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Abstract10

Neuronal wiring diagrams reconstructed from electron microscopic images are enabling new ways of attack-11

ing neuroscience questions. We address two central issues, modularity and neural coding, by reconstructing12

and analyzing a wiring diagram from a larval zebrafish brainstem. We identified a recurrently connected “cen-13

ter” within the 3000-node graph, and applied graph clustering algorithms to divide the center into two modules14

with stronger connectivity within than between modules. Outgoing connection patterns and registration to maps15

of neural activity suggested the modules were specialized for body and eye movements. The eye movement16

module further subdivided into two submodules corresponding to the control of the two eyes. We constructed17

a recurrent network model of the eye movement module with connection strengths estimated from synapse18

numbers. Neural activity in the model replicated the statistics of eye position encoding across multiple popula-19

tions of neurons as observed by calcium imaging. Our findings show that synapse-level wiring diagrams can20

be used to extract structural modules with interpretable functions in the vertebrate brain, and can be related21

to the encoding of computational variables important for behavior. We also show through a potential synapse22

formalism that these modeling successes require true synaptic connectivity; connectivity inferred from arbor23

overlap is insufficient.24

Main25

The reconstruction of neural circuits from electron microscopy images has been accelerating, and synapse-26

resolution wiring diagrams are becoming more readily available1–4. As connectomic information becomes more27

plentiful, new ways of addressing scientific questions are emerging. Here we reconstruct a wiring diagram from28

a larval zebrafish brainstem, and apply it to two fundamental challenges in neuroscience: modularity and neural29

coding.30

A first challenge is to divide the brain into modules that are specialized for distinct behaviors. Division meth-31

ods assume that modules consist of neurons that share similar neural coding properties5–9, patterns of gene32

expression10, cell body locations11;12, or axonal projection targets13. Connectomics offers another anatomical33

approach for finding modules14 based on computational methods of dividing graphs into clusters. This approach34
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has revealed behavioral modules in the C. elegans connectome15;16, but not in vertebrates, as far as we know.35

Related studies of retina17 and visual cortex18 have not yielded functional interpretations.36

Applying graph clustering algorithms, we find that our brainstem wiring diagram can be partitioned into mod-37

ules of strongly connected neurons. The modules extend across multiple rhombomeres, the traditional anatomical38

subdivisions of the hindbrain. The modules are validated by downstream pathways, which also allow functions to39

be assigned to the modules. One module turns out to be specialized for eye movements, a functional assignment40

that is further validated by cellular-level registration with brain activity maps. This oculomotor module is in turn41

subdivided into two submodules, which appear specialized for movements of the two eyes.42

A second challenge is to use a wiring diagram to predict how neural activity encodes sensory, motor, or43

cognitive variables. Such neural coding properties have been characterized by neurophysiologists, and their44

explanation using neural network models has occupied theoretical and computational neuroscientists over the45

past half century. Network models are often based on classical assumptions that the probability or strength of46

connection between neurons is a function of the distance between them19;20, the similarity between their preferred47

stimuli21, or their cell types22.48

Connectomics offers an intriguing alternative: build a neural network model based on a wiring diagram ob-49

tained via electron microscopic (EM) reconstruction. We apply this approach to the oculomotor module mentioned50

above. The connection strengths of our network model are directly constrained by synapse counts in our EM re-51

construction. An overall scale parameter for the connection matrix is set by the requirement that the network be52

able to temporally integrate in the sense of Newtonian calculus. The requirement follows from our identification of53

the oculomotor module as the “neural integrator” for horizontal eye movements, which transforms angular velocity54

inputs into angular position outputs23. We find that the encoding of eye position by neural activity is consistent at55

a population level with experimental results from separate calcium imaging and electrophysiological studies.56

Directly applying connection matrices from EM reconstructions to network modeling is an emerging area. As57

far as we know, we are the first to use the approach to explain the encoding of a specific behavioral variable in58

neural activity. The approach has been applied to explain orientation and direction selectivity in the Drosophila59

visual motion detection circuit, though fine-tuning by backpropagation learning was required24. The approach60

has also been applied to model whitening of odor representations3.61

Neuronal wiring diagram reconstructed from a vertebrate brainstem62

We applied serial section electron microscopy (ssEM) to reconstruct synaptic connections between neurons in63

a larval zebrafish brainstem (Fig. 1). The imaged dataset targeted a volume that is known to include neurons64

involved in eye movements25–29. First, the dataset of Ref.29 was extended by additional imaging of the same65

serial sections. By improving the alignment of ssEM images relative to our original work, we created a 3D66

image stack that was amenable to automated reconstruction techniques30. We trained a convolutional neural67

network to detect neuronal boundaries30;31, and used the output to generate an automated segmentation of the68

volume. To correct the errors in the segmentation, we repurposed Eyewire, which was originally developed for69

proofreading mouse retinal neurons32. Eyewirers proofread ~3000 objects, which included neurons with cell70

bodies in the volume as well as “orphan” neurites with no cell body in the volume (Fig. 1a). We will refer to all71

such objects as “nodes” of the reconstructed network. Convolutional networks were used to automatically detect72

synaptic clefts, and assign presynaptic and postsynaptic partner nodes to each cleft33 (Fig. 1b, Methods). The73

reconstructed dataset contained 2824 nodes, 44949 connections between pairs of nodes, and 75163 synapses.74

Most connections (65%) involved just one synapse, but some involved two (19%), three (7.9%), four (3.7%), or75

more (4.0%) synapses, up to a maximum of 21 (Extended Data Fig. 1a).76

To identify the neurons, we registered the ssEM volume to a reference brain atlas (Extended Data Fig. 2). Vi-77

sual inspection of some neurons and neurites allowed identification of several important groups. These included78

the ventromedially located spinal projection neurons (vSPNs) involved in escape behaviors and controlling move-79
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Figure 1: EM reconstructions of hindbrain neurons. a. Cut-section view of the reconstructed volume. Inset, above the rendering,
shows the part of the hindbrain that was reconstructed, black box. Dimensions of the imaged volume are shown below. Large green cell
body is the Mauthner neuron, which is in rhombomere 4 (R4).
b. Pipeline used to automatically detect synapses between neurons in the imaged volume. (Left) Raw electron micrograph is the input
to a convolutional neural net (CNN) that is trained to recognize postsynaptic densities (PSDs), result of CNN detection is shown in the
middle. Another CNN is then used to assign the correct partner for every detected PSD. One representative pre- and postsynaptic pair
(blue, yellow) is shown.
c. Side view of identified abducens motor (ABDM, green) and abducens internuclear (ABDI, magenta) neurons overlaid over ssEM planes.
Middle and bottom views are coronal planes showing the location of the neurons at the planes indicated by dotted black line in top sagittal
view. Green arrows indicate the axon of an example ABDM neuron that is part of the abducens nerve bundle (black box). Magenta arrows
indicate the axons from ABDI neurons crossing the midline (black box).
d. Reconstructions of ventromedial spinal projection neurons (vSPNs) and dorsal octaval (DO) neurons overlaid on a representative ssEM
plane.
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ments of the body axis, abducens neurons (ABD) controlling extraocular muscles and Descending Octaval (DO)80

neurons that mediate optokinetic and vestibular signals34 as part of the sensorimotor transformations needed to81

control eye movement (Fig. 1c,d; Extended Data Fig. 3,4; Supplementary Info). Other reconstructed neurons82

could not immediately be classified by visual inspection. We therefore developed a classification strategy based83

on patterns of connectivity.84

Axial and oculomotor modules in the brainstem85

We next organized the reconstructed neurons into two groups: those in a recurrently connected “center”, where86

feedback interactions are expected to establish collective dynamics, and those in the “periphery” that project87

to or collect input from the center. We identified the recurrent center of the graph by removing two kinds of88

objects. First, we removed 2282 objects with zero in-degree or out-degree. These included the ABD neurons89

and most vSPNs, including the Mauthner cell and MiV1 and MiV2 cells (Fig. 1c,d). Then we removed 62 objects90

with vanishing eigenvector centrality (Methods, Extended Data Fig. 1b). The latter removal yielded more robust91

clusterings, though results are qualitatively the same without it. We also experimented with other values of the92

centrality threshold, and our findings are robust to such changes, as will be shown below. For a centrality-based93

visualization of the network, see Extended Data Fig. 1e.94

The remaining 540 nodes were defined as the center of the graph, and we applied a graph clustering algorithm95

to divide it into two modules, each consisting of strongly connected neurons. As we will see later, this binary96

division is the first step in a hierarchical clustering that is guided by biological validation. (For comparison with flat97

clusterings see Extended Data Fig. 5.)98

After neurons are sorted into the two modules, the connection matrix of the center neurons (Fig. 2a) has a99

block structure. The diagonal blocks of the matrix contain the connections within modules, and the off-diagonal100

blocks contain connections between modules. The diagonal blocks are denser than the off-diagonal blocks,101

meaning that within-module connectivity is stronger than between-module connectivity. The two modules are102

designated modA and modO, for reasons that will be explained later.103

There were some statistical differences between modA and modO in morphological and ultrastructural prop-104

erties (Extended Data Fig. 6a, b). We also searched for evidence of spatial organization. Soma locations of both105

modules are intermingled and highly distributed, extending rostrocaudally over all rhombomeres in the ssEM vol-106

ume (Fig. 2c). Dendritic and axonal arbors are also intermingled, as are postsynapses and presynapses (Fig.107

