likelihood, which is known as being a meaningful model selection criterion in a

clustering perspective. Similarly, a Monte Carlo approximation of the integrated

observed-data likelihood can be obtained in two steps: an exact integration over the

parameters is followed by an approximation of the sum over all possible partitions

through an importance sampling strategy. Then, the exact and the approximate criteria

experimentally compete, respectively, with their standard asymptotic BIC approxima-

tions for choosing the number of mixture components. Numerical experiments on

simulated data and a biological example highlight that asymptotic criteria are usually

dramatically more conservative than the non-asymptotic presented criteria, not only for

moderate sample sizes as expected but also for quite large sample sizes. This research

highlights that asymptotic standard criteria could often fail to select some interesting

structures present in the data.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The standard model for clustering observations described through categorical variables is the so-called latent class
model (see for instance Goodman, 1974). This model assumes that the observations arose from a mixture of multivariate
distributions and that the variables are conditionally independent knowing the clusters. It has been proved to be successful
in many practical situations (see for instance Aitkin et al., 1981).

In this paper, we consider the problem of choosing a relevant latent class model. In the Gaussian mixture context, the
BIC criterion (Schwarz, 1978) appears to give a reasonable answer to the important problem of choosing the number of
mixture components (see for instance Fraley and Raftery, 2002). However, some previous works dealing with the latent
class model (see for instance Nadif and Govaert, 1998) for the binary case suggest that BIC needs particular large sample
size to reach its expected asymptotic behaviour in practical situations. And, any criterion related to the asymptotic BIC
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approximation may suffer this limitation. In this paper, we take profit from the possibility to avoid asymptotic
approximation of integrated likelihoods to propose alternative non-asymptotic criteria.

Actually, a conjugate Jeffreys non-informative prior distribution is available for the latent class model parameters
(contrary to what happens for Gaussian mixture models) and integrating the complete-data likelihood leads to a closed form
formula. Thus, the integrated complete-data likelihood proposed in Biernacki et al. (2000) as a Bayesian clustering criterion can
be exactly and easily computed without needing any BIC approximation. Moreover, the integrated observed-data likelihood,
more commonly named marginal likelihood (see for instance Frühwirth-Schnatter, 2006), can be non-asymptotically
approximated through two steps: an exact integration of the complete data distribution over the parameters is followed by
an approximation of the sum over all possible partitions to get the marginal distribution of the observed data. This
approximation involves a Bayesian importance sampling strategy. The Bayesian instrumental distribution is derived in a
natural way using the fact that Bayesian inference is efficiently implemented through a Gibbs sampler thanks to conjugate
properties.

The main purpose of this paper is to present those non-asymptotic Bayesian (latent class) model selection criteria and to
compare them with their asymptotic versions. Second, it gives the opportunity to highlight the important difference
between the complete-data and observed-data criteria.

The paper is organised as follows. In Section 2, the standard latent class model is described; furthermore maximum
likelihood (ML) and non-informative Bayesian inferences are briefly sketched. The exact integrated complete-data

likelihood and the approximate integrated observed-data likelihood are, respectively, described in Sections 3 and 4.
Numerical experiments on both simulated and real data sets for selecting a relevant number of mixture components are
presented in Section 5. A discussion section ends the paper by summarising the pros and cons of each evaluated strategy in
order to help practitioners to make their choice. It gives also some possible extensions of this work.
2. The latent class model

2.1. The model

Observations to be classified are described with d discrete variables. Each variable j has mj response levels. Data are
x=(x1,y,xn), where xi ¼ ðx

jh
i ; j¼ 1, . . . ,d; h¼ 1, . . . ,mjÞwith xi

jh=1 if i has response level h for variable j and xi
jh=0 otherwise.

In the standard latent class model, data are supposed to arise independently from a mixture of g multivariate multinomial
distributions with probability distribution function (pdf)

pðxi; hÞ ¼
Xg

k ¼ 1

pkpðxi;akÞ ð1Þ

with

pðxi;akÞ ¼
Yd

j ¼ 1

Ymj

h ¼ 1

ðajh
k Þ

xjh
i , ð2Þ

where h¼ ðp,aÞ is denoting the vector parameter of the latent class model to be estimated, with p¼ ðp1, . . . ,pgÞ the vector
of mixing proportions of the g latent clusters, a¼ ða1, . . . ,agÞ and ak ¼ ða

jh
k ; j¼ 1, . . . ,d; h¼ 1, . . . ,mjÞ, ajh

k denoting the
probability that variable j has level h if object i is in cluster k. The latent class model is assuming that the variables are
conditionally independent knowing the latent clusters.

