
Algorithms for Graph Partitioning
on the Planted Partition Model

Anne Condon,1, * Richard M. Karp2,†
1Computer Sciences Department, University of Wisconsin, 1210 West Dayton St.,
Madison, WI 53706; e-mail: condon@cs.wisc.edu

2Department of Computer Science and Engineering, University of Washington,
Seattle, WA 98195; e-mail: karp@cs.washington.edu

Received 16 March 1999; revised 28 April 2000; accepted 17 October 2000

ABSTRACT: The NP-hard graph bisection problem is to partition the nodes of an undi-
rected graph into two equal-sized groups so as to minimize the number of edges that cross
the partition. The more general graph l-partition problem is to partition the nodes of an
undirected graph into l equal-sized groups so as to minimize the total number of edges that
cross between groups. We present a simple, linear-time algorithm for the graph l-partition
problem and we analyze it on a random “planted l-partition” model. In this model, the n
nodes of a graph are partitioned into l groups, each of size n/l; two nodes in the same group
are connected by an edge with some probability p, and two nodes in different groups are
connected by an edge with some probability r < p. We show that if p− r ≥ n−1/2+ε for some
constant ε, then the algorithm finds the optimal partition with probability 1 − exp�−n��ε��.
© 2001 John Wiley & Sons, Inc. Random Struct. Alg., 18, 116–140, 2001

Correspondence to: Anne Condon.
*Present address: The Department of Computer Science, University of British Columbia, 201-2366 Main
Mall, Vancouver, V6T 1Z4.
†Present address: Department of Electrical Engineering and Computer Sciences, University of California,
Berkeley, CA, 94720.
Contract grant sponser: NSF.
Contract grant numbers: HRD-627241; CCR-9257241; DBI-9601046.
© 2001 John Wiley & Sons, Inc.

116

ALGORITHMS FOR GRAPH PARTITIONING 117

1. INTRODUCTION

The graph l-partition problem is to partition the n nodes of an undirected graph
into l equal-sized groups so as to minimize the cut size, namely, the total number of
edges that cross between groups. There is extensive literature on algorithms for this
problem because of its many applications, which include very large scale integration
(VLSI) circuit placement, parallel task scheduling, and sparse matrix factorization.

Unfortunately, even the special case of this problem when l = 2, which is the
well-known graph bisection problem, is NP-hard [10]. In light of this, much of the
literature on algorithms for graph bisection (as for many other NP-hard problems)
reports on average-case performance of algorithms. Such work assumes a probability
distribution over the input graphs of a given size (number of nodes and/or edges).
While the bulk of this work provides only empirical data, several papers, including
this paper, bound (as a function of the parameters of the random graph model)
the probability that a given algorithm finds a minimum bisection. Such analyses
are useful in that they can provide insight on when and why certain algorithmic
approaches are likely to be effective.

A popular random graph model is the G�n
m� model in which a graph is selected
randomly and uniformly from the set of all graphs with n nodes and m edges. A
closely related model is the G�n
p� model in which each pair of nodes is con-
nected by an edge independently with probability p. No polynomial time algorithm
is known that provably finds the minimum bisection with high probability on either
of these models for general p. The lack of such an analysis may stem from the fact
that, if m/n → ∞, then for almost all graphs with n nodes and m edges the cut sizes
of the best and worst bisections differ by only a low order term (see Bui et al. [3]).

Instead, some researchers have worked with random graph models in which the
cut size of the best bisection is much smaller than the average cut size. The ear-
liest results, due to Bui et al. [2, 3] concerned the G�n
m
 b� model, in which a
graph is chosen randomly and uniformly from the set of graphs that have n nodes,
m edges, and minimum cut size b. Bui et al. describe an algorithm, based on net-
work flow techniques, that with probability 1 − o�1� finds an optimal bisection on
this model with the additional constraints that the graph is regular, say with degree
d and b = o�n1−1/	�d+1�/2
�. Since every graph with dn edges has average cut size
dn/2, the minimum bisection for the Bui et al. graphs is asymptotically smaller than
the average bisection. Dyer and Frieze [6] analyze an algorithm for (not necessar-
ily regular) graphs with ��n2� edges and b ≤ �1 − ε�m/2 for a fixed ε > 0. The
Dyer–Frieze algorithm is based on comparison of vertex degrees; it finds the min-
imum bisection in polynomial expected time. Boppana [5] presents a graph bisec-
tion algorithm based on eigenvector methods. He shows that if m is ��n log n� and
b ≤ �m− 5

√
mn log n�/2, then his algorithm finds the minimum bisection with prob-

ability 1−O�1/n�. Thus, Boppana’s analysis applies to a larger class of graphs than
the analysis of either Bui et al. or Dyer and Frieze. However, the running time
of Boppana’s algorithm is high since the algorithm uses the ellipsoid method for
finding the maximum of a concave function.

Jerrum and Sorkin [12] analyzed a constant-temperature simulated annealing
algorithm for graph bisection on a slightly different random graph model. Simu-
lated annealing is a heuristic, originally proposed by Kirkpatrick, Gelatt, and Vecchi
[16], that can be applied to a wide range of combinatorial problems. Roughly, in the

118 CONDON AND KARP

case of the graph bisection problem this algorithm attempts to find a good bisec-
tion from an initial bisection by repeatedly employing the following procedure (see
Johnson et al. [13]). A pair of nodes, one on each side of the current bisection, is
chosen. These are swapped with some probability that depends on two parameters,
namely, the change in cut size that results if the nodes are swapped and a tem-
perature parameter which decreases over time (as the temperature parameter is
decreased, so does the probability of a “bad” swap). Jerrum and Sorkin point out
that, although the temperature parameter is believed to improve the effectiveness
of simulated annealing algorithms, there is no rigorous theoretical analysis that sup-
ports this belief. Indeed, Jerrum and Sorkin’s results show that, on their random
graph model, with high probability, constant temperature simulated annealing (also
known as the Metropolis algorithm) succeeds in finding the minimum bisection in
polynomial time.

In the graph model studied by Jerrum and Sorkin, known as the planted bisection
model, a random graph with an even number of nodes n is constructed as follows.
n/2 of the nodes of the graph are assigned one color and the remaining nodes are
assigned a different color. The probability of an edge between like-colored nodes
is p and the probability of an edge between differently colored nodes is r < p.
[The planted bisection model is roughly equivalent to the G�n
m
 b� model with
b = rn2/4 and m = �p + r�n2/4.] If p − r > n−1/2+ε, for any fixed ε > 0, then
with probability 1 − exp�−n��ε�� the planted bisection is the unique bisection with
minimum cut size (see [3, 12]). Boppana’s analysis of his eigenvector algorithm
applies also to the planted bisection model, with p − r = ��log n/n�. Jerrum and
Sorkin show that there is a choice of the temperature parameter for which, in ��n2�
iterations of the node swap procedure, the Metropolis algorithm finds the minimum
bisection with probability 1 − exp�−n��ε�� if p− r ≥ n−1/6+ε.

The analysis of Jerrum and Sorkin centers on the evolution of the maximum
imbalance of a color in a bisection �L
R�, where the imbalance of a color is the
difference between the number of nodes of that color in L and the number in R,
all divided by 2. (We note that where we use “maximum imbalance” in this paper,
Jerrum and Sorkin use “imbalance.”) Intuitively, the pair-swapping process of the
Metropolis algorithm has a tendency to improve the maximum color imbalance. The
analysis shows that this process leads fairly quickly to a large imbalance of ��n�.
However, most of the running time of the Metropolis algorithm is then spent when
the current bisection is very close to the minimum bisection. For example, when
just one node of each color is on the “wrong” side of the partition, it takes ��n2�
time just to select that pair of nodes for a potential swap.

Jerrum and Sorkin point out that this wasteful use of swaps can be avoided by
slightly modifying the choice of node-pairs that are candidates for swaps. Another
way of circumventing this problem is as follows. First, run the Metropolis algorithm
on a randomly chosen set of half of the nodes until the ��n� imbalance is reached
(with high probability). Now, the partition of nodes, while not completely correct,
is still statistically accurate in the sense that an overwhelming fraction of one side is
of one color and an overwhelming fraction of the other side is of the opposite color.
This statistically accurate partition can be used to produce an exact partition of the
remaining half of the nodes as follows. For each node in the remaining half, the
expected number of edges that it has to the side of the partition containing nodes
that are predominantly of the same color is much higher than to the other side of

ALGORITHMS FOR GRAPH PARTITIONING 119

the partition. Moreover, by the concentration of measure phenomenon, the actual
number is also sharply concentrated around this value. Hence, the statistically accu-
rate partition provides a highly reliable guide to produce an exactly monochromatic
partition of the remaining nodes. In turn, this exact partition can be used as a
highly reliable guide to monochromatically partition the first half of the nodes (i.e.,
partition them so that all nodes in one class have the same color).

