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Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models

Tiago P. Peixoto*

Institut für Theoretische Physik, Universität Bremen, Hochschulring 18, D-28359 Bremen, Germany
(Received 17 October 2013; published 13 January 2014)

We present an efficient algorithm for the inference of stochastic block models in large networks. The algorithm
can be used as an optimized Markov chain Monte Carlo (MCMC) method, with a fast mixing time and a much
reduced susceptibility to getting trapped in metastable states, or as a greedy agglomerative heuristic, with an
almost linear O(N ln2 N ) complexity, where N is the number of nodes in the network, independent of the number
of blocks being inferred. We show that the heuristic is capable of delivering results which are indistinguishable
from the more exact and numerically expensive MCMC method in many artificial and empirical networks, despite
being much faster. The method is entirely unbiased towards any specific mixing pattern, and in particular it does
not favor assortative community structures.
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I. INTRODUCTION

The use of generative models to infer modular structure
in networks has been gaining increased attention in recent
years [1–12], due to its more general character and because
it allows the use of a more principled methodology when
compared to more common methods, such as modularity
maximization [13]. The most popular generative model being
used for this purpose is the so-called stochastic block model
[14–17], where the nodes in the network are divided into B

blocks, and a B × B matrix specifies the probabilities of edges
existing between nodes of each block. This simple model
generalizes the notion of “community structure” [18] in that
it accommodates not only assortative connections but also
arbitrary mixing patterns, including, for example, bipartite,
and core-periphery structures. In this context, the task of
detecting modules in networks is converted into a process
of statistical inference of the parameters of the generative
model given the observed data [1–12], which allows one
to make use of the robust framework of statistical analysis.
Among the many advantages which this approach brings
is the capacity of separating noise from structure, such
that no spurious communities are found [19–25], increased
resolution in the detection of very small blocks based on
refined model selection methods [26], and the identification
of fundamental limits in the detection of modular structure
[27–31]. However, one existing drawback in the application
of statistical inference is the lack of very efficient algorithms,
in particular for networks with a very large number of blocks,
with a performance comparable to some popular heuristics
available for modularity-based methods [32,33]. Here we
present some efficient techniques of performing statistical
inference on large networks, which are partially inspired
by the modularity-based heuristics but where special care is
taken not to restrict the procedure to purely assortative block
structures and to control the total number of blocks B such that
detailed model selection criteria can be used. Furthermore, the
method presented functions either as a greedy heuristic, with
a fast O(N ln2 N ) algorithmic complexity, or as full-fledged
Monte Carlo method, which saturates the detectability range
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of arbitrary modular structure at the expense of larger running
times.

This paper is divided as follows. In Sec. II the stochastic
block model is defined together with the maximum likelihood
inference procedure. Section III presents an optimized Markov
chain Monte Carlo (MCMC) method which is capable of
reaching equilibrium configurations more efficiently than more
unsophisticated approaches. In Sec. IV the MCMC techniques
are complemented with an agglomerative heuristic which
successfully avoids metastable states resulting from starting
from random partitions and can be used on its own as an
efficient and high-quality inference method. In this session
we also compare the heuristic to the full MCMC method for
synthetic networks. In Sec. V we compare both methods with
several empirical networks. We finally conclude in Sec. VI
with a discussion.

II. THE STOCHASTIC BLOCK MODEL

The stochastic block model ensemble [14–17] is composed
of N nodes, divided into B blocks, with ers edges between
nodes of blocks r and s (or, for convenience of notation, twice
that number if r = s). For many empirical networks, much
better results are obtained if degree variability is included
inside each block, as in the so-called degree-corrected block
model [8], in which one additionally specifies the degree
sequence {ki} of the graph as an additional set of parameters.

The detection of modules consists in inferring the most
likely model parameters which generated the observed net-
work. One does this by finding the best partition {bi} of the
nodes, where bi ∈ [1,B] is the block membership of node i,
in the observed network G, which maximizes the posterior
likelihood P(G|{bi}). Because each graph with the same
edge counts ers are equally likely, the posterior likelihood
is P(G|{bi}) = 1/�({ers},{nr}), where ers and nr are the
edge and node counts associated with the block partition
{bi}, and �({ers},{nr}) is the number of different network
realizations. Hence, maximizing the likelihood is identical to
minimizing the microcanonical entropy [34] S({ers},{nr}) =
ln �({ers},{nr}), which can be computed [35] as

St = 1
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for the traditional model and
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for the degree corrected variant, where E = ∑
rs ers/2 is the

total number of edges, Nk is the total number of nodes with
degree k, er = ∑

s ers is the number of half-edges incident
on block r , and Hb(x) = −x ln x − (1 − x) ln(1 − x) is the
binary entropy function and it was assumed that nr � 1.