Analysing multivariate categorical data is difficult because of the curse of dimensionality. The standard latent class
model which requires ðg�1Þþg �

P
jðmj�1Þ parameters to be estimated is an answer to the dimensionality problem. It is

much more parsimonious than the saturated loglinear model which requires
Q

jmj parameters. For instance, with g=5,
d=10, mj=4 for all variables, the latent class model is characterised with 154 parameters, whereas the saturated loglinear
model requires about 106 parameters. Moreover, the latent class model can appear to produce a better fit than unsaturated
loglinear models while demanding less parameters.
2.2. Maximum likelihood inference

Since the latent class structure is a mixture model, the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan,
1997) is a preferred tool to derive the ML estimates of these model parameters (see McLachlan and Peel, 2000). The
observed-data log-likelihood of the model is

Lðh;xÞ ¼
Xn

i ¼ 1

ln
Xg

k ¼ 1

pk

Yd

j ¼ 1

Ymj

h ¼ 1

ðajh
k Þ

xjh
i

0
@

1
A: ð3Þ
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Noting the unknown indicator vectors of the g clusters by z=(z1, y,zn) with zi=(zi1,y,zig), where zik=1 if xi arose from
cluster k, zik=0 otherwise, the complete-data log-likelihood is

Lðh;x,zÞ ¼
Xn

i ¼ 1

Xg

k ¼ 1

zikln pk

Yd

j ¼ 1

Ymj

h ¼ 1

ðajh
k Þ

xjh
i

0
@

1
A: ð4Þ

From this complete-data log-likelihood, the equations of the EM algorithm are easily derived and this algorithm is as
follows from an initial position h0

¼ ðp0,a0Þ.
�
 E step: Calculation of the conditional probability tikðh
r
Þ that xi arose from cluster k (i=1,y,n; k=1,y,g), r denoting the

iteration index:

tikðh
r
Þ ¼

pr
kpðxi;a

r
kÞPg

‘ ¼ 1 pr
‘pðxi;ar

‘Þ
: ð5Þ

M step: Updating of the mixture parameter estimates:
�
prþ1
k ¼

P
itikðh

r
Þ

n
and ðajh

k Þ
rþ1
¼

Pn
i ¼ 1 tikðh

r
Þxjh

iPn
i ¼ 1 tikðh

r
Þ
: ð6Þ

2.3. Bayesian inference

Since the Jeffreys non-informative prior distribution for a multinomial distribution Mgðp1, . . . ,pgÞ is a conjugate
Dirichlet distribution Dgð

1
2 , . . . , 1

2Þ, a fully non-informative Bayesian analysis is possible for latent class models contrary to
the Gaussian mixture model situation (see for instance Marin et al., 2005). Thus, using the prior distribution Dgð

1
2 , . . . , 1

2Þ for
the mixing weights, and noting nk ¼ fi : zik ¼ 1g, the full conditional distribution of p is given by

pðpjzÞ ¼Dg
1

2
þn1, . . . ,

1

2
þng

� �
: ð7Þ

In a similar way, using the prior distribution Dmj
ð12 , . . . , 1

2Þ for aj
k ¼ ða

j1
k , . . . ,ajmj

k Þ, with k=1,y,g and j=1,y,d, the full
conditional distribution for aj

k is, noting njh
k ¼ fi : zik ¼ 1,xjh

i ¼ 1g,

p aj
kjx,z

� �
¼Dmj

1

2
þnj1

k , . . . ,
1

2
þn

jmj

k

� �
: ð8Þ

Finally, since the conditional probabilities of the indicator vectors zi are given, for i=1,y,n, by

pðzijxi,hÞ ¼Mgðti1ðhÞ, . . . ,tigðhÞÞ, ð9Þ

the Gibbs sampling implementation of the fully non-informative Bayesian inference is straightforwardly deduced from
those formulas and is not detailed further here (see for instance Frühwirth-Schnatter, 2006, Section 9.5.3). In addition,
since z is discrete and finite, the convergence of the chain on h towards the stationary distribution pðhjxÞ is geometric
(see Robert, 2007, Subsection 6.3.3, for instance).

Because the prior distribution is symmetric in the components of the mixture, the posterior distribution is invariant
under a permutation of the component labels (see for instance McLachlan and Peel, 2000, Chapter 4). This lack of
identifiability of h corresponds to the so-called label switching problem. In order to deal with this problem, some authors as
Stephens (2000) or Celeux et al. (2000) apply a clustering-like method to possibly change the component labels of the
simulated values for h.

3. The exact integrated complete-data likelihood

Defined in a Bayesian perspective, the integrated complete-data likelihood of a mixture is defined by

pðx,zÞ ¼

Z
Y

pðx,z; hÞpðhÞdh, ð10Þ

Y being the whole unconstrained parameter space and pðhÞ being the prior distribution of the model parameter h on Y. A
BIC-like approximation can be used:

ln pðx,zÞ ¼ ln pðx,z; ĥÞ�
n
2

ln nþOpð1Þ, ð11Þ

where n is the number of parameters to be estimated and where ĥ corresponds to the ML of h obtained from the observed
data x (since ĥ and the ML estimate of h obtained from the complete data (x,z) are both consistent). Replacing the missing
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cluster indicators z by their Maximum A Posteriori (MAP) values ẑ for ĥ defined by

ẑik ¼
1 if argmax

‘
ti‘ðĥÞ ¼ k,

0 otherwise:

8<
: ð12Þ

Biernacki et al. (2000) obtained the following ICLbic criterion:

ICLbic ¼ ln pðx,ẑ; ĥÞ�
n
2

ln n: ð13Þ

This criterion aims favoring mixture situations giving rise to a partitioning of the data with the greatest evidence and, as a
consequence, it appears to be robust against model misspecification (see Biernacki et al., 2000, and the experiments in the
present paper).

