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A d-dimensional random vector X = (X1, . . . ,Xd) has a
multivariate Gaussian distribution or normal distribution on Rd if
there is a vector ξ ∈ Rd and a d × d matrix Σ such that

λ>X ∼ N (λ>ξ, λ>Σλ) for all λ ∈ Rd . (1)

We then write X ∼ Nd(ξ,Σ).

Taking λ = ei or λ = ei + ej where ei is the unit vector with i-th
coordinate 1 and the remaining equal to zero yields:

Xi ∼ N (ξi , σii ), Cov(Xi ,Xj) = σij .

Hence ξ is the mean vector and Σ the covariance matrix of the
distribution.
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The definition (1) makes sense if and only if λ>Σλ ≥ 0, i.e. if Σ is
positive semidefinite. Note that we have allowed distributions with
variance zero.

The multivariate moment generating function of X can be
calculated using the relation (1) as

md(λ) = E{eλ>X} = eλ
>ξ+λ>Σλ/2

where we have used that the univariate moment generating
function for N (µ, σ2) is

m1(t) = etµ+σ2t2/2

and let t = 1, µ = λ>ξ, and σ2 = λ>Σλ.

In particular this means that a multivariate Gaussian distribution is
determined by its mean vector and covariance matrix.
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Assume X> = (X1,X2,X3) with Xi independent and
Xi ∼ N (ξi , σ

2
i ). Then

λ>X = λ1X1 + λ2X2 + λ3X3 ∼ N (µ, τ2)

with

µ = λ>ξ = λ1ξ1 + λ2ξ2 + λ3ξ3, τ2 = λ2
1σ

2
1 + λ2

2σ
2
2 + λ2

3σ
2
3.

Hence X ∼ N3(ξ,Σ) with ξ> = (ξ1, ξ2, ξ3) and

Σ =

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 .
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If Σ is positive definite, i.e. if λ>Σλ > 0 for λ 6= 0, the distribution
has density on Rd

f (x | ξ,Σ) = (2π)−d/2(det K )1/2e−(x−ξ)>K(x−ξ)/2, (2)

where K = Σ−1 is the concentration matrix of the distribution.
Since a positive semidefinite matrix is positive definite if and only
if it is invertible, we then also say that Σ is regular.

If X1, . . . ,Xd are independent and Xi ∼ N (ξi , σ
2
i ) their joint

density has the form (2) with Σ = diag(σ2
i ) and

K = Σ−1 = diag(1/σ2
i ).

Hence vectors of independent Gaussians are multivariate Gaussian.
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In the bivariate case it is traditional to write

Σ =

(
σ2

1 σ1σ2ρ
σ1σ2ρ σ2

2

)
,

with ρ being the correlation between X1 and X2. Then

det(Σ) = σ2
1σ

2
2(1− ρ2) = det(K )−1

and

K =
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −σ1σ2ρ
−σ1σ2ρ σ2

1

)
.

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

The multivariate Gaussian
Simple example
Density of multivariate Gaussian
Bivariate case
A counterexample

Thus the density becomes

f (x | ξ,Σ) =
1

2πσ1σ2

√
(1− ρ2)

×e
− 1

2(1−ρ2)

{
(x1−ξ1)2

σ2
1
−2ρ

(x1−ξ1)(x2−ξ2)
σ1σ2

+
(x2−ξ2)2

σ2
2

}
.

The contours of this density are ellipses and the corresponding
density is bell-shaped with maximum in (ξ1, ξ2).
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The marginal distributions of a vector X can all be Gaussian
without the joint being multivariate Gaussian:

For example, let X1 ∼ N (0, 1), and define X2 as

X2 =

{
X1 if |X1| > c
−X1 otherwise.

Then, using the symmetry of the univariate Gausssian distribution,
X2 is also distributed as N (0, 1).
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However, the joint distribution is not Gaussian unless c = 0 since,
for example, Y = X1 + X2 satisfies

P(Y = 0) = P(X2 = −X1) = P(|X1| ≤ c) = Φ(c)− Φ(−c).

Note that for c = 0, the correlation ρ between X1 and X2 is 1
whereas for c =∞, ρ = −1.

It follows that there is a value of c so that X1 and X2 are
uncorrelated, and still not jointly Gaussian.
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Adding two independent Gaussians yields a Gaussian:

If X ∼ Nd(ξ1,Σ1) and X2 ∼ Nd(ξ2,Σ2) and X1⊥⊥X2

X1 + X2 ∼ Nd(ξ1 + ξ2,Σ1 + Σ2).

To see this, just note that

λ>(X1 + X2) = λ>X1 + λ>X2

and use the univariate addition property.