2c). Therefore we hypothesized that modular wiring specificity was dependent on true synaptic connectivity and108

could not be inferred indirectly from spatial overlap of neuronal arbors.109

For a quantitative test of the hypothesis, we defined an index of modular wiring specificity as the sum of110

within-module synapse densities divided by sum of between-module synapse densities. Here synapse density is111

defined as the number of synapses normalized by the product of presynaptic and postsynaptic neuron numbers.112

The wiring specificity index was roughly 6 for the center neurons (Fig. 2d), based on actual synapses. We defined113

a “potential synapse” as a presynapse and a postsynapse within some threshold distance of each other (Fig 2d),114

and computed the index of modular wiring specificity based on potential synapses rather than actual synapses.115

The index dropped to less than 3 for potential synapses defined by a distance threshold of 5 μm, and close to 2116

at a distance threshold of 10 μm (Fig. 2d, left, center-to-center). Therefore modular wiring specificity is greatly117

underestimated if connectivity is inferred from arbor overlap, rather than from true synapses.118

The modules in Fig. 2 were obtained with the Louvain algorithm for graph clustering35–37. Similar modules119

are obtained when spectral clustering38 or a degree-corrected stochastic block model39 are used (Extended Data120

Fig. 7).121

For biological validation of the modules, we checked their relation to three neuron classes (vSPN, ABD, and122

DO) that were identified above. Of 10 vSPNs contained in the center, all were in modA, and none were in modO123

(Extended Data Fig. 8a, black arrows). Furthermore, the 15 vSPNs contained in the periphery received much124
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Figure 2: Modularity and functional specialization of brainstem interneurons. (a) Connectivity matrix of ‘center’ neurons organized
into two modules (modA, modO). Neurons in the center were clustered whereas neurons in the periphery were not. Neurons in the
periphery were organized by known cell types, vSPNs and ABD neurons. Colored dots represent the number of synapses.
b. Example connected pairs of modA (orange) and modO (blue) neurons. ModO neurons make synapses onto abducens neurons (ABD,
magenta).
c. (Left) Locations of modA and modO somas. Plots to the sides represent the densities along the mediolateral (bottom) and rostrocaudal
(right) axes. Black box is the location of DO neurons. (Middle) Presynapses onto modA and modO dendrites. Every 5th synapse was
plotted for clarity. (Right) Postsynapses from modA and modO axons. Every 10th synapse was plotted for clarity. R - Rhombomere.
d. The potential to make synapses was measured by defining a potential synapse (PS) as a presynapse and postsynapse separated
by a distance less than some threshold value (red circle). (center-to-center) Ratio of within-module to between-module synapses versus
threshold distance for potential synapses. Table lists the actual true synapse (TS) numbers *. (center-to-periphery) Ratio of numbers
of synapses from neurons in modA and modO to peripheral neurons (ABD, vSPNs). Numbers in tables represent normalized synapse
counts defined as the ratio of sum of all synapses in a block to the product of the number of elements on each block.
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stronger connectivity from modA than from modO (Fig 2a, vSPNs; Extended Data Fig. 8). Since the vSPNs are125

known to be involved in turning or swimming movements40–43, we propose that modA plays a role in movements126

of the body axis, and will refer to it as the “axial module.”127

All 54 ABD neurons were in the periphery, and received much stronger connectivity from modO than from128

modA (Fig 2a). All 34 of the DO neurons (Fig 1,2c) were members of modO; none were in modA. ABD neurons129

drive extraocular muscles either directly or through a disynaptic pathway. DO neurons are secondary vestibular130

neurons, which provide input to the vestibulo-ocular reflex. We therefore propose that modO plays a role in eye131

movements, and will refer to it as the “oculomotor module.”132

To quantify the differences in center-periphery connectivity described qualitatively above, we defined an index133

of wiring specificity for peripheral populations as the synapse density from preferred partner in the center divided134

by the synapse density from non-preferred partner in the center. This wiring specificity index decreases greatly135

for peripheral vSPNs when potential synapses are considered, but the decrease is more modest for ABD neurons136

(Fig. 2d, right, center-to-periphery).137

To validate our claims regarding function, we performed calcium imaging throughout the hindbrain in a sepa-138

rate set of animals to generate a map of neurons with activity related to oculomotor behavior. Recordings were139

obtained while the animals performed spontaneous eye movements in the dark, with activity ranging from neu-140

rons that exhibited bursts during saccades to those with perfectly persistent firing during fixations44. The maps141

from 20 age-matched animals were combined by registering them to a reference atlas45. We extracted a map for142

eye position signals (see Methods) ) that was complete, in the sense that each hindbrain voxel was covered by143

at least three fish (Methods). This registration showed that, in comparison to cells in the axial module (modA),144

neurons in the oculomotor module (modO) were more than 2 times as likely to be neighbors with oculomotor145

neurons from the functional maps, a difference that disappeared when neuron locations were artificially jittered146

by more than 10 micrometers (Extended Data Fig. 9).147

Submodules of the Oculomotor network148

There is a rich repertoire of oculomotor behaviors, which vary in speed of movement, patterns of binocular149

coordination, and other properties. Motivated by this functional diversity, we applied the same graph clustering150

algorithm employed in Fig. 2a to divide modO into two submodules. From the modO connection matrix, it is151

apparent that within-submodule connectivity is strong, while between-submodule connectivity is weak (Fig. 3a).152

The two submodules are designated modOM and modOI, for reasons that will be explained later.153

There were some statistical differences between modOM and modOI in morphological and ultrastructural154

properties (Extended Data Fig. 6d, e). The somas of the two submodules showed some spatial segregation, but155

the presynapses and postsynapses were more intermingled (Fig. 3b). We again quantified the contribution of156

spatial organization to wiring specificity using the potential synapse formalism, and found that wiring specificity157

far exceeded what might be predicted from traditional measures of arbor overlaps (Fig. 3c, center-to-center).158

Submodule functions were suggested by patterns of connection from modO to ABD neurons. The abducens159

complex is composed of two groups, the motor neurons (ABDM) that directly drive the lateral rectus muscle of160

the ipsilateral eye, and the abducens internuclear neurons (ABDI) that indirectly drive the medial rectus muscle161

of the contralateral eye through a disynaptic pathway. Increased activity in both subclasses drive eye movements162

toward the side of the brain on which the neurons reside (‘ipsiversive’ movements). We found that neurons in163

modOM preferentially connected to ABDM neurons, while neurons in modOI preferentially connected to ABDI164

neurons. The potential synapse formalism again showed that wiring far exceeded what might be predicted from165

arbor overlap (Fig. 3c, center-to-periphery). Many modO cells only connect to ABDM only or ABDI only (Fig.166

3d, Ocular Preference Index, OPI [≤-0.75,≥0.75]). We therefore refer to the submodules as motor-targeting167

(modOM) and internuclear-targeting (modOI), and suggest they are largely involved in controlling movements of168

the ipsilateral and contralateral eye, respectively.169
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Figure 3: Submodules specialized for two eyes. (a) Sub Clustering of modO reveals further modular structure within the oculomotor
block with one module, modOI, largely projecting to abducens internuclear neurons (ABDI) and modOM projecting to abducens motor
neurons (ABDM).
b. (Top) Locations of somas, along with densities to the sides for neurons within modOI and modOM (Bottom, left) Presynapses onto
dendrites and (right) postsynapses from axons of neurons in modOI and modOM. Every 5th synaptic site was plotted for clarity.
c. Potential synapse analysis. (Left, center-to-center) Ratio of potential synapse within-modules modOI and modO to between-modules as
a function of potential synapses distance. Table lists the actual true synapses numbers * .(Right, center-to-periphery) Potential synapses
between modOIonto ABDI and modO onto ABDM as a function of potential synapse distance. Numbers in tables represent normalized
synapse counts defined as the ratio of sum of all synapses in a block to the product of the number of elements in the block.
d. Ocular Preference index (OPI) for each neuron within modOI and modOM after removal of DO vestibular neurons.
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Connectomic prediction of eye position encoding in neural activity170