These models can be generalized for directed networks, for
which corresponding expressions for the entropies are easily
obtained [19,35]. The methods described in this paper are
directly applicable for directed networks as well.

Although minimizing St/c allows one to find the most likely
partition into B blocks, it cannot be used to find the best value
of B itself. This is because the minimum of St/c is a strictly
decreasing function of B, since larger models can always
incorporate more details of the observed data, providing a
better fit. Indeed, if one minimizes St/c over all B values one
will always obtain the trivial B = N partition where each node
is in its own block, which is not a useful result. The task of
identifying the best value of B in a principled fashion is known
as model selection, which attempts to separate actual structure
from noise and avoids overfitting. In the current context this
can be done in a variety of ways, such as using the minimum
description length (MDL) criterion [19,20] or performing
Bayesian model selection (BMS) [7,21–25]. In Ref. [26] a
high-resolution model selection method is presented, which
is based on MDL and a hierarchy of nested stochastic block
models describing the network topology at multiple scales and
is capable of discriminating blocks with sizes significantly
below the so-called “resolution limit” present in other model
selection procedures and other community detection heuristics
such as modularity optimization [36]. In Ref. [26] it is also
shown that BMS and MDL deliver identical results if the same
model constraints are imposed. However, in order to perform
model selection, one first needs to find optimal partitions of
the network for given values of B, which is the subproblem
which we consider in detail in this work. Therefore, in the
remainder of this paper we will assume that the value of B is a
fixed parameter, unless otherwise stated, but the reader should
be aware that this value itself can be determined at a later step
via model selection, as described, e.g., in Refs. [19,26].

Given a value of B, directly obtaining the partition {bi}
which minimizes St/c is, in general, not tractable, since it
requires testing all possible partitions, which is only feasible
for very small networks. Instead, one must rely on approximate
or stochastic procedures which are guaranteed to sample
partitions with a probability given as a function of St/c, as
described in the following section.

III. MARKOV CHAIN MONTE CARLO

The MCMC approach consists in modifying the block
membership of each node in a random fashion and accepting or
rejecting each move with a probability given as a function of
the entropy difference �St/c. If the acceptance probabilities
are chosen appropriately and the process is ergodic, i.e.,
all possible network partitions are accessible, and detailed
balance is preserved, i.e., the moves are reversible, after a

sufficiently long equilibration time, each observed partition
must occur with the desired probability proportional to
P(G|{bi}) = e−St/c . In this sense, this process is exact, since
it is guaranteed to eventually produce the partitions with the
desired probabilities, after a sufficient long equilibration (or
mixing) time. In practice, the situation is more nuanced, since
equilibration times may be very long, and one may not able to
sample from a good approximation of the desired distribution,
and different ways of implementing the Markov chain leads
to different mixing times. The simplest approach one can take
is to attempt to move each vertex into one of the B blocks
with equal probability. This easily satisfies the requirements
of ergodicity and detailed balance but can be very inefficient.
This is particularly so in the case where the value of B is large
and the block structure of the network is well defined, such
that the vertex will belong to very few of the B blocks with
a nonvanishing probability, which means that most random
moves will simply be rejected. A better approach has been
proposed in Ref. [19], which we present here in a slightly
generalized fashion and consists in attempting to move a vertex
from block r to s with a probability given by

p(r → s|t) = ets + ε

et + εB
, (3)

where t is the block label of a randomly chosen neighbor
and ε > 0 is a free parameter (note that by making ε → ∞ we
recover the fully random moves described above). Equation (3)
means that we attempt to guess the block membership of a
given node by inspecting the block membership of its neigh-
bors and by using the currently inferred model parameters
to choose the most likely blocks to which the original node
belongs (see Fig. 1). It should be observed that this move
imposes no inherent bias; in particular, it does not attempt to
find assortative structures in preference to any other, since it
depends fully on the matrix ers currently inferred. For any
choice of ε > 0, this move proposal fulfills the ergodicity
condition but not detailed balance. However, this can be
enforced in the usual Metropolis-Hastings fashion [37,38] by
accepting each move with a probability a given by