Steffen Lauritzen University of Oxford Gaussian Graphical Models



Basic definitions
Basic properties

Gaussian likelihoods
The Wishart distribution

Gaussian graphical models

Adding independent Gaussians
Linear transformations
Marginal distributions
Conditional distributions
Example

Linear transformations preserve multivariate normality:

If A is an r × d matrix, b ∈ Rr and X ∼ Nd(ξ,Σ), then

Y = AX + b ∼ Nr (Aξ + b,AΣA>).

Again, just write

γ>Y = γ>(AX + b) = (A>γ)>X + γ>b

and use the corresponding univariate result.
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Partition X into into X1 and X2, where X1 ∈ Rr and X2 ∈ Rs with
r + s = d .
Partition mean vector, concentration and covariance matrix
accordingly as

ξ =

(
ξ1

ξ2

)
, K =

(
K11 K12

K21 K22

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
so that Σ11 is r × r and so on. Then, if X ∼ Nd(ξ,Σ)

X2 ∼ Ns(ξ2,Σ22).

This follows simply from the previous fact using the matrix

A = (0sr Is) .

where 0sr is an s × r matrix of zeros and Is is the s × s identity
matrix.
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If Σ22 is regular, it further holds that

X1 |X2 = x2 ∼ Nr (ξ1|2,Σ1|2),

where

ξ1|2 = ξ1 + Σ12Σ−1
22 (x2 − ξ2) and Σ1|2 = Σ11 − Σ12Σ−1

22 Σ21.

In particular, Σ12 = 0 if and only if X1 and X2 are independent.
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To see this, we simply calculate the conditional density.

f (x1 | x2) ∝ fξ,Σ(x1, x2)

∝ exp
{
−(x1 − ξ1)>K11(x1 − ξ1)/2− (x1 − ξ1)>K12(x2 − ξ2)

}
.

The linear term involving x1 has coefficient equal to

K11ξ1 − K12(x2 − ξ2) = K11

{
ξ1 − K−1

11 K12(x2 − ξ2)
}
.

Using the matrix identities

K−1
11 = Σ11 − Σ12Σ−1

22 Σ21 (3)

and
K−1

11 K12 = −Σ12Σ−1
22 , (4)
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we find

f (x1 | x2) ∝ exp
{
−(x1 − ξ1|2)>K11(x1 − ξ1|2)/2

}
and the result follows.

From the identities (3) and (4) it follows in particular that then the
conditional expectation and concentrations also can be calculated
as

ξ1|2 = ξ1 − K−1
11 K12(x2 − ξ2) and K1|2 = K11.

Note that the marginal covariance is simply expressed in terms of
Σ whereas the conditional concentration is simply expressed in
terms of K . Further, X1 and X2 are independent if and only if
K12 = 0, giving K12 = 0 if and only if Σ12 = 0.
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Consider N3(0,Σ) with covariance matrix

Σ =

 1 1 1
1 2 1
1 1 2

 .

The concentration matrix is

K = Σ−1 =

 3 −1 −1
−1 1 0
−1 0 1

 .
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The marginal distribution of (X2,X3) has covariance and
concentration matrix

Σ23 =

(
2 1
1 2

)
, (Σ23)−1 =

1

3

(
2 −1
−1 2

)
.

The conditional distribution of (X1,X2) given X3 has concentration
and covariance matrix

K12 =

(
3 −1
−1 1

)
, Σ12|3 = (K12)−1 =

1

2

(
1 1
1 3

)
.

Similarly, V(X1 |X2,X3) = 1/k11 = 1/3, etc.
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A square matrix A has trace

tr(A) =
∑
i

aii .

The trace has a number of properties:

1. tr(γA + µB) = γ tr(A) + µ tr(B) for γ, µ being scalars;

2. tr(A) = tr(A>);

3. tr(AB) = tr(BA)

4. tr(A) =
∑

i λi where λi are the eigenvalues of A.
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For symmetric matrices the last statement follows from taking an
orthogonal matrix O so that OAO> = diag(λ1, . . . , λd) and using

tr(OAO>) = tr(AO>O) = tr(A).

The trace is thus orthogonally invariant, as is the determinant:

det(OAO>) = det(O) det(A) det(O>) = 1 det(A)1 = det(A).