We hypothesized that modO contains the “neural integrator” for horizontal eye movements that transforms angular171

velocity inputs into angular position outputs. The necessity of such a velocity-to-position neural integrator (VPNI)172

was pointed out in the 1960s because sensory and command inputs to the oculomotor system encode eye173

velocity, whereas the extraocular motor neurons additionally carry an eye position signal23. The VPNI has been174

investigated in a wide variety of vertebrates, including primates46, cat47, and teleost fish48.175

The transformation of velocity into position is “integration” in the sense of Newtonian calculus. It has long176

been hypothesized that oculomotor integration depends on recurrent connections within the VPNI circuit. Many177

recurrent network models of the VPNI have been proposed over the years49–53. Surprisingly, direct synaptic178

connections between VPNI cells were demonstrated for the first time only recently29. Given our hypothesis that179

modO contains the VPNI, the substantial fraction of recurrent synapses in modO is consistent with the hypothesis180

that VPNI function is supported by recurrent connectivity (Fig. 4a). To extract more detailed predictions from the181

hypothesis, we generated a recurrent network model of the VPNI based on a synaptic weight matrix derived from182

our EM reconstruction (see Methods). We then used the model to predict how VPNI neurons encode eye position183

in their activities, and compared the predictions to calcium imaging data.184

The elements of the model weight matrix were defined as Wij = ±β Nij∑
k Nik

, where Nij is the number of185

synapses onto neuron i from neuron j. The normalization by the sum of incoming synapses was included to186

compensate for the varying amounts by which dendritic arbors of neurons are truncated by the borders of the EM187

volume. Linear model neurons50 were used for simplicity because most VPNI cells have linear responses as a188

function of eye position for ipsilateral eye positions46;48. All VPNI cells in the unilateral model were excitatory28
189

(Extended Data Fig. 9c, Supplementary info), and all DO cells were inhibitory34 (Extended Data Fig. 3c), in190

line with prior literature. The slope of the rate-position relationship is known as the eye position sensitivity. The191

elements of the leading eigenvector of the weight matrix are proportional to the eye position sensitivities of the192

cells in the network51, which enabled us to directly extract predictions from the EM connectivity matrix once we193

set a single scale factor to translate relative neuronal firing rates into absolute eye position sensitivities that could194

be compared to the experimental response distributions.195

Within the network model, we distinguished between neuron classes that were identified earlier. VPNI cells196

were defined as those modO cells that are not DO cells. ABD cells were divided into ABDM and ABDI cells (Fig.197

4b). Each of these four populations displayed a characteristic distribution of eye position sensitivities (Fig. 4c)198

that was robust to changes in the centrality threshold (Extended Data Fig. 10a).199

To test these population-level predictions about eye position sensitivities, we extracted eye position sensi-200

tivities from our calcium imaging experiments in larval zebrafish (Methods). The population distributions fit re-201

markably well with the predictions of the network model (Fig. 4c). Thus, key aspects of the coding properties of202

neurons in the oculomotor system can be derived from the patterns of synaptic connectivity alone. To test the203

robustness of our result, we corrupted our reconstructed wiring diagram by simulating errors in the automated204

synapse detection, and found that the population distributions of eye position sensitivities remained very similar205

(Extended Data Fig. 10c).206

If our EM reconstruction were not available, one could imagine basing a network model on a weight matrix207

inferred from overlap of neuronal arbors reconstructed via light microscopy. Essentially this light microscopic208

approach, with some additional synaptic pruning rules54, has been used by the Blue Brain Project to construct a209

simulation of a cortical column55. We simulated the light microscopic approach by estimating Nij by the number210

of potential synapses onto neuron i from neuron j, and then computing the weight matrixWij by the normalization211

described earlier (see Methods).212

When our weight matrix inferred based on potential synapses was substituted into our network model, we213

obtained population distributions for eye position sensitivities that were qualitatively different from experimental214

measurements (Extended Data Fig. 10d).215
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Figure 4: Velocity-to-position neural integrator (a) Histogram of the fraction of all neurons that are recurrent within the identified
modules. (left) Recurrent fraction within modA and modO (μmodA = 0.06±0.05, μmodO = 0.11±0.08, p = 1.2x10-18, Wilcoxon-rank sum test).
Box plots, above, show medians (black line) along with 25th and 75th percentile (box edges). Red crosses are the outliers.
b. Schematic showing the proposed wiring of modO along with the two submodules modOI and modOM , and DO neurons that synapses
onto ABDM and ABDI.
c. Histograms of the eye position sensitivity (k ) from a linear model (black) as compared to values from fluorescence calcium imaging
experiments (red). k - is defined as the slope of the eye position and firing rate (inset). Bimodal distribution of the ABD neurons in the
model corresponds to ABDM and ABDI populations. Circles represent the average values and triangles represent medians. Histograms
for experimental data are showing values inside the 1st and 99th percentile..

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359620
http://creativecommons.org/licenses/by-nd/4.0/


Discussion216

We reconstructed a neuronal wiring diagram from a vertebrate brainstem, and applied it to two fundamental217

challenges in neuroscience. The first challenge is the division of the brain into modules specialized for distinct218

functions. We searched for modular organization in the “center” of the wiring diagram, defined by excluding219

small neuronal fragments. We proposed a hierarchical division, first dividing the center into modA and modO,220

and then dividing modO into modOI and modOM. These divisions were validated by comparing with center-221

periphery connectivity and identified subsets of neurons (vSPN, ABD, and DO). The validation also enabled222

plausible assignments of biological functions: modA and modO are for axial and eye movements (Fig. 2), and223

modOI and modOMare for movements of the two eyes (Fig. 3). While we have taken a hierarchical approach, flat224

clustering also yields modules that are similar to modA, modO, modOI and modOM(Extended Data Fig. 5).225

The VPNI has served as a model system for understanding persistent neural firing56;57. The VPNI also exhibits226

low-dimensional brain dynamics, which has been found to underlie a wide array of motor51;58;59, navigational60–65,227

and cognitive functions27;66–68. Our claim that modO (excepting the DO neurons) is essentially the VPNI has228

several novel implications. Since modO extends across rhombomeres 4 through 8, it follows that the VPNI also229

extends across these rhombomeres. Previous physiological studies of VPNI cells mainly focused on R7/826–29;69.230

Our proposal that the VPNI should be extended also to R4-6 is consistent with the previous observation that231

integrator function was not completely abolished by inactivation of R7/826. There was one previous report of eye232

position signals in R4-6 neurons that are not abducens neurons44 but anatomical evidence for their inclusion in233

the VPNI has been lacking.234

The second fundamental challenge is the prediction of neural coding properties by network models. We found235

that the eye position sensitivities of VPNI neurons, DO neurons, and their downstream ABD targets could be236

matched at the population level by a recurrent network of model neurons with connection matrix constrained by237

the EM reconstruction (Fig. 4c).238

Through the potential synapse formalism, we investigated whether the modular organization (Figs. 2d, 3c)239

and prediction of neural coding properties (Extended Data Fig. 10d) depended on true synaptic connectivity as240

reconstructed by EM, rather than estimates of connectivity based on overlap of axonal and dendritic arbors as241

available by light microscopy. In both cases, we found that a connection matrix estimated from potential synapses242

gave poorer results than the true connection matrix.243

This work demonstrates the power of synapse-resolution connectivity data. It was not a given that a linear244

network model with connection strengths estimated from anatomy could predict neural coding properties that245

qualitatively match calcium imaging data at the population level, or that graph clustering algorithms could iden-246

tify modules specialized for different functions. We ignored many anatomical properties, such as the location of247

synapses within the dendritic arbor, the size of synapses, and the number of vesicles, all of which could signifi-248

cantly impact synaptic strength. Furthermore, the phosphorylation state of postsynaptic receptors or facilitation249

in presynaptic terminals could greatly modify synaptic efficacy70. Such additional properties may need to be250

incorporated in network models to generate quantitative predictions of function that match at the single cell level.251

Nevertheless, our findings here suggest that key properties of even complex networks generating behavior can252

be elucidated by patterns of synaptic connectivity.253
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Methods455