In this paper, we use a different algorithm to produce a statistically accurate
partition, based on successive augmentation. Starting with an empty partition, our
algorithm repeatedly picks a pair of unexamined nodes and places them, one on
each side of the partition in a greedy fashion so as to minimize the number of
edges added to the cut. Once half of the nodes are added in this way, the partition
produced has high imbalance and is statistically correct.

The same idea extends to a multipartition model. In this planted l-partition
model, each node is assigned one of l colors, with n/l nodes of each color, and
the probability of an edge between nodes is just as for the planted bisection model.
In this model, the algorithm first selects a sequence of pairs of nodes and creates
a two-way partition following the greedy procedure outlined in the last paragraph.
Each greedy step tends to increase the difference between the imbalances of any
two colors. Thus, the resulting two-way partition is again a statistical guide because
the imbalance between any two colors is ��n�. The expected value of the number
of edges from a remaining vertex of a color C is a value oC which is well separated
from the corresponding value oC ′ for a different color C ′. Moreover, by the concen-
tration of measure phenomenon, the actual value is sharply concentrated around
this expected value. This provides a highly reliable method to monochromatically
l-way partition the remaining vertices: Order the number of edges of the remaining
nodes to the left side as l1 ≤ l2 ≤ � � �, and form groups by cutting off at the largest
differences. This can now be used, in turn, to monochromatically partition the first
half of the nodes.

In Section 3, we present our linear-time algorithm for the l-partition problem,
and in Section 4 we show that this algorithm correctly constructs a monochromatic
partition of a graph with a “planted” l-partition, with high probability. Specifically,
we show that, for the planted l-partition model with p− r ≥ n−1/2+ε, our algorithm
outputs the minimum partition with probability 1 − exp�−n��ε��. We note that our
analysis holds for the widest possible range of p− r, unlike the analysis of Jerrum
and Sorkin.

In Section 5.3, we prove a stronger property of our algorithm: ��n� iterations
produce a partition in which the difference between any pair of imbalances is ��n�.
Using this insight, we obtain a somewhat simpler algorithm for the l-partition prob-
lem in Section 5.

2. RELATED WORK

Perhaps the best known algorithm for the graph bisection problem is the Kernighan–
Lin (K–L) heuristic [15] and its modification by Fiduccia and Mattheyses [8]. Several
other algorithms for graph bisection and graph l-partitioning have been proposed,
including genetic algorithms [4].

120 CONDON AND KARP

Johnson et al. [13] experimentally compared the performance of the K–L and
simulated annealing algorithms on several random graph models. Overall, simulated
annealing was found to be superior to the K–L on the G�n
p� graphs tested [the
parameters were chosen so that in effect p = O�1/n�], while the K–L was found
to be superior on random geometric graphs. The simulated annealing algorithm
implemented by Johnson et al. is somewhat different from that analyzed by Jerrum
and Sorkin, in that, rather than repeatedly selecting a pair of nodes for swapping,
the algorithm selects a single node. The cost (and hence the probability) of swap-
ping a selected node is a function not only of the resulting change in cut size, but
also includes a penalty if the difference in size between the left and right sides of
the partition increases. Interestingly, Johnson et al. mention that algorithms based
on successive augmentation, in which an initially empty structure is successively aug-
mented until it becomes a solution, often outclass algorithms based on simulated
annealing, but they do not describe any experimental results on successive aug-
mentation for graph bisection in their paper. The early phases of our linear-time
algorithm can be considered to be successive augmentation.

Also closely related is the work of Juels [14], which analyzes a simple hill-climbing
algorithm on the planted bisection model. Starting from a random initial bisection,
this algorithm repeatedly selects at random a pair of nodes, one from each side of
the partition, and swaps them if and only if the cut size decreases as a result. Juels
shows that within ��n2� iterations, this algorithm succeeds in finding the minimum
bisection with probability ��1� if p − r = ��1�. [Here, and in what follows, the
notation ��1� means some constant > 0 that is independent of the graph.]

Other algorithms for graph bisection are related to the algorithm of this paper
in that they construct a “core” and build the rest of the solution around this core.
The algorithm of Dyer and Frieze [6] mentioned above has a core consisting of
the neighbors of the maximum degree vertex of the graph; the remaining vertices
are partitioned based on the number of neighbors they have in the core. Another
example is Kucera’s algorithm for graph partitioning [17]. Our algorithm differs
from these in that the core is imperfectly partitioned.

Regarding approximation algorithms for the graph bisection problems on gen-
eral graphs, no polynomial-time algorithm is known that is guaranteed to output a
bisection with cut size that is bounded by a constant times the minimum cut size.
For dense graphs, i.e., graphs in which the minimum node degree is ��n�, two poly-
nomial time approximation schemes (PTAS) for the graph bisection problem were
recently proposed [1, 9]: given a graph and a constant ε > 0, these algorithms out-
put a bisection with cut size at most �1 + ε� times the minimum cut size. (The
running time of these algorithms is exponential in 1/ε.)

3. ALGORITHM

In this section, we present our linear-time algorithm for the graph l-partition prob-
lem. The algorithm consists of four phases. Briefly, the purpose of the first two
phases is to build up a partition �L2
 R2� with L2 = R2 = ��n� in which some
color has an imbalance of ��n�. By the imbalance of a color in a partition �L
R�,
we mean the number of nodes of that color in L less the number of nodes of that
color in R, all divided by 2. We note that the imbalance may be negative. In the third

ALGORITHMS FOR GRAPH PARTITIONING 121

phase, partition �L2
 R2� is used to partition the remaining unexamined nodes into
two nonempty groups L and R such that no node in L is the same color as a node
in R. In the fourth Phase, all nodes examined in Phases 1 and 2 are added to the
“correct” side of the partition �L
R�. The problem can now be solved recursively
on L and R. We next describe the algorithm in detail.

Algorithm 1
Input: n-node graph G and integer l > 1 (the partitioning factor) (assume n is

sufficiently large so that �n1−ε/2� + �n/4� < n/2):

Phase 1: L1 and R1 are initially empty. In each of n1 = �n1−ε/2� steps, choose a
pair of nodes �1
 2� randomly and uniformly from the unexamined nodes. Let
l1�i� and r1�i� be the number of edges from node i, i ∈ �1
 2� to nodes in L1
and R1, respectively, and let X = l1�1� − r1�1� − l1�2� + r1�2�. If X > 0, place
nodes 1 and 2 in L1 and R1, respectively, and if X < 0, place nodes 2 and 1 in
L1 and R1, respectively. If X = 0 then place the nodes equiprobably into either
L1 or R1.

Phase 2: L2 and R2 are initially empty. Let n2 = �n/4�. Choose n2 new pairs of
nodes randomly and uniformly from the unexamined nodes. As in Phase 1,
greedily assign one node from each pair �1
 2� to each of L2 and R2, depend-
ing on the sign of X = l1�1� − r1�1� − l1�2� + r1�2�. Note that all pairs may be
assigned concurrently to �L2
 R2�.

Phase 3: For each remaining unexamined node v, let l2�v� denote the number of
edges from node v to nodes in L2. Let o0 < o1 < · · · < oj be the ordered set of
values l2�v� and let oa − oa−1 be the maximum difference between consecutive
numbers in this ordered list. If l2�v� ≥ oa, put node v in L and if l2�v� < oa put
node v in R.

Phase 4: In parallel for each node v examined in Phases 1 and 2, assign v greedily
to L if the fraction of nodes in L that have edges to v is greater than the fraction
of nodes in R that have edges to v, and assign v to R otherwise.

Recursion: Let kL and kR be such that L = kLn/l and R = kRn/l. If kL = 1 then
include L as one of the classes in the output l-partition. Otherwise, if kL is an
integer greater than 1 then apply the algorithm recursively to the graph induced
by the nodes of L, with partitioning factor kL and include the kL resulting
classes among the l-partitions. Similarly, if kR = 1 then include R as one of
the classes in the output l-partition. Otherwise, if kR is an integer greater than
1 then apply the algorithm recursively to the graph induced by the nodes of
R, with partitioning factor kR and include the kR resulting classes among the
l-partitions. Finally, if either kL or kR is not an integer, declare the algorithm
to have failed.

4. ANALYSIS

In this analysis, we assume that p − r = � = n−1/2+ε. The analysis proceeds by
showing that the following facts are true with probability 1 − exp�−n��ε��, referred
to as “high probability” throughout. At the end of Phase 1, some color in �L1
 R1�
has an imbalance ≥ n1−ε. At the end of Phase 2, some color in �L2
 R2� has an

122 CONDON AND KARP

imbalance ��n�. At the end of Phase 3, no node in L is the same color as a node in
R and both L and R are of size ��n�. Finally, at the end of Phase 4, by which time
all nodes are assigned either to L or to R, no node in L is the same color as a node
in R. The underlying probability space for which these facts apply is the product of
the random planted bisection graph model with the random choices made by the
algorithm.