Fortunately, in the context of multivariate multinomial distributions and in the non-informative setting, there is no
need to use such an asymptotic approximation because conjugate Jeffreys non-informative prior distributions are available
for all the parameters. Thus, the integrated complete-data likelihood (10) is closed form as shown hereunder.

Jeffreys non-informative Dirichlet prior distributions for the mixing proportions and the latent class parameters are

pðpÞ ¼Dg
1

2
, . . . ,

1

2

� �
and pðaj

kÞ ¼Dmj

1

2
, . . . ,

1

2

� �
: ð14Þ

Assuming independence between prior distributions of the mixing proportions p and the latent class parameters
aj

k ðk¼ 1, . . . ,g; j¼ 1, . . . ,dÞ, we get, since the Dirichlet prior distribution is conjugate for the multinomial model (see for
instance Robert, 2007, Subsection 3.3.3), that

pðx,zÞ ¼
G

g

2

� �
G

1

2

� �g

Qg
k ¼ 1 G nkþ

1

2

� �

G nþ
g

2

� � Yg

k ¼ 1

Yd

j ¼ 1

G
mj

2

� �

G
1

2

� �mj

Qmj

h ¼ 1 G njh
k þ

1

2

� �

G nkþ
mj

2

� � : ð15Þ

Replacing the missing labels z by ẑ in ln p(x,z), i.e. mimicking the previously described ICLbic criterion principle, the so-
called ICL criterion is defined as follows:

ICL¼ ln pðx,ẑÞ ¼
Xg

k ¼ 1

Xd

j ¼ 1

Xmj

h ¼ 1

lnG n̂
jh
k þ

1

2

� �
�lnG n̂kþ

mj

2

� �( )
�lnG nþ

g

2

� �
þ lnG

g

2

� �

þg
Xd

j ¼ 1

lnG
mj

2

� �
�mjlnG

1

2

� �� �
þ
Xg

k ¼ 1

lnG n̂kþ
1

2

� �
�glnG

1

2

� �
, ð16Þ

where n̂k ¼ fi : ẑik ¼ 1g and n̂
jh
k ¼ fi : ẑ ik ¼ 1,xjh

i ¼ 1g.

4. The approximate integrated observed-data likelihood

The integrated observed-data likelihood (or integrated likelihood in short) is

pðxÞ ¼

Z
Y

pðx; hÞpðhÞdh: ð17Þ

A standard asymptotic approximation is given by

ln pðxÞ ¼ ln pðx; ĥÞ�
n
2

ln nþOpð1Þ, ð18Þ

where ĥ is the ML estimator previously defined in Section 3, and leads to the BIC criterion (Schwarz, 1978)

BIC¼ ln pðx; ĥÞ�
n
2

ln n: ð19Þ

For much mixture models, (17) is difficult to calculate and simulation-based approaches or approximations based on
density ratios can be involved (see for instance Frühwirth-Schnatter, 2006, Chapter 5 or Frühwirth-Schnatter, 2004).

4.1. An approximate computation by importance sampling

Usually numerical approximations rely on Monte Carlo integration over h, for instance by invoking an importance
sampling strategy. Alternatively, we use the fact that the model on complete data (x,z) is conjugate to obtaining the
marginal over h in closed-form and then to performing a sum over z.

Thus denoting by Z all possible combinations of labels z, Eq. (17) can be written (see Frühwirth-Schnatter, 2006, p. 140)

pðxÞ ¼
X
z2Z

pðx,zÞ, ð20Þ
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where the integrated likelihood p(x) is explicit since the integrated complete-data likelihood p(x,z) can be exactly
calculated for the latent class model (see the previous section).

Unfortunately, the sum over Z includes generally two many terms to be exactly computed. Following Casella et al. (2000),
an importance sampling procedure can solve this problem. The importance sampling function, denoted by Ix(z), is a pdf on
z (
P

z2Z IxðzÞ ¼ 1 and IxðzÞZ0) which can depend on x, its support necessarily including the support of p(x,z). Denoting by
z1,y,zS an i.i.d. sample from Ix(z), p(x) can be consistently estimated by the following Monte Carlo approximation:

p̂ðxÞ ¼
1

S

XS

s ¼ 1

pðx,zsÞ

IxðzsÞ
: ð21Þ

This estimate is unbiased and its variation coefficient is given by

cv½p̂ðxÞ� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½p̂ðxÞ�

p
E½p̂ðxÞ�

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S

X
z2Z

p2ðzjxÞ

IxðzÞ
�1

 !vuut : ð22Þ

In order to approximate the ideal importance function Ix
�(z), i.e. this one minimising the variance and defined by

I�xðzÞ ¼ pðzjxÞ ¼

Z
Y

pðzjx; hÞpðhjxÞdh, ð23Þ

we propose to make use of the following ‘‘Bayesian’’ instrumental distribution1:

IxðzÞ ¼
1

Rg!

