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Representative community divisions of networks
Alec Kirkley1,2✉ & M. E. J. Newman1,3

Methods for detecting community structure in networks typically aim to identify a single best

partition of network nodes into communities, often by optimizing some objective function,

but in real-world applications there may be many competitive partitions with objective scores

close to the global optimum and one can obtain a more informative picture of the community

structure by examining a representative set of such high-scoring partitions than by looking at

just the single optimum. However, such a set can be difficult to interpret since its size can

easily run to hundreds or thousands of partitions. In this paper we present a method for

analyzing large partition sets by dividing them into groups of similar partitions and then

identifying an archetypal partition as a representative of each group. The resulting set of

archetypal partitions provides a succinct, interpretable summary of the form and variety of

community structure in any network. We demonstrate the method on a range of example

networks.
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Networks are widely used as a compact quantitative
representation of a range of complex systems, particularly
in the biological and social sciences, engineering, com-

puter science, and physics. Many networks naturally divide into
communities, densely connected groups of nodes with sparser
between-group connections1. Identifying these groups, in the
process known as community detection, can help us in under-
standing network phenomena such as the evolution of social
relationships2, epidemic spreading3, and others.

There are numerous existing methods for community detec-
tion, including ones based on centrality measures4, modularity5,
information theory6, and Bayesian generative models7—see
Fortunato8 for a review. Most methods represent the community
structure in a network as a single network partition or division
(an assignment of each node to a specific community), which is
typically the one that attains the highest score according to some
objective function. As pointed out by many previous authors,
however, there may be multiple partitions of a network that
achieve high scores, any of which could be a good candidate for
division of the network9–14. With this in mind, some community
detection methods return multiple plausible partitions rather than
just one. Examples include methods based on modularity8,12,15,
generative models7, and other objective criteria16,17. But while
these algorithms give a more complete picture of community
structure, they have their own problems. In particular, the
number of partitions returned is often very large. Even for rela-
tively small networks, the partitions may number in the hundreds
or thousands, making it hard to interpret the results. How then
are we supposed to make sense of the output of these
calculations?

In some cases, it may happen that all of the plausible divisions
of a network are quite similar to each other, in which case we can
create a consensus clustering18, a single partition that is repre-
sentative of the entire set in the same way that the mean of a set of
numbers can be a useful representation of the whole. However, if
the partitions vary substantially, then the consensus can fail to
capture the full range of behaviors in the same way that the mean
can be a poor summary statistic for broad or multimodal dis-
tributions of numbers. In cases like these, summarizing the
community structure may require not just one but several
representative partitions, each of which is the consensus partition
for a cluster of similar network divisions14.

Finding such representative partitions thus involves clustering
the full set of partitions into groups of similar ones. A few pre-
vious studies have investigated the clustering of partitions.
Calatayud et al.19 proposed an algorithm that starts with the
single highest scoring partition (under whatever objective func-
tion is in use), then iterates through other divisions in order of
decreasing score and assigns each to the closest cluster if the
distance to that cluster is less than a certain threshold, or starts a
new cluster otherwise. This approach is primarily applicable
in situations where there is a clear definition of distance between
partitions (there are many possible choices20), as the results turn
out to be sensitive to this definition and to the corresponding
distance threshold. Peixoto14 has proposed a principled statistical
method for clustering partitions using methods of Bayesian
inference, which works well but differs from ours in that rather
than returning a single partition as a representative of each cluster
it returns a distribution over partitions. It also does not explicitly
address issues of the dependence of the number of clusters on the
number of input partitions.

The minimum description length principle posits that when
selecting between possible models for a data set, the best model is
the one that permits the most succinct representation of the
data21. The minimum description length principle has previously

been applied to clustering of real-valued (non-network) data,
including methods based on Gaussian mixture models22, hier-
archical clustering23, Bernoulli mixture models for categorical
data24, and probabilistic generative models25. Georgieva et al.26,
for instance, have proposed a clustering framework that is similar
in some respects to ours but for real-valued vector data, with the
data being thought of as a message to be transmitted in multiple
parts, including the cluster centers and the data within each
cluster. Georgieva et al., however, only use their measure as a
quality function to assess the outputs of other clustering algo-
rithms and not as an objective to be optimized to obtain the
clusters themselves. The minimum description length approach
has also been applied to the task of community detection itself by
Rosvall and Bergstrom27, who used it to formulate an objective
function for community detection that considers the encoding of
a network in terms of a partition and the node and edge counts
within and between the communities in the partition.