Image acquisition and alignment456

We acquired a dataset of the larval zebrafish hindbrain that extended 250 µm rostrocaudally and includes rhom-457

bomeres 4 through 7/8 (R4 to R7/8). The volume extends 120 µm laterally from the midline and 80 µm ventrally458

from the plane of the Mauthner cell axon. The ssEM dataset was an extension of the original dataset in ref29 and459

was extended by additional imaging of the same serial sections. Only a few tens of neurons had been manually460

reconstructed in our original publication on the ssEM dataset29 . The dataset was stitched and aligned using a461

custom package, Alembic (see Code availability). The tiles from each section were first montaged in 2D, and then462

registered and aligned in 3D as whole sections. Point correspondences were generated by block matching via463

normalized cross-correlations both between tiles and across sections. The final set of parameters that were used464

are listed in table .465

Table1: Parameters used for image alignment466

Step Images BlockMatches Transformation Typical block
radius (pixels) Typical search

radius (pixels)
Scale Bandpass (after

downsampling)

Premontage Tiles (8k x 8k) 1 between each pair of adjacent tiles Translation Entire overlap Entire overlap 0.5 (0,10)

Elastic Montage Tiles (8k x 8k)
Regular triangular mesh, 100 px, in the
overlapping regions between adjacent

tiles
Elastic 120 150 0.5 (0,20)

Pre-Prealignment sections 1 between each adjacent section Translation 35% of images entire images 0.03

Prealignment sections
Regular triangular mesh, 2000 px,

between sections
Regularized affine 800 3500 0.25 (2.5,12.5)

Rough alignment sections
Regular triangular mesh, 375 px,

between sections
Elastic 500 300 0.25 (2.5,10)

Fine alignment sections
Regular triangular mesh, 100 px,

between section
Elastic 300 70 1 (2.5,15)

467

468

Errors in each step were found by a combination of programmed flags (such as lower than expected corre-469

spondences, small search radius, large distribution of norms, or high residuals after mesh relaxation) and visual470

inspection. They were corrected by either changing the parameters or by manual filtering of points. In most471

cases, the template and the source were both passed through a band-pass filter. Stitching of tiles (montaging)472

within a single section was split into a linear translation step (premontage) and a non-linear elastic step (elastic473

montage). In the premontage step individual tiles were assembled to have 10% overlap between neighboring474

tiles, as specified during imaging, and by fixing a single tile (anchoring) in place. They were then translated475

row by row and column by column according to the single correspondence found between the overlaps. In the476

elastic montage step, the locations of the tiles were initialized from the translated locations found previously, and477

blockmatches were computed every 100 pixels on a regular triangular mesh (see Table for parameters used).478

Once the correspondences were found, outliers were filtered by checking the spatial distribution of the cross-479

correlogram (sigma filter), height of the peak of the correlogram (r value), dynamic range of the source patch480

contrast, kurtosis of the source patch, local consensus (average of immediate neighbors), and global consen-481

sus (inside the section). After the errors had been corrected, by filtering bad matches, the linear system was482

solved using conjugate gradient descent. The mean residual errors were in the range of 0.5 - 1.0 pixels after483

relaxation. The inter-section alignment was split into a translation step (pre-prealignment), a regularized affine484

step (prealignment), a fast coarse elastic step (rough alignment), and a slow fine elastic step (fine alignment). In485

the pre-prealignment step, a central patch of the given montaged section was matched to the previous montaged486

section to obtain the rough translation between two montaged sections. In the prealignment step, the montaged487

images were offset by that translation, and then a small number of correspondences were found between the two488

montaged sections, which were solved for a least-squared-residual affine transform, regularized with 10% (empir-489

ically derived) of identity transformation to reduce shear from propagating across multiple sections. Proceeding490

sequentially allowed the entire stack to get roughly in place. The mean residual errors were in the range of 3.5491

pixels after relaxation.492
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Convolutional Net Training493

Dataset494

Four expert brain image analysts (Daan Visser, Kyle Willie, Merlin Moore, and Selden Koolman) manually seg-495

mented neuronal cell boundaries from six subvolumes of EM images with VAST71, labeling 194.4 million voxels496

in total. These labeled subvolumes were used as the ground truth for training convolutional networks to detect497

neuronal boundaries. We used 187.7 million voxels for training and reserved 6.7 million voxels for validation.498

Network architecture499

To detect neuronal boundaries, we used a multiscale 3D convolutional network architecture similar to the bound-500

ary detector in72. This architecture was similar to U-Net73;74 and although was originally designed to improve501

upon U-Net, we found no significant evidence that it performs better at neuronal boundary detection than U-Net.502

Thus the particular choice of multiscale 3D convolutional network architecture in our image segmentation pipeline503

may not be important.504

We augmented the original architecture of72 with two modifications. First, we added a “lateral” convolution505

between every pair of horizontally adjacent layers (i.e. between feature maps at the same scale). Second, we506

used batch normalization75 at every layer (except for the output layer). These two architectural modifications were507

found to improve boundary detection accuracy and stabilize/speed-up training, respectively. For more details, we508

refer the reader to the Supplementary Section A.1 and Figure S10 in72.509

Training procedures510

We implemented the training and inference of our boundary detectors with the Caffe deep learning framework76.511

We trained the networks on a single Titan X Pascal GPU. We optimized the binary cross-entropy loss with the512

Adam optimizer77, initialized with α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 0.01. The step size α was halved when513

the validation loss plateaued, three times during training at 135K, 145K, and 175K iterations. We used a single514

training example (minibatch of size 1) to compute gradients for each training iteration. The gradient for target515

affinities (the degree to which image pixels are grouped together) in each training example was reweighted dy-516

namically to compensate for the high imbalance between target classes (i.e. low and high affinities). Specifically,517

we weighted each affinity inversely proportional to the class frequency, which was computed independently within518

each of the three affinity maps (x, y, and z) and dynamically in each training example. We augmented training519

data using (1) random flips and rotations by 90°, (2) brightness and contrast augmentation, (3) random warping520

by combining five types of linear transformation (continuous rotation, shear, twist, scale and perspective stretch),521

and (4) misalignment augmentation78 with the maximum displacement of 20 pixels in x- and y-dimension. The522

training was terminated after 1 million iterations, which took about two weeks. We chose the model with the523

lowest validation loss at 550K iterations.524

Convolutional Net Inference525

The above trained net was used to produce an affinity map of the whole dataset using the ChunkFlow.jl package79
526

(see Code availability). Briefly, the computational tasks were defined in a JSON formatted string and submitted527

to a queue in Amazon Web Services Simple Queue Service (AWS SQS). We launched 13 computational work-528

ers locally with NVIDIA TitanX GPU. The workers fetched tasks from the AWS SQS queue and performed the529

computation. The workers first cut out a chunk of the image volume using BigArrays.jl (see Code availability) and530

decompose it into overlapping patches. The patches were fed into the convolutional network model to perform531

inference in PyTorch80. The output affinity map patches were blended in a buffer chunk. The output chunk was532
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cropped around the margin to reduce boundary effects. The final affinity map chunk, which is aligned with block533

size in cloud storage, was uploaded using BigArrays.jl. Both image and affinity map volumes were stored in534

Neuroglancer precomputed format (https://neurodata.io/help/precomputed/). The inference took about 17 days in535

total and produced about 26 terabytes of affinity map.536

Chunk-wise Segmentation537

In order to perform segmentation of the entire volume, we divided the volume into ‘chunks’. Overlapping affinity538

map chunks were cut out using BigArrays.jl (see Code availability), and a size-dependent watershed algorithm81
539

(see Code availability) was applied to agglomerate neighboring voxels to make supervoxels. The agglomerated540

supervoxels are represented as a graph where the supervoxels are nodes, and the mean affinity values between541

contacting supervoxels are the edge weights. A minimum spanning tree was constructed from the graph by542

recursively merging the highest weight edges. This over-segmented volume containing all supervoxels and the543

minimum spanning tree was ingested to Google Cloud Storage for proofreading using the crowd-sourced platform544