XR

r ¼ 1

Xg!

q ¼ 1

pðzjx;rqðh
r
ÞÞ, ð24Þ

where the set fr1ðhÞ, . . . ,rg!ðhÞg denotes all g! distinct label permutations of h and where fhr
g are chosen to be independent

realisations of pðhjxÞ. The sum over all label permutations provides an importance density which is labelling invariant, like
the ideal one. Moreover, independence of fhr

g, although not necessary for ensuring the validity of the unbiasedness of the
estimator (21) and the variation coefficient (22), is recommended for a good estimation of (23) from the strong law of large
numbers. In practice, a Gibbs sampler can be used and the derived criterion will be called ILbayes (IL for Integrated
Likelihood). Note that ILbayes is depending on both S and R.

Remark. As previously noticed, the support of the importance sampling function Ix(z) needs to include the support of
p(zjx) in order to avoid infinite variance in (22). For sufficiently large R, the ‘‘Bayesian’’ strategy ensures this property. Note
that, although the naive uniform importance sampling function IxðzÞ ¼ 1=#fz : z 2 Zg verifies this property too, it does not
encompass the target distribution in its high-density region. Thus, this latter is expected to be an inappropriate strategy.2

In Biernacki et al. (2008), we consider an importance sampling function which was ignoring the label switching problem.
This choice was criticized by a reviewer, who suggested to use the importance function (24). As he guessed, it appears that
this choice leads to dramatically reduce the variability in the model choice.
4.2. An upper bound for avoiding to compute ILbayes for large values of g

It appears that the functional evaluation of Ix(z) in (24) is very expensive in practice as soon as g=5 or 6 because of the
sum over rq. In order to avoid systematic evaluation of Ix(z) for ‘‘high’’ g values we propose to first compute the following
lower bound Ix

inf(z) of Ix(z):

Iinf
x ðz

sÞ ¼
1

Rg!

XR

r ¼ 1

pðzsjx;rqs
ðhr
ÞÞr Ixðz

sÞ, ð25Þ

where zs arises from Ix(z) and rqs
denotes the permutation associated to the component in Ix(z) (among the Rg!

components) having generated zs. We choose this particular permutation because it is expected to provide a tight lower
bound. Using Ix

inf(zs) instead of Ix(zs) in (21) leads to an upper bound ILbayessup of ILbayes. Thus, when the unknown
number of components g has to be selected in the set {1,y,gsup}, there is no need to calculate the integral ILbayes(g) for
gZ5 when ILbayessupðgÞomaxg02f1,...,4gILbayesðg0Þ. This ad hoc trick saves huge computation time in numerical
experiments of Section 5 (gsup=6) since it avoids computing exactly ILbayes in about 98.8% and 99.7% of situations for
g=5 and 6, respectively.
1 Note that if evaluation of (17) was performed first by a sum over z and then by an importance sampling procedure over h, the importance sampling

function could be written IxðhÞ ¼ ðRg!Þ�1 PR
r ¼ 1

Pg!
q ¼ 1 pðhjx;rqðz

rÞÞ, where the zrs are obtained from a Gibbs sampler and where rq is now a permutation

of z.
2 For datasets of Section 5, this strategy leads to prefer one-cluster solutions for all cases in which multiple clusters are present (results not reported

in the paper are in Biernacki et al., 2008).
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4.3. Link between ICL and the integrated likelihood

The following straightforward relationship exists between the integrated complete-data and observed-data likelihoods:

ln pðx,ẑÞ ¼ ln pðxÞþ ln pðẑjxÞ: ð26Þ

Thus, as already noticed in Biernacki et al. (2000), the ICL criterion defined in (16) can be interpreted as the integrated
likelihood penalized by a measure of the cluster overlap. It means that ICL tends to realize a compromise between the
adequacy of the model to the data measured by ln p(x) and the evidence of data partitioning measured by ln pðẑjxÞ. For
instance, highly overlapping mixture components lead typically to a low value of pðẑjxÞ and consequently does not favor a
high value of ICL.
5. Numerical experiments

We now compare experimentally the behaviour of the four criteria ICL, ICLbic, ILbayes and BIC in order to highlight
main practical differences between asymptotic/non-asymptotic and complete/observed data strategies. First, we
distinguish two different situations for simulated data: A situation where the data arose from one of the mixtures in
competition and a situation where the latent class model did not give rise to the data. Then, we treat an example on a real
data set.