In this paper, we use the minimum description length principle
to motivate a simple and efficient method for finding repre-
sentative community divisions of networks that has a number of
practical advantages. In particular, it does not require the explicit
choice of a partition distance function, does not depend on the
number of input partitions provided the partition space is well
sampled, and is adaptable to any community detection algorithm
that returns multiple sample partitions. We present an efficient
Monte Carlo scheme implementing our approach and test it on a
range of real and synthetic networks, demonstrating that it
returns substantially distinct community divisions that are a good
guide to the structures present in the original sample.

Results and discussion
The primary goal of our proposed technique is to find repre-
sentative partitions that summarize the community structure in a
network. We call these representative partitions modes. Suppose
we have an observed network consisting of N nodes and we have
some method for finding community divisions of these nodes,
also called partitions. We can represent a partition with a length-
N vector g that assigns to each node i= 1…N a label gi indicating
which community it belongs to.

We assume that there are a large number of plausible partitions
and that our community detection method returns a subset of
them. Normally we expect that many of the partitions would be
similar to one another, differing only by a few nodes here or
there. The goal of this paper is to develop a procedure for gath-
ering such similar partitions into clusters and generating a mode,
which is itself a partition, as an archetypal representative of each
cluster. For the sake of clarity, we will in this paper use the words
“partition” or “division” to describe the assignment of network
nodes to communities, and the word “cluster” to describe the
assignment of entire partitions to groups according to the method
that we describe.

In order both to divide the partitions into clusters and to find a
representative mode for each cluster, we first develop a clustering
objective function based on information-theoretic arguments.
The main concept behind our approach is a thought experiment
in which we imagine transmitting our set of partitions to a
receiver using a multi-step encoding chosen so as to minimize the
amount of information required for the complete transmission.

Partition clustering as an encoding problem. Let us denote our
set of partitions by D and suppose there are S partitions in the set,
labeled p= 1…S. Now imagine we wish to transmit a complete
description of all elements of the set to a receiver. How should we
go about this? The most obvious way is to send each of the
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partitions separately to the receiver using some simple encoding
that uses, say, numbers or symbols to represent community
labels. We could do somewhat better by using an optimal prefix
code such as a Huffman code28 that economizes by representing
frequently used labels with shorter code words. Even this, how-
ever, would be quite inefficient in terms of information. We can
do better by making use of the fact that, as we have said, we
expect many of our partitions to be similar to one another. This
allows us to save the information by dividing the partitions into
clusters of similar ones and transmitting only a few partitions in
full—one representative partition or mode for each cluster—then
describing the remaining partitions by how they differ from these
modes. The method is illustrated in Fig. 1.

Initially, let us assume that we want to divide the set D of
partitions into K clusters, denoted Ck with k= 1…K. (We will
discuss how to choose K separately in a moment.) To efficiently
transmit D, we first transmit K representative modes, which
themselves are members of D, with group labels ĝ ðkÞ. Then for
each individual partition in D we transmit which cluster, or
equivalently which mode, it belongs to and then the partition
itself by describing how it differs from that mode. Since the latter
information will be smaller if a partition is more similar to its
assigned mode, choosing a set of modes that are accurately
representative of all partitions will naturally minimize the total
information, and we use this criterion to derive the best set of
modes. This is the minimum description length principle, as
applied to finding the optimal clusters and modes.

Following this plan, the total description length per sampled
partition can be written (see Supplementary Note 1) in the form

Ltotal ¼
N
S
∑
K

k¼1
Hðĝ ðkÞÞ þHðcÞ

þ N
S
∑
K

k¼1
∑
p2Ck

HmodðgðpÞjĝ ðkÞÞ:
ð1Þ

The first term represents the amount of information required to
transmit the modes and is simply equal to the sum of their
entropies:

Hðĝ ðkÞÞ ¼ � ∑
nmk

r¼1

aðmkÞ
r

N
log

aðmkÞ
r

N
: ð2Þ

Here mk is the partition label p of the kth mode, np is the number
of communities in partition p, and aðpÞr is the number of nodes in
partition p that have community label r.