Sections 4.1–4.3 analyze successive phases of the algorithm. The following version
of Azuma’s inequality, which is in a form due to McDiarmid [18] (see also [12]) is
used throughout.

Theorem 1 (Azuma’s inequality). Let Z1
 � � �
 Zn be independent random variables,
with Zk taking values in a set Ak for each k. Suppose that the (measurable) function
f � ∏Ak → R satisfies f �x� − f �x′� ≤ ck whenever the vectors x and x′ differ only in
the kth coordinate. Let Y be the random variable f �Z1
 � � � Zn�. Then, for any t > 0,

Prob�Y − EY ≥ t� ≤ 2 exp

(
−2t2

/ n∑
k=1

c2
k

)
�

4.1. Phase 1

In Theorem 5, we show that at the end of Phase 1, some color in �L1
 R1� has an
imbalance of at least n1−ε with high probability. The proof of the theorem analyzes
how the maximum imbalance in �L1
 R1� grows over time. The following claim is
key to this analysis. It shows [part (ii)] that at every iteration of the greedy partition-
building algorithm of Phase 1, maximum imbalance is at least as likely to increase
as to decrease. Moreover [part (iii)], the higher the maximum imbalance, the more
likely it is to increase.

Claim 2. Let x�= x�t�� be the maximum imbalance in partition �L1
 R1� at time step
t of Phase 1. Then, at step t + 1 of Phase 1, for any execution of the algorithm up to
step t,

(i) Prob�x increases� = ��1�,
(ii) Prob�x increases� − Prob�x decreases� ≥ 0, and
(iii) if x = ��n1/2−ε/2� then

Prob�x increases � − Prob�x decreases � = �
(
min

{
x�/

√
t
 1

})
�

Proof. Since at least one imbalance is at least 0, we have that x ≥ 0. All three
assertions are trivially satisfied when x = 0. Hence, consider the case x > 0. If
there are at least two colors with imbalance x at the end of step t, then x cannot
decrease at step t + 1 and, since the number l of colors is constant, can increase
with probability ��1� (namely, if nodes in the chosen pair have distinct colors, both
of which have imbalance x; in this case, one of the nodes is placed in L1 and the
imbalance increases as a result). Hence, in the rest of the proof we assume that
there is exactly one color with imbalance x.

Let �x
 x′� denote the event that the colors of nodes 1 and 2 chosen at step t + 1
have imbalance x and x′, respectively, where here x is as given in the statement

ALGORITHMS FOR GRAPH PARTITIONING 123

of the claim and x′ is any possible value for the imbalance. In the event �x
 x′�, if
x �= x′ then x increases at step t + 1 if and only if node 1 is placed in L1. (We note
that if x = x′ + 1/2 then, if node 1 is placed in R1, the maximum imbalance does
not in fact decrease, but rather remains unchanged.) Let

X = l1�1� − r1�1� − l1�2� + r1�2�

where l1�1�, r1�1�, l1�2�, and r1�2� are as defined in Phase 1 of the algorithm at a
step in which the colors of the pair of chosen nodes have imbalances x and x′. We
have that

Prob�x increases event �x
 x′�� = Prob�X > 0� + 1
2Prob�X = 0�

and

Prob�x does not increase event �x
 x′�� = Prob�X < 0� + 1
2Prob�X = 0��

Therefore, to prove part (ii) of the claim it is sufficient to show that Prob�X >
0� ≥ Prob�X < 0�. Averaging over events �x
 x′� with x as in the statement of the
lemma and all x′ �= x then gives the result. Part (i) of the claim follows from this
and the additional fact that at each step of Phase 1, the probability of each event
�x
 x′� such that there are colors with imbalances x and x′ is ��1�. This fact is true
because Phase 1 ends in o�n� steps and so at every step of Phase 1, there are ��n�
unexamined nodes of each color.

To analyze Prob[X ≥ 0], we use the fact that each term l1�i� and r1�i� is bino-
mially distributed. Let B�n
p� denote the number of successes in n independent
Bernoulli trials, each with probability p of success. Let b + x and b′ + x′ be the
number of nodes in L1 which have the same color as nodes 1 and 2, respectively,
at the end of step t. At step t + 1 of the algorithm, t ≥ 0,

l1�1� − r1�1� = B�b+ x
p� + B�t − b− x
 r� − B�b− x
p� − B�t − b+ x
 r�

which has an expected value 2x�. Similarly,

l1�2� − r1�2� = B�b′ + x′
 p� + B�t − b′ − x′
 r�
−B�b′ − x′
 p� − B�t − b′ + x′
 r��

Hence,

X = B�b+ b′ + x− x′
 p� + B�2t − b− b′ − x+ x′
 r�
−B�b+ b′ − x+ x′
 p� − B�2t − b− b′ + x− x′
 r��

Since x− x′ > 0, X dominates the random variable X ′ defined by

X ′ = B��b+ b′�
 p� + B�2t − �b− b′�
 r�
−B��b+ b′�
 p� − B�2t − �b− b′�
 r��

124 CONDON AND KARP

To see why X ′ dominates X, note that the term B�	x− x′

 p� in X is replaced by
B�	x− x′

 r� in X ′ and similarly, −B�	x− x′

 r� in X is replaced by B�	x− x′

 p�
in X ′.

Since the random variable X ′ is symmetric with expected value 0, we have

Prob�X > 0� ≥ Prob�X ′ > 0� = Prob�X ′ < 0� ≥ Prob�X < 0��

This completes the proof of parts (i) and (ii) of the claim.
To prove part (iii), define X as before except that X now pertains to a step of

the algorithm in which, if 1 and 2 are the two nodes chosen at step t + 1, then the
color of node 1 has imbalance x and the color of node 2 has imbalance at most 0.
Call the event in which the nodes have these imbalances �x
≤ 0�. At every step of
Phase 1, the probability that event �x
≤ 0� occurs is ��1� because some color must
have an imbalance at most 0. Hence, to prove part (iii) of the claim, it is sufficient
to show that

Prob�X > 0� = 1/2 +�

(
min

{
x�√
t

 1
})

�

First, note that since the color of node 2 has an imbalance at most 0, the expected
value of l1�2� − r1�2� is at most 0. Hence EX, the expected value of X, is at least
2x�. To bound Prob[X > 0], we use Esseen’s inequality, which provides an approx-
imation for the tail probability of a sum of independent random variables in terms
of the normal distribution.

Theorem 3 (Esseen’s inequality) (Petrov [19, Theorem 3, p. 111]). Let X1
 � � � ,
Xn be independent random variables such that EXj = 0 and EXj3 < ∞
 j =
1
 � � �
 n. Let

σ2
j = EX2

j
 B =
n∑

j=1

σ2
j
 F�x� = Prob

[
B−1/2

n∑
j=1

Xj < x

]

and

L = B−3/2
n∑

j=1

EXj3�

Then,

sup
x

F�x� −(�x� ≤ AL

where A is an absolute constant and (�x� denotes the normal �0
 1� distribution
function.

Note that X = ∑4t
j=1 Xj + EX, where each random variable Xj is one of the

following: (i) Y − p where Y is 1 with probability p and 0 with probability 1 − p,
(ii) Y − r where Y is 1 with probability r and 0 with probability 1 − r, (iii) Y + p
where Y is −1 with probability p and 0 with probability 1− p, or (iv) Y + r where
Y is −1 with probability r and 0 with probability 1 − r. Therefore, EXj = 0 and

ALGORITHMS FOR GRAPH PARTITIONING 125

EXj3 = O�1� and so the random variables Xj satisfy the conditions of Esseen’s
inequality. Using the notation in Theorem 3 with n = 4t, we have that

Prob�X > 0� = Prob
[
B−1/2

4t∑
j=1

�−Xj� < B−1/2EX

]

≥ (�B−1/2EX� −AL

≥ (

(
2x�√

B

)
−AL

= 1/2 +�
(
min

{
x�/

√
B
 1

})−O�L��

To see why the last equality holds, we note that (�2x�/
√
B� can be expressed

as the sum of the following two areas under the curve defining the normal density
function φ: (a) the area up to the zero axis and (b) the area between the zero
axis and the axis at 2x�/

√
B. The contribution of (a) is simply (�0� = 1/2. To

estimate the contribution of (b), let α be any positive constant less than 1. Then,
φ�z� ≥ φ�α� = ��1�, for all z, 0 ≤ z ≤ α. Thus, if 2x�/

√
B < α, then the area (b) is

at least the length between the axes, namely, 2x�/
√
B, times the value of the curve

at its lowest point, namely, φ�2x�/
√
B�. However, since 2x�/

√
B < α, we have

that φ�2x�/
√
B� > φ�α� = ��1� and so in this case the area (b) is ��2x�/

√
B�.