Note that, throughout this section, the upper bound ILbayessup is used for each situation involving g 2 f5,6g.
5.1. Simulated data: well specified model

We compare here non-asymptotic vs. asymptotic criteria: first the pair ICL/ICLbic, and then the pair ILbayes/BIC. We will
compare more specifically complete-data (ICL-type) vs. observed-data (IL-type) criteria in Section 5.2.
5.1.1. Design of experiments

Observations are described by six variables (d=6) with numbers of levels m1 ¼ � � � ¼m4 ¼ 3 and m5 ¼m6 ¼ 4. Two
different numbers of mixture components are considered: a two component mixture (g=2) with unbalanced mixing
proportions, p¼ ð0:3 0:7Þ0, and a four component mixture (g=4) with equal mixing proportions, p¼ ð0:25 0:25 0:25 0:25Þ0.
In each situation, three values of the parameter a are chosen to get a low, a moderate and a high cluster overlapping,
respectively, defined as 15%, 30% and 60% of the worst possible error rate (situation where ajh

k ¼ 1=mj). For the previous
structures associated to g=2 and 4, this worst error rate is 0.30 and 0.75, respectively. More precisely, the chosen structure
for a is expressed by

ajh
k ¼

1

mj
þð1�dÞ

mj�1

mj
if h¼ ½ðk�1Þmod mj�þ1,

1�
1

mj
�ð1�dÞ

mj�1

mj

� �
mj�1

otherwise,

8>>>>>><
>>>>>>:

ð27Þ

where 0rdr1 allows to fit mixture parameters with the required overlapping: d¼ 0 corresponds to the minimum
overlap because ajh

k ¼ 0 or 1, whereas d¼ 1 corresponds to the maximum overlap because ajh
k ¼ 1=mj. Since the overlap is a

continuous and non-decreasing function of d, the value a associated to a given overlap is easily derived from a numerical
procedure. Table 1 provides computed values of d for each situation. In addition, Fig. 1 displays a data sample for g=2 and 4
on the first two axes of a correspondence analysis.
Table 1

Error rate and corresponding value of d for each parameter structure.

Overlap % of max. g=2 g=4

Error rate d Error rate d

Low 15 0.0450 0.4713 0.1125 0.4770

Moderate 30 0.0900 0.5822 0.2250 0.6097

High 60 0.1800 0.7313 0.4500 0.7900

Maximum 100 0.3000 1.0000 0.7500 1.0000

The reference overlap case (denoted by ‘‘maximum’’), corresponding to the worst possible error rate, is also given.
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Fig. 1. A sample (n=1600) arising from g=2 (top) and g=4 (bottom) mixture situation for low, moderate and high overlapping. It is displayed on the first

plane of a correspondence analysis and an i.i.d. uniform noise on [0,0.01] has been added on both axes for each point in order to clarify the visualisation.

Table 2
Mean of the chosen number of groups for each criterion when g=2.

Criterion R S n

320 1600 3200

Overlap (%) Overlap (%) Overlap (%)

15 30 60 15 30 60 15 30 60

ICLbic – – 2.0 1.5 1.0 2.0 2.0 1.0 2.0 2.0 1.0

ICL – – 2.0 1.9 1.0 2.0 2.0 1.0 2.0 2.0 1.0

BIC – – 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0

ILbayes 50 100 2.2 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1000 2.1 2.1 1.9 2.0 2.0 2.0 2.0 2.0 2.0

100 100 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0

1000 2.1 2.1 1.9 2.0 2.1 2.0 2.1 2.0 2.0

Well specified model situation.
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5.1.2. Results for the ICL criteria

For each parameter structure, 20 samples are generated for three different sample sizes n 2 f320,1600,3200g. For each
sample and for a number of mixture components varying from g=1 to 6, the EM algorithm has been run 10 times with
random initial parameters (uniform distribution on the parameter space) for a sequence of 1000 iterations and the best run
is retained as being the maximum likelihood estimate. The mean of the retained number of mixture components with all
criteria is displayed in Tables 2 and 3, respectively, for g=2 and 4.

As expected, it appears that ICL and ICLbic behave the same for large sample sizes. Sometimes, asymptotic behaviour of
both criteria is reached for small sample sizes (low and high overlap situations). However, when asymptotic behaviour is
reached only for larger sample sizes (typically for moderate overlap situations), ICL converges far faster than ICLbic
towards this limit. We also notice that, before reaching its asymptotic behaviour, ICLbic is much more conservative than
ICL since it detects less components than ICL. Thus, ICL can be preferred to ICLbic since it behaves better and is not really
more complex to compute.

5.1.3. Results for the IL criteria

The same samples and experimental conditions that were previously defined are used. In addition the Gibbs sampler,
initialised at random from a uniform distribution on the parameter space, generates a sequence of 11 000 parameters, the
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Table 3
Mean of the chosen number of groups for each criterion when g=4.

Criterion R S n

320 1600 3200

Overlap (%) Overlap (%) Overlap (%)

15 30 60 15 30 60 15 30 60

ICLbic – – 3.0 1.0 1.0 3.0 1.1 1.0 3.0 1.0 1.0

ICL – – 3.1 1.5 1.0 3.0 1.6 1.0 3.0 2.2 1.0

BIC – – 3.0 2.2 1.0 3.5 3.0 1.1 4.0 3.0 1.5

ILbayes 50 100 3.4 3.0 1.1 4.0 3.1 1.8 4.0 3.6 2.5

1000 3.5 3.0 1.2 4.0 3.2 1.9 4.0 3.8 2.5

100 100 3.4 3.1 1.4 4.0 3.2 1.8 4.0 3.8 2.5

1000 3.4 3.0 1.4 4.0 3.2 1.9 4.0 3.7 2.5

Well specified model situation.