EyeWire.545

Semi-automated reconstructions on Eyewire546

Following segmentation of the data into supervoxels, the data was made available to players on an online crowd-547

sourced platform, Eyewire (https://eyewire.org). Neurons for reconstruction were selected based on correspon-548

dence of EM images with functional imaging of same animal to identify VPNI neurons29. After this initial round,549

all pre- and post synaptic targets of these neurons were reconstructed. The players were provided the option of550

agglomerating supervoxels using a slider to change the threshold for agglomeration. To ensure accurate recon-551

structions, we did two things: (1) only players who met a certain threshold, determined by their accuracy on a552

previously published dataset (retina, Supplementary info) were allowed to progress to reconstruct zebrafish neu-553

rons and (2) the reconstructions were performed by two players in two rounds (round1, round 2) in a wikipedia554

like manner, where the latest player could modify the previous players reconstructions. Finally, once the neurons555

underwent two rounds of reconstructions, they were validated by expert in-house image analysts, who each have556

more than 5000 hrs of experience. The resulting accuracy of the players in the crowd as compared to experts557

(assuming experts are 100%) was >80% in the first round and ~95% after the second round of tracing. The558

validated reconstructions were subsequently skeletonized for analysis purposes.559

The accuracy of the players performance was calculated as an F1 score, where F1 = 2TP / (2TP+FP+FN),560

where TP represents true positives, FP represents false positives, and FN represents false negatives. All scores561

were calculated as a sum over voxels. TP was assigned when both the player and the expert agreed the segmen-562

tation was correct. FN was assigned when the player missed segments that were added in by the expert. FP was563

assigned when the player erroneously added segments that did not belong. Two F1 scores were calculated for564

each player, once for round 1 and once for round 2. No player played the same neuron in both rounds. Typically565

at an agglomeration threshold of 0.3 the segmentation had an F1 score of 62%.566

Skeletonization567

The neuron segmentation IDs were ingested to an AWS SQS queue and multiple distributed workers were568

launched in Google Cloud using kubernetes. Each worker fetched the segmentation chunks associated with569

a neuron ID. The segmentation voxels were extracted as a point cloud and the Distance to Boundary Field (DBF)570

was computed inside each chunk. Finally a modified version of the skeletonization algorithm TEASAR was ap-571

plied82. Briefly, we constructed a weighted undirected graph from the point cloud, where the neighboring points572

are connected with an edge and the edge weight is computed from the DBF. Then, we took the point with the573

largest DBF as source, and found the furthest point as the target. The shortest path from source to target in574
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the graph was computed as the skeleton nodes. The surrounding points were labeled as visited, and the closest575

remaining unvisited point was taken as the new source. We repeated this process until all the points were visited.576

The skeleton node diameter was set as its DBF. The skeleton nodes were post-processed by removing redundant577

nodes, removing ‘hairs’, based on diameter, removing branches inside soma, downsampling the nodes, merging578

single-child segments, and smoothening the skeleton path. All skeletonization was performed at mip level 4.579

Synapse detection580

Synapses were automatically segmented in this dataset using neural networks to detect clefts and assign the581

correct partner as previously described83. Briefly, a subset of the imaged data (219 μm3) was selected for anno-582

tation. The annotations were performed using the manual annotation tool VAST71 . Trained human annotators583

labeled the voxels that were part of a synaptic cleft, the postsynaptic density (PSD) and presynaptic docked vesi-584

cle pools. A convolutional neural network was trained to match these labels, using 107 μm3 as a training set, and585

36 μm3 as a validation set, leaving the remaining 76 μm3 as an initial test set. All of these sets were compared586

to the predictions of the model tuned to an F-Score of 1.5 on the validation set in order to bias towards recall,587

where recall = TP / (TP + FN). Biasing the predictor towards recall reduces false negatives at the cost of more588

false positives, which are easier to correct. Apparent human errors were corrected, and training was restarted589

with a new model. We also later expanded the test set by proofreading similar automated results applied to new590

sections of the datasets (to increase representation of rare structures in the full image volume). The final model591

used a RS-UNet architecture78 implemented using PyTorch80, and was trained using a manual learning rate592

schedule, decreasing the rate by a factor of 10 when the smoothed validation error converged. The final network593

reached 86% precision and 83% recall on the test set after 230k training iterations.594

A convolutional network was also trained to assign synaptic partners to each predicted cleft as previously595

described83. All 361 synapses in the ground truth were labeled with their synaptic partners, and the partner596

network used 204 synapses as a training set, 73 as a validation set, and the remaining 84 as a test set. The final597

network was 95% accurate in assigning the correct partners of the test set after 380k training iterations598

The final cleft network was applied across the entire image volume, and formed discrete predictions of synaptic599

clefts by running a distributed version of connected components. Each cleft was assigned synaptic partners by600

applying the partner network to each predicted cleft within non-overlapping regions of the dataset (1024 x 1024601

x 1792 voxels each). In the case where a cleft spanned multiple regions, the assignment within the region that602

contained the most of that cleft was accepted, and the others were discarded. Cleft regions whose centroid603

coordinates were within 1μm and were assigned the same synaptic partners were merged together in order to604

merge artificially split components.605

Finally, spurious synapse assignments (i.e postsynapses on axons and presynapses on dendrites) were606

cleaned by querying the identity of the 10 nearest synapses to every synapse. If the majority of the 10 near-607

est neighbors were of the same identity (pre or post), then the synapse was assigned correctly. If the majority608

were of an opposing identity, these synapses were assigned wrongly and were deleted. This process eliminated609

1975 falsely assigned synapses (~2% of the total).610

LM/EM registration611

Registration of the EM dataset to the reference atlas (ZBrain,45) was carried out in two stages. We created612

an intermediate EM stack from the low resolution (270 nm/pixel) EM images of the entire larval brain tissue.613

This intermediate stack had the advantage of a similar field of view as compared to the LM reference volume,614

while also being of the same imaging modality as the high-resolution EM stack. The low-resolution EM stack615

was registered to the reference brain by fitting an affine transform that maps the entire EM volume onto the616

LM volume. To do this, we selected corresponding points such as neuronal clusters and fiber tracts using the617

tool BigWarp84. These corresponding points were used to determine an affine transform using the MATLAB618
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least squares solver (mldivide). Subsequently, the intermediate EM stack, in the same reference frame as the619

ZBrain atlas, was used as the template to register the high-resolution EM stack onto it. This was performed in a620

similar manner by selecting corresponding points and fitting an affine transform. The resulting transform would621

transform points from the high-resolution EM space to the reference atlas space. This transform was used to map622

the reconstructed skeletons from high-resolution EM space to the reference atlas space.623

Functional imaging and functional maps624

The complete methods for recording calcium activity used to create the functional maps are reported in44. Briefly,625

we used two-photon, raster-scanning microscopy to image calcium activity from single neurons throughout the626

hindbrain of 7-8 day old transgenic larvae expressing nuclear-localized GCaMP6f, Tg(HuC:GCaMP6f-H2B) strain627

cy73-431 from Misha Ahren’s lab. Horizontal eye movements using a sub-stage CMOS camera were recorded628

simultaneously with calcium signals. We used the CalmAn-Matlab software to extract the neuronal locations from629

fluorescence movies85.630

We analyzed saccade-triggered average (STA) activity to determine which neurons were related to eye move-631

ments (see44 for complete details). For each cell, we interpolated fluorescence activity that occurred within five632

seconds before or after saccades to the left (right) to a grid of equally spaced, 1⁄3 second timepoints and then av-633

eraged the interpolated activity across saccades to compute the STA. The STA could occur around saccades to634

the left or to the right. We performed a one-way ANOVA on each STA to determine which neurons had significant635

saccade-triggered changes in average activity (p<0.01 using the Holm-Bonferroni method to correct for multiple636

comparisons). To determine which of these neurons had activity related to eye position and eye velocity, we first637

performed a Principal Components Analysis (PCA) on the STAs from neurons with significant saccade-triggered638

changes. We found that the first and second principal components had post-saccadic activity largely related to639

position and velocity sensitivity respectively (see Figure 3A in44). We characterized each STA using a scalar in-640

dex, called φ in44, created from that STA’s projections onto the first two principal components and found that this641

index does a good job of characterizing the average position and velocity-related activity seen across the popula-642

tion (see Figure 3C in44 for a map of φ values and population average STAs). Position and velocity neurons were643

defined as neurons with an STA whose φ value of was within a specific range (-83 to 37 and 38-68 respectively).644

We removed any neurons with pre-saccadic activity that was significantly correlated with time until the upcoming645

saccade. The locations of each neuron were then registered to the Z-Brain atlas using similar methods as listed646

in the previous section (see44 for complete details).647

Computing slopes of eye-position dependence648

To assess the functional characteristics of various oculomotor cells (Figure 4) we fit a classical model of eye649

position sensitivity to neuronal firing rates extracted from our fluorescence measurements. We approximated the650

firing rate, r, of a cell using the deconvolution algorithm with non-negativity constraint described in86. We modeled651

the dependence of firing rate on eye position using the equation, r = [k(E − Eth)]+, where k and Eth are free652

parameters and the function [x]+ = x if x > 0 and 0 otherwise87. In order to best compare results across animals,653

we normalized the units of eye position before fitting the model by subtracting the median eye position about the654