The second term in Eq. (1) represents the amount of
information needed to specify which cluster, or alternatively
which mode, each partition in D belongs to:

HðcÞ ¼ � ∑
K

k¼1

ck
S
log

ck
S
; ð3Þ

where ck= ∣Ck∣ is the number of partitions (out of S total) that
belong to mode k.

The third term in Eq. (1) represents the amount of information
needed to specify each of the individual partitions g(p) in terms of
their modes ĝ ðkÞ:

Hmodðg ðpÞjĝ ðkÞÞ ¼ Hðg ðpÞjĝðkÞÞ þ 1
N
logΩðp;mkÞ: ð4Þ

Hmod is the modified conditional entropy of the group labels of
g(p) given the group labels of ĝ ðkÞ 29. The normal (non-modified)
conditional entropy is

Hðg ðpÞjĝðkÞÞ ¼ � ∑
nmk

r¼1
∑
np

s¼1

tmkp
rs

N
log

tmkp
rs

aðmkÞ
r

; ð5Þ

where tmp
rs is the number of nodes simultaneously classified into

community r in partition g(m) and community s in partition g(p).
The matrix of elements tmp for any pair of partitions m, p is
known as a contingency table, and Eq. (5) measures the amount of

Fig. 1 Transmission of a set of partitions for a network. We first transmit a small set of “modes” ĝðkÞ, archetypal partitions drawn from the larger set,
which takes an amount of information equal to the sum of the entropies H of these partitions (Eq. (2)). Then each partition g(p) from the complete set is
transmitted by describing how it differs from the most similar of the modes, which requires an amount of information equal to the modified conditional
entropy Hmod of Eq. (4). The weight wk is the fraction of all partitions that are part of cluster Ck, the set of partitions assigned to the representative mode
ĝðkÞ . The color of each node indicates its community membership within a partition.
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information needed to transmit g(p) given that we already know
both ĝðkÞ and the contingency table. To actually transmit the
partitions in practice, we would also need to transmit the
contingency table, and the second term in Eq. (4) represents the
information needed to do this. The quantity Ω(p,m) is equal to
the number of possible contingency tables tmp with row and
column sums aðmÞ

r and aðpÞs , respectively. This quantity can be
computed exactly for smaller contingency tables and there exist
good approximations to its value for larger tables29. The logΩ
term is often omitted from calculations of conditional entropy,
but it turns out to be crucial in the current application. Without
it, one can minimize the conditional entropy simply by making
the number of groups in the modal partition very large, with the
result that the minimum description length solution is biased
toward modes with many groups. The additional term avoids
this bias.

In principle, before we send any of this information, we also
need to transmit to the receiver information about the size of each
partition and the number of modes K, which would contribute
some additional terms to the description length in Eq. (1). These
terms, however, are small, and moreover, they are independent of
how we configure our clusters and modes, so we can safely
neglect them.

A detailed derivation of Eq. (1) is given in Supplementary
Note 1. By minimizing this quantity, we can now find the best set
of modes to describe a given set of partitions.

Choosing the number of clusters. So far we have assumed that
we know the number K of clusters of partitions, or equivalently
the number of modes. In practice, we do not usually know K
and normally there is not even one “correct” value for a given
network. Different values of K can give useful answers for the
same network, depending on how much granularity we wish to
see in the community structure. In general, a small number of
clusters—no more than a dozen or so—is most informative to
human eyes, but fewer clusters also mean that each cluster will
contain a wider range of structures within it. How then do we
choose the value of K? One might hope for a parameter-free
method of choosing the value based, for instance, on statistical
model selection techniques, in which we allow the data to
dictate the natural number of clusters that should be used to
describe it. For example, if the set D of partitions is drawn
based on some sort of quality function—for example mod-
ularity or the posterior distribution of a generative model—
then clusters of partitions will correspond to peaks in that
function and one could use the number of peaks to define the
number of clusters.

