
G

G Domain

▶Groove (G) Domain
G Type Domain

▶Groove (G) Domain
G1 Checkpoint

▶Cell Cycle Transition, Detailed Regulation of

Restriction Point
G1 Phase Checkpoint

▶Cell Cycle Transition, Principles of Restriction

Point
G2/M Transition

▶Cell Cycle Transitions, G2/M
GCN Control

▶Translational Control of GCN4
W. Dubitzky et al. (eds.), Encyclopedia of Systems Biology, DOI 1
# Springer Science+Business Media LLC 2013
Gcn2-dependent General Translational
Control

▶Translational Control of GCN4
Gene and Allele Names

▶Gene and Allele Nomenclature
Gene and Allele Nomenclature

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire,

Institut de Génétique Humaine, UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

Gene and allele names; Gene and allele symbols
Definition

Gene and allele nomenclature for immunoglobulins

(IG) or antibodies and T cell receptors (TR) has been

set up by IMGT®, the international ImMunoGeneTics

information system® (http://www.imgt.org) (▶ IMGT®

Information System) (Lefranc and Lefranc 2001a, b).

The gene and allele nomenclature is based on
0.1007/978-1-4419-9863-7,
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the concepts of classification (generated from

the ▶CLASSIFICATION Axiom) of ▶ IMGT-

ONTOLOGY, the global reference in ▶ immunogenetics

and▶ immunoinformatics.

The four major concepts of classification, Group,

Subgroup,Gene, and Allele, have allowed the gene and
allele nomenclature for the V, D, J, and C gene type

(▶Gene Type) of the IG and TR whatever the receptor

type, the chain type (▶Chain Type), and the species

from fish to human (▶TaxonRank).

The Group concept allows to classify a set of genes

which belong to the same multigene family, within the

same species or between different species. For the IG

and TR, “Group” allows to classify a set of genes

which belong to the same ▶GeneType (V, D, J or C).

The Subgroup concept allows to classify a subset of

genes which belong to the same group, and which, in

a given species, share at least 75% of identity at the

nucleotide sequence level (and in the germline config-

uration (▶Configuration Type) for the IG and TR V,

D, and J genes).

The Gene concept allows to classify, in the

▶ IMGT® Information System, a unit ofDNA sequence

that can be potentially transcribed and/or translated (this

definition includes the regulatory elements in 50 and 30,
and the introns, if present). The leafconcepts (▶ IMGT-

ONTOLOGY, Leafconcept) of “Gene” are gene names

(Lefranc and Lefranc 2001a, b). In IMGT-ONTOL-

OGY, a gene name is composed of the name of the

species (leafconcept of the ▶TaxonRank “Species”)

and of the international Human Genome Organisation

(HUGO) Nomenclature Committee (HGNC)/IMGT

gene symbol, for example, Homo sapiens IGHV1-

2. By extension, orphon (▶Location Type) and

▶ pseudogene (▶FunctionalityType) gene names are

also leafconcepts of “Gene.”

The Allele concept allows to classify a polymorphic

variant of a gene. The leafconcepts of “Allele” are

allele names. Alleles identified by the mutations of

the nucleotide sequence are classified by reference to

allele *01. For immunoglobulin (IG) and T cell recep-

tor (TR) genes, full description of mutations and allele

name designations are recorded for the core sequences

(V-REGION, D-REGION, J-REGION, C-REGION).

They are reported in Alignment tables, in IMGT Rep-

ertoire http://www.imgt.org and in IMGT/GENE-DB

(Giudicelli et al. 2005) of IMGT®, the international

ImMunoGeneTics information system® (▶ IMGT®

Information System).
Cross-References

▶Chain Type

▶Configuration Type

▶ FunctionalityType

▶Gene Type

▶ IMGT-ONTOLOGY

▶ IMGT-ONTOLOGY, CLASSIFICATION Axiom

▶ IMGT-ONTOLOGY, Leafconcept

▶ IMGT® Information System

▶ Immunogenetics

▶ Immunoinformatics

▶Location Type

▶ Pseudogene

▶ Structure Type

▶TaxonRank
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Gene and Allele Symbols

▶Gene and Allele Nomenclature
Gene Association Analysis,
Frequent-Pattern Mining

Jesús Aguilar-Ruiz1, Domingo Rodrı́guez -Baena1 and

Ronnie Alves2
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Definition

In ▶ transcriptomics, Gene association analysis helps

to infer ▶ gene expression profiles from ▶DNA
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microarray studies by enumerating and evaluating all

possible gene association patterns.

Gene association patterns are essentially ▶ asso-

ciation rules induced by sample frequency of a gene

in an observed ▶DNA microarray study. For exam-

ple, an association rule between genes in the form

R1: geneA ! geneB, and geneC could be an indic-

ative that when geneA is ‘over-expressed’, it is

likely to observe an ‘over-expression’ in geneB

and geneC.

The starting point in the Gene Association Anal-

ysis is a N � M matrix of gene expression values,

where the rows correspond to experimental condi-

tions and columns represent genes. Most of the

techniques for extraction of gene association pat-

terns require that the matrix passes through

a discretization process. So, the input matrix is

preprocessed in order to transform their values in

binary values.

Depending on the application and on the type of

information to be extracted, values “0” and “1” will

have a specific meaning. As an example, consider that

the microarray will be mapped to a binary gene expres-

sion matrix in such way that a gene tagged with “1” in

a particular condition stands for an “Over-expression”

and “0” stands for an “Under-expression.” Then, all

significant genes are selected and must pass through an

enumeration process. Again, genes considered as “sig-

nificants” depend on the specific experiment. In the

former matrix example, significant genes could be the

“Over-expressed” ones. Finally, frequency is observed

to detect remarkable frequent patterns.

▶ Frequent pattern mining is the most costly task in

gene association analysis (Alves et al. 2010). Given the

high dimensionality of the gene expression matrices,

classical techniques, like the ones based on Apriori
(see the review paper of Han et al. 2007 for further

information), might not be suitable to high-

dimensional data analysis. New frequent pattern

mining techniques properly devised for gene associa-

tion analysis have been developed to face this new

challenge.

Once all the frequent gene groups have been

obtained, they are combined in order to generate asso-

ciation rules.

The significant gene association rules discovered

(with remarkable frequency) are evaluated to check

their biological relevance (Alves et al. 2010). To do

so, biological databases could be used for checking,
statistically, overrepresentations of gene association

patterns with gene annotations. Text mining can be

also applied for searching genes being already

published in the medical literature. In fact, it is also

possible to include biological background in early

stages of the Gene Association Analysis, being espe-

cially important in integrative genomics. In this case,

association patterns will present a global appreciation

rather than a local perspective of a microarray study.

For instance, a rule like Ribosome ! [�]T6, [�]T7
combines information about metabolic pathways,

expression, and temporal data, meaning that genes

involved in Ribosome pathway are under-expressed

in that respective time points.
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Gene Association and Linkage Analysis

Roger Higdon
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Synonyms

Gene mapping; Genetic association; Genetic

epidemiology; Genome-wide association; Linkage

disequilibrium
Definition

Gene association is the association between a genetic

variation (genotype, haplotype, or single nucleotide

polymorphism (SNP)) and a physical trait (phenotype),

typically the presence or absence of a disease. Linkage

analysis is the study of gene association due to their

proximity on the same chromosome.
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Characteristics

Genetic linkage is the tendency of gene loci or alleles to

be inherited together due to their physical proximity on

the same chromosome. This proximity causes them to

stay together during meiosis, and they are therefore

genetically linked. Genetic association tests are

used to find genetic linkage between a genetic trait or

polymorphism and a physical trait or phenotype such as

a disease (de Bakker et al. 2005). A similar term to

genetic linkage with a different meaning is linkage dis-

equilibrium, a term used in the study of population

genetics for the nonrandom association of alleles at two

or more loci, not necessarily on the same chromosome

(Terwilliger and Ott 1994). Genetic association studies

are truly testing for linkage disequilibriumwhich may or

may not be due to actual linkage on a chromosome.

A number of different types of studies are used to test

for genetic association or linkage. These tests may be

used for testing the association of a disease versus

a single genotype, but more commonly they are used

to test against a large number of SNPs in order to

determine the location of genes associated with

a particular disease. The studies are known as genome-

wide association studies (Manolio et al. 2010). The most

commonly used tests are case-control studies which

compare the distribution of genetic polymorphism

between a sample of disease case and control subjects.

A simple chi-squared or▶Fisher’s exact test can be used

to test for association. If cases and controls are not well

matched for ethnicity or geographic origin, then genetic

associations may be confounded with the effect of

population stratification. Population stratification occurs

where subpopulations have different frequencies of

genetic traits due to common ancestry.

Family-based tests can have much more statistical

power than case-control studies because they utilize the

genetic relationships between family members. How-

ever, these studies are much more difficult to conduct

since they can be difficult for genetic data among family

members. The earliest forms of family-based tests are

based on pairs of siblings affected with the same disease;

this is known as the affected sib-pair (ASP) test. If

a genetic marker is not linked to the disease, then trans-

mission of alleles should be governed by random Men-

delian inheritance, but if the disease gene and marker

gene are linked, then the siblings should share alleles

more often than by chance. The simplest ASP tests are

based on a comparison of the number of observed shared
alleles to the number expected based upon Mendelian

inheritance using a chi-squared test. Another family-

based test is the transmission disequilibrium test (TDT)

(Spielman and Ewens 1996). The TDT utilizes the geno-

types or haplotypes of parents and a disease-affected

child. In the TDT the number of alleles transmitted

from parents to the child is compared to the number not

transmitted. Patterns of nonrandom transmission indicate

association of geneticmarkerwith a disease. The simplest

TDT is based on McNemar’s test for matched pairs.

For genome-wide association studies, a disease is

compared to a large number of known genetic markers,

typically SNPs using case-control studies or family-

based tests. Genome-wide association studies identify

the SNPsmost closely associatedwith a disease enabling

researchers to identify the most likely location(s) of

disease-related genes. The log-odds (LOD) score is the

most commonmetric for ranking association; it is simply

the value of the log-likelihood test for genetic associa-

tion. LOD scores are based upon parametric tests typi-

cally used in case-control studies or family-based tests;

however, there are also nonparametric-based alterna-

tives. Tests for association can be carried out using single

point linkage, which considers the association disease

and genetic markers on an individual basis, or by using

multipoint linkage, which utilize multivariate measures

to calculate the association between disease and a set of

genetic markers. Multipoint linkage tests can increase

statistical power but are much more complicated and

numerically intensive to carry out.

Gene association and linkage studies can also be

based on quantitative outcome rather than just dichot-

omous outcomes such as disease state. These are

known as quantitative trait loci (QTL) models and

studies (Sen and Churchill 2001).
Cross-References

▶ Fisher’s Test
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Definition

Gene expression is the process by which a functional

product, such as protein, is synthesized according to

genetic information. It usually consists of the following

stages: transcription, post-transcription, translation, and

post-translation.
Cross-References
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Definition

Gene expression biomarkers are biological markers

identified through large-scale gene expression profil-

ing. They may consist of a single gene product or
represent a combination of several gene products,

a gene expression signature.
Characteristics

In the past, most of the studies exploring the

transcriptome (collection of all RNA molecules in

a cell or tissue) were done with methods targeting single

or few molecules, like Northern blotting. The last 20

years has witnessed a great development in technologies

that allow a large-scale screening of genes expressed in

a given cell or tissue. In this respect, the technologies that

have contributed most for this exploratory work are

Expressed Sequence Tags (ESTs), ▶DNA microarray,

and Serial Analysis of Gene Expression. Although

important, these technologies have all significant limita-

tions specially related to sensitivity. It is believed that all

these technologies cover just a fraction of the whole

transcriptome of a given sample, missing for example

most of the low abundant RNA messages.