Also, if 2x�/
√
B ≥ α, then the area (b) is at least the area under φ between the

zero axis and the axis at α, which in turn is at least αφ�α�. Since α is a constant,
αφ�α� = ��1�. Taking the min of the two cases 2x�/

√
B < α and 2x�/

√
B ≥ α,

we conclude that the contribution of (b) to (�2x�/
√
B� is ��min�x�/

√
B
 1��.

We claim that if x = ��n1/2−ε/2�, then L = o�min�x�/
√
B
 1��. To see this, note

that each term EXj3 in L is either p�1−p�3 +�1−p�p3 ≤ p�1−p� or r�1− r�3 +
�1− r�r3 ≤ r�1− r�. Suppose that lp of the terms EXj3 are p�1−p�3 + �1−p�p3

and that lr of the terms are r�1 − r�3 + �1 − r�r3 (where lp + lr = 4t). Then,

L ≤ B−3/2�lpp�1 − p� + lrr�1 − r���
Using the same notation, we have that B = lpp�1−p� + lrr�1− r�. Therefore, L ≤
B−1/2. Also, since x = ��n1/2−ε/2�, we have that x� = ��n1/2−ε/2n−1/2+ε� = ��nε/2�.
Therefore, L = o��x�/B�1/2�.

We next show that L = o�1�, and therefore L = o�min��x�/B�1/2
 1�� as claimed.
Since p− r = �, either p�1 − p� ≥ �/2 or r�1 − r� ≥ �/2. At least x of the terms
in B are of the form p�1 − p� and also at least x of the terms are of the form
r�1 − r�; that is, both lp and lr are at least x. Hence, B = ��x�� = ��nε/2� and so
L = O�n−ε/4�.

We have now shown that if x = ��n1/2−ε/2� then,

Prob�X > 0� = 1/2 +�

(
min

{
x�√
B

 1
})

�

Part (iii) of the claim follows from the observation that
√
B = O�√t�.

The analysis of the evolution of imbalance x is somewhat complicated by the
fact that steps in the random process x�t� are not independent and the transition

126 CONDON AND KARP

probabilities vary depending on the history of the algorithm. It is convenient to
relate the behavior of x to a (simpler) random walk with identical independent
increments. The next lemma does this. Throughout, when we refer to the probability
that x�t + 1� takes some value, we mean that probability given the history of the
algorithm up to step t.

Lemma 4. Let ε� N → R be a function (which may take both positive and negative
values) such that

Prob�x decreases� − Prob�x increases� ≤ ε�x�t���
There exist positive constants c and d such that for all nonnegative integers a
 b with
a ≤ b, the following holds. Let Y �t�, t = 0
1
 � � � be a random walk with the following
properties:

Prob�Y �t + 1� = 1� = 1 ifY �t� = 0

Prob�Y �t + 1� = Y �t� − 1� = 1/2 + c max
j∈�a
 b�

�ε�j�� ifY �t� > 0

and

Prob�Y �t + 1� = Y �t� + 1� = 1/2 − c max
j∈�a
 b�

�ε�j�� ifY �t� > 0�

Then, for any nonnegative integer i, a ≤ i ≤ b,

Prob�starting at i/2
x leaves �a/2
b/2� at the right end within k steps

(and never leaves the left end)�
≥ Prob�starting at i
Y leaves �a
 b� at the right end within dk steps

(and never leaves the left end)� − exp�−��k���
Proof. We relate Y to x in two stages. First, construct a random process Z from
x, with x initially equal to i/2 at some point k0 of Phase 1 of the algorithm, by
“removing the loop probabilities” from x. More precisely, the process Z is defined
from x as follows. Set Z�0� = i/2. Run Phase 1 from time k0 until the first time
that x changes, say at time k1 > k0. Note that x�k1� ∈ �i − 1/2
 i + 1/2�. Set
Z�1� = x�k1�. More generally, if k1 < k2 < · · · are the times after k0 that x changes,
then Z�m� = x�km�. Clearly, if x reaches b/2 at time km then Z does so at time m.

Now, let d > 0 be a constant and let M be the event that the number of times that
x changes within the first k steps is at least dk. From Claim 2, at each step of the
algorithm, the probability that x changes is ��1� and so the number of times that x
changes dominates the number of successes in k independent Bernoulli trials with
probability ��1� of success in each trial. Applying Azuma’s inequality (Theorem 1)
it follows that for sufficiently small d > 0, Prob�M� = 1 − exp�−��k��. Therefore,

Prob�starting at i/2
 x leaves �a/2
 b/2� at the right end within k steps�
≥ Prob�starting at i/2
 x leaves �a/2
 b/2� at the right end

within k steps M�Prob�M�

ALGORITHMS FOR GRAPH PARTITIONING 127

≥ Prob�starting at i/2
 Z leaves �a/2
 b/2� at the right end

within dk steps�Prob�M� ∗
= Prob�starting at i/2
 Z leaves �a/2
 b/2� at the right end

within dk steps��1 − exp�−��k����

Now, let c > 0 be a constant such that for all Z�m� in the range �a/2
 b/2�,
Prob�Z�m + 1� = Z�m� − 1/2� ≤ 1/2 + c maxj∈�a
 b��ε�j��. The existence of such
a constant c (which is independent of a
 b) follows from the fact that the loop
probabilities of x are 1−��1� (Claim 2). Let Y be as in the statement of Lemma 4,
with this constant c. Intuitively, since each step of Y is biased at least as much to
the left as each step of Z, it is the case that

Prob�starting at i/2
 Z leaves �a/2
 b/2� at the right end within dk steps �
≥ Prob�starting at i
 Y leaves �a
 b� at the right end within dk steps��

This can be proved by showing that 2Z dominates Y . Our argument is essentially
taken from Theorem 6.2 of Jerrum and Sorkin [12]. Base Z and Y on a common
sample space, so that, given initially that 2Z�0� = Y �0�, it is the case that 2Z�m� ≤
Y �m� for all m, 0 ≤ m ≤ dk. The needed sample space consists of a sequence
α�0�
 α�1�
 � � �
 α�dk� of independent real numbers, each chosen uniformly from
the range �0
 1�. Fix m, and let p+

Z = Prob�Z�m + 1� = Z�m� + 1/2� and p−
z =

Prob�Z�m+ 1� = Z�m� − 1/2�. Define p+
Y and p−

Y in the same way, with 1 replacing
1/2. Then, the next state of the process Z is given by

Z�m+ 1� =
{
Z�m� − 1/2 if α�m� ≤ p−

Z ,
Z�m� + 1/2 otherwise.

The next state for the process Y is defined similarly, with 1 replacing 1/2 and with
Y replacing Z. It can be shown by induction on m that 2Z�m� ≥ Y �m� for all m,
0 ≤ m ≤ dk.

Finally, combining the relationship between x, Z, and Y yields the lemma.

Theorem 5. In partition �L1
 R1� at the end of Phase 1, some color has an imbalance
of at least n1−ε with high probability.

Proof. We partition Phase 1 into subphases, based on the value of the maximum
imbalance x. The first subphase starts at time 0 and continues until x ≥ n1/2−ε/2/2.
By Claim 2, at every step of this subphase, the probability that x increases is at least
the probability that x decreases. If Y is the random walk of Lemma 4 with ε� � = 0
and n1 is the number of steps of Phase 1, then

Prob�starting at 0
 x reaches n1/2−ε/2/2 within n1/2 steps�
≥ Prob�starting at 0
 Y reaches n1/2−ε/2 within dn1 steps� − exp�−n��n1��

where d > 0 is a constant. From Feller [7, XIV.3] (see also [11]), the expected time
for the unbiased random walk Y to reach n1/2−ε/2, starting at 0, is n1−ε. By Markov’s

128 CONDON AND KARP

inequality, with probability at least 1/2 Y reaches n1/2−ε/2 within time O�n1−ε�;
moreover this holds regardless of where the walk starts within the interval. In dn1 =
d�n1−ε/2� steps, the number of periods of length O�n1−ε� is ��nε/2�. Therefore, the
probability that Y reaches n1/2−ε/2 within dn1 steps is 1 − exp�−��nε/2��.

The tth subphase starts when the �t − 1�st subphase ends. If i/2 > 0 is the value
of x at the start of a subphase, then that subphase ends when x = i or when
x = 	i/2
/2 (or when Phase 1 ends).

Let Y be a random walk with no loop probabilities in which the difference
between the probability of an increase and a decrease is δ = ��min�i�/

√
t
 1�� =

��min�i�/
√
n1
 1��. By Lemma 4 and Claim 2,

Prob�starting at i/2
 x leaves �	i/2
/2
 i� at the right end within n1−3ε/4 steps�
≥ Prob�starting at i
 Y leaves �	i/2

 2i� at the right end within dn1−3ε/4 steps�
− exp�−��n1−3ε/4��

for some sufficiently small constant d (independent of i).
We first bound Prob[starting at i, Y leaves �	i/2

 2i� at the right end]. Let s be

the ratio of the probability of a decrease over the probability of an increase, that is,
s = �1/2 − δ�/�1/2 + δ� = 1 −��δ�. Using Feller [7, XIV.2.4], the probability that,
starting at i, Y reaches 2i before 	i/2
 is at least

1 − s�i/2� − s2i−	i/2

1 − s2i−	i/2
 ≥ 1 − s�i/2�

1 − s2i−	i/2
 ≥ 1 − s�i/2�

1 − s3�i/2�
�

If i = ��n1/2−ε/2�, then

s�i/2� = �1 −��min�i�/
√
n1
 1����i/2� = exp�−��n1−ε�/

√
n1�� = exp�−��nε/4���

Hence, as long as i = ��n1/2−ε/2�, the probability that, starting at i, Y reaches 2i
before 	i/2
 is 1 − exp�−��nε/4��.