Null position (measured as the average raw eye position) and then dividing by the 95th percentile of the resulting655

positions. Since our focus was on a cell’s position-dependence, we also removed the eye velocity dependent burst656

of spiking activity at the saccade time that Abducens and VPNI neurons are known to display by removing samples657

that occur within 1.5 seconds before or 2 seconds after each saccade. Saccade times were determined in an658

automated fashion by determining when eye velocity crossed a threshold value44. Finally, since the eye position659

and fluorescence were recorded at different sampling rates, we linearly interpolated the values of neuronal activity660

at the eye position sample times. To fit the value of k, for each cell, we defined the eye movements toward the661

cell’s responsive direction as positive so that k is positive by construction. We then determined the ratio of the662
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threshold to eye position, Eth/K, using an iterative estimation technique based on a Taylor series approximation663

of [x]+ described in ref88. Using the resulting estimate of Eth/K , we determined k as the slope resulting664

from a linear regression, with offset, to r using the regressor [E = Eth/K]+. Since we did not know the cell’s665

responsive direction a priori, we ran the model twice -- once with movements to the left as positive and once666

with movements to the right as positive -- and used the value of k that resulted in the highest R2 value. We fit667

the model using positions from the contralateral eye for the Abducens internuclear neurons and the ipsilateral668

eye for all other neurons. A neuron was identified as an Abducens (ABD), Abducens internuclear (ABDI), or669

descending octavolateral (DO) neuron if its location on the ZBrain atlas was within 5 microns of an ABDM, ABDI,670

or DO cell determined from EM anatomy (since EM reconstruction was only performed for one hemisphere, we671

duplicated the locations of the EM-identified neurons and mirrored their location onto the opposite hemisphere).672

As a goodness-of-fit measure we required all neurons, except DO cells, to have an R2 value greater than 0.4.673

Additionally, non-DO cells were required to have a saccade-triggered average with at least one significant time674

point (p<0.01 by an ANOVA test using Holm-Bonferroni correction) as defined in ref44 and to have a ∆F
F (which675

is defined as F−mean(F )
mean(F ) ), fluorescence response that was loosely related to eye position (R2 greater than 0.2676

when we run the above model replacing r with ∆F
F ). The eye position sensitivity for fluorescence data was then677

scaled to average physiological VPNI responses from goldfish48;89.678

Modular analysis679

We organized the reconstructed neurons into two groups: those in a recurrently connected “center”, where feed-680

back interactions are expected to establish collective dynamics, and those in the “periphery” that project to or681

collect input from the center. To do so, we first defined a connection matrix Nij by the number of synapses onto682

node i from node j. We computed the left and right eigenvectors of the connection matrix corresponding to the683

eigenvalue with maximal real part. The elements of these eigenvectors, which are all non-negative, are regarded684

as measures of network “centrality”. We define eigen-centrality as the geometric mean of the left and right eigen-685

vectors corresponding to the maximal real part. This terminology is helpful because nodes with zero out-degree686

(orphan dendrites) have zero out-centrality, and nodes with zero in-degree (orphan axons) have zero in-centrality.687

We note for completeness that our definition of centrality is properly termed an eigen-centrality; similar organiza-688

tion could be generated by using the related concept of degree-centrality. Degree-centrality (geometric mean of689

in-degree and out-degree) and eigen-centrality are correlated, but not perfectly (Extended Data Fig. 1c).690

Using the above method, we were able to define a ‘center’ that contained 540 recurrently connected neurons691

(eigen-centrality >10-8). We then applied three graph-clustering algorithms, the Louvain algorithm, Spectral clus-692

tering and the Stochastic block matching method to divide the center into modules. The Louvain based methods693

is presented in the main text, and the rest are described in the Extended data.694

Louvain Clustering695

Graph clustering was performed using the Louvain clustering algorithm for identifying different ‘communities’ or696

‘modules’ in an interconnected network by optimizing the ‘modularity’ of the network, where modularity measures697

the (weighted) density of connections within a module compared to between modules. Formally, the modularity698

measure maximized is Qgen =
∑
Bijδ(ci, cj), where δ(ci,cj) equals 1 if neurons a and b are in the same module699

and 0 otherwise, where Bij = 1
ω (Wij − γ

sisj
ω ) + transpose(B). Here si =

∑
cWic is the sum of weights into700

node i, sj =
∑

cWjb is the sum of weights out of node j, ω =
∑

cdWcd is the total sum of weights in the701

network, and the resolution parameter γ determines how much the naively expected weight of connections γ } is702

subtracted from the connectivity matrix. Potential degeneracy in graph clustering was addressed by computing703

the consensus of the clustering similar to90. Briefly, an association matrix, counting the number of times a node704

(neuron) is assigned to a given module, was constructed by running the Louvain algorithm 200 times. Next, a705

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359620
http://creativecommons.org/licenses/by-nd/4.0/


randomized association matrix was constructed by permuting the module assignment for each node. Reclustering706

the thresholded association matrix, where threshold was the maximum element of the randomized association707

matrix, provided consensus modules. We used the commuinity_louvain.m function from the Brain Connectivity708

Toolbox package (BCT, https://sites.google.com/site/bctnet/Home). In addition to the Louvain graph-clustering709

algorithm, we also clustered the ‘center’ with two alternate graph-clustering algorithms; spectral clustering and710

stochastic block matching, described below.711

Spectral Clustering712

We employed a generalized spectral clustering algorithm for weighted directed graphs to bisect the zebrafish713

‘center’ subgraph as proposed by38. Given a graph G(V,E) and its weighted adjacency matrix A ∈ Rn×n≥0 , Aij714

where indicates the number of synapses from neuron i to neuron j , one can construct a Markov chain on the715

graph with a transition matrix Pα , such that [Pα]ij := (1− α) ·Aij/
∑

k Aik + α/n . The coefficient α > 0 ensures716

that the constructed Markov chain is irreducible, and Perron-Frobenius theorem guarantees Pα has a unique717

positive left eigenvector π with eigenvalue 1, where π is also called the stationary distribution. The normalized718

symmetric Laplacian of the Markov chain is L = I − 1
2

(
Π1/2PαΠ−1/2 + Π−1/2P ᵀ

αΠ1/2
)
.719

To approximately search for the optimal cut, we utilize the Cheeger inequality for a directed graph38 that720

bridges the spectral gap of L and the Cheeger constant φ∗. Ref91 shows that the eigenvector v corresponding to721

the second smallest eigenvalue of L, λ2 results in optimal clusters. We obtained two clusters by a binary rounding722

scheme, i.e., S = {i ∈ V |vi ≥ 0} and S = {i ∈ V |vi < 0}.723

We modified the directed_laplacian_matrix function in the NetworkX package (https://networkx.github.io) to724

calculate the symmetric Laplacian for sparse connectivity matrices, with a default α = 0.05. The spectral gaps725

for the eigenvector-centrality subgraph is λeigen2 = 0.137 and for the partitioned the oculomotor (modO) module is726

λeigenOM
2 = 0.256.727

Degree-corrected Stochastic Block Matching (SBM)728

Unlike the Louvain and spectral clustering algorithms that assume fewer intra-cluster connections than inter-729

cluster connections, we applied an efficient statistical inference algorithm39 to obtain the stochastic block models730

(SBM) that best describes the ‘center’ subgraph.731

The traditional SBM92 is composed of n vertices, divided into B blocks with {nr} vertices in each block, and732

with the probability, prs, that an edge exists from block r to block s. Here we use another equivalent definition, to733

use average edge counts from the observation ers = nrnsprs to replace the probability parameters. The degree-734

corrected stochastic block model93 further specifies the in- and out-degree sequences {k+
i , k

−
i } of the graph as735

additional parameters.736

To infer the best block membership {bi} of the vertices in the observed graph G, we maximize likelihood737