In spite of these limitations, these technologies

have made important contributions to the process of

▶ biomarkers discovery, especially for gene expres-

sion biomarkers. A gene expression biomarker can be

either a product from a single gene or a signature

comprised of many gene products. Examples of the

first type of biomarker include the transmenbrane pro-

tein HER2, a breast cancer biomarker that presents

a direct correlation to prognostic and if a given tumor

will be sensitive to antibody therapy with trastuzumab.

The most known example of the second type of gene

expression biomarker is MammaPrintTM, a 70-gene

breast cancer signature that assess the recurrence

potential of certain types of breast tumors.

Although a gene expression biomarker can be used

for the classification of any cell or tissue state, most of

the efforts for the identification of such biomarkers have

been devoted to pathological states, especially cancer.

Gene expression biomarkers have clinical relevance

(▶Biomarkers, Clinical Relevance) since they can be

used to determine the presence of the disease, its stage,

and to analyze and monitor the responses to treatments.

They can also be classified as diagnostic biomarkers or

predictive biomarkers (Blomme and Warder 2008).

Discovery Process

The standard pathway for gene expression biomarker

discovery and development can be described by four

http://dx.doi.org/10.1007/978-1-4419-9863-7_338
http://dx.doi.org/10.1007/978-1-4419-9863-7_743
http://dx.doi.org/10.1007/978-1-4419-9863-7_208
http://dx.doi.org/10.1007/978-1-4419-9863-7_212


G 792 Gene Expression Biomarkers, Ranking
steps: (1) the establishment of sets of high-quality

samples; (2) the use of a large-scale gene expression

platform; (3) the identification of a gene expression

biomarker through mathematical and computational

strategies; and (4) validation of the discriminatory

power of the gene expression biomarker in an indepen-

dent set of samples.

Initially, the discovery process for gene expression

biomarkers involves the purification of RNA for

a given sample and the use of one of the above plat-

forms for gene expression profiling. The process is

only effective if a large number of samples are used

to account for biological variability. ▶Data mining

strategies are then used to identify putative gene

expression biomarkers. These biomarkers, either

a single product or a signature, need to be further

validated in a larger and independent panel of samples.

In the last few years, the field of gene expression

biomarkers has been revolutionized by the development

of next-generation sequencing. These new sequencing

technologies have allowed an exhaustive analysis of the

transcriptome, covering with high sensitivity all RNA

molecules in a sample. Moreover, they have allowed the

identification of a large collection of transcripts variants

generated through processes like alternative splicing and

alternative polyadenylation (Caballero et al. 2001).

The last decade has also witnessed the emergence

of non-coding RNAs, especially ▶microRNAs, as

critical regulatory molecules in many normal and path-

ological conditions. Not surprisingly, micro-RNAs

have been characterized as gene expression bio-

markers in many biological conditions, especially can-

cer (Jeffrey 2008).

Gene Expression Biomarkers and Systems Biology

Although these large-scale gene expression profiling

technologies have generated datasets that are per se

very informative, their integrated use has proven to be

the most effective way to extract more valuable infor-

mation. In that aspect, platforms based on systems

biology approaches have been very useful in serving

as a scaffold for integration of gene expression data.

A critical issue when integrating gene expression

data into a system biology approach is the ▶ ontology

of genes and gene products. To be effective, this inte-

gration has to obey certain classification rules that will

allow the identification of pathways and functional

modules as gene expression biomarkers. The most

used networks to serve as a scaffold for the integration
of data are protein-protein interaction networks

(interactome) and gene regulatory networks. The use

of these networks allows the use of graph theory to

explore other quantitative parameters of the data.

The dissection of a gene expression profiling into

pathways and functionalmodules (through a systembiol-

ogy approach) will serve to improve the identification of

new gene expression biomarkers as well as to increase

the opportunities for therapeutic intervention in case of

diseases. Even if a drug target is not directly differen-

tially expressed in a disease state, the corresponding

drug may still be useful if the pathway that the target

belongs is seen differentially expressed in that disease.
Cross-References
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Synonyms

Differential expression analysis; Gene ranking; Order

statistics; Top-K lists

http://dx.doi.org/10.1007/978-1-4419-9863-7_599
http://dx.doi.org/10.1007/978-1-4419-9863-7_100872
http://dx.doi.org/10.1007/978-1-4419-9863-7_488
http://dx.doi.org/10.1007/978-1-4419-9863-7_210
http://dx.doi.org/10.1007/978-1-4419-9863-7_211
http://dx.doi.org/10.1007/978-1-4419-9863-7_212
http://dx.doi.org/10.1007/978-1-4419-9863-7_214
http://dx.doi.org/10.1007/978-1-4419-9863-7_599
http://dx.doi.org/10.1007/978-1-4419-9863-7_743
http://dx.doi.org/10.1007/978-1-4419-9863-7_819
http://dx.doi.org/10.1007/978-1-4419-9863-7_489
http://dx.doi.org/10.1007/978-1-4419-9863-7_100357
http://dx.doi.org/10.1007/978-1-4419-9863-7_100545
http://dx.doi.org/10.1007/978-1-4419-9863-7_101083
http://dx.doi.org/10.1007/978-1-4419-9863-7_101083
http://dx.doi.org/10.1007/978-1-4419-9863-7_101516


Gene Expression Biomarkers, Ranking 793 G

Definition

Gene expression biomarkers by ranking refer to the

task of selection and ordering of the most significant

genes from transcriptomic studies, where, usually,

a control versus target experimental setting is properly

designed for the evaluation of differentially expressed

genes (DEG) associated to a particular tissue or cell in

the related study. Selection is evaluated through

a differentiation score (Statistics), and then, genes are

ranked in ascending order having high-scored genes

(Gene Markers) in the top of the gene list.
G

Characteristics

Ranking Gene Expression Differences

Differential expression analysis is the traditional strat-

egy for ranking genes (Biomarkers, Gene Markers)

from gene expression data. The task of finding DEG

falls into the following steps (Steinhoff and Vingron

2006):

• Ranking: genes are ranked according to their evi-

dence of differential expression.

• Assigning significance: a statistical significance is

being assigned to each gene.

• Cut-off value: to arrive at a limited number of DEG

a cut-off value for the statistical significance needs

to be determined.

The simplest experimental setting is the comparison

of two experimental groups CA and CB and asking for

their differences in each gene. Basically, one can use

the empirical intensity values of each series CA and CB

and introduce an ordered list of ranked differences

between them. Typically, in this “simple” approach

a fixed cut-off is chosen, usually this is a fold change

of two. Thus, all genes showing a fold change of more

than two are considered to be differential. It has been

shown in several studies that such approach is able to

provide a decent DEG list with high reproducibility,

but it has also been reported having low statistical

power and high false discovery rate (FDR).

Availability of repetitions provides for a richer spec-

trumof applicable statistical procedures. Either one com-

pares two groups or multiple groups. In the two-group

comparison, one considers either a paired or unpaired

situation. Comparing a healthy groupwith a diseased one

is an example for an unpaired experiment because the

samples are independent. An example for a paired
situation is gene expression measurements of one cell

line before and after chemical treatment. Furthermore,

the availability of replicates enables to rank genes

according to their associated t-statistic for each gene:
t ¼ m=ðst=pnÞ (1)

wherem is the difference of means across replicates; st,

the within groups standard deviation; and n, the

number of genes considered for testing. F-scores are

the straightforward generalization of t-scores in the

multiconditional case (Ewens and Grant 2004). Prob-

lems arise when genes with small intensity differences

present almost no changes between groups. This might

yield high t-scores and thus, these genes will pop up in

the top of the list. To overcome this situation one could

artificially enlarge these variances by employing

different penalizing factors in the t-statistic test. In

(Lonnstedt and Speed 2002) a parametric empirical

Bayes approach being equivalent to a penalized

t-statistic is introduced:

t ¼ m
�p

f þ std2
� ��

n
� �

(2)

where f is the penalty value which is estimated from the

mean and standard deviation of the variance across

samples. The approach entitled “significance analysis

of microarrays,” or just SAM (Tusher et al. 2001), is

one of the most used penalized t-statistic. Another

similar strategy based on percentiles is proposed in

(Efron et al. 2001), although in this case it suggested

the application of an additive penalizing factor in the

denominator of the t-statistic that it is the 90th percen-

tile of the standard deviation across samples. If the

penalization factor is zero the method is solely based

on an ordinary t-statistic test.

A number of linear methods have also been pro-

posed for ranking gene expression. In the ANOVA

(Regression, Statistics) model it is assumed a linear

model of specific effects (like dye, slide, treatment,

gene effects and their associated interactions) for log

intensities of all genes. A moderated t-statistic is

suggested in (Smyth 2004) which is proportional to

the t-statistic with sample variance offset. It is also

possible to design a robust linear model for each single

gene, estimating contrasts of all pairwise comparisons

of tested groups. Rather than applying t-statistics

approaches for ranking gene expression differences,

one could take advantages of nonparametric tests,



Gene Expression Biomarkers, Ranking, Table 1 Possible

outcomes from m hypothesis tests based on a significance

threshold t 2 (0, 1] to their associated P-values

Not significant

(P-value > t)

Significant

(p-value � t) Total

Null true U V m0

Alternative

true

T S m1

W R m
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usually based on a Wilcoxon rank sum test or permu-

tation t-test. Rank-based strategies use rank scale

information instead of the numerical ones for differen-

tiation expression analysis and it can be applied with-

out any assumptions regarding data distribution.

Significance of the Ranked Gene Lists

Once gene rankings are found, following statistical

tests, the next step is checking its significance. Usually,

researchers use a P-value cut-off of 0.05 and genes

presenting a lower P-value are those showing signifi-

cance. On the other hand, in order to obtain such

p-value multiples tests are conducted, and, in the end,

it can increase the false discovery rate. To overcome

this situation one alternative is finding a criterion to

limit the number of testing procedures. Thus, one can

either remove from the test genes which are not

expected to be relevant or ignoring those genes

presenting quite low expression variation across all

experimental conditions. Therefore, when using mul-

tiple tests one must evaluate the error rate associated

when assessing the statistical significance. Given

a type I error rate (false positive or false discovery

rate) controlling for multiple testing means correcting

P-values such that the given error rate can be

guaranteed for all tests. Methods can be divided into

those that control the family wise error rate (FWER) or

the false discovery rate (FDR). The probability of at

least one type I error within the significant genes is

called FWER. The FDR is the expected proportion of

type I errors within the rejected hypotheses. Table 1

describes the various outcomes when applying multi-

ple tests to determine which of the m hypothesis tests

are statistically significant. Specifically, V is the num-

ber of type I errors and R is the total number of

significant null hypotheses (total discoveries). The

FWER is defined to be
FWER ¼ PrðV � 1Þ (3)

and the FDR is usually defined to be (Benjamini and

Hochberg 1995)
FDR ¼ E
V

R _ 1

� �
¼ E

V

R
;R > 0

� �
PrðR > 0Þ (4)

The effect of “R v 1” in the denominator (Eq. 4) of

the first expectation is to set V/R ¼ 0 when R ¼ 0.
As demonstrated in (Benjamini and Hochberg 1995),

the FDR offers a less strict multiple test criterion than

the FWER, being more appropriated for differential

expression analysis.