a = min

{
e−β�St/c

∑
t p

i
t p(s → r|t)∑

t p
i
t p(r → s|t) ,1

}
, (4)

where pi
t is the fraction of neighbors of node i which belong to

block t , and p(s → r|t) is computed after the proposed r → s

i
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u

FIG. 1. (Color online) Left: Local neighborhood of node i be-
longing to block r , and a randomly chosen neighbor j belonging
to block t . Right: Block multigraph, indicating the number of edges
between blocks, represented as the edge thickness. In this example,
the attempted move bi → s is made with a larger probability than
either bi → u or bi → r (no movement), since ets > etu and ets > etr .
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FIG. 2. (Color online) Left: Autocorrelation function R(τ ), for
a PP model with c = 0.8 and B = 100, for a network of size
N = 104 and 〈k〉 = 10, and two values of the parameter ε, where
for ε → ∞ we have fully random moves. The curves were averaged
for 100 independent network realizations. Right: PDF of the values
of St /E obtained for T = 2 × 104 consecutive sweeps for 100
independent network realizations, for different ε values, showing
the same distribution.

move (i.e., with the new values of ert ), whereas p(r → s|t)
is computed before. The parameter β in Eq. (4) is an inverse
temperature, which can be used to escape local minima or to
turn the algorithm into a greedy heuristic, as discussed below.

The moves with probabilities given by Eq. (3) can be
implemented efficiently. We simply write p(r → s|t) = (1 −
Rt )ets/et + Rt/B, with Rt = εB/(et + εB). Hence, in order
to sample s we proceed as follows: (1) A random neighbor j of
the node i being moved is selected, and its block membership
t = bj is obtained; (2) the value s is randomly selected from all
B choices with equal probability; (3) with probability Rt it is
accepted; (4) if it is rejected, a randomly chosen edge adjacent
to block t is selected, and the block label s is taken from its
opposite endpoint. This simple procedure selects the value of
s with a probability given by

∑
t p

i
t p(r → s|t) and requires

only a small number of operations, which is independent either
on B or the number of neighbors the node i has. The only
requirement is that we keep a list of edges which are adjacent
to each block, which incurs an additional memory complexity
of O(E). To decide whether to accept the move, we need to
compute the value of a, which can be done in O(ki) time,
which is the same number of operations which is required
to compute �St/c.1 Therefore, an entire MCMC sweep of all
nodes in the network requires O(E) operations, independent
of B.

To test the behavior of this approach, we examine a simple
example known as the planted partition (PP) model [39].
It corresponds to an assortative block structure given by
ers = 2E[δrsc/B + (1 − δrs)(1 − c)/B(B − 1)], nr = N/B,
and c ∈ [0,1] is a free parameter which controls the assor-
tativity strength. In this example, the algorithm above leads to
much faster mixing times, as can be seen in the left part of

1For sparse networks with ers 	 nrns , we may write St
∼= E −

1
2

∑
rs ers ln ers + ∑

r er ln nr , and note that to compute the change
in entropy we need to modify at most 4k terms in the first sum and
2 terms in the second, if we change the membership of a node with
degree k. The same argument holds for Sc.
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FIG. 3. (Color online) Left: Correlation time τ ∗ as a function of
the model parameter c, for different values of ε, N = 104, 〈k〉 = 10,
B = 100, averaged over 40 independent network realizations. Right:
Correlation time τ ∗ as a function of the number of blocks B, for
different values of ε, for N = 100 × B, 〈k〉 = 10, c = 0.8, averaged
over 40 independent network realizations.

Fig. 2, which shows the autocorrelation function

R(τ ) =
∑T −τ

t=1 (St/c(t) − 〈St/c〉)(St/c(t + τ ) − 〈St/c〉)
(T − τ )σ 2

St/c

, (5)

where St/c(t) is the entropy value after t MCMC sweeps and
T is the total number of sweeps, computed after a sufficiently
long transient has been discarded. For the particular choice of
parameters chosen for Fig. 2, the autocorrelation time is of
the order of 10 sweeps with the optimized moves, and of the
order of 100 sweeps with the fully random variant. Despite
the difference in the mixing time, both methods sample from
the same distribution, as shown in Fig. 2 (right).