P(G|{bi}) = 1/Ω({ers}, {nr}), where Ω({ers}, {nr}) is the total number of different graph realizations with the738

same degree distribution {k+
i , k

−
i }, and {ers} edges among and within blocks of sizes {nr}, corresponding to739

the block membership {bi}. Therefore, maximizing likelihood is equivalent to minimizing the microcanonical740

entropy94 S({ers}, {nr}) = ln Ω({ers}, {nr}), which can be calculated as S ' −M −
∑

i ln(k+
i !) −

∑
i ln(k−i !) −741 ∑

rs ers ln
(

ers∑
s ers

∑
r ers

)
, ' −M −

∑
i ln(k+

i !) −
∑

i ln(k−i !) −
∑

rs ers ln
(

ers∑
s ers

∑
r ers

)
, S, where M =

∑
rs ers is742

the total number of edges.743

We used the minimize_blockmodel_dl function in the graph-tool package (https://graph-tool.skewed.de) to744

bisect the central subgraphs by setting Bmin = Bmax = 2 and degcorr = true.745
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Network level modeling746

A full-scale, one-sided model was built using the reconstructed synapses for the ABD, DO, and VPNI populations.747

A full-scale, one-sided model was built using the reconstructed synapses for the ABD, DO, and VPNI populations.748

Although the VPNI is a bilateral circuit, previous experiments87;89 have shown that one half of the VPNI is nev-749

ertheless capable of maintaining the ipsilateral range of eye positions after the contralateral half of the VPNI is750

silenced. This may reflect that most neurons in the contralateral half are below their thresholds for transmitting751

synaptic currents to the opposite side when the eyes are at ipsilateral positions53. Therefore, we built a recurrent752

network model of one half of the VPNI circuit based on the modO neurons that we had reconstructed from one753

side of the zebrafish brainstem. For simplicity, we did not include the modA neurons, assuming that the weak754

connectivity between the axial and oculomotor modules makes their contributions negligible, similar to the man-755

ner in which bilateral interactions have been shown to be negligible for the maintenance of persistent activity. We756

added the ABD neurons and the feedforward connections from modO to ABD to the model, because the ABD757

neurons are the “read-out” of the oculomotor signals in the VPNI.758

The elements of the model weight matrix are Wij = ±β Nij∑
k Nik

. An overall scale factor β was applied to tune759

the principal eigenvalue to one, which is a necessary condition for generating stable temporal integration in the760

network model. The automated synapses detection identified a small number of synapses (8 synapses from 3761

ABD neurons) projecting from the abducens onto integrator and vestibular neurons. Manual inspection of the762

synapses indicated that they were false positives, so they were neglected when building the model. Projections763

from the DO population were taken to be inhibitory while all other connections were taken to be excitatory (sup-764

plementary information). The remaining neurons in the oculomotor module were included as part of the VPNI--we765

did not consider other vestibular populations since only DO neurons in modO received vestibular afferents from766

the Viiith nerve; saccadic burst neurons are likely located in R2/344, outside of our reconstructed volume; and767

recently discovered pre-saccadic ramp neurons44, are quite sparse in comparison to neurons with position signal.768

Directed connection weights between each pair of neurons were set in proportion to the number of synapses769

from the presynaptic neuron onto the postsynaptic neuron divided by the total number synapses onto the post-770

synaptic neuron. The weights were then scaled to achieve perfect integration in a linear rate model governed by771

τ dridt = −ri+Wijrj where ri is the firing rate of the ith neuron, Wij are the connection weights, and τ , the intrinsic772

time constant, is 100ms. Position sensitivities were determined for the neurons in each model by simulating the773

response of the network to a pulse of input along the integrating direction. The position sensitivity for each neu-774

ron was then determined by averaging across models and scaled to average physiological VPNI responses from775

goldfish48;89.776

As a control, we generated a connectome that accounted for the false positive and negative rate of synapse777

detection by the neural nets; synaptic detection jitter. We generated 1000 models by randomly varying the778

identified synapses according to the false positive and false negative rates and calculated the connection weights779

as described above. The eye position sensitivities with synaptic detection jitter were reported as the average of780

these 1000 models (Extended Data Fig. 10c).781

Code availability782

• Alembic - https://github.com/seung-lab/Alembic.git783

• BigArrays.jl - https://github.com/seung-lab/BigArrays.jl with Apache License Version 2.0.784

• ChunkFlow.jl - https://github.com/seung-lab/ChunkFlow.jl with Apache License Version 2.0.785

• Watershed - https://github.com/seung-lab/Watershed.jl with GNU General Public License v3.0.786

• Agglomeration - https://github.com/seung-lab/Agglomeration with MIT License.787
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• Skeletonization, morphology and functions could be found at https://github.com/seung-lab/RealNeuralNetworks.jl788

with Apache License 2.0.789
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Extended Data Figures1
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Extended Data Figure. 1: Network features
a. Frequency distribution of the number of synapses per connection on the reconstructed graph
b. Eigencentrality, defined as the geometric mean of the left and right eigenvectors.
c. Eigencentrality vs. Degree centrality
d. Top10 in-degree neurons, where 4 are vSPNs and 5 are ABD neurons.
e. Network diagram of the reconstructed neurons, where dots represent individual nodes and lines represent the edges
between nodes. Left eigenvector is referred to as out-centrality and the right eigenvector is referred to as in-centrality. The
network representation shows neurons in the ‘center’ and in the ‘periphery’. Only edges involving more than 5 synapses
shown for clarity.
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Extended Data Figure. 2: Registration of EM and LM to reference atlas
a. Maximum intensity projection of the registration of 2P functional imaging (green) onto the Z-brain reference atlas (ma-
genta). Neurons that were responsive to right eye positions are reported. (Bottom) Example response of a neuron (black)
to the eye position (blue, yellow). Scale bar 100µm
b. Single plane views of the registration of the ssEM volume (green) to Z-brain reference atlas (magenta). Scale bar 100µm
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Extended Data Figure. 3: Identification of abducens and DO neurons.
a. Overlap of abducens neurons with transgenic lines registered to Z-brain atlas. (Left) Location of ABDM neurons as
indicated in fluorescence micrographs by two clusters of neurons in R5,6. Corresponding locations of ABDM neurons from
EM reconstructions are shown in green. (Right) Location of two clusters of glutamatergic interneurons in fluorescence
corresponds with EM reconstructions of ABDI neurons.
b. (Left) EM reconstruction of DO neurons (red) along with inputs (blue) that were identified as originating as part of the
vestibulocochlear nerve (VIIIth nerve, black arrows). Side views of the overlap of the axons identified as part of VIIIth nerve
onto the isl2 transgenic line. (Middle) single plane (right) maximum intensity projection. SAG - Statoacoustic Ganglia.
c. Overlap of the DO neurons with transgenic lines that label markes for excitatory and inhibitory neurotransmitters registered
to the Z-brain atlas. DO somata overlap with gad-1b labeled neurons (red circle), but not with Vglut or gly2.1 . Arrows
indicate the trajectory of the vestibular nerve.
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Extended Data Figure. 4: Identification of vSPNs.
a. vSPNs were identified based on their overlap with neurons labeled by spinal backfills that were part of the Zbrain resource.
Scale bar 50µm.
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Extended Data Figure. 5: Modular structure at different scales.
a. Number of modules obtained and robustness of clusters as a function of resolution parameter γ.
b. Connectivity matrices when clustered for different numbers of modules. At γ = 0.7, emergent modular structure is similar
to that as shown when modules in Fig 2 (modA, modO) and Fig 3 (modOM, modOI) are clustered in a hierarchical manner.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2020. ; https://doi.org/10.1101/2020.10.28.359620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.28.359620
http://creativecommons.org/licenses/by-nd/4.0/