Consensus Gene-Ranking

Several statistical tests have been proposed in the

literature making the selection of one unique ranking

method a hard task. Indeed, there is no consensus with

respect to one universal (unique) rank test (r). One
suggested alternative is to evaluate empirically the

ranked list while combining several tests before electing

the final gene list, rather than pushing optimizations into

one particular test trying to find an expected gene list.

The common criterion is evaluating the level of

consensus among the top-100 ranked genes by

intersecting the top-k lists:
sðr; r0; kÞ ¼
Xp
j¼1

Iðrj � k ^ r0j � kÞ (5)

where I denotes the indicator function [I(A) ¼ 1 if A is

true, I(A) ¼ 0 otherwise], or the proportion s(r, r0, k)/k
of genes in the top-k list from l that, are also in the top-k

list from l0, also denoted as percentage of overlap or

percentage of overlapping genes (POG). An overview

regarding stability measures for consensus gene-

ranking is provided in (Boulesteix and Slawski 2009).

Consensus can also be achieved by measuring the

levels of convergence and divergence while evaluating

several dissimilarity matrices (rdist) based on finding

gene rankings. The motivation is to use a “voting” strat-

egy in such way that gene rankings that are identified as

closer to each other could be an indication of agreement

among different tests. Thus, like employing ensemble-

learning (Baldi andBrunak 2001) strategies in supervised

problems, one could use an ensemble clustering solution

by combining several candidate-ranking solutions for
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devising a unified gene ranking. Once all distance matri-

ces are calculated for all gene rankings, a simple consen-

sus function could be applied:
G

Consensusdistði;jÞ ¼ minðrdistði;jÞ; r0distði;jÞÞ (6)

Gene rankings can be grouped according to

a consensus function, and a hierarchical clustering

approach could be used to define the meta-rankings

(Gene Modules). Given that more than two gene

rankings could be used in the unified model,

quantiles could be used as they provide more robust

statistics.

Gene Expression Biomarkers Methods and

Applications

Most biomarkers have been discovered by molecular

profiling studies, based on association or correlation.

One of the first molecular profiling studies was

reported in (Golub et al. 1999), who showed that

gene expression patterns could classify tumors,

thereby remarking new insights like the stage,

grade, clinical course, and response to treatment

of a tumor. Recent work in several groups has

indentified unique gene expression patterns, being

strong correlated with clinical outcomes. Candidate

biomarkers solely based on gene expression data

depend on both available samples and on the rank-

ing algorithm, increasing the amount of data (meta-

analysis) can improve the reproducibility of the

resulting gene-ranking models.

A large variety of ranking algorithms are available as

workflow applications such as GSEA, GeneTrailExpress,

g:Profiler, and Taverna; or web-based bioinfomatics

resources as omniBioMarker and Oncominer; or

customized software packages as the widely used

R Bioconductor.
Cross-References

▶Biomarkers, Ranking

▶Gene Expression Biomarkers

▶Gene Expression Biomarkers, Ranking

▶Gene Regulation

▶Modular Organization of Gene Regulatory
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Gene Normalization with GNAT

Conrad Plake

Biotechnology Center (BIOTEC), Technische

Universit€at Dresden, Dresden, Germany
Definition

Gene normalization in literature (▶Entity Mention Nor-

malization) refers to the process of assigning a gene

name occurring in text its corresponding entry in

a gene database. The ▶ text mining system GNAT has

been developed to accomplish this task (Hakenberg et al.

2008).
Characteristics

Gene normalization is required for data integration pur-

poses, such as the extraction of gene annotation from

scientific publications to complement data stored in gene

databases. Due to ambiguity of many gene names, which

often refer to orthologous or entirely different genes,

named after phenotypes and other biomedical terms, or

resemble commonEnglishwords, developing automated

methods to gene normalization is challenging (Fundel

and Zimmer 2006). The process of gene normalization

carried out by text mining systems such as GNAT typi-

cally involves multiple steps starting from building

a gene name dictionary (data acquisition), finding gene

mentions in text, and assigning potential gene identifiers

(gene mention recognition), to finally deciding on the

correct identifier for each gene mention as reference to

a gene database (gene mention normalization).

Data Acquisition

GNAT utilizes data available from the gene database

Entrez Gene and the protein database UniProt. These

databases contain known gene symbols, synonyms,

and alternative designations, as well as additional

annotations, which further describe genes and their

products. Prior to building a gene name dictionary,

each name is transformed into a regular expression to

allow for its recognition in text even if slight spelling

variations occur (e.g., hyphens vs. white spaces and

Roman vs. Arabic numbers). All regular expressions

are then compiled into a deterministic finite state
automaton, where each accepting state stores the data-

base identifiers for all names that end at this state.

Besides the dictionary, GNAT generates a profile for

each gene comprising species information, known

annotations provided by the ▶ gene ontology, associ-

ated diseases, sequence annotations, and other textual

descriptions separated by type.

Gene Mention Recognition

GNAT parses a text at the character level using the

dictionary automaton, starting from the beginning of

every word. If an accepting state is reached with the

last character of a word, the text passage consumed so

far is stored as a gene mention together with all poten-

tial gene identifiers. Shorter mentions contained within

longer ones are ignored. Next, each mention and its

surrounding words are compared against predefined

word lists and regular expressions to identify and dis-

card mentions that resemble a gene name but in the

current context refer to something else (e.g., cell line,

disease, protein domain).

Gene Mention Normalization

After recognition of gene mentions, the task of nor-

malization is to identify each mention by assigning the

database identifier of the referenced gene. If a text also

mentions one or more species, GNAT only allows for

genes from these species, ignoring all others. Species

recognition is carried out by ▶AliBaba, but can,

for example, also be performed using LINNAEUS

(▶Named Entity Recognition and Normalization of

Species, LINNAEUS). If a gene mention is left with

a single gene identifier assigned, this identifier is taken

as reference to the Entrez Gene database. In cases

where GNAT encounters an ambiguous gene mention,

that is, a mention with more than one gene identifier

assigned, it compares the text at hand against each

candidate gene’s profile. This comparison, which

takes the different types of annotation available into

account, yields a normalized score that reflects the

similarity between text and profile. The gene whose

profile is most similar to the text is taken as reference

for the ambiguous mention.

Related Tools

Other text mining tools (▶Text Mining, Tools)

performing gene normalization in text are available

via the biocreative metaserver (▶BioCreative Meta-

Server and Text-Mining Interoperability Standard).
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▶Named Entity Recognition

▶Named Entity Recognition and Normalization of
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Gene Ontology

Jiguang Wang

Beijing Institute of Genomics, Chinese Academy of

Sciences, Beijing, China
Definition

Gene Ontology (GO) (Ashburner et al. 2000) provides

a hierarchical vocabulary of GO terms for describing

functions and characteristics of gene or gene products

in different databases and different species. There are

three structured, species-independent ontologies, i.e.,

biological processes, cellular components, and molec-

ular functions. GO project is a collaborative effect to

maintain, make cross-links for, and develop tools to

use the three ontologies.
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Gene Regulation

Jia Meng1 and Yufei Huang1,2,3

1Picower Institute for Learning and Memory,
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Synonyms

Gene modulation; Regulation of gene expression
Definition

Gene regulation (Watson and Roberts 1965) concerns

the control of the synthesis of functional gene products or

expression (mainly mRNAs or proteins) in cells. Proper

gene regulation defines the distinct phenotype of

a biological system and ensures its stability, and

misregulation is usually associated with disease. It is

also essential in promoting the versatility and adaptabil-

ity of a living organism under various environmental

conditions.
Characteristics

Stages of Gene Expression Regulation

To control the synthesis of gene product (mRNA or

proteins), gene regulation may assume different modes
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Gene Regulation, Table 1 Different gene regulations and stages

Stage Targets Regulatory process High-throughput technology

Chromatin domains DNA DNA methylation Methylation array/seq, ChIP-seq, LC-MS

DNA phosphorylation

Histone deacetylation

Transcription DNA-RNA Transcription factor ChIP-chip, ChIP-seq

Repressors

Activators

Enhancers

Post-transcription RNA Capping Microarray, RNA-seq, Exon array, HITS-CLIP, RIP-seq

Splicing

Polyadenylation

RNA editing

microRNA silencing

Translation RNA-protein Translational initiation

Peptide elongation

Termination

Post-translation Protein Acylation Protein array, LC-MS

Phosphorylation

Protein degradation
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at including chromatin domain, transcription, post-

transcription, and translation. Summarized in Table 1

is a list of different modes of gene regulations.

High-Throughput Technologies for Gene

Regulation

As gene regulation occurs at multiple stages of gene

expression, different high-throughput technologies

based on microarray, deep sequencing, or Liquid chro-

matography-mass spectrometry (LC-MS) have been

developed for investigating different gene regulations,

which monitor the expression profiles of thousands of

genes simultaneously. A summary of these technologies

is shown in Table 1. Note that, although the final product

of gene regulation is protein, most of the technologies

are array/sequencing based and they mainly measure

mRNA activities. This reality is due to the low sensitiv-

ity of existing proteomics technologies including LC-

MS and protein array in measuring protein expression.

Systems Biology and Gene Regulatory Network

Systems biology seeks to model all the individual units

of a biological system under a proper mathematical

framework, such that both the overall structure and

construction units of the system can be captured simul-

taneously. Since response of cells to changing endog-

enous or exogenous conditions is governed by intricate
gene regulations, gene regulatory network is a systems

biology approach toward understanding overall molec-

ular mechanisms that control the cell response. Com-

putational reconstruction of gene regulatory network is

one of the current research focuses of computational

system biology.

Modeling of Gene Regulatory Network

Modeling is the key step in uncovering gene regulatory

network. Various models have been proposed and we

discuss some most popular models in the following.

Boolean Network

ABoolean network (Shmulevich and Dougherty 2009)

models the association instead of direct regulation

between sets of genes, where transition of the associ-

ation states are modeled by Boolean functions. In

a Boolean network–based gene regulatory network,

both the regulatory states and regulatory effects are

digitalized, which facilitate the related computation

and analysis. Particularly, a Boolean node represents

the binary state (on/activation or off/repression) of

a gene, and an edge indicates the regulatory effect/

association between the two nodes, which is modeled

by Boolean functions. When modeling the regulatory

dynamics, states of all Boolean variables can update

with time. A simple example of a Boolean network is



a b

c

Gene Regulation, Fig. 1 Boolean network

Gene Regulation, Table 2 State transition table

Previous Next

A B C A B C

0 0 0 0 0 0

0 0 1 1 1 0

0 1 0 0 0 1

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 1 1 0

1 1 0 0 0 1

1 1 1 1 1 1

Gene Regulation, Table 3 Boolean network state update

Time 0 1 2 3 4 5 6 7 8 . . .

a 1 0 0 1 0 1 0 1 0 . . .

b 0 1 0 1 0 1 0 1 0 . . .

c 0 0 1 0 1 0 1 0 1 . . .
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G

illustrated in Fig. 1, where three genes are regulating

each other. Its state transition table is shown in Table 2,

and given the initial states (1, 0, 0), their states will be

updated as shown in Table 3.