We next show that, starting at i = ��n1/2−ε/2�, Y leaves the interval �	i/2

 2i�
within dn1−3ε/4 steps with high probability, where d > 0 is a constant. From Feller [7,
XIV.3], the expected time for this event is O�i/δ� = O�max�i
√n1/��� = O�n1−ε�.
Moreover, this bound holds regardless of the starting position within the inter-
val �	i/2

 2i�. Again applying Markov’s inequality, with probability at least 1/2,
Y leaves �	i/2

 2i� within time O�n1−ε� and so with high probability Y leaves
�	i/2

 2i� within time dn1−3ε/4.

Therefore, for i = ��n1/2−ε/2�, with high probability, starting at i/2, x leaves
�	i/2
/2
 i� at the right end within n1−3ε/4 steps. It follows that with high probability,
within n1 = �n1−ε/2� steps, sufficiently many subphases of Phase 1 are completed, all
ending by leaving the corresponding interval at the right end so that the imbalance
is at least 2n1−ε. A similar analysis shows that once the imbalance is 2n1−ε, then
with high probability it remains at least n1−ε for the rest of Phase 1. This completes
the proof of the theorem.

ALGORITHMS FOR GRAPH PARTITIONING 129

4.2. Phase 2

Let C be a color of greatest imbalance in �L1
 R1�. Let y be the imbalance of color
C in �L2
 R2� at the end of Phase 2. Each pair of nodes �1
 2� examined in Phase 2
independently either contributes 1/2, 0 or −1/2 to y. We need the following results.

Lemma 6. For any color C and for all k = n−��n�, for any δ > 0, the number of
nodes of color C that have not been examined after k steps of Phases 1 and 2 of the
algorithm is �n− 2k�/l ±O�n1/2+δ� with probability 1 − exp�−��n2δ��.

Lemma 6 follows from a straightforward application of Azuma’s inequality
(Theorem 1).

Claim 7. Suppose that the maximum imbalance x at the end of the first Phase is at
least n1−ε. Let �1
 2� be a pair of nodes examined in Phase 2. Then,

Prob��1
 2� contributes positively to y� − Prob��1
 2� contributes negatively to y�
= ��1��

Proof. Note that �1
 2� contributes positively to y if and only if the pair �1
 2� is
such that exactly one node in the pair has color C and this node is placed in L.
Also, �1
 2� contributes negatively to y if and only if exactly one node in the pair
has color C and this node is placed in R.

A similar argument to that of Claim 2, part (ii) shows that if exactly one node in
the pair �1
 2� has color C, then for any fixed value of the other node,

Prob��1
 2� contributes positively to y� − Prob��1
 2� contributes negatively to y�
≥ 0�

Also, a similar argument to that of Claim 2, part (iii) shows that if exactly one node
in the pair �1
 2� has color C, and the other has a color with imbalance at most 0,
then

Prob��1
 2� contributes positively to y� − Prob��1
 2� contributes negatively to y�

= �

(
min

{
x�√
n1

 1
})

= ��1�

where the last equality follows from the fact that n1 = �n1−ε/2� and x� ≥
n1−εn−1/2+ε.

Finally, from Lemma 6 we have that the probability that pair �1
 2� is such that
one node has color C and the other has a color with imbalance at most 0 is ��1�.
The claim follows.

Theorem 8. At the end of Phase 2, with high probability the imbalance of some color
is ��n�.

Proof. Let C be a color of greatest imbalance x in �L1
 R1�. Let y be the imbalance
of color C in �L2
 R2� at the end of Phase 2, given that x ≥ n1−ε. Let Zi be the

130 CONDON AND KARP

contribution of the ith pair of nodes to y [we assume that �L1
 R1� is fixed for the
definition of all Zi]. By Claim 7, y dominates

∑n2
i=1 Zi, where the Zi are independent

random variables taking values in the set �−1/2
 0
 1/2�, with Prob�Zi = 1/2� −
Prob�Zi = −1/2� = ��1�.

The random variables Zi satisfy the conditions of Azuma’s inequality (Theorem 1)
with ck = 1, 1 ≤ i ≤ n2. Also, Ey = ��n2� = ��n�. Therefore, the probability that
y is at least half of its expected value is at least 1 − exp�−��n��.

Hence, the probability that y = ��n�, given that x ≥ n1−ε, is 1 − exp�−��n��.
By Theorem 5, x ≥ n1−ε with high probability. Hence, y = ��n� with high
probability.

4.3. Phases 3 and 4

For each node v that is examined in Phase 3, let l2�v� be the number of edges from
v to a node in L2. For each color C, let EL2�C� be the expected number of edges of
an unexamined node of color C to nodes in the set L2. First, we show that with high
probability the values l2�v� are distributed as follows: for all nodes v of color C, the
values l2�v� are clustered in a short interval centered at EL2�C�. More precisely, in
Claim 9 it is shown that with high probability, l2�v� − EL2�C� ≤ n1/2+ε/2. Second,
the interval spanned by the values EL2�C� is relatively large, namely, of length
��n1/2+ε�. This is shown in Claim 11. Simple algebra then shows (Theorem 12) that
two adjacent “clusters” must be far apart, implying that the quantity oa − oa−1 used
as the partitioning criterion in Phase 3 is large.

Claim 9. Let v be a node of color C. Then, with high probability,

l2�v� − EL2�C� ≤ n1/2+ε/2�

Proof. The random variable l2�v� is the sum of n2 independent random variables
that satisfy the conditions of Azuma’s inequality (Theorem 1) with ck = 1, 1 ≤
i ≤ n2. The result follows by a simple application of this inequality.

The following claim is useful in the proof of Claim 11.

Claim 10. For any color C, the number of nodes of color C that are examined in
Phase 2 is 2n2/l ±O�n1/2+ε/2� with high probability.

Proof. Let Xk be the number of unexamined nodes of color C after k ≤ n/2 nodes
have been examined. From Lemma 6, with high probability, X2n1

= �n − 2n1�/l±
O�n1/2+ε/2� and X2�n1+n2� = �n− 2�n1 + n2��/l±O�n1/2+ε/2�. X2�n1+n2� is the number
of nodes of color C that are not examined in Phase 1 or 2. Hence, the number
of nodes of color C that are examined in Phase 2 is X2n1

− X2�n1+n2� = 2n2/l ±
O�n1/2+ε/2�, as required.

Claim 11. Let Cmax and Cmin be the colors with the largest and smallest number of
nodes, respectively, in L2. With high probability,

EL2�Cmax� − EL2�Cmin� = ��n1/2+ε��

ALGORITHMS FOR GRAPH PARTITIONING 131

Proof. Let cmax and cmin be the number of nodes of colors Cmax and Cmin, respec-
tively, in L2. From Theorem 8, with high probability, some color has imbalance ��n�
in the partition �L2
 R2�. This, together with Claim 10, implies that with high prob-
ability some color has n2/l +��n� nodes in L2, in which case cmax = n2/l +��n�.
Therefore, for some constant c,

EL2�Cmax� ≥ p�n2/l + cn� + r��l − 1�n2/l − cn��

Also, since not all colors can have more than the average number n2/l of nodes in
L2, it must be that cmin ≤ n2/l. Therefore,

EL2�Cmin� ≤ pn2/l + r�l − 1�n2/l�

Taking the difference of these two inequalities, we have that

EL2�Cmax� − EL2�Cmin� ≥ �p− r�cn = ��n1/2+ε��

Theorem 12. At the end of Phase 3, with high probability no node in L is the same
color as a node in R and moreover, both L and R are nonempty.

Proof. Let o0 < o1 < · · · < oj be the ordered set of values l2�v� over the nodes
v examined in Phase 3 and let oa − oa−1 be the maximum difference between con-
secutive numbers in this ordered list. From Claim 9, the values l2�v� are clustered
in l intervals of length n1/2+ε/2 around the mean values EL2�A� with high proba-
bility. From Claim 11, the difference between the smallest and the largest means
is ��n1/2+ε� with high probability. Hence, with high probability there must be a
distance of ��n1/2+ε/l� between some two consecutive clusters.