Table 4
Computer time for a unique sample (in seconds).

Criterion R S n

320 1600 3200

ĝ ĝ ĝ

3 4 5 3 4 5 3 4 5

ICLbic

ICL

BIC

9>=
>;

– – 13 17 20 22 29 35 27 35 42

ILbayes 50 100 20 28 60 42 67 159 69 116 301

1000 29 66 246 81 228 994 143 432 1941

100 100 21 33 85 46 86 257 77 151 491

1000 39 106 457 120 403 1920 219 756 3743

ILbayessup 50 100 19 24 31 38 50 61 62 81 100

1000 22 28 37 47 60 72 78 100 121

100 100 19 24 31 39 50 62 63 83 102

1000 24 29 39 53 67 80 91 115 137

The EM time (10 runs) or the Gibbs time has been added when a criterion used its results. A modified Matlab version of the Mixmod software (Biernacki

et al., 2006) was used on a Dell PowerEdge2950 equipped with two Quad-Core Intel(R) Xeon(R) CPU X5460 3.16 GHz and with 31.5 GB memory, and using

FedoraCore10 OS.
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first 1000 draws corresponding to the burn-in period. The R values hr are selected in the remaining sequence of size 10 000
every 10 000/R draws. Since values R=50 and 100 are retained, it guarantees that the selected draws are quasi independent.
Indeed, a value of hr is selected in the remaining sequence of size 10 000 every 100 draws when R=100, and every 200
draws when R=50.

From Tables 2 and 3, it appears that variability of the ILbayes criterion is not really significant for R and S values in the
selected range. Moreover, as for ICL comparisons, the ILbayes criterion reaches its asymptotic behaviour far faster than BIC.
This advantage is particularly marked when the overlap is high, so when the data structure is harder to guess. Thus, it
illustrates again the interest of non-asymptotic approximations of the integrated likelihood for the latent class model.
However, contrary to ICL criterion, the ILbayes (and ILbayessup) criterion is more computational demanding than its
asymptotic version BIC. This time difference is expressed in Table 4. A modified Matlab version of the Mixmod software
(Biernacki et al., 2006) was used on a Dell PowerEdge2950 equipped with two Quad-Core Intel(R) Xeon(R) CPU X5460
3.16 GHz and with 31.5 GB memory, and using FedoraCore10 OS. It appears that ILbayessup computing cost (due mainly to
the Gibbs run) stands roughly between 1.5 and 3.3 times the computing cost of BIC (due mainly to the 10 EM runs),
depending on R, S, ĝ and n values. This ratio reaches values between 1.6 and 21.6 for ILbayes when ĝ 2 f3,4g and values
between 3 and 90 for ILbayes when ĝ ¼ 5. We see here the marked computing advantage of ILbayessup on ILbayes for some
ĝ values. In particular, for n=3200, ĝ ¼ 5, R=100, S=1000, ILbayessup needs 2.28 min of computing time whereas ILbayes
requires about one hour.
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Table 5
Mean of the chosen number of clusters when the conditional independence assumption is not verified (g=2).

Criterion R S n

320 1600 3200 16 000

ICLbic – – 1.5 2.0 2.0 2.0

ICL – – 1.8 2.0 2.0 2.0

BIC – – 2.0 2.1 3.0 4.0

ILbayes 50 100 2.3 3.0 3.1 4.0

1000 2.2 3.0 3.2 4.0

100 100 2.3 3.0 3.1 4.0

1000 2.6 3.0 3.1 4.0
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5.2. Simulated data: misspecified model

In this subsection, we focus on the difference which could occur in practice between ICL and IL criteria. From Tables 2
and 3, it is apparent that ICL criteria have a tendency to underestimate the right number of components. This tendency
appears more marked in the high overlap case where ICL always underestimates the right number of clusters, even for
large n. In this case, the entropic penalty term in ICL is high and actually there is no evidence for data partitioning (see the
right column in Fig. 1).

The realistic case where the data generator does not obey the variables conditional independence assumption is now
considered. It will allow us to highlight the possible interest of ICL in a cluster analysis context.

5.2.1. Design of experiments

Two well separated components (about 0.07 error rate) are considered in a situation where the conditional
independence assumption is not true. Data have been generated with the following procedure:
1.
(Te
Firstly, a sample of size n is drawn from a two component Gaussian mixture in R6 with mixing proportions p¼ ð0:3 0:7Þ0,
with centers l1 ¼ ð�2 2 �2 �2 �2 �2Þ0 and l2 ¼ ð2 �2 2 2 2 2Þ0 and with variance matrices R1 ¼R2 ¼DAD0 where

A¼ 10�

4 0 004
0 2 004
04 04 I4

2
64

3
75 and D¼

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

004
1=

ffiffiffi
2
p

�1=
ffiffiffi
2
p

004
04 04 I4

2
664

3
775: ð28Þ

The four-variate identity matrix is denoted by I4 and 04 denotes the four-variate zero vector. It is to be noticed that
conditional independence between axes 1 and 2 is broken since they are correlated for both mixture components.
2.
 Then, R6 is discretized in the following manner in order to obtain categorical data: (1) axes 1–4 are divided into three
levels ��1,�2½, [�2,2[ and ½2,1½, (2) axes 5 and 6 are divided into four levels ��1,�1½, [�1,0[, [0,1[ and ½1,1½. Thus, the
same dimension space and number of levels per variable than in the simulated data of Section 5.1 is retrieved.