Coupled Ordinary Differential Equations

Instead of describing the final states of regulated tar-

gets, Coupled Ordinary Differential Equations (ODEs)

(Chicone 2006) or stochastic ODE seeks to describe
the reaction kinetics, or the dynamics of regulatory

effects. Suppose that an ODEs GRN consists of G

nodes representing the expression of G genes, and let

ygðtÞ; g 2 1; 2; :::;G½ � represent the expression of the

g-th gene at time t. Then, the temporal regulatory

effects on a target gene by the regulators can be

modeled by the ODE:
dyg
dt
¼ f g y1; y2; :::; yGð Þ (1)

This equation describes quantitatively the temporal

evolution of the regulatory network. The regulatory

function f g can be derived from known biochemical

principles. The ODEmodel (1) provides a more accurate

account of gene regulation than the Boolean network

model, but it requires greater knowledge regarding gene

regulation and is also computationally more complicated.

Factor Analysis Model

Factor analysis model (Child 2006) usually aims at

modeling transcriptional regulatory network, that is,

direct regulation of mRNA expression by transcription

factors (TFs). Consider a set of genes regulated by a set

of transcription factors. Let ygðtÞ; g 2 1; 2; :::;G½ � rep-
resent the mRNA expression of the g-th gene at time t

and xlðtÞ; r 2 1; 2; :::; L½ � represent the protein-level

expression of the l-th transcription factor also at

time t. The TF regulation can be modeled by a linear

relationship as in (2):
y1ðtÞ
..
.

yGðtÞ

2
64

3
75 ¼

a1;1 � � � a1;l

..

. . .
. ..

.

aG;1 � � � aG;L

2
64

3
75

x1ðtÞ
..
.

xLðtÞ

2
64

3
75 (2)

where ag;l is the regulatory coefficient of the g-th gene

by the l-th transcription factor. Note that (2) can also be

written in a matrix form:
Y ¼ AX (3)

where, Y is the mRNA expression matrix of genes, X is

the protein expression level of transcription factors,

which is usually difficult to measure, and A is the regu-

latory coefficientmatrix or the loadingmatrix. In a factor

model, both A and X are unknowns, and factor analysis

seeks to estimate both A and X simultaneously from the

observation Y. Since the model is underdetermined,



Gene Regulation, Table 4 Probability of A

Gene A

UP DOWN

0.2 0.8

Gene A

Gene C

Gene B

Gene Regulation, Fig. 2 Bayesian network

Gene Regulation, Table 5 Conditional probability of

B given A

Gene A

Gene B

UP DOWN

DOWN 0.4 0.6

UP 0.2 0.8

Gene Regulation, Table 6 Conditional probability of C given

A and B

Gene A Gene B

Gene C

UP DOWN

DOWN DOWN 0.01 0.99

DOWN UP 0.8 0.2

UP DOWN 0.1 1.9

UP UP 0.95 0.05
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additional knowledge needs to be incorporated to con-

strain the solution space. Examples of such constraints

are orthogonal factors, the sparsity of A, known regula-

tions, etc.

Bayesian Network

A Bayesian network (Heckerman 2008) or belief net-

work is a probabilistic graphical model that models

a set of genes and their conditional dependencies via

a directed acyclic graph (DAG). Bayesian network

includes a wide variety of models as special cases,

ranging from the basic deterministic model to more

sophisticated hierarchical probabilistic models (Huang

et al. 2009). An example of the Bayesian network is

shown in Fig. 2, and the conditional probability of each

node is summarized in Tables 4–6.

Depending on the modeling and the availability of the

data, the inference goal can be to estimate the unobserved

variables (such as the regulatory coefficients between

genes) and/or to identify the network structure (such as

whether or not a gene is regulated by another gene).

Discussion

Various models have been proposed for modeling sys-

tems-level gene regulations. However, because of the

complexity of gene regulation and the availability of

data, no existing models can cover all aspects of gene

regulations. Most existing models only apply to

a limited subset of the mRNAs or proteins of interest,

and they model mostly indirect regulations/association

between genes products.

Limited by the current techniques, most current

models utilize only mRNA expression levels for
modeling gene regulation. The protein-level expres-

sion is often inappropriately approximated by the

corresponding mRNA level; such approximation can

lead to high modeling error. As the increase of com-

putational processing power, integrating disparate data

sets to account for multiple aspects of gene regulation

is the current trend of systems biology, where proper

modeling of different types of data is the key.
Cross-References
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Gene Regulatory Networks, Fig. 1 A toy example for

the gene regulatory network with six genes. Here, nodes

denote genes, and edges denote their regulatory relationships.

Specifically, red arrows represent activation, and blue arcs
represent repression
Synonyms

Gene network; Genetic network
Definition

Cells efficiently carry out molecular synthesis, energy

transduction, and signal processing across a range of

environmental conditions by networks of genes, which

we define broadly as networks of interacting genes,

proteins, and metabolites (Chen et al. 2009). Formally

speaking, a gene regulatory network or genetic regu-

latory network (GRN) is a collection of DNA segments

in a cell which interact with each other (indirectly

through their RNA and protein expression products)

and with other substances in the cell, thereby

governing the rates at which genes in the network are

transcribed into mRNA. In general, each mRNA mol-

ecule goes on to make a specific protein (or set of

proteins). In some cases this protein will be structural,

and will accumulate at the cell-wall or within the cell

to give it particular structural properties. In other cases

the protein will be an enzyme; a micro-machine that

catalyses a certain reaction, such as the breakdown of

a food source or toxin. Some proteins, though, serve

only to activate other genes, and these are the
transcription factors that are the main players in regu-

latory networks or cascades. By binding to the pro-

moter region at the start of other genes they turn them

on, initiating the production of another protein, and so

on. Some transcription factors are inhibitory.

Mathematically, gene regulatory network is defines

as a directed graph (refer to Fig. 1 for a 6-gene network)

in which nodes denote genes and edges denote their

regulatory relationships. And usually we use a matrix

J to represent the gene regulatory relationships. The

regulatory relationships can be directed, signed, and

weighted. For example, element Jij represents an effect

of gene j on gene i, while Jji represents an effect of gene

i on gene j. Thus the influence between gene i and gene

j is directed. Furthermore, a sign associated with Jij
represents a specific role of regulation. For example, if

the sign of Jij is positive, gene j is the activator of gene i.

On the other hand, if the sign of Jij is negative, gene j is

the repressor of gene i. Furthermore the associated

weight (the absolute value) of element Jij indicates how

strong the regulatory interaction is. Obviously, a zero

weight of Jij indicates no interaction between two genes.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1290
http://dx.doi.org/10.1007/978-1-4419-9863-7_100543
http://dx.doi.org/10.1007/978-1-4419-9863-7_100565
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Characteristics

Significance of Gene Regulatory Networks

Many cellular processes such as cell cycle, cellular

differentiation, and apoptosis are well controlled via

gene regulation. On the one hand, gene regulatory

network is essential for all viruses, prokaryotes,

and eukaryotes. It includes the processes to turn the

information in genes into gene products (proteins) to

increase the versatility and adaptability of an organism

by allowing the cell to express protein when needed.

Even more complex, gene regulatory network drives

the processes of cellular differentiation and morpho-

genesis, leading to the creation of different cell types in

multicellular organisms where the different types of

cells may possess different gene expression profiles

though they all possess the same genome sequence.

On the other hand, gene regulation system is extremely

complex to allow intuitively understanding regarding

to its nonlinear, dynamics, and robustness properties.

To understand the complex mechanisms inside

the gene regulation system, biologists usually

apply various treatments to perturb cells including heat

shock, stress, and other techniques, and then observe the

phenotype change of the cell such as the concentration

changes of interested molecules in the cell. This type of

research can produce small-scale regulatory relation-

ships and it is hard to construct a mathematical model

forwhole-genome scale. Recently, the step to understand

the gene regulation system inside a cell is greatly accel-

erated by the invention of new biological techniques.

Specifically, DNAmicroarray and other high throughput

technologies were developed which enabled an experi-

menter to simultaneously measure the concentration of

thousands of molecules from a single sample of cells or

tissues. Such data offer a possibility to systematically

identify a model of a cell’s underlying control systems.

Modeling Gene Regulatory Network

Biologists developed several experimental techniques to

reveal the gene regulatory network. For example, gene

perturbation experiments (e.g., knockouts or RNA inter-

ference)may indicate relationships between genes due to

direct or indirect genetic interactions. In contrast, chro-

matin immunoprecipitation chip data may reveal direct

protein–DNA interactions or cofactor associations with

bound transcription factors.

Protein–DNA interaction data concerns the interac-

tions between proteins and DNA, particularly between
transcription factors and their target promoters. They

fundamentally define the transcriptional regulatory

network of the cell. The recently developed ChIP-

chip methodology involves the chromatin immunopre-

cipitation of an epitope-tagged transcription factor

(TF) bound to DNA fragments containing target

promoters, followed by the hybridization of those

amplified DNA fragments to an intergenic microarray.

Currently large amounts of ChIP-chip data in yeast and

other organisms are publicly available. For example,

genome-wide location data performed in yeast by

Harbison et al. (2004) and Lee et al. (2002) contain

information regarding the binding of 204 regulators to

their respective target genes in rich medium, and can

be downloaded from their websites (http://web.wi.mit.

edu/young/regulatory_network/). ChIP-chip data have

the advantage that they provide a direct biochemical

link between TFs and promoters and have the potential

to identify targets without knowing the activating

conditions. From this viewpoint, ChIP-chip data are

a very important source of information for analyzing

direct transcriptional regulatory interactions.

Sequencing techniques can also be used to reveal gene

regulatory relationships by systematically analyzing gene

upstream regions in the genome to identify potential

regulatory elements (also known as regulatory binding

motifs). These motifs, often represented as regular

expressions, were transformed into the corresponding

weight matrices. We can then simply count the occur-

rences of regular expression-type patternswith the goal of

identifying possible gene regulatory relationships. The

weight matrices corresponding to these motifs are subse-

quently used to screen all intergenic sequences. The

higher the score of a motif hit in a gene, the more likely

it will be a regulatory relationship (Brazma et al. 1998).

More reliable sources for gene regulatory relation-

ships are from the literature and curated databases.

For example, YEASTRACT (Yeast Search for

Transcriptional Regulators And Consensus Tracking)

is a curated repository of more than 12,500 regulatory

associations between transcription factors and target

genes in Saccharomyces cerevisiae (Teixeira et al.