The improvement for smaller ε values is more prominent as
the block structure becomes more well defined, as can be seen
in Fig. 3, which shows the autocorrelation time τ ∗, defined
here as

τ ∗ =
T ′∑

τ=0

R(τ ), (6)

where T ′ is the largest value of τ for which R(τ ) � 0. In Fig. 3
(left) are shown the values of τ ∗ depending on c, from which
one can see that the relative improvement on the mixing time
can be up to two orders of magnitude for the chosen value
of B = 100. As the value of c approaches the detectability
threshold (see below), the autocorrelation time diverges, as
is typical of second-order phase transitions, and the relative
advantage of the optimized moves diminishes. However, for
most of the parameter range where the blocks are detectable,
the mixing time with the optimized moves seems independent
on the actual number of blocks, as shown in Fig. 3, where a
fixed block size N/B = 100 was used and B was varied. One
can see that for the optimized moves the mixing time remains
constant, whereas for the fully random moves it increases
steadily with B.

Although the optimized moves above provide a consider-
able improvement over the fully random alternative whenever
the number of blocks B becomes large, there remains an
important problem when applying it. Namely, the mixing
time can be heavily dependent on how close one starts from
the typical partitions which are obtained after equilibration.
Since one does not know this, one often starts with a random
partition. However, this is very far from the equilibrium states,
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FIG. 4. (Color online) Evolution of the MCMC for a network
sampled from the PP model with N = 104, 〈k〉 = 10, B = 3, and
c = 0.99, starting from a fully random partition of the nodes. The
networks show a representative snapshot of the state of the system
before and after the last drop in St .

and if the block structure is sufficiently strong, this can lead
to metastable configurations, where the block structure is only
partially discovered, as shown in Fig. 4, for a network with
B = 3.2 The main problem is that not only does it take a long
time to escape such metastable states, but also, by observing the
values of St/c alone, one may arrive at the wrong conclusion
that the Markov chain has equilibrated. For example, in the
simulation shown in Fig. 4, it took many hundreds of sweeps
for the final drop in St to occur, and, before this, the time
series is difficult to distinguish from an equilibrated chain.
This problem is exacerbated if the average block size N/B

increases, which can be frustrating since one would like
to consider these scenarios to be easier than for smaller
block sizes. In order to avoid this problem, we propose the
agglomerative heuristic described in the next session, which
can be used as a privileged starting point for the Markov chain
or as an approximate inference tool on its own.

IV. AGGLOMERATIVE HEURISTIC

In order to avoid the metastable states described previously,
we explore the fact that they are more likely to occur if the
block sizes are large, since otherwise the quenched topological
fluctuations present in the network will offer a smaller free-
energy barrier which needs to be overcome. Therefore, a more
promising approach is to attempt to find the best configuration
for some B ′ > B and then use that configuration to obtain a
better estimate for one with B blocks.3 This can be done by

2The occurrence of these metastable states is independent of the
optimized moves and happens also for the fully random ε → ∞
moves.

3Note that we cannot simply set B ′ > B and perform the same
MCMC sweeps, expecting to obtain a partition into B blocks, since
the values of St/c obtained for larger B values are always smaller.
Differently from other community detection approaches, such as
modularity optimization, here we are forced to control the value
of B explicitly, which we can determine at a later step via a model
selection procedure, as discussed previously.