In practice, however, such an approach, if it existed, would
not, in general, give us what we are looking for because the
number of peaks in the quality function is not equivalent to the
number of groups of similar-looking partitions. Peaks could be
very broad, combining radically different partitions into a
single cluster when they should be separated. Or they could be
very narrow, producing an impractically large number of
clusters whose modes differ in only the smallest of details. Or
peaks could be very shallow, making them not significant at all.
To obtain useful results, therefore, we prefer to allow the user to
vary the number of clusters K through a tunable parameter, so
as to make the members of the individual clusters as similar or
diverse as desired.

A natural way to control the number of clusters is to impose
a penalty on the description length objective function using a
multiplier or “chemical potential” that couples linearly to the

value of K thus:

Ltotal ¼
N
S
∑
K

k¼1
Hðĝ ðkÞÞ þHðcÞ

þ N
S
∑
K

k¼1
∑
p2Ck

Hmodðg ðpÞjĝ ðkÞÞ þ λK:
ð6Þ

This imposes a penalty equal to λ for each extra cluster added
and hence larger values of λ will produce larger penalties. It is
straightforward to show that this form makes the optimal
number of clusters K independent of S—see Supplementary
Note 2 for proof, and Supplementary Table 1 for a
demonstration on example networks used in the paper. It is
not the only choice of penalty function that achieves this goal—
the central inequality in our proof is satisfied for a number of
forms too—but it is perhaps the simplest and it is the one we
use in this paper.

As we have said, we normally want the number of modes to be
small, which means that we expect λ to be of order unity. In
practice, we find that the choice λ= 1 works well in many cases
and this is the value we use for all the example applications
presented here, although it is possible that other values might be
useful in certain circumstances.

One can also set the value of λ to zero, which is equivalent to
removing the penalty term altogether. In this case, there is still an
optimal choice of K implied by the description length alone. Low
values of K, corresponding to only a small number of modes, will
give inefficient descriptions of the data because many partitions
will not be similar to any of the modes, while high values of K will
give inefficient descriptions because we will waste a lot of
information describing all the modes. In between, at some
moderate value of K, there is an optimal choice that determines
the best number of clusters. An analogous method is used, for
example, for choosing the optimal number of bins for histograms
and often works well in that context30,31. This might appear at
first sight to give a parameter-free approach for choosing the
number of modes, but in fact, this is not the case because the
number of modes the method returns now depends on the
number of sampled partitions S, increasing as the value of S
increases and diverging as S becomes arbitrarily large. When
creating a histogram from a fixed set of samples this behavior is
desirable—we want to use more bins when we have more data—
but when clustering partitions it can result in an unwieldy
number of representative modes. The linear penalty in Eq. (6)
allows the user to decouple K from S and prevent the number of
modes from becoming too large.

It is worth noting that one can envisage other encodings of a
set of community structures that would give slightly different
values for the description length. For example, when transmitting
information about which cluster each sampled structure belongs
to one could choose to use a single fixed-length code for the
cluster labels, which would require logK bits per sample. This
would simply replace the term H(c) in Eq. (1) with logK . One
could analogously replace the terms HðĝðkÞÞ with their corre-
sponding fixed-length average code sizes (per node), with values
log nmk

. In general, both of these changes would result in a less
efficient encoding that tends to favor a smaller number of modes.
However, neither of them would affect the asymptotic scaling of
the description length and the term in λK would still be needed to
achieve a number of modes that is independent of S. It is also
possible to extend the description length formulation to a
hierarchical model in which we allow the possibility of more
than one “level” of modes being transmitted. However, this
scheme results in a more complex output that lacks the simple
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interpretation of the two-level scheme, and so we do not explore
this option here.

Minimizing the objective function. Our goal is now to find the
set of modes ĝ that minimize Eq. (6). This could be done using
any of a variety of optimization methods, but here we make
use of a greedy algorithm that employs a sequence of ele-
mentary moves that merge and split clusters, inspired by a
similar merge-split algorithm for sampling community
structures described in Peixoto32. We start by randomly
dividing our set D of partitions into some number K0 of initial
clusters, then identify the mode ĝðkÞ of each cluster Ck as the
partition p ∈ Ck that minimizes Hðg ðpÞÞ þ∑q2Ck

HmodðgðqÞjg ðpÞÞ.
In other words, the initial mode for each cluster is the parti-
tion p that is closest to all other partitions q in the cluster in
terms of modified conditional entropy, accounting for the
entropy of p itself.