2006), based on more than 900 bibliographic refer-

ences. The information in YEASTRACT is updated

regularly to match the recent literature on yeast

regulatory networks. Since the regulatory relationships

from literature and databases are usually generated by

small-scale experiments, they are believed to be of

high quality compared to large-scale experiments.

http://web.wi.mit.edu/young/regulatory_network/
http://web.wi.mit.edu/young/regulatory_network/
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The most abundant data to model the gene regula-

tory network is the microarray data. Microarray tech-

nologies enable the simultaneous measurement of

all RNA transcripts in a cell, producing tremendous

amounts of gene expression data from different

research groups. For instance, the Stanford Microarray

Database (SMD) has deposited data for 70,113

experiments, from 341 labs and 56 organisms, as of

2007 (Demeter et al. 2007).

DNA microarray experiments are usually classified

based on the type of array used in the experiment

(cDNA and oligonucleotide arrays) or according to

the organism that is profiled. From the viewpoint of

gene regulatory network modeling, we distinguish

between static and time series experiments. In static

expression experiments, a snapshot of the expression

of genes in different samples is measured. In time

series expression experiments, a temporal process is

measured at various time intervals. Another important

difference between these two types of data is that while

static data from a sample population (e.g., ovarian

cancer patients) are assumed to be independently and

identically distributed, time series data exhibit a strong

autocorrelation between successive points.

Since many biological systems are dynamic systems,

temporal profiles of gene expression levels during a given

biological process can often provide more insights into

how gene expression levels evolve in time and how genes

are dependent among each other during a given biological

process. One important feature of such time-course gene

expression data is the possible dependency of gene

expression levels across time points for a given gene. In

addition, as gene expression levels evolve over time, time

intervals can be an important factor that affects the gene

expression levels. Methods which can preserve the time

sequence and the time dependence of the observed data

are needed for analyzing the time-course gene expression

data (Wang et al. 2006).

Collectively, these microarray data enable the analy-

sis on gene expression profiles to detect dependencies

among genes over different conditions, i.e., reverse engi-

neering the gene regulatory networks. So far, a wide

variety of approaches have been proposed to infer gene

regulatory networks from time-course data or perturba-

tion experiments (DeHoon et al. 2003; Dewey andGalas

2001; Friedman 2004; Gardner et al. 2003; Holter et al.

2001;Husmeier 2003;Nachman et al. 2004; Tegner et al.

2003). These approaches include discrete models of

Boolean networks and Bayesian networks, and
continuous models of neural networks and difference/

differential equations. A common challenge for all these

models is the scarcity of the data, since a typical gene

expression dataset consists of relatively few time points

(often less than 20) with respect to a large number of

genes (generally over thousands). In other words, the

number of genes far exceeds the number of time points

for which data are available, making the problem of

determining gene regulatory network structure

a difficult and ill-posed one (D’Haeseleer et al. 2000).

Two General Reverse-Engineering Strategies

The first strategy is the “physical” strategy for reverse-

engineering transcription regulation using mRNA

expression data (Gardner and Faith 2005). The physical

approach seeks to identify the protein factors that regu-

late transcription, and the DNA motifs to which the

factors bind. In other words, it seeks to identify true

physical interactions between regulatory proteins and

their promoters. An advantage of this strategy is that it

can reduce the dimensionality of the reverse-engineering

problem by restricting possible regulators to TFs. It also

enables the use of genome sequence data, in combination

with mRNA expression data, to enhance the sensitivity

and specificity of predicted interactions. The limitation

of this approach is that it cannot describe regulatory

control by mechanisms other than transcription factors.

A second strategy, which we call the “influence”

approach, seeks to identify regulatory influences between

RNA transcripts (Yeung et al. 2002). In other words, it

looks for transcripts that act as “inputs” whose concen-

tration changes can explain the changes in “output” tran-

scripts. Each transcript may act as both an input and an

output. The input transcripts can be considered the regu-

lators of transcription. By construction, such a model

does not generally describe physical interactions between

molecules since transcription is rarely controlled directly

byRNA (and never bymessenger RNA,which is the type

of RNA predominantly measured by DNA microarrays).

Thus, in general, the regulator transcripts may exert their

effect indirectly through the action of proteins, metabo-

lites, and effects on the cell environment. Nevertheless, in

some cases, the regulator transcripts may encode the TFs

that directly regulate transcription. In such cases, the

influence model may accurately reflect a physical inter-

action. An advantage of the influence strategy is that the

model can implicitly capture regulatory mechanisms at

the protein and metabolite level that are not physically

measured. That is, it is not restricted to describing only
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transcription factor/DNA interactions. As described in

the section on differential equation models, an influence

model may be advantageous when trying to predict the

global response of the cell to stimuli. The limitation of

this approach is that themodel can be difficult to interpret

in terms of the physical structure of the cell, and therefore

difficult to integrate or extend with further research.

Moreover, the implicit description of hidden regulatory

factors may lead to prediction errors.

Linear Differential Equations for Gene Regulatory

Network

In general, a genetic network can be expressed by a set

of nonlinear differential equations. Almost all of

the existing approaches for gene regulatory network

inference use linear or additive models, primarily

due to the complex structures of biological systems and

the scarcity of data (Wang et al. 2006a, b, 2007). Fur-

thermore, linear equations can capture the main features

of the network near the steady state, and can provide

a good starting point for further modeling and analysis.

Assume that there are N microarray datasets X1,

X2, . . ., XN with m1, m2, . . ., mN time points, respec-

tively, for one organism. These time-course datasetsmay

be measured under various environments or stimuli by

different labs. Let us first consider one time-course

dataset with m time points. A linear differential

equation can be used to represent the rate of synthesis

of a transcript as a function of the concentrations of other

transcripts in a cell and the external perturbations:
dxðtÞ
dt
¼ JxðtÞ þ PcðtÞ; t ¼ t1; t2; :::; tm (1)

where x(t)¼ (x1(t), . . ., xn(t)) T2Rn, xi(t) is the expres-

sion level (mRNA concentrations) of gene i at time

point t. J ¼ (Jij)n � n is an n � n connectivity matrix

with elements Jij representing the effect of gene j on gene

i with a positive, zero, or negative sign, indicating acti-

vation, no interaction, and repression, respectively. P ¼
(Pij)n � s is an n� s matrix representing the effect of the

s perturbations or s small molecules on x, and c(t)2Rs

represents the external perturbations with s compounds

at time t. (In principle, the external perturbation can be of

virtually any type, for example, an external environmen-

tal factor, a small molecule, an enzyme, a microRNA,

or a post-translationally modified protein.) A non-zero

element Pij of P implies that the i-th gene is a direct target

of the j-th perturbation or compound. Identifying P is an
important first step toward biological function discovery

of small molecules and drug design.

We can rewrite Eq. 1 in a compact form for all time

points of one dataset by matrix notation:
dX

dt
¼ JXþ PC (2)

where X ¼ (x(t1),. . .,x(tm)) and dX/dt ¼ (dx(t1)/dt,. . .,

dx(tm)/dt) are n � n matrices with the first derivative

of mRNA concentration dxi(tj)/dt ¼ [xi(tj + 1)�xi(tj)]/
[tj+1 � tj] for i ¼ 1,. . .,n; j ¼ 1,. . .,m. Although the

forward difference approximation here is utilized for

numerical computation of dx/dt, backward or other

difference approximation methods can be applied

similarly. Suppose that there are s external perturba-

tion compounds, then C ¼ (c(t1),. . .,c(tm)) is an s � m

matrix representing the s perturbations. The unknowns

to be calculated are connectivity matrix J and P.
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Synonyms

Gene set enrichment analysis
Definition

Gene set expression analysis (GSEA) often referred

to as gene set enrichment analysis is based upon

determining whether predefined sets of genes differ

in their expression patterns in some way. This is

opposed to conventional▶ relative expression analysis

which examines differences on a gene-by-gene by

basis. Similarly, these methods can be applied to pro-

tein expression data from mass spectrometry (MS)

proteomic analysis.
Characteristics

Utilizing information about predefined sets, typically

taken from biochemical pathway databases such as

KEGG, Panther, or Metacyc or from the Gene Ontology

(GO), increases the ability to infer biological meaning

from gene expression differences and can increase the

power to detect differences by combining data across

related genes. Originally, analyses were based on data

from gene expression microarrays; more recently other

technologies such next-gen sequencing are being used to

measure gene expression. A number of comparisons and

reviews of GSEA analyses have been published (Nam

and Kim 2008; Emmert-Streib and Glazko 2011). Addi-

tionally, the methodology is being applied to protein set

expression analysis (PSEA) through the use of MS pro-

teomics data.

The simplest approach to GSEA analysis was based

on chi-square or▶ Fisher’s tests. A criteria was chosen

for differential expression (e.g., ER> 2, P-value<.05)

and the proportion of differentially expressed (or over

or under expressed) genes was compared across gene

sets as can be seen in Table 1. ▶ Fisher’s test could

then be used to calculate a p-value for comparing the

proportion of differentially expressed genes in

a particular gene set to the proportion in the remaining

sets based on the hypergeometric distribution in (1).
P� value ¼ PðXÞ ¼
P
X

� �
N � P
D� X

� �

N
D

� � (1)

This approach has two major flaws: The first, Fish-

er’s Exact test assumes expressions from genes within

http://dx.doi.org/10.1007/978-1-4419-9863-7_100552
http://dx.doi.org/10.1007/978-1-4419-9863-7_1207
http://dx.doi.org/10.1007/978-1-4419-9863-7_451
http://dx.doi.org/10.1007/978-1-4419-9863-7_451
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Table 1 Using Fisher’s Exact test for pathway enrichment

Differentially

expressed

Not differentially

expressed

Genes in pathway X P-X

Genes not in pathway D-X N + X-D-P
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gene sets are uncorrelated with each other. This is

unlikely since gene sets are chosen precisely because

the genes are related in some biological manner.

Hence, there is usually positive correlation among

genes and therefore Fisher’s Exact test is often highly

anticonservative. In addition, Fisher’s Exact test

dichotomizes a continuous variable (Expression ratio

or t-statistic) and therefore is less powerful than

methods that take advantage of the continuous data.

One of the most widely used approaches for gene

set analysis is the gene set enrichment analysis (GSEA)

approach (Subramanian et al. 2005). In this approach,

genes are ordered by a differential expression statistic

(typically a ▶Student’s t-Test), then for each gene set

the distributions of expression statistics are compared

between those in the set and those not in the set using

the Kolmogorov-Smirnov test statistic. To calculate

p-values and ▶ false discovery rates (FDR), a permu-

tation test of samples is used in order to account for

effects of correlation within sets. The Kolomogorov-

Smirnov test has been criticized for lacking power;

therefore, others have proposed gene set analysis

approaches that utilize other statistical tests, such as

the GSA approach of Efron and Tibshirani (2007).

More generally, GSEA approaches have been

broken down into self-contained and competitive

approaches. Self-contained approaches compare indi-

vidual gene sets across conditions without regard

for other gene sets. On the other hand, competitive

methods measure relative differences between gene

sets. Examples of competitive tests are enrichment

tests such as Fisher’s exact test described above, e.g.,

find sets with more or fewer differentially expressed

genes. A number of methods are a mixture of these two

approaches. Although, there are a few methods based

on parametric tests, most GSEA approaches are based

on permutation or randomization tests of samples or

genes. Randomizing samples preserves correlation

structures and therefore leads to p-values that are less

biased than gene randomization. However, sample
randomization is not useful with very small sample

sizes. Some argue that using self-contained methods

with sample randomization is the only approach

to ensure statistically valid results (Goeman and

Buhlmann 2007). Others contend it is better to use

multiple approaches in order to get more information

out the analyses since competitive and self-contained

methods test different hypotheses (Tian et al. 2005).