The other experimental conditions are similar to the ones considered in Section 5.1, excepted that four different sample
sizes are retained ðn 2 f320,1600,3200,16 000gÞ.

5.2.2. Results

Mean of the estimated g values is displayed in Table 5 for all criteria. It clearly appears that ICL and ICLbic favor two
clusters for most of the sample sizes; whereas BIC and ILbayes prefer a higher number of components when the sample
size significantly increases. It illustrates the robustness of ICL criteria already noticed in the Gaussian situation by Biernacki
et al. (2000) where ICLbic was able to select well separated clusters even when the model was misspecified. On the
contrary, the IL criteria (BIC and ILbayes) are focused on detecting latent classes providing a good fit of the mixture with
the data without considering the cluster overlap.

5.3. A biological data set

5.3.1. The data

Puffins are pelagic seabirds from the family Procellaridae. A data set of 153 puffins divided into three subspecies
dichrous (84 birds), lherminieri (34 birds) and subalaris (35 birds) is considered (Bretagnolle, 2007).3 These birds are
3 Data can be obtained by contacting Vincent Bretagnolle, Centre d’Etudes Biologiques de Chizé, Villiers en Bois, 79360, Beauvoir sur Niort, France

l.: +33 5 49 09 78 17, email: breta@cebc.cnrs.fr).

breta@cebc.cnrs.fr
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Table 6
Details of plumage and external morphological characters for the seabird data set.

Variables Levels

1 2 3 4 5

Gender Male Female

Eyebrowsa None Very pronounced

Collara None Continuous

Sub-caudal White Black Black & white Black & WHITE BLACK & white

Bordera None Many

a Using a paper pattern.
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Fig. 2. Seabirds on the first two correspondence analysis axes (a) with the true partition and (b) with the EM estimated partition. An i.i.d. uniform noise on

[0,0.1] has be added on both axes for each individual in order to improve visualisation.

Table 7
Value of ICL, ICLbic, BIC and ILbayes criteria for different number of clusters on the seabird data set.

Criteria R S ĝ

1 2 3 4 5 6

ICLbic – – �714.03 �727.33 �741.37 �774.01 �802.47 �830.83

ICL – – �712.08 �712.57 �711.81 �727.44 �737.46 �741.79

BIC – – �714.03 �711.14 �729.97 �754.58 �784.49 �814.61

ILbayes 50 1000 �712.08 �693.41 �692.88 �694.01 �695.21 �696.00

10000 �712.08 �693.10 �693.42 �693.83 �694.18 �695.17

100000 �712.08 �693.11 �692.91 �693.85 �693.74 �692.61

100 1000 �712.08 �693.16 �692.15 �693.36 �694.04 �694.75

10000 �712.08 �693.14 �692.59 �693.61 �694.17 �693.63

100000 �712.08 �693.14 �692.58 �693.48 �693.24 �693.72

Boldface indicates maximum value for each criterion. Italic indicates ILbayessup value.
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described by the five plumage and external morphological characters displayed in Table 6. Fig. 2(a) displays the birds on
the first correspondence analysis plan.

5.3.2. Results for ICL criteria

For number of clusters varying from g=1 to 6, EM is run 10 times at random (uniform distribution on the parameter
space) for 1000 iterations and the run providing the largest likelihood is considered as the ML estimate. Table 7 displays
values of all criteria for each number of components. It appears that only ICL selects three clusters. The corresponding
estimated partition, where labels are chosen to ensure the minimum error rate with the true partition, is given in Fig. 2(b).
It has to be compared with the true partition given in Fig. 2(a). It leads to 55 misclassified birds (35.95% of birds), a Rand
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Table 8

Confusion table between the true partition z and the three clusters partition ẑ estimated from the EM solution.

z ẑ

dichrous lherminieri subalaris

dichrous 39 14 31

lherminieri 0 24 10

subalaris 0 0 35

Table 9

Confusion table between the true partition z and the two clusters partition ẑ estimated from the EM solution.

z ẑ

Group 1 Group 2

dichrous 36 48

lherminieri 12 22

subalaris 35 0
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criterion value of 0.6121 and a corrected Rand criterion value of 0.1896 (Rand, 1971). The confusion table between the two
partitions is given in Table 8.

On the another hand, it has to be noticed that the ICL values for one, two and three clusters are quite similar. It seems to
point out that there is little difference between the birds, and that it could be hazardous to discriminate the sub-species
with the available variables. Moreover, it appears that ICLbic and ICL do not behave the same since ICLbic has a marked
preference for the one component solution (no clustering).

5.3.3. Results for IL criteria

Experiments are now focused on BIC and ILbayes criteria. The implemented Gibbs sampler is the same as the simulated
data sets. For R 2 f50,100g and S 2 f1000,10 000,100 000g, ILbayes and ILbayessup are computed, respectively, for
g 2 f1, . . . ,4g and f5,6g and associated values are displayed in Table 7. We note again that the values of R and S do not
have too much impact on the chosen number of clusters by ILbayes.