Computing the modified conditional entropy, Eq. (4), has
time complexity O(N), which means it takes OðNS2=K2

0Þ steps
to compute each mode exactly if the initial clusters are the
same size. This can be slow in practice, but we can obtain a
good approximation substantially faster by Monte Carlo
sampling. We draw a random sample X of partitions from
the cluster (without replacement) and then minimize
Hðg ðpÞÞ þ ðck=jXjÞ∑q2XHmodðg ðqÞjg ðpÞÞ, where as previously ck
is the size of the cluster. Good results can be obtained with
relatively small samples, and in our calculations we use
∣X∣= 30. The time complexity of this calculation is O(NS/K0),
a significant improvement given that sample sizes S can run
into the thousands or more. We also store the values of H(g(p))
and Hmodðg ðqÞjg ðpÞÞ as they are computed so that they do not
need to be recomputed on subsequent steps of the algorithm.

Technically, our formulation does not require one to constrain
ĝ ðkÞ to be a member of Ck, but this restriction significantly reduces
the computation time in practice by allowing stored conditional
entropy values to be reused repeatedly during calculation. One
could relax this restriction and choose the mode ĝ ðkÞ of each
cluster Ck to be the partition g (which may or may not be in Ck)
that minimizes HðgÞ þ∑q2Ck

Hmodðg ðqÞjgÞ. However, we have not
taken this approach in the examples presented here.

Once we have an initial set of clusters and representative
modes, the algorithm proceeds by repeatedly proposing one of the
following moves at random, accepting it only if it reduces the
value of Eq. (6):

1. Pick a partition g(p) at random and assign it to the closest
mode ĝðkÞ, in terms of modified conditional entropy.

2. Pick two clusters Ck0 and Ck″ at random and merge them
into a single cluster Ck, recomputing the cluster mode as
before.

3. Pick a cluster Ck at random and split it into two clusters Ck0

and Ck″ using a k-means style algorithm: we select two
modes at random from Ck and assign each partition in Ck to
the closer of the two (in terms of modified conditional
entropy). Then we recompute the modes for each resulting
cluster and repeat until convergence is reached.

These steps together constitute a complete algorithm for
minimizing Eq. (6) and optimizing the clusters, but we find that
the efficiency of the algorithm can be further improved by adding
a fourth move:

4. Perform step 2, then immediately perform step 3 using the
merged cluster from step 2.

This extra move, inspired by a similar one in the community
merge-split algorithm of Peixoto32, helps with the rapid
optimization of partition assignments between pairs of clusters.

We continue performing these moves until a prescribed
number of consecutive moves are rejected without improving
the objective function. We find that this procedure returns very
consistent results despite its random nature. If results were found
to vary between runs it could be worthwhile to perform random
restarts of the algorithm and adopt the results with the lowest
objective score. However, this has not proved necessary for the
examples presented here.

The algorithm has O(NS) time complexity per move in the
worst case (which occurs when there is just a single cluster), and
is fast in practice. In particular, it is typically much faster than the
community detection procedure itself for current community
detection algorithms, so it adds little to the overall time needed to
analyze a network. We give a range of example applications in the
next section.

Example applications: synthetic networks. In the following
sections, we demonstrate the application of our method to a
number of example networks, both real and computer-generated.
For each example, we perform community detection by fitting to
the non-parametric degree-corrected block model33 and sampling
10 000 community partitions from the posterior distribution of
the model using Markov chain Monte Carlo. These samples are
then clustered using the method of this paper with the cluster
penalty parameter set to λ= 1, the number of Monte Carlo
samples for estimating modes to ∣X∣= 30, and the number of
initial modes to K0= 1. We also calculate for each mode k a
weight wk= ck/S equal to the fraction of all partitions in D that
fall in cluster k, to assess the relative sizes of the clusters.