Although methods are applicable to proteomics

data, PSEA has unique difficulties of its own.

Typically, sample sizes are quite small, so the use

of sample permutation or randomization tests is

problematic. Also, unlike microarray data which

assays an entire genome, MS proteomics usually

assay only a fraction of the proteome. This results

often in sparse coverage of proteins sets such as

biochemical pathways.
Cross-References
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G

Definition

A gene set is a grouping of genes that function in

a coordinated manner to provide some biological behav-

ior. Many biological processes are controlled by path-

ways, where proteins encoded by genes create

a directional though potentially circular flow, such as

creation of a series of metabolites (metabolic pathway)

or an ordered series of post-translational modifications

(signaling pathway). Gene sets that serve as surrogate

indicators for activity in biological pathways must mea-

sure the appropriate targets, which differ for each type of

pathway.
Characteristics

Biological phenotypes arise from the coordinated actions

of numerous biomolecules and structures in an organism.

The coordination, such as during organismal develop-

ment, is controlled by master regulators, often cell

signaling networks responding to environmental and

endocrine clues coupled to transcriptional and transla-

tional controllers. Often the change that drives a pheno-

type, such as the development of a specific tissue type, is

the activation of a set of genes, thus a coordinated change

in the transcript levels of many genes simultaneously.

Alternatively, the change could be coordinated post-

translational modifications of a set of proteins modifying

their activity or localization, the increase in flux through

a metabolic pathway leading to a buildup or excretion of

a metabolite, or the breakdown of cellular structures as

occurs during apoptosis.

Gene sets provide an approach for an analysis to

gain insight into these drivers of phenotype through

identification of small changes in many biomolecular

levels or states rather than through identification of

a change in a single gene, protein, or metabolite. For

example, all the transcriptional products produced by

the activation of the RAS-RAF-MEK-ERK signaling

pathway could be used as a gene set of transcriptional
products, i.e., messenger RNA (mRNA) levels, that

provide a surrogate measurement for pathway activa-

tion. The fundamental assumption for any gene set is

that changes in the measured biomolecules will be

coordinated.

The most common gene sets presently comprise

mRNA levels expected to undergo coordinated change

and measurable on a gene “expression” microarray.

The inherent assumption therefore is that these genes

are coregulated by a series of transcriptional activators.

A gene set could also be created to monitor activation

of a signaling pathway through phosphoprotein levels,

as most signaling proteins change activity based on

phosphorylation of specific amino acid residues. This

would effectively be a protein post-translational mod-

ification set. A further “gene” set could be created from

metabolomic measurements, where the amounts of

metabolites along a metabolic pathway could provide

a surrogate measurement for enzyme activity. This

type of gene set could provide insight into metabolic

syndromes and diseases, including diabetes.

For a gene set to serve as a surrogate for measure-

ment of activity on a biological pathway, changes in

the levels measured by the set must be linked to

changes in the pathway. Unfortunately, the term “path-

way” is used quite loosely biologically, primarily for

historical reasons. Initially, the term pathway was used

quite literally, indicating nerve conduction, a viral

invasion course, or auditory path. Later, it referred to

the metabolic pathways that created biomolecules in

cells (Carson and Frischer 1966), effectors for hor-

monal control (Samuels 1964), and gene interactions

and epistasis (Avery and Wasserman 1992). For gene

set enrichment analysis, we typically take a pathway to

indicate a linked series of biomolecules: (1) a series of

proteins that are enzymes and the metabolic products

produced by them (a metabolic pathway), (2) a series

of proteins that act together to transduce a signal when

post-translationally modified (a signaling pathway), or

(3) a series of transcriptional regulators produced in

series (a transcriptional regulatory network). For each

of these, different gene sets are needed to serve as

surrogate markers of activity.

A gene set for a metabolic pathway could take three

forms, depending on the biomolecule measured. The

most common measurement remains the mRNA levels

from a microarray. In this case, a pathway, such as

provided by the Kyoto Encyclopedia of Genes and

Genomes (KEGG), would be converted to just the
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enzymes and then to the genes encoding the enzymes.

The gene set would comprise all the genes whose

protein products (i.e., enzymes) are necessary to take

the metabolic precursor chemical to its final form. The

assumption is that if the cell needs to produce more of

this final chemical form, it will coordinately upregulate

all the genes to produce all enzymes in the pathway.

This is an indirect measurement of the levels of the

proteins, where the protein levels are assumed to track

the mRNA levels. It is worth noting that this is not true

in eurkaryotic organisms in general, although it may be

valid in this limited case of metabolic enzymes. Alter-

natively, the gene set could be proteomic measure-

ments of the enzymes themselves, indicating the

concentration of the catalysts that drive the chemical

changes. Finally, the gene set could be the set of

metabolites produced, measured by metabolomic tech-

nologies such as mass spectrometry. Here, the direct

metabolic flux through the pathway would be mea-

sured. Note that this progression is from less direct to

more direct measurements of the pathway activity, but

also from more mature to less mature technological

platforms.

A gene set for a signaling pathway could take two

forms. The first would be the direct measurement of the

amount of phosphoproteins and unmodified proteins

along the pathway. As with the metabolites in

a metabolic pathway, this would effectively be

a measurement of the flux through the pathway, here

providing the strength of the signal. The second is more

complex, involvingmRNA levels. The complexity arises

from the fact that signaling is driven not by protein levels

but by post-translational modification of proteins and the

duration of these modifications, the specific modifica-

tions made, and the number of proteins with these mod-

ifications. As such, the mRNA levels for genes encoding

the proteins become an inadequate surrogate for signal-

ing activity. However, most, though not all, signaling

pathways lead to changes in the activity of transcription

factors (TFs). These TFs have transcriptional gene tar-

gets, and the mRNA levels of these targets are directly

modified by the transcription factors, either increased

(activated) or decreased (repressed). The coordinated

changes of the transcription factors downstream of

a signaling pathway then provide a surrogate measure

of pathway activity. It is critical to note that the gene sets

available in databases ignore this complication, however,

so that the gene set for a KEGG signaling pathway is

typically just the genes encoding the signaling proteins,
which is the incorrect set if the goal is a surrogate of

pathway activity.

A gene set for a transcriptional regulatory network

(TRN) also relies on the relationship between

a transcription factor (TF) and its target genes. A TRN

is essentially a cascade of TFs linked through the gene of

a TF being a transcriptional target of an upstream TF.

Then the initial activation of a single TF can lead to

activation of additional TFs, which then may lead to

activation of further TFs, etc. The relationship of genes

sets for this series and for a signaling pathway is obvious.

In both cases, the gene targets of a TF are the key to

constructing an appropriate gene set. In the case of

a TRN, there is an additional complication that arises

due to the timing of the measurements. If time resolution

is high, then the data can potentially separate the first

round (i.e., primary) of transcription from later (i.e.,

secondary) transcription, and a true regulatory network

of relationships could be used, with each TF’s signature

isolated. However, if a time resolution is low or, in the

extreme case, only a single measurement is made, then

the appropriate gene set may be all the genes regulated

by any member in the TRN. Effectively, the superset of

all TF gene sets in the TRN would be the appropriate

gene set to serve as a surrogate for TRN activity.

A gene set is typically tested for significance using

a rank sum test upon a statistic generated for each gene,

protein, or metabolite during preprocessing. This initial

individual biomolecular (e.g., gene) statistic relies on

comparing two or more phenotypic groups, such as

through a t-test orWilcoxon rank sum test. The members

of the set are compared to the non-set members also

measured in the experiment, and significance is deter-

mined by permutation tests on the set labels or by the

assumption of a distribution on all sets. The final signif-

icance for the gene set must be adjusted for multiple

testing, using either family-wise error rate or false dis-

covery rate corrections. Family-wise error rates are more

strict, but if the goal of a study is hypothesis-generation

for more focused testing, then false discovery rate

methods provide a greater chance of finding a novel

hypothesis.

The complexity of defining gene sets argues that

sets must be chosen with an understanding of biology

and with a determined goal in mind. The set must

conform to known biological behavior, so that the set

is an appropriate surrogate for the pathway of interest.

For example, using the genes encoding the proteins in

a signaling pathway is an incorrect set if the goal is
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a measure of pathway activity. Limiting the sets tested

to those that are of interest is also useful for minimiz-

ing the effect of multiple testing, since testing all

existing sets can lead to thousands of tests, reproducing

the multiple testing problem of individual gene

measurements.

Future gene sets are likely to involve integration of

different molecular species. For instance, studies have

already integrated mRNA levels, protein levels, and

metabolite levels into a coherent biological picture.

Gene sets that comprise different types of measure-

ments and molecules will likely replace the present

gene sets as such measurements become more ubiqui-

tous. It will be critical when constructing such sets

to carefully reproduce the biological relationships

between molecular species, in order to construct mean-

ingful sets.
Cross-References
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▶Transcriptional Reprogramming
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Definition

Gene silencing refers to a mechanism by which cells

shut down large sections of chromosomal DNA. It is

generally used to describe the “switching off” of a gene

by a mechanism other than genetic modification. That

is, a gene which would be expressed (turned on) under

normal circumstances is switched off by machinery in

the cell. Gene silencing is done by incorporating the

DNA to be silenced into a form of DNA called

heterochromatin that is already silent.
Characteristics

Gene silencing is a general term describing epigenetic

processes of gene regulation. This process is important

for the differentiation of many different types of cells.

Genes are regulated at either the transcriptional or

post-transcriptional level.

Transcriptional gene silencing is the result of

histone modifications, creating an environment of het-

erochromatin around a gene that makes it inaccessible

to transcriptional machinery (RNA polymerase,

transcription factors, etc.).

Post-transcriptional gene silencing is the result of

mRNA of a particular gene being destroyed or

blocked. The destruction of the mRNA prevents trans-

lation to form an active gene product (in most cases,

a protein). A common mechanism of post-transcrip-

tional gene silencing is RNAi (Fig. 1).

Both transcriptional and post-transcriptional

gene silencing are used to regulate endogenous genes.

Mechanisms of gene silencing also protect the

organism’s genome from transposons and viruses.

Gene silencing thus may be part of an ancient immune

system protecting from such infectious DNA elements.

Genes may be silenced by DNAmethylation during

meiosis, as in the filamentous fungus Neurospora
crassa.
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Definition

GoGene is a publicly accessible web server supporting

the task of searching for genes and gene-related molec-

ular functions, biological processes, cellular compo-

nents, single amino acid substitutions, and diseases

(Plake et al. 2009). Searching is carried out either via

the literature database Pubmed (▶MEDLINE and

PubMed), the Blast service at the European Bioinformat-

ics Institute (EBI), or directly via the NCBI Entrez Gene

database. The resulting list of genes is presented together

with the relevant parts of the ▶Gene Ontology and

Medical Subject Headings, two controlled vocabularies

that cover a broad variety of biomedical research.