BIC favors the two-cluster solution, but the no-cluster solution cannot be completely discarded (Table 9 gives the
associated confusion table between the true partition and the two-cluster solution). On the contrary, ILbayes clearly rejects
the no clustering solution and favors three clusters, emphasizing again the potentially high difference between the two
types of criteria for revealing structures in datasets.

6. Discussion

In this paper, we exploit the fact that the Jeffreys non-informative prior distribution of the parameters of the
multivariate multinomial mixture model is a conjugate distribution. It implies that the integrated complete-data likelihood
can be expressed explicitly. Moreover, it helps to derive a non-asymptotic approximation of the integrated observed-data
likelihood. A simple and efficient numerical procedure to get such a non-asymptotic approximation is proposed.

Monte Carlo numerical experiments for selecting the number of clusters in a latent class model highlight the interest of
using exact or approximate non-asymptotic criteria instead of standard asymptotic criteria as ICLbic or BIC. In particular,
they illustrate the fact that asymptotic criteria may fail to detect interesting structures in the data for small sample sizes.
More precisely, the pros and cons of each criterion can be summarized as follows:
�
 From a time computing point of view, ICL and ICLbic being absolutely equivalent, the ICL criterion can definitively be
preferred to the ICLbic criterion.

�
 Concerning the ILbayes and BIC criteria, ILbayes leads to better results than BIC even for quite moderate values of R and

S. Consequently, ILbayes appears as a challenging criterion to BIC for a moderate increase of the CPU times to be paid as
long as the upper bound ILbayessup is useful for ‘‘high’’ values of g. Otherwise, ILbayes can be difficult to evaluate for
high g and its use cannot be recommended.

�
 On the other hand, this paper underlines the possible interest of using the integrated complete-data likelihood criterion

rather than the integrated observed-data likelihood criterion. The first one explicitly favors models leading to well
separated clusters. This feature implies some robustness against model misspecification, as the violation of the
conditional independence assumption of the latent class model. It appears that ICL is preferable when the clustering
model is misspecified while implying that some power is lost in model selection. Since in practical situations, the
clustering model is often misspecified, ICL could be recommended when clustering is the main purpose of the analysis.
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From the encouraging results obtained for non-asymptotic criteria in this latent class model context, it is now
challenging to decline such criteria in other model-based situations. It includes for instance the possibility to design such
criteria to variants on the latent class model considering constrained parameters to get more parsimonious models
(see Celeux and Govaert, 1991).

Finally, alternative criteria such as the deviance information criterion (DIC) (Spiegelhalter et al., 2002), which can be
viewed as a Bayesian analogue of AIC with a similar justification, could be considered in the latent class analysis context. In
particular, the criterion DIC4 proposed in Celeux et al. (2006) in the context of missing data models could be an alternative to
ICL since both criteria are based on the completed likelihood. However, as noted in Frühwirth-Schnatter (2006, Section 4.4.2),
AIC tends to select too many components even for a correctly specified mixture. Thus it is doubtful that DIC-like criteria could
outperform ILbayes and ICL criteria for latent class models. But it remains an interesting avenue for future research.
Acknowledgments

Authors are indebted to a reviewer for his comments and suggestions which help to greatly improve this paper. In
particular, he suggested to consider the importance sampling function we finally used to approximate the marginal
likelihood of a model.

References

Aitkin, M., Anderson, D., Hinde, J., 1981. Statistical modelling of data on teaching styles. Journal of the Royal Statistical Society, Series B 47 (1), 67–75
(With discussion).

Biernacki, C., Celeux, G., Govaert, G., 2000. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Transactions on
Pattern Analysis and Machine Intelligence 22 (7), 719–725.

Biernacki, C., Celeux, G., Govaert, G., Langrognet, F., 2006. Model-based cluster and discriminant analysis with the Mixmod software. Computational
Statistics and Data Analysis 52 (2), 587–600.

Biernacki, C., Celeux, G., Govaert, G., 2008. Exact and Monte Carlo calculations of integrated likelihoods for the latent class model. Technical Report
RR6609, INRIA.

Bretagnolle, V., 2007. Personal communication, source: Museum.
Casella, G., Robert, C., Wells, M., 2000. Mixture models, latent variables and partitioned importance sampling. Technical Report 2000-03, CREST, INSEE,

Paris.
Celeux, G., Forbes, F., Robert, C.P., Titterington, D.M., 2006. Deviance information criteria for missing data models. Bayesian Analysis 1, 651–674.
Celeux, G., Govaert, G., 1991. Clustering criteria for discrete data and latent class models. Journal of Classification 8 (2), 157–176.
Celeux, G., Hurn, M., Robert, C.P., 2000. Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical

Association 95, 957–970.
Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B

39, 1–38 (With discussion).
Fraley, C., Raftery, A.E., 2002. Model-based clustering, discriminant analysis and density estimation. Journal of the American Statistical Association 97,

611–631.
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