As the first test of our method, we apply it to a set of synthetic
(i.e., computer-generated) networks specifically constructed to
display varying degrees of ambiguity in their community
structure. Figure 2a shows results for a network generated using
the planted partition model, a symmetric version of the
stochastic block model34,35 in which N nodes are assigned in
equal numbers to q communities, and between each pair of
nodes i, j an edge is placed with probability pin if i and j are in the
same community or pout if i and j are in different communities.
In our example we generated a network with N= 100 nodes,
q= 4 communities, and pin= 0.25, pout= 0.02. Though it
contains four communities, by its definition, this network should
exhibit only a single mode, the structure “planted” into it in the
network generation process. There will be competing individual
partitions, but they should be distributed evenly around the
single modal structure rather than multimodally around two or
more structures. And indeed our algorithm correctly infers this
as shown in the figure: it returns a single representative structure
in which all nodes are grouped correctly into their planted
communities. Given the random nature of the community
detection algorithm, it would be possible for a small number of
nodes to be incorrectly assigned in the modal structure, simply
by chance, but in the present case this did not happen and every
node is assigned correctly.

For a second, more demanding example we construct a
network using the full (non-symmetric) stochastic block model,
which is more flexible than the planted partition model. If g
denotes a vector of community assignments as previously, then
an edge in the model is placed between each node pair i, j
independently at random with probability ωgigj

, where the ωgigj

are parameters that we choose. For our example, we create a
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Fig. 2 Representative modes and their corresponding weights for three synthetic example networks. a Planted partition model with 100 nodes, 4
communities, and connection probabilities pin= 0.25 and pout= 0.02. b Network of 99 nodes generated using the stochastic block model with a mixing
matrix of the form given in Eq. (7) with ps= 0.27, pm= 0.08, and pb= 0.01. c Ring of eight cliques of six nodes each, connected by single edges, based on
the example in ref. 36. Representative partitions are identified by minimizing Eq. (6) with penalty parameter λ= 1 for 10,000 community partition samples.
The color of each node indicates its community membership within a partition, and wk is the weight of mode k.
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network with three communities and with parameters of the form

ω ¼
ps pm pb
pm ps pb
pb pb ps

2
64

3
75; ð7Þ

where ps is the within-group edge probability, pm and pb are
between-group probabilities, and ps > pm > pb. In our particular
example, the network has N= 99 nodes divided evenly between
the three groups and ps= 0.27, pm= 0.08, pb= 0.01. This gives
the network a nested structure in which there is a clear separation
between group 3 and the rest, and a weaker separation between
groups 1 and 2. This sets up a deliberate ambiguity in the
community structure: does the “correct” structure have three
groups or just two? As shown in Fig. 2b, our method accurately
pinpoints this ambiguity, finding two representative modes for
the network, one with three separate communities and one where
communities 1 and 2 are merged together.

A third synthetic example network is shown in Fig. 2c, the
“ring of cliques” network of Fortunato and Barthelemy36, in
which a set of cliques (i.e., complete subgraphs) are joined
together by single edges to create a loop. In this case, we use eight
cliques of six nodes each. Good et al.12 found this kind of network
to have an ambiguous community structure in which the cliques
joined together in pairs rather than forming separate commu-
nities on their own. Since there are two symmetry-equivalent
ways to divide the ring into clique pairs this also means there are
two equally good divisions of the network into communities.
Good et al. performed their community detection using
modularity maximization, but similar behavior is seen with the
method used here. Most sampled community structures show the
same division into pairs of cliques, except for a clique or two that
may get randomly assigned as a whole to a different community.
Our algorithm readily picks out this structure as shown in Fig. 2c,
finding two modes that correspond to the two rotationally
equivalent configurations. Moreover, the two modes have
approximately equal weight wk in the sampling, indicating that
the Monte Carlo algorithm spent a roughly equal amount of time
on partitions near each mode.

Example applications: real networks. Turning now to real-world
networks, we show that our method can also accurately sum-
marize community structure found in a range of practical
domains. (Further examples are given in Supplementary Fig. 1,
under Supplementary Note 3.) The results demonstrate not only
that the method works but also that real-world networks com-
monly do have a multimodal community structure that is best
summarized by two or more modes rather than by just a single
consensus partition, although our method will return a single
partition when it is justified—see the section on Example appli-
cations: synthetic networks above.