GoGene is located at: http://www.gopubmed.org/

gogene.
Characteristics

Gene Annotation by Automated Literature Mining

Sequence databases are growing and many entries are

lacking proper annotation (Baumgartner et al. 2007).

The low coverage of gene and protein annotation

has significant impact on turning experimental data

into knowledge such as of mechanisms governing bio-

logical processes within cells and organisms, or of

pharmacodynamic pathways determining the action

mechanisms of drugs. With thousands of scientific

articles published every day, the literature constitutes

the main resource of biomedical knowledge. This

knowledge is not easily accessible as it requires

human experts to read papers and manually add the

relevant pieces of information to a database. GoGene

has been developed to support literature-based gene

annotation. It employs the gene mention identification

tool GNAT (▶Gene Normalization with GNAT) and

the web server GoPubMed (▶ Search Engines with

Faceted Search) to associate genes from various
model organisms (▶Model Organism) to concepts of

the Gene Ontology (GO) and to diseases based on

millions of citations in PubMed. With these associa-

tions, GoGene supports interpretation of results from

high-throughput experiments or simply searching the

literature for discussed genes. A sequence query lets

users retrieve genes with similar gene or protein

sequences and explore their GO and disease annota-

tion, for example, to find functional hints for yet

uncharacterized genes.

Usage

Users of GoGene can choose between three types of

queries: (1) lists of gene identifiers or gene names as in

Entrez Gene, (2) keywords that are forwarded to

PubMed to find genes mentioned in the resulting list

of citations, and (3) nucleotide or amino acid

sequences that are forwarded to the EBI, where

a remote Blast search against all sequences in the

Swiss-Prot database is invoked. The query type can

either be specified by the user or GoGene tries to

automatically find the best result. First, it checks if

the query resembles a nucleotide or amino acid

sequence, in which case the BLASTX or BLAST

service is invoked, respectively. Otherwise, the query

is forwarded to both PubMed and Entrez Gene and the

larger gene list is returned. For Entrez Gene results,

genes are ranked as in the original result list. Results

from a PubMed search are ranked by occurrence fre-

quency in the matching abstracts in descending order.

A gene list resulting from a Blast search is ranked by

sequence similarity, with the most similar gene listed

first. Figure 1 shows the flow of data happening after

the user submits a query. The resulting list of genes is

presented together with the relevant parts of the GO

andMeSH (Medical Subject Headings), which support

navigation similar to a hyperlinked table of contents.

A gene list, including all GO and disease annotations,

can also be downloaded as a file in different standard

formats.

Use Case

Please note that the following search results might not

be reproducible anymore due to updated database con-

tents. Consider a biologist who is interested in rat

genes related to osteoporosis and bone resorption.

A keyword search for “osteoporosis bone resorption”

in the Rat GenomeDatabase gives no results. The same

http://dx.doi.org/10.1007/978-1-4419-9863-7_164
http://dx.doi.org/10.1007/978-1-4419-9863-7_164
http://dx.doi.org/10.1007/978-1-4419-9863-7_489
http://www.gopubmed.org/gogene
http://www.gopubmed.org/gogene
http://dx.doi.org/10.1007/978-1-4419-9863-7_147
http://dx.doi.org/10.1007/978-1-4419-9863-7_170
http://dx.doi.org/10.1007/978-1-4419-9863-7_170
http://dx.doi.org/10.1007/978-1-4419-9863-7_76
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query in Entrez Gene results in two rat genes (Pth and

Tnfsf11). In the literature database PubMed, the query

“rats osteoporosis bone resorption” returns 857 cita-

tions. Reading their abstracts to identify the relevant

genes is cumbersome. GoGene alleviates this task by

automatically searching these abstracts for mentioned

genes and displaying the resulting gene list to the user.

In the tree, the biological process, bone resorption, the

organism, rat, and the disease, osteoporosis, are listed

as top categories. Selecting each as mandatory aug-

ments the query and eventually leaves five rat genes

(Pth, Tnfsf11, Ctsk, Tnfrsf11b, and Csf1) for which

literature references state their role in the specified

disease and biological process.

Methods

Prerequisite for annotating genes with concepts from

biomedical ontologies by automated literature analysis

is the correct identification of genes and concepts in

text. For gene identification, GoGene employs GNAT,

a tool for gene mention recognition and normalization

to a gene database (▶Named Entity Recognition,

▶Entity Mention Normalization). Having defined the

gene literature in PubMed using GNAT, GoGene then

associates these publications with biomedical concepts

provided by the GoPubMed web server. This also

includes all MeSH concepts assigned by the US

National Library of Medicine for indexing. For each

concept found, the corresponding citation is also asso-

ciated to all its ascendants according to the GO or

MeSH disease hierarchy. For instance, if a PubMed

citation is associated with pancreatic neoplasms,

then it is also associated with digestive system neo-

plasms, neoplasms by site, neoplasms, and diseases.

A relationship between a gene and a GO or disease

concept is established based on co-occurrences within

PubMed citations. The confidence in such a relation-

ship is computed as the log ratio of observed

co-occurrence probability to the co-occurrence proba-

bility expected under independence, or pointwise

▶mutual information (Manning and Schuetze 1999).
Related Tools

Tools and web servers performing tasks similar

to GoGene are ▶Alibaba, EBIMed (▶Retrieving

and Extracting Entity Relations from EBIMed),

and iHOP.
Cross-References
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▶MEDLINE and PubMed
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▶ Search Engines with Faceted Search
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Gene-External Type of Promoter

▶Type 3 Promoters
General Transcription Factors

Tetsuro Kokubo

Department of Supramolecular Biology, Graduate

School of Nanobioscience, Yokohama City

University, Yokohama, Kanagawa, Japan
Synonyms

Basal transcription factors
Definition

In eukaryotes, RNA synthetic activities are performed

by three distinct types of RNA polymerases
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(RNAPI, II, and III) that demonstrate different sensitiv-

ities to a-amanitin, a toxic substance from the mush-

room (Amanita phalloides). These RNAPs alone cannot
bind to the core promoter, a DNA region surrounding

the transcription initiation site of a given gene. Thus,

other proteins are essential for transcription initiation at

the specific site of the core promoter. The minimal set

of such proteins was purified by chromatography for

each RNAP and designated as GTFs (general transcrip-

tion factors) (Hampsey 1998; Orphanides et al. 1996;

Thomas andChiang 2006). Themain functions ofGTFs

are to recognize core promoter structures, recruit RNAP

to the core promoter, and regulate transcription in

response to activators and repressors.
Cross-References
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▶Abstraction
Generalized Additive Models

Roger Higdon

Seattle Children’s Research Institute, Seattle,

WA, USA
Definition

Generalized additive models are an extension of

additive ▶ generalized linear models where the
linear predictors are replaced by smooth nonlinear

functions.
Characteristics

Generalized additive models (GAMs) were devel-

oped by Hastie and Tibshirani (1990) and presented

in a similar manner to ▶ generalized linear models

(GLMs) where a function of the mean (the link

function) is modeled as a linear combination

of smooth functions of explanatory or predictor

variables.
gðmÞ ¼ bþ f1ðx1Þ þ :::þ fmðxmÞ (1)

GAMs typically use the same underlying distri-

butions for the data as GLMs, most commonly

normal, binomial, or Poisson. The functions fi(xi)

are most commonly fit using non-parametric

curve estimating methods such as local-regression

(lowess, Cleveland and Devlin 1988), splines, or

smoothing splines. These methods potentially pro-

vide better fits to the data than linear or polynomial

models and allow the detection of features in the

data that may be missed. The R package GAM is

one of the most popular software tools for estimat-

ing GAMs.

An example of the use of GAMs in systems

biology is modeling functional similarity as

a smooth function of sequence similarity (Louie

2009). In the example shown in Fig. 1, sequence

similarity is measured using the BLAST bit score.

Functional similarity is based on using the Gene

Ontology (GO, Ashburner et al. 2000) and deter-

mining the shared level for two experimentally

validated proteins.

One drawback of GAMs is the possibility of

over-fitting the data; therefore, cross-validation

methods should be used when fitting GAMs. Other

drawbacks include difficulty interpreting the models

and the inability to add interactions between

variables.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1404
http://dx.doi.org/10.1007/978-1-4419-9863-7_919
http://dx.doi.org/10.1007/978-1-4419-9863-7_1198
http://dx.doi.org/10.1007/978-1-4419-9863-7_1198
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Generalized Additive
Models, Fig. 1 Example of

generalized additive models.

A comparison of shared GO

annotation level as function

sequence similarity for

experimentally validated

proteins. Sequence similarity

is measured by the BLAST bit

score. The relationship is

model using generalized

additive model where the

curve is estimated by lowess

regression
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Synonyms

GLM
Characteristics

Definition

In classical Linear Regression, the data mean is

modeled as a linear combination of the covariates.

The error is assumed to be normally distributed with

constant variance. Consequently, the mean as well as

the combination of the covariates can take any value on

the real line and the modeling approach is plausible.

However, for skewed or categorical data, the model is

not always appropriate. For example, count or propor-

tion data has the mean restricted to a certain interval so

the additive model for the mean is inadequate.

Generalized linear models (GLMs) describe the

mean as a function of the linear combination of

the covariates. The function maps the range of the

covariate combinations into the domain of the mean.

Generalized linear models are characterized by three

components: a random component, a systematic

component, and a link function. The random compo-

nent of the GLM model is given by independent real-

izations ðy1; . . . ; ynÞ of response Y and its probability

distribution. The distribution of Y is assumed to belong

to the exponential family and can be written as:

f ðy; y;fÞ ¼ expðyy� bðyÞÞ=aðfÞ þ cðy;fÞ;

for some functions a(f), b(y), c(y,f). For example,

normal, Poisson, binomial, and gamma distributions

http://dx.doi.org/10.1007/978-1-4419-9863-7_1198
http://dx.doi.org/10.1007/978-1-4419-9863-7_100584
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belong to the exponential family. For the distributions in

the exponential family, the mean and variance can be

expressed as E(Y)¼ m ¼ b0(y) and var(Y)¼ b00(y)a(f).
The systematic component refers to explanatory

variables and constitutes a linear predictor:

�i ¼
Xp
j¼1

bjxij; i ¼ 1; . . . ; n;

where ðxi1; . . . ; xipÞ are the covariates for observation

yi and ðb1; . . . ; bpÞ is the vector of model parameters.

The link function g(�) connects the systematic com-

ponent, �i, to the random component, mi ¼ EðYiÞ:

�i ¼ gðmiÞ ¼
Xp
j¼1

bjxij:

The canonical link satisfies g(m) ¼ y.

Examples

Linear Regression is an example of the generalized

linear model with random components Y assumed to

be independently normally distributed with means mi
and variance s2; the systematic component

�i ¼
Pp
j¼1

bjxij; i ¼ 1; . . . ; n and the identity link

g(z) ¼ z so that mi ¼ �i. The identity is also the canon-

ical link for the normal model.

For the binomial model, the link functions include

the logit Z ¼ logm/(1�m), the complementary log-log

Z ¼ log{�log(1�m)}, and the probit given by the

inverse of the normal distribution function. The logit

function is the canonical link for the binomial model.

The Poisson and gamma models are also examples

of GLMs with canonical links given by the log and

inverse functions, respectively.