→

FIG. 5. (Color online) Representation of the block merges used
in the agglomerative heuristic. Each square node is a block in the
original graph, and the merges (represented as red dashed lines)
correspond simply to block membership moves.

merging blocks together progressively, as shown in Fig. 5.
We implement this by constructing a block (multi-)graph,
where the blocks themselves are the nodes (weighted by the
block sizes) and the edge counts ers are the edge multiplicities
between each block node. In this representation, a block merge
is simply a block membership move of a block node, where
initially each node is in its own block. The choice of moves
is done with same probability as before, i.e., via Eq. (3). In
order to select the best merges, we attempt nm moves for each
block node and collectively rank the best moves for all nodes
according to �St/c. From this global ranking, we select the best
B ′ − B merges to obtain the desired partition into B blocks.
However, if the value of N/B ′ itself is too large, we face again
the same problem as before. Therefore we proceed iteratively
by starting with B1 = N , and selecting Bi+1 = Bi/σ , until we
reach the desired B value, where σ > 1 controls how greedily
the merges are performed. To diminish the effect of bad merges
done in the earlier steps, we also allow individual node moves
between each merge step, by applying the MCMC steps above
to the original network, with β → ∞. The complexity of
each agglomerative step is O[nmE + N ln(Bi − Bi−1) + τE],
which incorporates the search for the merge candidates, the
ranking of the Bi − Bi−1 best merges, and the movement
of the individual nodes, where τ is the necessary amount
of sweeps to reach a local minimum. Since we have in
total ln(N/B)/ ln σ merge steps, with the slowest one being
the first with B1 = N , we have an overall complexity of
O{[(nm + τ )E + N ln N ] × ln N/ ln σ } ∼ O(N ln2 N ), if we
assume that B 	 N4 and that the graph is sparse with
E ∼ O(N ).

Despite its greedy nature, we found that this approach is
capable of almost always avoiding the metastable configura-
tions described previously and often comes very close or even
exactly to the planted partition (see Fig. 6).

The parameters nm, σ , and ε allow one to choose an
appropriate trade-off between quality and speed. The best
results are obtained for large nm and small σ ; however, these
need not to be chosen fully independently. We found that
setting nm to a “reasonable” value such as 10 or 100 and
selecting σ to be 2, 1.1, or 1.01 allows one to probe the full
quality range of the algorithm (see below). The choice of
the value ε is interesting, since making ε = 0 allows one
to preserve certain graph invariants throughout the whole

4This is a worst-case scenario. If B ∼ N , then the complexity
reduces to O(N ln N ).
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FIG. 6. (Color online) Left: An example of a typical partition
obtained by starting with a random B = 3 configuration and applying
only greedy moves until no further improvement is possible for
a PP network with N = 300, 〈k〉 = 10, and c = 0.9. Right: A
typical outcome for the same network, with the greedy agglomerative
algorithm described in the text.

procedure. Since at the first merging step when Bi = N the ers

matrix is simply the adjacency matrix, the membership moves
with ε = 0 cannot merge nodes which belong to different
components or to different partitions in bipartite networks. It
is easy to see that this property is preserved for later merging
steps as well, so they are fully reflected in the final block
structure. We find that very often this is a desired property and
leads to better block partitions. In situations where it is not
desired, it can be disabled by setting ε > 0.

The algorithm above can be turned into a more robust
MCMC method by making β = 1 in the intermediary phase
between each merge step and waiting sufficiently long for
the Markov chain to equilibrate. This is a slower, but more
exact, counterpart to the greedy heuristic variant, which is less
susceptible to getting trapped in the metastable states discussed
previously. If one wishes to find the minimum of St/c, one can
make β → ∞ after the chain has equilibrated, either abruptly
(as we do in the results presented in this paper), or slowly via
simulated annealing [40].

We can assess the quality of the heuristic method by
comparing with known bounds on the detectability of the
PP model. If we have that N/B � 1, it can be shown that
for 〈k〉 < [(B − 1)/(cB − 1)]2 [27–29], it is not possible to
detect the planted partition with any method. To emphasize
the applicability of the method for dissortative (or arbitrary)
topologies, we also analyze a circular multipartite block model,
with ers = 2E[(δr,s−1 + δr,s+1)c/2B + (1 − c)/B2], where c