Figure 3a shows results for one well-studied network, the co-
purchasing network of books about politics compiled by Krebs
(unpublished, but see37), where two books are connected by an
edge if they were frequently purchased by the same buyers. It has
been conjectured that this network contains two primary
communities, corresponding to politically left- and right-leaning
books, but the network contains more subtle divisions as well. A
study by Peixoto14 found 11 different types of structure—what we
are here calling “modes.” Many of these modes, however, differed
only slightly, by the reassignment of a few nodes from one
community to another. Applying our method to the network we
find, by contrast, just two modes as shown in the figure,
suggesting that our algorithm is penalizing minor variations in
structure more heavily than that of Ref. 14. The two modes we

find have four communities each. In the one on the left in Fig. 3a,
these appear to correspond approximately to books that are
politically liberal (red), center-left (purple), center-right (green),
and conservative (yellow); in the one on the right, they are left-
liberal (green), liberal (red), center (purple), and conservative
(yellow).

Figure 3b shows a different kind of example, a social network
of self-reported friendships among US high school students
drawn from the National Longitudinal Study of Adolescent to
Adult Health (the “Add Health” study)38,39. The particular
network we examine here is network number 5 from the study
with 157 students. (Two nodes with degree zero were removed
from the network before running the analysis.) As the figure
shows, the method in this case finds three modes, each composed
of half a dozen core communities of highly connected nodes
whose boundaries shift somewhat from one mode to another, as
well as a set of centrally located nodes (pale pink and yellow in
the figure) that seem to move between communities in different
modes. The movement of nodes from one community to another
may be a sign of different roles played by core and peripheral
members of social circles, or of students with a broad range of
friendships.

In Fig. 3c, we show a third type of network, a geographic
network of census tracts in the city of Chicago (USA). In this
network, the nodes represent the census tracts and two nodes are
joined by an edge if the two corresponding tracts share a
border40. Community detection applied to this network tends to
find contiguous local neighborhoods. Our algorithm finds three
modes that differ primarily in the communities on the southwest
side of the city where the density of census tracts is lower (though
it is unclear whether this is the driving factor in the variation of
community structure).

Conclusion
In this paper, we have presented a method for summarizing the
complex output of community detection algorithms that return
multiple candidate network partitions. The method identifies a
small number of archetypal partitions that are broadly repre-
sentative of high-scoring partitions in general. The method is
based on fundamental information-theoretic principles, employ-
ing a clustering objective function equal to the length of the
message required to transmit a set of partitions using a specific
multi-step encoding that we describe. We have developed an
efficient algorithm to minimize this objective and we give
examples of applications to both synthetic and real-world net-
works that exhibit nontrivial multimodal community structure.

One can envisage many potential applications of this approach.
As mentioned in Example applications: real networks, the repre-
sentative community partitions for a social network could high-
light distinct roles or reveal information about the diversity of a
node’s social circle. In networks for which we have additional
node metadata, we could investigate how individual attributes are
associated with the representative partitions. Multimodal com-
munity structure may also be of interest in spatial networks, for
instance for assessing competing partitions, as in mesh segmen-
tation in engineering and computer graphics41. More generally, in
the same way that any measurement can be supplemented with
an error estimate, any community structure analysis could be
supplemented with an analysis of competing partitions to help
understand whether the optimal division is representative of the
structure of the network as a whole.

The techniques presented in this paper could be extended in a
number of ways. Our framework is applicable to any set of par-
titions—not just community divisions of a network but partitions
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Fig. 3 Representative modes and their corresponding weights for three real-world example networks. a Network of political book co-purchases37.
b High school friendship network38,39. c Network of adjacent census tracts in the city of Chicago40. Representative partitions are identified by minimizing
Eq. (6) with penalty parameter λ= 1 for 10,000 community partition samples. The color of each node indicates its community membership within a
partition, and wk is the weight of mode k.
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of any set of objects or data items—so it could be applied in any
situation where there are multiple competing ways to cluster
objects. All that is needed is an appropriate measure of the
information required to encode representative objects and their
corresponding clusters. One potential application within network
science could be to the identification of representative networks
within a set sampled from some generative model, such as an
exponential random graph model42. These extensions, however,
we leave for future work.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/
or Supplementary Materials, except for the real (non-synthetic) network data sets, which
are available from the original sources cited.

Code availability
Code for the partition clustering algorithm presented in this paper is available at https://
github.com/aleckirkley/Community-Representatives
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