There is an important trick that we shall use again and again: For
λ ∈ Rd

λ>Aλ = tr(λ>Aλ) = tr(Aλλ>)

since λ>Aλ is a scalar.
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Consider the case where ξ = 0 and a sample
X 1 = x1, . . . ,X n = xn from a multivariate Gaussian distribution
Nd(0,Σ) with Σ regular. Using (2), we get the likelihood function

L(K ) = (2π)−nd/2(det K )n/2e−
∑n

ν=1(xν)>Kxν/2

∝ (det K )n/2e−
∑n

ν=1 tr{Kxν(xν)>}/2

= (det K )n/2e− tr{K
∑n

ν=1 x
ν(xν)>}/2

= (det K )n/2e− tr(Kw)/2. (5)

where

W =
n∑
ν=1

X ν(X ν)>

is the matrix of sums of squares and products.
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Writing the trace out

tr(KW ) =
∑
i

∑
j

kijWji

emphasizes that it is linear in both K and W and we can recognize
this as a linear and canonical exponential family with K as the
canonical parameter and −W /2 as the canonical sufficient
statistic. Thus, the likelihood equation becomes

E(−W /2) = −nΣ/2 = −w/2

since E(W ) = nΣ. Solving, we get

K̂−1 = Σ̂ = w/n

in analogy with the univariate case.
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Rewriting the likelihood function as

log L(K ) =
n

2
log(det K )− tr(Kw)/2

we can of course also differentiate to find the maximum, leading to

∂

∂kij
log(det K ) = wij/n,

which in combination with the previous result yields

∂

∂K
log(det K ) = K−1.

The latter can also be derived directly by writing out the
determinant, and it holds for any non-singular square matrix, i.e.
one which is not necessarily positive definite.
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The Wishart distribution is the sampling distribution of the matrix
of sums of squares and products. More precisely:

A random d × d matrix W has a d-dimensional Wishart
distribution with parameter Σ and n degrees of freedom if

W
D
=

n∑
i=1

X ν(X ν)>

where X ν ∼ Nd(0,Σ). We then write

W ∼ Wd(n,Σ).

The Wishart is the multivariate analogue to the χ2:

W1(n, σ2) = σ2χ2(n).

If W ∼ Wd(n,Σ) its mean is E(W ) = nΣ.
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If W1 and W2 are independent with Wi ∼ Wd(ni ,Σ), then

W1 + W2 ∼ Wd(n1 + n2,Σ).

If A is an r × d matrix and W ∼ Wd(n,Σ), then

AWA> ∼ Wr (n,AΣA>).

For r = 1 we get that when W ∼ Wd(n,Σ) and λ ∈ Rd ,

λ>Wλ ∼ σ2
λχ

2(n),

where σ2
λ = λ>Σλ.
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If W ∼ Wd(n,Σ), where Σ is regular, then W is regular with
probability one if and only if n ≥ d .

When n ≥ d the Wishart distribution has density

fd(w | n,Σ)

= c(d , n)−1(det Σ)−n/2(det w)(n−d−1)/2e− tr(Σ−1w)/2

for w positive definite, and 0 otherwise.

The Wishart constant c(d , n) is

c(d , n) = 2nd/2(2π)d(d−1)/4
d∏

i=1

Γ{(n + 1− i)/2}.
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Consider X = (Xv , v ∈ V ) ∼ NV (0,Σ) with Σ regular and
K = Σ−1.
The concentration matrix of the conditional distribution of
(Xα,Xβ) given XV \{α,β} is

K{α,β} =

(
kαα kαβ
kβα kββ

)
,

Hence
α⊥⊥β |V \ {α, β} ⇐⇒ kαβ = 0.

Thus the dependence graph G(K ) of a regular Gaussian
distribution is given by

α 6∼ β ⇐⇒ kαβ = 0.
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S(G) denotes the symmetric matrices A with aαβ = 0 unless α ∼ β
and S+(G) their positive definite elements.

A Gaussian graphical model for X specifies X as multivariate
normal with K ∈ S+(G) and otherwise unknown.

Note that the density then factorizes as

log f (x) = constant− 1

2

∑
α∈V

kααx2
α −

∑
{α,β}∈E

kαβxαxβ,

hence no interaction terms involve more than pairs..

This is different from the discrete case and generally makes things
easier.
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Mathematics marks

Examination marks of 88 students in 5 different mathematical
subjects. The empirical concentrations (on or above diagonal) and
partial correlations (below diagonal) are

Mechanics Vectors Algebra Analysis Statistics
Mechanics 5.24 −2.44 −2.74 0.01 −0.14
Vectors 0.33 10.43 −4.71 −0.79 −0.17
Algebra 0.23 0.28 26.95 −7.05 −4.70
Analysis −0.00 0.08 0.43 9.88 −2.02
Statistics 0.02 0.02 0.36 0.25 6.45
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Graphical model for mathmarks

Mechanics

Vectors

Algebra

Analysis

Statistics

��
��

��

PPPPPP ��
��

��

PPPPPPc
c

c
c
c

This analysis is from Whittaker (1990).
We have An, Stats⊥⊥Mech,Vec |Alg.
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Frets’ heads

This example is concerned with a study of heredity of head
dimensions (Frets 1921). Lengths Li and breadths Bi of the heads
of 25 pairs of first and second sons are measured. Previous
analyses by Whittaker (1990) support the graphical model:

e

e e

eB1

L1

B2

L2
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