controls the strength of the modular structure, and periodic
boundaries are assumed. In both cases we compare the
agglomerative heuristic with MCMC results starting from the
true partition, which represents the best possible case. As can
be seen in Fig. 7, the results from the optimal MCMC and the
heuristic are identical for up to some values of c which are
larger than the actual detectability threshold. Thus the greedy
method falls short of saturating the detectable parameter region
but behaves badly only for a relatively small range of c,
below which it becomes much harder (but not impossible)
to distinguish the observed network from a random graph. To
give a more precise idea of the extent to which the graphs in
this region deviate from a random topology, we compare with
a model selection threshold based on the minimum description
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FIG. 7. (Color online) Normalized mutual information (NMI)
(see footnote 6, page 6) between the planted and the inferred partitions
for (top) the PP model and (bottom) the circular multipartite model
described in the text, as a function of the modular strength c, for
N = 104 and B = 10. The “Escape” curves correspond to MCMC
equilibrations starting from the planted partition, and the remaining
curves to the greedy agglomerative heuristic with ratio σ shown in the
legend, and nm = 10. All curves are averaged over 20 independent
network realizations. The grey vertical dashed line corresponds to the
detectability threshold c∗ for the PP model, and the red dashed line
to the MDL model selection threshold of Eq. (7).

length (MDL) principle [19],

〈k〉 >
2 ln B

It/c

, (7)

with It/c = (Sr
t/c − St/c)/E, where Sr

t/c is the entropy for a fully
random graph, with ers = 2Enrns/N

2 (or ers = eres/2E for
the degree-corrected case), and E � B2 was assumed. This
criterion is useful when we do not know the correct value of
B and, hence, cannot rely on minimizing St/c alone, since it
would always result in a B = N partition. If this condition is
not fulfilled, the inferred partition (even if exact) is discarded
in favor of a fully random graph, since the model parameters in
this case cannot be used to provide a more compact description
of the network. From Fig. 7 we see that this threshold lies
very close to the region where the agglomerative algorithm
is incapable of discovering the optimal partition. Hence, in
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FIG. 8. Description length 	 for different empirical networks
collected for 100 independent runs of the MCMC algorithm (MC)
and the agglomerative heuristic (Agg) for different agglomeration
ratios σ .

situations where model selection needs to be performed, any
significant improvement to the quality of the algorithm would
be ultimately discarded, at least in these specific examples.
In other situations, where an increased precision close to the
detectability transition is desired, the heuristic should be used
only as a component of the full-fledged MCMC procedure with
β = 1, as described above, which should be able to eventually
reach the optimal configurations but requires longer running
times.

V. PERFORMANCE ON EMPIRICAL NETWORKS

We have analyzed a few empirical networks to assess the
behavior of the algorithm in realistic situations. We have
chosen the following networks: The largest component of
coauthorships in network science [41] (N = 379, E = 914,
undirected), the human disease gene network [42] (N = 903,
E = 6760, undirected), the political blog network [43] (N =
1222, E = 19 021, directed), the Wikipedia vote network [44]
(N = 8298, E = 103 689, directed), the Enron email network
[45,46] (N = 36 692,E = 367 662, undirected), the largest
strong component of the PGP network [47] (N = 39 796,
E = 301 498, directed), the IMDB film actor network [19]
(N = 372 547, E = 1 812 312, undirected), and the Berkeley-
Stanford web graph [46] (N = 654 782, E = 7 499 425, di-
rected). In all cases we used the degree-corrected model.
Since for these networks the most appropriate value of B

is unknown, we performed model selection using the MDL
criterion as described in Ref. [19], where we find the partition
which minimizes the description length 	 = Lt/c + St/c,
where Lt/c is the amount of information necessary to describe
the model parameters, which increases with B.5 For the

5As mentioned previously, a more refined MDL method presented
in Ref. [26] computes Lt/c via a hierarchical sequence of stochastic
block models, which provides better resolution at the expense of some
additional complexity. But since our objective here is to compare
methods of finding partitions, not model selection, we opt for the
simpler criterion.

FIG. 9. Normalized mutual information (NMI) between the best
overall partition and each one collected for 100 independent runs of
the MCMC algorithm (MC) and the agglomerative heuristic (Agg)
for different agglomeration ratios σ .

networks with moderate size we were capable of comparing
the results with the agglomerative heuristic to those of the
more time-consuming MCMC method. Figures 8 and 10 show
the values of 	 after several runs of each algorithm. It can
be observed that the results obtained with both methods seem
largely indistinguishable for some networks (disease genes,
network scientists, and Wikipedia votes), whereas the MCMC
algorithm leads to better results for others (Enron email,
political blogs) and, interestingly, to worse results for the
PGP network. The better results for MCMC are expected,
but the worse result for the PGP network is not. We can
explain this by pointing out that for that network the average
value of Sc obtained with MCMC for β = 1 noticeably differs
from the minimum possible value. Since we used an abrupt
cooling to β → ∞, the MCMC is more likely to get trapped
in a local minimum than the agglomerative heuristic, which
is never allowed to heat up to the β = 1 configurations.
MCMC would probably match, or even improve, the heuristic
results if, e.g., simulated annealing would be used to reach
the β → ∞ region. However, this serves as an example of
at least one scenario where the agglomerative heuristic can
lead to even better results, despite being much faster than
MCMC.