Extended Data Figure. 6: Synapse size and location distribution
a. Histogram of total pathlength of neurons in modA (n = 251) and modO (n = 289). P is the significance value based on
Wilcoxon-rank sum test (RS- test). Cohen’s D measures the effect size.
b. Histogram of synapses size (detected PSD) of neurons within-module (left) and between-modules (right) between modA
and modO. P is the significance value based on Wilcoxon-rank sum test (RS- test). Table summarizes the mean and
standard deviations.
c. Histogram of synapses locations i.e. distance from somata to synaptic site along the neurite for neurons in modA and
modO. Table summarizes the mean and standard deviations.
d. Histogram of synapses size (detected PSD) of neurons within-module (left) and between-modules (right) for modOI and
modOM .Table summarizes the mean and standard deviations.
e. Histogram of synapse locations for neurons within the oculomotor module, modOI and modOM.
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Extended Data Figure. 7: Clustering algorithm comparisons
a. Spectral clustering (see Methods) into two modules along with a normalized number of synapses in each block.
b. Degree corrected Stochastic Block Matching (SBM) (see Methods) into two modules along with the normalized number
of synapses in each block.
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Extended Data Figure. 8: Composition of Axial module (modA).
a. Connectivity matrix (same as in Figure 2) with the addition of small vSPNs in the periphery. (Right) Visualization of the
large and small classes of vSPNs. Locations of small vSPNs that are part of the ‘center’ in modA are indicated by arrows
above the rows.
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Extended Data Figure. 9: Overlap of modules with functional maps.
a. Overlap of neurons in modA (orange) and modO (blue) with a maximum intensity projection of neurons with eye position
signals (see Methods), functional map (background) - front views, (below) - side views.
b. Quantification of the overlap of modO neurons from EM to neurons with eye position signals functional imaging. (Top)
Number of eye position neurons as a function of jitter radius. Error bars are standard deviations of 10 iterations of jitter.
(Bottom) ratio of eye position neurons as a function of soma jitter. Overlap was counted using a patch size of 6x6x8µm
around each modO neuron.
c. Overlap of modO neurons registered to the Z-brain atlas to transgenic lines that label neurotransmitter also in the same
reference frame.
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Extended Data Figure. 10: Position sensitivity distributions for model variants
a. Box plots of eye position sensitivities (k) values for all four cell types, VPNIs, DOs , ABDM and ABDI neurons as a function
of eigencentrality rank. Each box on the x-axis represents the k values when the weights in the model are restricted to
neurons below a certain eigencentrality rank. Population measures remain consistent even when we shrink the candidate
VPNI population by 50%.
b. Histogram of the fraction of all neurons that are recurrent within the identified modules. (left) Recurrent fraction within
modOI and modOM. Box plots, above, show medians along with 25th and 75th percentile. Red crosses are the outliers.
c. Distribution of the eye position sensitivities (k) when the model uses the actual connectivity matrix (black) compared to
connectivity matrices generated by simulating errors in automated synapse detection (red, see Methods). Circles represent
the means and triangles represent the medians.
d. Distribution of the eye position sensitivities (k) when the model uses the actual connectivity matrix (black) compared to
connectivity matrices generated considering potential synapses (green, brown and purple, see Methods) for the different
classes of neurons. Circles represent medians and triangles represent means.
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Supplementary Information1

2

Abducens neuron identification3

We identified abducens motor neurons (Fig. 1c, Extended Data Fig. 3) by their overlaps with abducens motor neurons4

(ABDM) labeled by the mnx transgenic line (Extended Data Fig. 3a). The ABDM axons exited R5 and R6 through the5

abducens (VIth) nerve (Fig. 1c, black box) as reported previously [1].6

Contraversive horizontal movements of the eye are driven by the medial rectus muscle, which are innervated by motor7

neurons in the oculomotor nucleus, which in turn are driven by internuclear neurons (ABDI) in the contralateral abducens8

complex (Fig. 1c). ABDI neurons were identified (Extended Data Fig. 3a) by their overlaps with two nuclei in the evx29

transgenic line [2] that labels glutamatergic interneurons. The ABDI neurons were just dorsal and caudal to the ABDM10

neurons, and their axons crossed the midline [3].11

Identification of DO neurons12

We identified a class of secondary vestibular neurons; Descending Octavolateral (DO) neurons (Fig. 1d, brown). We13

observed that DO cells received synapses from primary vestibular afferents. The latter were orphan axons in R4 identified14

as the vestibular branch of the vestibulocochlear nerve (VIIIn) by comparison with the isl-2 line, which labels the major15

cranial nerves (Extended Data Fig. 3b, blue axons).16

Identification of vSPNs17

Ventromedially located Spinal Projection Neurons (vSPNs) were identified by their stereotypic locations [4] and by comparing18

the registered ssEM volume to spinal backfilled neurons part of the Zbrain resource (Extended Data Fig. 4). The vSPNs19

were divided into two groups, large and small vSPNs (Fig. 1d). Large vSPNs were M, Mid2, MiM1, Mid3i and CaD neurons.20

Small vSPNs were RoV3, MiV1, MiV2.21

Assigning sign to VPNI neurons22

We first attempted to determine the signs of the neural connections by comparison with molecular maps in the Z-Brain atlas.23

Integrator neurons in the dorsomedial stripe running from R4 to R7/8 overlap with a region of alx expression (Extended Data24

Fig. 9c, ZBB-alx-gal4) where most neurons are glutamatergic [5]. More lateral and caudal neurons overlap with markers for25

glycine and glutamate. Finally, neurons in the oculomotor module do not overlap with the GABA expression (Extended Data26

Fig. 9c, ZBB-gad1b). For these reasons were assigned neurons in the oculomotor module to be excitatory.27

Gamification of the zebrafish dataset and crowdsourced reconstructions28

In addition to in-house reconstructions by experts, zebrafish cells were made available to citizen scientist gamers through29

the existing retinal crowdsourcing game “Eyewire.”30

To test out this new dataset only the most experienced players on Eyewire were allowed to participate. A small group of31

4 highly experienced players received an invite to test this new dataset. The players were given the title of “Mystic” which32

was a new status created to enable gameplay, and became the highest achievable rank in the game.33

1
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Subsequent Mystic players had to apply for the status to unlock access to the zebrafish dataset within Eyewire. There was34

a high threshold of achievement required for a player to gain Mystic status. Each player was required to reach the previous35

highest status within the game, as well as complete 200+ cubes a month and maintain 95% accuracy when resolving cell36

errors.37

Once a player was approved by the lab, they were granted access to the zebrafish dataset, and given the option to have38

a live tutorial session with an Eyewire admin. There was also a pre-recorded tutorial video and written tutorial materials39

for players who could not attend the live session or who desired a review of the materials. Newly promoted players were40

also given a special badge, a new chat color, and access to a new chat room exclusive to Mystics. These rewards helped41

motivate players by showing their elevated status within the game as well as giving them a space to discuss issues specific42

to the zebrafish dataset.43

Cells were parceled out in batches to players. When a cell went live on Eyewire, it could be claimed by any Mystic. Each44

cell was reconstructed by only one player at a time. Once this player had finished their reconstruction, a second player would45

check over the cell for errors. After the second check, a final check was done by an Eyewire Admin. To mitigate confusion46

when claiming cells, a special GUI was built into the game that allowed players to see the status of each cell currently online.47

A cell could be at one of five statuses - “Need Player A,” “Player A,” “Need Player B,” “Player B,” and “Need Admin.” These48

statuses indicated whether a cell needed to be checked, or was in the process of being checked, and whether it needed a49

first, second, or Admin level check. At each stage the username of the player or Admin who had done a first, second, or50

final check was also visible. It was made mandatory that the first and second checks were done by two separate players.51

Collaboration and feedback were important parts of the checking process. If a player was unsure about an area of the52

cell they were working on, they could leave a note with a screenshot and detail of the issue, or create an alert that would53

notify an Admin. If a “Player B” or an Admin noticed a mistake made earlier in the pipeline, they could inform the player of54

the issue via a “Review” document, or through an in-game notification (player tagging).55

To differentiate the zebrafish cells from the regular dataset, each cell was labeled with a Mystic tag. This tag helped to56

identify the cells as separate from the e2198 retinal Eyewire dataset, and also populated them to a menu of active zebrafish57

cells within Eyewire.58

Players were rewarded for their work in the zebrafish dataset with points. For every edit they made to a cell they received59

300 points. Points earned while playing zebrafish were added to a player’s overall points score for all gameplay done on60

Eyewire, and appeared in the Eyewire leaderboard.61

62

The following players in Eyewire were the admins who validated crowd sourced neuronal reconstructions:63

64

Hoodwinked, BenSilverman, Hightower, sarah.morejohn, SeldenK, sorek.m, zorek.m, twisterZ, hjones.jr, devonjones,65

amy, EinsteintheRapper, zkem, celiad, celiaz,sunreddy, peleaj43, sarahaw66

67

The following players helped reconstruct neurons on Eyewire, collectively called - Mystic players:68

69

r3, Atani, Nseraf, susi, eldendaf, Frosty, a5hm0r, hiigaran, kinryuu, Manni_Mammut, aesanta1, LotteryDiscountz, galarun,70

annkri, dragonturtle, LynneC, Cliodhna, jax123, KrzysztofKruk, Kfay, rinda, crazyman4865, JousterL, randompersonjci, Caf-71

feine, Baraka, ggreminder, TR77, hewhoamareismyself, nagilooh, Oppen_heimer, Gruenewitwe, cognaso, twotwos, hawai-72

isunfun,danielag, lemongrab, zope, MysticM, kondor, frankenmsty, zfishman.73
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