It follows easily that with high probability, oa − oa−1 = ��n1/2+ε/l�, and that for
any two nodes v1 and v2 of the same color, either both l2�v1� and l2�v2� are greater
than or equal to oa or both are less than or equal to oa−1. Thus, no node in L is
the same color as a node in R.

The fact that L and R are both nonempty follows immediately from the fact that
for some pair of nodes v1 and v2, l2�v1� = oa and l2�v2� = oa−1; therefore v1 and
v2 are placed on opposite sides of the partition �L
R�.

The analysis of Phase 4 is very similar to that of Phase 3. Although it may appear
that independence is lost due to the fact that edges which were “used” in Phase 3
[between nodes in �L2
 R2� and nodes in L] are now “re-used” in Phase 4, correct-
ness follows from the following observation. Let N�3� be the set of nodes examined
in Phase 3. Let �A
B� be some partition of these nodes such that like-colored nodes
lie on the same side of the partition and neither A nor B is empty. Note that, given
N�3�, there are only a finite number of such partitions �A
B� since the number
of colors is finite. Therefore, it is sufficient to show that for each of these finitely
many possible �A
B�, if �L
R� = �A
B� is used to partition the nodes in Phase 4
then in Phase 4, with high probability all nodes are placed in the correct side of the
partition. This statement is independent of the outcomes of the individual steps of
Phases 1–3 and so the analysis can proceed as in Phase 3.

132 CONDON AND KARP

We have now shown that, with high probability, all Phases 1–4 have the properties
stated in the first paragraph of Section 4. Moreover, the total number of possible
distinct recursive calls is constant (it is bounded by 2l − 2, namely, the number of
ways to choose a subset of the l colors, other than the empty set or the set of all
l colors). Therefore, high probability correctness of the whole algorithm, including
recursive calls, follows.

5. A NON-RECURSIVE ALGORITHM

5.1. Motivation

In simulations of Phase 1 of Algorithm 1, the maximum imbalance tended to
increase over time, as we expected. Moreover, as noted in the Introduction, based
on our experiments we hypothesize the following. With two colors, the partition
evolves toward one in which, if there are k nodes on each side of the partition,
then the imbalances are ≈ k/4 and −k/4. With three colors, the partition evolves
toward one in which the imbalances are ≈ 2k/9
 0, and −2k/9. More generally, with
l colors, the partition evolves toward one with maximum imbalance ≈ �l − 1�k/l2
and a gap of 2k/l2 between successive imbalances.

Table 1 presents some evidence that this indeed is the case, based on experiments
on our algorithm. The values listed in the third row of the table are the average
sample imbalances in our experiments, divided by k. The numbers presented are
averaged over 20 runs of Phase 1 of our algorithm with n = 256
 000, p = 1/2,
� = n−1/2+0�2 = 0�0829, and k = 100
 000. The values listed in the second row of
the table are the numbers toward which we believe the expected imbalances evolve
in the limit. In each case, the variance is that for the maximum imbalance.

A heuristic explanation of this hypothesis is as follows. First, in the case of two
colors, consider the evolution of Phase 1 once the maximum imbalance is large. Let
C be the color with maximum imbalance. Roughly, in 1/2 of the steps, exactly one
of the chosen pair of nodes has color C and this is likely to be put in L. In 1/4 of
the steps, the chosen pair of nodes are both of color C. In the remaining 1/4 of the
steps, neither of the chosen nodes are of color C and a node that is not of color
C is placed in L. Since in 3/4 of the steps, the node placed in L is of color C,
roughly 75% of the nodes in L should be of color C and by symmetry, roughly 25%
of the nodes in R should be of color C. If there are k nodes on each side of the
partition, then the imbalance of color C should be approximately k�3/4− 1/4�/2 =
k/4. By symmetry, the imbalance of the other color is roughly −k/4. This heuristic
explanation can be generalized to three or more colors, assuming that over time
the gap between each pair of successive imbalances grows. With this assumption,

TABLE 1

No. Colors 2 3 4

Hypothesis 0.250,− 0.250 0.222, 0.000,− 0.222 0.1875, 0.0625,− 0.0625,− 0.1875
Average sample

imbalances 0.248,− 0.248 0.215, 0.000,− 0.215 0.1753, 0.0619,− 0.0606,− 0.1766
Sample variance: 0.000004 0.000011 0.000041

ALGORITHMS FOR GRAPH PARTITIONING 133

for example, in the case of three colors, the color of maximum imbalance is expected
to be placed in L in approximately 5/9 of the steps of Phase 1, one of the other
colors is placed in L in approximately 3/9 of the steps, and the remaining color
is placed in L in approximately 1/9 of the steps. This implies that the imbalances
should be approximately 2k/9, 0, and −2k/9.

In light of these observations, we should expect a gap of ��n� between any pair
of imbalances at the end of Phase 2. In this event, it should be possible to separate
the nodes from Phase 2 into l distinct color classes in Phase 3, rather than simply
grouping the nodes into two groups as is done in Algorithm 1. In this way, recursion
can be avoided.

In the next section, we present an algorithm that partitions all l color classes
directly from the partition of Phase 1, and in Section 5.3 we prove that it succeeds
in finding the minimum partition with high probability.

5.2. Algorithm

Algorithm 2

Phase 1: Construct L1 and R1 as in Algorithm 1.
Phase 2: Construct L2 and R2 as in Algorithm 1.
Phase 3: In this Phase, the remaining unexamined nodes are partitioned into l,

rather than 2, groups as follows. For each remaining unexamined node v, let
l2�v� denote the number of edges from node v to nodes in L2. Let o0 <
o1 < · · · < oj be the ordered set of values l2�v�. Let the l − 1 largest differ-
ences between pairs of consecutive numbers in this ordered list be

oa1
− oa1−1
 oa2

− oa2−1
 � � �
 oal−1
− oal−1−1�

If l2�v� < oa1
, then put v in S1. For 2 ≤ i ≤ l − 1, if oai−1

≤ l2�v� < oai
then

put node v in Si. Finally, if oal−1
≤ l2�v� then put v in Sl.

Phase 4: In parallel for each node v examined in Phases 1 and 2, assign v greedily
to Si if the number of nodes in Si adjacent to v is at least the number of nodes
in Sj adjacent to v for all j �= i (breaking ties arbitrarily).

5.3. Analysis of Algorithm 2

We claim that the following facts are true of Algorithm 2 with high probability. At
the end of Phase 1, the difference between the imbalances of any two distinct colors
is at least n1−ε/l. At the end of Phase 2, the difference between the imbalances of
any two distinct colors is ��n�. At the end of Phase 3, within each set Si all nodes
have the same color. Finally, each node v examined in Phase 4 is assigned to the
set Si with nodes of the same color as v.

We next analyze Phase 1 of the Algorithm 2, by extending the ideas in analysis
of Phase 1 of Algorithm 1. Phases 2–4 of Algorithm 2 can be analyzed by similar
extensions of the corresponding Phases of Algorithm 1; we comment on these at
the end of this section.

134 CONDON AND KARP

5.3.1. Phase 1

Theorem 13. At the end of Phase 1, with high probability, the difference between the
imbalances of any two distinct colors is at least n1−ε/l.

Let x1 ≥ x2 ≥ · · · ≥ xl be the ordered sequence of imbalances of the colors in
partition �L1
 R1�, as a function of the number of steps of Phase 1. (Note that the
rank of a particular color in this list may change over time; for example, x2 may be
the rank of different colors at different times.) From the analysis of Algorithm 1, we
already know that with high probability, in n1−ε/2 steps, x1 − xl ≥ 2n1−ε. Therefore,
for some d, xd − xd+1 ≥ 2n1−ε/l. We say that a good gap arises between d and e at
some step of Phase 1 if after that step, for the first time xd − xe ≥ 2n1−ε/l. We say
that Phase 1 is well behaved if, once a good gap arises between a pair of contiguous
imbalances, a gap of at least n1−ε/l remains in all further steps of Phase 1. We
say that Phase 1 is normal if for every color class C and for all k, the number of
nodes of color C that have not been examined after k steps of Phase 1 lies between
�n− 2k�/l − n1/2+ε/4 and �n− 2k�/l + n1/2+ε/4.

By Lemma 6, Phase 1 is normal with high probability. The following lemmas state
that with high probability Phase 1 is well behaved and, given that Phase 1 is well
behaved and normal, a good gap arises between each pair of contiguous imbalances
during Phase 1. Theorem 13 follows directly from Lemmas 14 and 15.

Lemma 14. Phase 1 is well behaved with high probability.

Lemma 15. Suppose that Phase 1 is well behaved and normal. Suppose also that at
some step of Phase 1, a good gap has not arisen between xd and xe, where d < e, but
that (i) either d = 1 or a good gap has arisen between between d − 1 and d, and (ii)
either e = l or a good gap has arisen between e and e + 1. Then, within n1−ε/2/�2l�
more steps, for some k
 d ≤ k < e, a good gap will arise between xk and xk+1, with
high probability.