Perhaps a more meaningful comparison among the different
results is to determine how the obtained partitions differ
from each other. This is shown in Figs. 9 and 10, where
the normalized mutual information (NMI)6 between the best
partition across all runs of all algorithms and every other
partition found is compared for the two algorithms. Despite
leading to different 	 values, the typical partitions found
for each algorithm seem equally far from the (approximated)

6The NMI is defined as 2I ({bi},{ci})/[H ({bi}) + H ({ci})], where
I ({bi},{ci}) = ∑

rs pbc(r,s) ln (pbc(r,s)/pb(r)pc(s)), and H ({xi}) =
−∑

r px(r) ln px(r), where {bi} and {ci} are two partitions of the
network.
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FIG. 10. Description length 	 for different empirical networks,
as well the normalized mutual information (NMI) between the
best overall partition and each one, collected for 100 independent
runs of the agglomerative heuristic, for different agglomeration
ratios σ .

global maximum, so the difference in 	 can be attributed
to minor differences in the partitions. From this we can
conclude that the agglomerative heuristic delivers results
comparable to MCMC for many empirical networks, while
being significantly faster.

Note that the NMI values in Fig. 9 are overall reasonably
high, indicating that the partitions are much more similar than
different; however, they are almost never 1, or very close to
it, except for the smallest networks. This seems to point to a
certain degree of degeneracy of optimal partitions, similar to
those reported in Ref. [48] for methods based on modularity
maximization. A more detailed analysis of this is needed, but
we leave it to future work.

VI. CONCLUSION

We have presented an optimized MCMC method7 for
inferring stochastic block models in large networks, which
possesses an improved mixing time due to optimized proposed
node membership moves, and an agglomerative procedure

7An efficient C++ implementation of the algorithm described
here is freely available as part of the graph-tool Python library at
http://graph-tool.skewed.de.

which strongly reduces the likelihood of getting trapped in
undesired metastable states. By increasing the inverse temper-
ature to β → ∞, this method is turned into an agglomerative
heuristic, with a fast algorithmic complexity of O(N ln2 N ) in
sparse networks. We have shown that although the heuristic
does not fully saturate the detectability range of the MCMC
method, it tends to find indistinguishable partitions for a very
large range of parameters of the generative model, as well
as for many empirical networks. The method also allows for
detailed control of the number of blocks B being inferred,
which makes it suitable to be used in conjunction with model
selection techniques [19–26].

The heuristic method is comparable to the agglomerative
algorithm of Clauset et al. [32] (and variants thereof, e.g.,
Refs. [49–51]), which has the same overall complexity but is
restricted to finding purely assortative block structures, based
on modularity optimization, and is strictly agglomerative,
whereas the algorithm presented here permits individual
node moves between the blocks at every stage, which al-
lows for the correction of bad merges done in the earliest
stages. It can also be compared to the popular method of
Blondel et al. [33], which is not strictly agglomerative, but
it is also restricted to assortative structures and is based
on modularity, although it is typically faster than either
the method of Clauset et al. and the method presented
here.

Both the MCMC method and the greedy heuristic compare
favorably to many statistical inference methods which depend
on obtaining the full marginal probability πi

r that node i be-
longs to block r [27,28,52]. Although this gives more detailed
information on the network structure, it does so at the expense
of much increased algorithmic complexity. For instance, the
belief propagation approach of Refs. [27,28,52], although
it possesses strong optimal properties, requires O(NB2)
operations per update sweep, in addition to an O(EB) memory
complexity. Since in realistic situations the desired value of
B is likely to scale with some power of N , this approach
quickly becomes impractical and hinders its application to
very large networks, in contrast to the log-linear complexity
in N (independent of B) with the method proposed in this
paper.
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