We first consider Lemma 15. To prove this, we need the following claim. The
notation “f �t� ≥ −O�g�t��” used in the claim means that for some constant c, for
sufficiently large t, f �t� ≥ −cg�t�.

Claim 16. Suppose that Phase 1 is normal. Suppose that at step t, d
 e are such that
1 ≤ d < e ≤ l, either d = 1 or xd−1 − xd = ��n1−ε�, and either e = l or xe − xe+1 =
��n1−ε�. Then, at step t + 1 of Phase 1 (for any execution of the algorithm up to
step t),

(i) Prob�xd − xe increases� = ��1�,
(ii) Prob�xd − xe increases� − Prob�xd − xe decreases� ≥ −O�n−1/2+ε/4�, and
(iii) if xd − xe = ��n1/2−ε/2� then,

Prob�xd − xe increases� − Prob�xd − xe decreases�
= �

(
min

{�xd − xe��
/√

t
 1
})

�

ALGORITHMS FOR GRAPH PARTITIONING 135

Proof. For notational convenience, we just consider here the case that all of the xis
are distinct. As in Claim 2, let �x
 x′� denote the event that the colors of the nodes
1 and 2 chosen at step t + 1 of Phase 1 have imbalances x and x′, respectively.

The probability of event �xd
 xe� is ��1�. Moreover, the proof of Claim 2 shows
that in the event �xd
 xe�, the probability that xd − xe increases is at least the prob-
ability that xd − xe decreases. From this, part (i) of Claim 16 follows. Also, part (ii)
is true in the event �xd
 xe�.

To complete the proof of part (ii), it is sufficient (by symmetry on x and x′) to
consider events �x
 x′� where x is not in �xd
 xe� and x′ is in �xd
 xe�. In the event
that xd > x > xe, the same argument used in Claim 2, part (ii) shows that

Prob�xd − xe increases� ≥ Prob�xd − xe decreases��

We next show that (ii) holds in the event that x > xd. (This event is only possible
if d > 1.) The proof that (ii) holds in the event that x < xd is symmetrical. In what
follows, assume that x > xd and that x′ ∈ �xd
 xe�. Let E denote the event that
x′ = xd and let E′ denote the event that x′ = xe.

Note that Prob�xd − xe increases � − Prob�xd − xe decreases � given that x > xd

and x′ ∈ �xd
 xe� equals the following quantity, henceforth denoted by (*),

Prob�E��Prob�xd − xe increases E� − Prob�xd − xe decreases E��
+Prob�E′��Prob�xd − xe increases E′� − Prob�xd − xe decreases E′���

It is sufficient to show that (*) ≥ −O�n−1/2+ε/4�.
To prove this, we use three inequalities, to be proved later,

Prob�xd − xe increases E′� = 1 − exp�−��nε/2��
 (1)

Prob�xd − xe decreases E� = 1 − exp�−��nε/2��
 (2)

and

Prob�E� − Prob�E′� = O�n−1/2+ε/4�� (3)

The fact that (*) ≥ −O�n−1/2+ε/4� follows by combining inequalities (1)–(3),

�∗� ≥ �Prob�E′� − Prob�E���− exp�−��nε/2�� + 1 − exp�−��nε/2���
= �Prob�E′� − Prob�E���1 − exp�−��nε/2��� ≥ −O�n−1/2+ε/4��

We now prove Eq. (1). Note that xd − xe increases in event E′ if and only if node
1 is placed in L1 and node 2 is placed in R1. Let the number of nodes in L1 that
have the same color as node 1 be b+ x. Let the number of nodes in L1 that have
color with imbalance xe be be + xe. Let

X = B�b+ be + x− xe
 p� + B�2t − b− be − x+ xe
 r�
−B�b+ be − x+ xe
 p� − B�2t − b− be + x− xe
 r��

(Recall the similar expression in the proof of Claim 2.) Since we assume that
xd−1 − xd = ��n1−ε�, and also we have that x ≥ xd−1 > xe, it follows that

136 CONDON AND KARP

x − xe = ��n1−ε�. Therefore, EX = ��n1−ε�� = ��n1/2�. Since X is the sum of
4t = O�n1−ε/2� independent random variables, we have from Azuma’s inequality
(Theorem 1) that

Prob�X ≤ 0� ≤ 2 exp�−��n�/��n1−ε/2�� = exp�−��nε/2���

Therefore,

Prob�xd − xe increases E′� = Prob�X > 0� + �1/2�Prob�X = 0�
≥ 1 − exp�−��nε/2���

The proof of Eq. (2) follows symmetrically. Equation (3) follows from the hypoth-
esis that Phase 1 is normal. This completes the proof of part (ii) of the claim.

Finally, consider part (iii). Using the arguments of part (iii) of Claim 2, we can
show that if xd − xe = ��n1/2−ε/2� then,

Prob�xd − xe increases� − Prob�xd − xe decreases�
= ��min��xd − xe��/

√
t
 1�� −O�n−1/2+ε/4��

[The term O�n−1/2+ε/4� arises due to contributions of events �x
 x′� in which x ∈
�xd
 xe� and x′ ∈ �xd+1 � � � xe−1�. From part (ii) of the claim, these contributions are
lower bounded by −O�n−1/2+ε/4�.] To complete the proof, we note that n−1/2+ε/4 =
o��xd − xe��/

√
t�, since t ≤ n1−ε/2, xd − xe = ��n1/2−ε/2�, and � = n−1/2+ε.

We now prove Lemma 15.

Proof of Lemma 15. Consider the case where d > 1 and e < l (the other cases
are simpler). The task of analyzing the evolution of xd − xe is complicated by the
assumption that all of Phase 1 is well behaved. We consider a new process for building
up a pair of sets �L1
 R1�. In this new process, pairs of nodes are chosen from the set
of unexamined nodes and are added to �L1
 R1� as in Phase 1 of Algorithm 2, with
the following difference: once a gap arises between two contiguous imbalances xd−1
and xd, the imbalance is artificially kept to be at least n1−ε/l as follows. If as a result
of some step, xd − xd−1 would dip below n1−ε/l, then the two nodes chosen at that
step are discarded. Instead, new nodes are added to L1 and R1 so as to ensure that
all differences xi − xi+1 increase, while maintaining the equality L1 = R1. This
can be achieved by adding to L1� l− 1 nodes of color with imbalance x1, l− 2 nodes
of color with imbalance x2, and so on, and also adding to R1

∑l
i=1�l − i� nodes with

imbalance xl. The newly added nodes are not taken from the pool of n nodes, but
there is an edge between each new node and each unexamined node with probability
p if the nodes have the same color and with probability r otherwise.

Claim 16 can be shown to be true for the new process. Roughly, at each step
of the new process, if the artificial mechanism is not employed, the probability
that xi − xj increases is as for the original process. If the artificial mechanism is
employed, then the probability that any difference xi − xj increases is 1.

In what follows, we use Prob′ to refer to the probability of an event in the new
process, and Prob to refer to the probability of an event in the original process (i.e.,
Phase 1 of Algorithm 2). Let success denote the event that xd − xe reaches 2n1−ε/l
within n1−ε/2/�2l� steps.

ALGORITHMS FOR GRAPH PARTITIONING 137

Using Claim 16, we now show that in the new process, Prob′�success� is high.
The proof of this is similar to the proof of Theorem 5, with x = xd − xe. The
only difference is in the analysis of the first subphase, which starts at time 0 and
continues until x ≥ n1/2−ε/2/2. Now, the random process x�t� no longer behaves as
an unbiased random walk; instead, the walk potentially has a slight negative drift.
That is, from Claim 16(ii) and Lemma 4, if Y is the random walk of Lemma 4 with
ε� � = O�n−1/2+ε/4�, then

Prob�starting at 0, x reaches n1/2−ε/2/2 within n1−ε/2/�2l� steps�
≥ Prob�starting at 0, Y reaches n1/2−ε/2 within dn1−ε/2/�2l� steps�

− exp�−n��ε��

where d > 0 is a constant.
From Feller [7, XIV.2.4]) (see also [12]), the expected time for Y to reach

n1/2−ε/2 is

− b

g − u
+ g

�g − u�2
[(

g

u

)b

− 1
]

where b = n1/2−ε/2, g is the probability that Y decreases, and u is the probability that
Y increases. Note that g/u = 1+��n−1/2+ε/4�. Since �g/u− 1�b < 1 for sufficiently
large n, we have that

�g/u�b = 1 +���g/u− 1�b� = 1 +��n−1/2+ε/4n1/2−ε/2� = 1 +��n−ε/4��

Therefore, the expected time for the walk Y to reach n1/2−ε/2 is

O

(
1

�n−1/2+ε/4�2 n
−ε/4

)
= O

(
n1−3ε/4)�

We can now complete the analysis of the first subphase in a manner similar to
that of Theorem 5. Namely, by Markov’s inequality, with probability at least 1/2, Y
reaches n1/2−ε/2 within time O�n1−3ε/4�; moreover this holds regardless of where the
walk starts within the interval. Within dn1−ε/2/�2l� steps, the number of periods of
length O�n1−3ε/4� is ��nε/4� (since l is a constant). Therefore, the probability that
Y reaches n1/2−ε/2 within n1−ε/2/�2l� steps is 1 − exp�−��nε/4��.

By analyzing the remaining subphases as in the proof of Theorem 5, it follows
that in the new process, x = xi − xj reaches 2n1−ε/l within n1−ε/2/�2l� steps with
high probability. That is, Prob′�success� = 1 − exp�−n��ε��.

We can now complete the proof. We say that the new process is uneventful if the
artificial mechanism is never used during this process. It is clearly true that

Prob′�success uneventful� = Prob�success well behaved�

and that

Prob′�uneventful� = Prob�well behaved��

138 CONDON AND KARP

Also, note that

Prob′�success� ≤ Prob′�success uneventful� + Prob�not well behaved��
By Lemma 14, Prob�not well behaved� = exp�−n��ε��. Therefore,

Prob�xi − xj reaches 2n1−ε/l in n1−ε/2/�2l� steps well behaved�
= Prob�success well behaved�
= Prob′�success uneventful�
≥ Prob′�success� − exp

(−n��ε�)
= 1 − exp

(−n��ε�)�
Finally, we note that the proof of Lemma 14 is quite similar to that of Lemma 15.

Specifically, suppose that xi − xi+1 ≥ n1−ε/l at some step of Phase 1. Then, it can
be shown that, at that step, Prob�xi − xi+1 increases] −Prob�xi − xi+1 decreases] =
��1�. Roughly, this is because (i) the probability that a pair of nodes with imbal-
ances xi and xi+1 are chosen at this step is ��1� and in this event Prob�xi − xi+1
increases] −Prob�xi − xi+1 decreases] = ��1�; (ii) in the event that a pair of nodes
in which exactly one node of the pair has imbalance xi or xi+1 is chosen at this
step, Prob�xi − xi+1 increases � − Prob�xi − xi+1 decreases � ≥ −O�n−1/2+ε/4�, by an
argument similar to that given in the proof of part (ii) of Claim 16; and (iii) in the
event that neither node in the chosen pair has imbalance xi or xi+1 then xi − xi−1
remains unchanged in that step.

5.3.2. Phases 2 and 3. We claim that at the end of Phase 2, the difference between
the imbalances of any two distinct colors is ��n� with high probability. This follows
if for each i, at the end of Phase 2, xi − xi+1 = ��n� with high probability. For
any fixed i, note that each pair of nodes (1, 2) examined in Phase 2 independently
contributes 1/2, 0, or −1/2 to xi − xi+1. The analysis of Phase 2 rests on the fact
that for any pair of nodes (1, 2) examined in Phase 2,

Prob��1
 2� contributes positively to xi − xi+1�
−Prob��1
 2� contributes negatively to xi − xi+1� = ��1��

In summary, the proof of this fact can be done by considering the following events.
If the pair of nodes (1, 2) is such that one node has imbalance xi and the other has
imbalance xi+1, then the above fact holds in this event; moreover the probability of
this event is ��1�. If exactly one node of the pair has imbalance in the set �xi
 xi+1�,
then an analysis similar to that of Claim 16, part (ii) shows that

Prob��1
 2� contributes positively to xi − xi+1�
−Prob��1
 2� contributes negatively to xi − xi+1�

≥ −O�n−1/2+ε/4��
Finally, if no node of the pair has an imbalance in the set �xi
 xi+1� or if both have
the same imbalance, no change to xi − xi+1 results.

ALGORITHMS FOR GRAPH PARTITIONING 139

We claim that at the end of Phase 3, with high probability, within each set Si all
nodes have the same color. As in the analysis of Phase 3 of Algorithm 1, the values
l2�v� are clustered in short intervals (of length 2n1/2+ε/2) centered at the values
EL2�C�, where EL2�C� is the expected number of edges of an unexamined node of
color C to nodes in the set L2. Moreover, an extension to Claim 11 shows that the
difference between any two values EL2�C� for distinct colors C is ��n1/2+ε/l� with
high probability. From these facts, simple algebra shows that, with high probability,
Phase 3 puts clusters of nodes centered around one of the values EL2�C� in the
same set, and that such nodes are all of the same color.

6. FUTURE WORK

In the partitioning algorithms analyzed in this paper, a pair of nodes is considered
at each step of Phases 1 and 2. A variant of the algorithm is to consider only one
node per step, rather than a pair of nodes. This node is placed on the side of
the partition to which it has the greatest edge density. We observed that this variant
performs better experimentally than our two-node algorithm. It would be interesting
to prove that the one-node variant can be used to find an optimal partition with
high probability on the planted partition model.

It would also be interesting to extend our results to the case where the number
of color classes is unknown and where the color classes are of unequal size. Such
cases arise in certain clustering applications.

The following related problem may also be relevant to data clustering applica-
tions. Consider a set of data samples, each of which has some attributes from a
given set. Let M be a Boolean matrix with entry �i
 j� having value 1 if and only
if sample i has attribute j. The simplest version of the problem is to bisect both
the samples (rows of the matrix) and the attributes (columns of the matrix) into
two equal-sized groups, say R1
 R2 and C1
 C2, respectively, so as to minimize the
number of 1-entries in the submatrices R1 × C2 and R2 × C1. If the matrix M is
generated so that it has planted structure, with the probability of entries in R1×C1
and R2 × C2 being p and the probability of entries in R1× C2 and R2 × C1 being
r < p, can a variant of the algorithm in this paper locate this planted structure?

ACKNOWLEDGMENTS

We thank Juan Alemany for conducting experimental tests of our algorithm and for
his valuable feedback throughout this work. We also thank the anonymous referees
for their very thoughtful and constructive comments on the paper, which greatly
improved the exposition.

REFERENCES

[1] S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for
dense instances of NP-hard problems, Proceedings of the 27th Annual ACM Symposium
on Theory of Computing, 1995, pp. 284–293.

140 CONDON AND KARP

[2] T. Bui, On bisecting random graphs, Report Number MIT/LCS/TR-287, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[3] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser, Graph bisection algorithms with good
average case behavior, Combinatorica, 7(2) (1987), 171–191.

[4] T.N. Bui and B.R. Moon, Genetic algorithm and graph partitioning, IEEE Trans
Comput 45(7) (1996), 841–855.

[5] R.B. Boppana, Eigenvalues and graph bisection: an average-case analysis, Proceed-
ings of the 28th Annual IEEE Symposium on Foundations of Computer Science, 1987,
pp. 280–285.

[6] M.E. Dyer and A.M. Frieze, The solution of some random NP-hard problems in
polynomial expected time, J Algorithms 10(4) (1989), 451–489.

[7] W. Feller, An introduction to probability theory and its applications, 3rd ed., Vol. 1,
Wiley, New York, 1968.

[8] C.M. Fiduccia and R.M. Mattheyses, A linear-time heuristic for improving network
partitions, Proceedings of the ACM IEEE Nineteenth Design Automation Conference,
1982, pp. 174–181.

[9] A. Frieze and R. Kannan, The regularity lemma and approximation schemes for
dense problems, Proceedings of the 37th Annual IEEE Symposium on Foundations
of Computer Science, 1996, pp. 12–20.

[10] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems, Theor Comput Sci 1 (1976), 237–267.

[11] G.R. Grimmett and D.R. Stirzaker, Probability and random processes, 2nd ed., Oxford
Univ. Press, London, U.K., 1992.

[12] M. Jerrum and G.B. Sorkin, The Metropolis algorithm for graph bisection, Discrete
Appl Math 82(1–3) (1998), 155–175.

[13] D.S. Johnson, C.R. Aragon, L.A. McGeoch, and C. Schevon, Optimization by simulated
annealing: an experimental evaluation; part 1, graph partitioning, Oper Res 37(6)
(November–December 1989), 865–892.

[14] A. Juels, Topics in black box optimization, Ph.D. thesis, EECS Department, University
of California at Berkeley, 1996.

[15] B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst Tech J 49 (1970), 291–307.

[16] S. Kirkpatrick, C.D. Gelatt, and M. Vecchi, Optimization by simulated annealing,
Science 220(4598) (1983), 671–680.

[17] L. Kucera, Expected complexity of graph partitioning problems, Discrete Appl Math 57
(1995), 193–212.

[18] C. McDiarmid, On the method of bounded differences, London Society Lecture Note
Series, Vol. 141, Cambridge Univ. Press, Cambridge, U.K., 1989, pp. 148–188.

[19] V.V. Petrov, Sums of independent random variables, Springer-Verlag, New York, 1975.

	1.INTRODUCTION
	2.RELATED WORK
	3.ALGORITHM
	4.ANALYSIS
	5.A NON-RECURSIVE ALGORITHM
	TABLE 1

	6.FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