Model Estimation

The maximum likelihood estimates of the GLM parame-

ters bi; i ¼ 1; . . . ; p are obtained using iterated

weighted least squares. The response variable is

given by the first-order linear approximation of the

link function at Y and the weights depend on the fitted

values m̂. The procedure iterates between computing

a new estimate for Z and b. The iterations stop when

the change in model parameters is sufficiently small.
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Definition

▶Biochemical Systems Theory permits several

variants. The format of a Generalized Mass Action
(GMA) system models every process within

a system as one product of power-law functions.

As a result, every differential equation describing

a dependent variable in a GMA system contains as

many power-law terms as processes producing or

degrading the variable.
Cross-References
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Synonyms

Data parallel; Distributed data access; Distributed data

management; Integration technologies; Parallel

computing
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Definition

Graphical Processing Unit computing, or briefly GPU

computing, is a methodology that aims at taking

advantage from the computational power of graphics

processor in the development of high-performance

software for a wide range of scientific and engineering

fields. GPUs can be considered as a computer device

operating as a coprocessor to the main CPU (host).

This cooperation between the GPU and CPU allows

to increase the performance of CPU through the exe-

cution of time-consuming and computing intensive

parts of the code on the GPU.
G

Characteristics

Both scientists and computer graphics designers need

to process large volumes of data very quickly while

modeling sets of many interrelated equations to pro-

duce results that are as realistic and reliable as possible.

Many biological phenomena are extremely difficult to

study experimentally and researchers must rely on

computational simulations, i.e., to determine the pro-

tein 3D structure. This is one of the greatest challenges

in computational biology. Nuclear magnetic resonance

(NMR) spectroscopy and X-ray crystallography are the

most popular methods for structure prediction. If all

distances are known exactly, the coordinates for each

atom can be easily computed. However, only a small

fraction of all distance bounds are obtained by exper-

iments conducted with these methodologies; thus, it is

necessary to use heuristics to infer 3D structures from

data. For this reason, it is needed to use massively

parallel computing capability in order to obtain signif-

icant models. The high parallelism expressed by the

interactions among the atoms leads to the idea of using

parallel computing techniques to tackle the complexity

of biological systems. Parallel computing techniques

require dedicated architectures that can be classified

into the following classes:

1. Single Instruction, Single Data (SISD) is a mono-

processor architecture that is able to execute exactly

one instruction at a time.

2. Single Instruction, Multiple Data (SIMD) is a type

of architecture in which many processing units exe-

cute the same instruction on different data elements.

3. Multiple Instruction, Single Data (MISD) is a type

of architecture where independent processors
perform different operations on the same data, this

architecture does not have any practical application

today.

4. Multiple Instruction, Multiple Data (MIMD)

consists of multiple independent processors simul-

taneously executing different instructions on differ-

ent data.

The modern GPUs could provide the high compu-

tational power needed to manage these huge amounts

of data efficiently and relatively inexpensive compared

to the number of multi-core CPUs needed to achieve

a similar number of cores (Nickolls and Dally 2010).

The GPU’s power comes from the sheer number of

parallel processing cores on each chip which is typi-

cally higher respect to that of a CPU; moreover, the

memory of a GPU is typically faster due to a larger bus

width. This means GPUs can transfer information to

and from their memory more quickly than CPUs,

a frequent operation that could create a bottleneck for

several applications. Finally, the GPU frequency is

currently rapidly increasing, suggesting that GPUs

will be able to process data at even faster rates in the

future. These benefits are leading many scientists to

choose GPUs over clusters of multi-core CPUs. The

high parallelism of GPU is a feature needed to render

complex graphical effects in 3D in the animations and

games; in fact, GPU initially was developed to graph-

ical purposes (Dematté and Prandi 2010).

Over the past few years, the GPU has evolved from

a fixed-function processor into a general-purpose par-

allel programmable processor with additional special-

purpose functionality.

The recent introduction of programming environ-

ments for the development of non-graphics applications

on GPU facilitated the use of GPU for high-performance

computations. The most widespread programming envi-

ronment is Compute Unified Device Architecture

(CUDA) introduced by NVIDIA. CUDA is a hardware

and software co-processing architecture for parallel

computing that enables NVIDIA GPUs to execute

programs written in C, C++, Fortran, OpenCL,

DirectCompute, and other languages, with the goal to

exploit the parallelism of the GPU. CUDA programs are

explicitly divided into code that runs on the CPU (host)

and code that runs on theGPU (device). The data parallel

portions of an application are executed on the device

as kernels (functions). This is possible as all the

architectural details (threads, warps, multiprocessor,

etc.) are hidden to the end user. The notions available
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for the user in CUDA are blocks, grids, and threads, to

ease the decomposition of the problem domain.

A CUDA program is organized into a host program,

consisting of one or more sequential threads running

on a host CPU, and one or more parallel kernels suit-

able for execution on a parallel computing GPU. In

Fig. 1 some basic features of parallel programming

with CUDA are shown where it is possible to note

the affinity with C language.
A program can be organized into the following

parts: (a) set up input data on the CPU; (b) transfer

the data to the GPU by cudaMemcpy(dev_a, &a,

size, cudaMemcpyHostToDevice), a function that

allows to transfer input data from CPU to GPU by

using as last parameter the cudaMemcpyHost-

ToDevice keyword; (c) run the kernel on the GPU

by the __global__ modifier indicating that the pro-

cedure is a kernel entry point, but the execution on
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the GPU is done by the extended function call i.e.,

add < <<4, 2>> > (dev_a, dev_b, dev_c)

launches the kernel add() in parallel across 4 blocks

of 2 threads each; (d) finally, transfer the result

back to the CPU by the cudaMemcpy(dev_a,

&a, size, cudaMemcpyDeviceToHost) defining

the direction from GPU to CPU by using the

cudaMemcpyDeviceToHost keyword.
Cross-References

▶Multicore Computing
G
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Synonyms

Evolutionary algorithm
Definition

Genetic algorithms (GA) are adaptive heuristic

search algorithms based on the conjecture of natural

selection and genetics (Zhilinskas and Žilinskas

2008). The basic concept of genetic algorithms is

designed to simulate processes in a natural system

necessary for evolution, specifically those that fol-

low the survival of the fittest inspired by Darwin’s

principle. As such they represent an intelligent

exploitation of a random search within a defined

search space to solve a problem. Algorithm is

started with a population of strings (represented

by chromosomes or the genotype of the genome),

which encodes candidate solutions (called individ-

uals or phenotypes) to an optimization problem, and

evolves toward better solutions. The typical steps

are:

1. Choose an initial population of candidate solutions.

2. Calculate the fitness, how well the solution is, of

each individual.

3. Perform crossover from the population.

The operation is to randomly choose some pair of

the individuals as parents and exchange so parts

from the parents to generate new individuals.

4. Mutation is to randomly change some individuals to

create other new individuals.

5. Evaluate the fitness of the offspring.

6. Select the survive individuals.

7. Proceed from 3 if the termination criteria have not

been reached.

Example. Genetic algorithms have been applied in

the fields of bioinformatics, computational biology,

and systems biology (Larranaga et al. 2006; Handl

et al. 2007).

http://dx.doi.org/10.1007/978-1-4419-9863-7_1000
http://dx.doi.org/10.1007/978-1-4419-9863-7_998
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Definition

It has been documented that only 5–10% of the con-

firmed cases of PD involve genetic factors. These

genetic factors include duplication or point mutations

in specific genes. Till date, many genes with both

autosomal recessive and dominant inheritances linked

to familial PD have been discovered. Such discoveries
have been carried based on exhaustive studies on large

cohorts of patients including pedigree analysis, genetic

mapping, and correlation of disease symptoms. Anal-

ysis of these genes and their functions reveal that

mutations leading to disruption of their function

cause one or more of the following cellular effects:

(1) increased oxidative stress, (2) mitochondrial dam-

age, (3) disruption of protein degradation machinery,

(4) neurotoxic protein aggregation, and (5) abnormal

DA metabolism. Consequently, mutations in two

genes might have synergistic effect in dopaminergic

neurons. Based on these familial mutations, many cel-

lular and animal models that mimic PD pathology have

been developed to understand the molecular mecha-

nisms and to test potential drugs. Interestingly, the

molecular effects of PD mutations in dopaminergic

neurons are similar to the effects following exposure

to environmental toxins. Therefore, PD pathology is

an intricate interplay between genetic predisposition

and environmental factors that could be summa-

rized as follows: “genetic factors load the gun,

environmental factors pull the trigger” (Abeliovich

and Beal 2006).

A list of all the reported genes related to PD pathol-

ogy is shown in Table 1. Among the listed genes, a-syn
and leucine-rich repeat kinase (LRRK2) exhibit

autosomal dominant pattern and are associated with

intracellular protein aggregation. Whereas, Parkin,

DJ-1, and Pten-induced kinase1 (PINK1) exhibit auto-

somal recessive inheritance and are connected with

mitochondrial dysfunction and oxidative stress path-

ways. These gene products have also been shown to

interact with each other in different models thereby

modulating each other’s function.

These gene products have either cytoplasmic or

mitochondrial localization. However, they differ in

their degradation pathways which could be either

via proteasome or autophagy or lysosome. Some pro-

teins possess distinct features and modulate unique

functions. For example, a-syn has a role in synaptic

function, chaperone activity, microtubule organization

and DA metabolism. DJ-1 codes for a protein with

chaperone and protease activities with a role in tran-

scriptional regulation. PINK 1 has a protective func-

tion against cellular autophagy. Interestingly, toxic

mutations in certain proteins might impinge on

a variety of cellular functions. For example, a-syn
aggregation elicits proteasomal inhibition, mitochon-

drial damage, oxidative stress and neurotoxicity.

http://dx.doi.org/10.1007/978-1-4419-9863-7_1210
http://dx.doi.org/10.1007/978-1-4419-9863-7_365
http://dx.doi.org/10.1007/978-1-4419-9863-7_1210


Genetic Factor in Parkinson’s Disease, Table 1 List of genes with known familial mutations in PD

Sl. No. Gene Park Locus Function

1. a-syn Park1 and 4 4q21–22 Presynaptic, chaperone

2. Parkin Park 2 6q25–27 E3 ubiquitin ligase

3. UCH-L1 (Ubiquitin carboxy-terminal hydrolase L1) Park 5 4p14 Ubiquitin recycling enzyme 10

4. PINK-1 Park 6 1p25–36 Mitochondrial

5. DJ-1 Park 7 1p36 Oxidative stress response

6. LRRK2 Park 8 12p11.2q13.1 Kinase
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Synonyms

Genetic variation; Polymorphism
Definition

Genetic markers are detectable variations of DNA

sequence with known chromosome locations.

A genetic marker may or may not have a biological

function. Each possible state among the various num-

ber of genetic variants is an allele. The chromosome

location of a genetic marker is referred to as a locus.

A polymorphism is a genetic variant that appears in at

least 1% of the population.

Genetic variations can occur at many different

DNA length scales, such as single nucleotide base,

oligonucleotides, and long segment of bases. Single

nucleotide polymorphism (SNP) is a single base
variant, microsatellite markers involve various number

of repeats of short DNA sequences (2–6 nucleotides),

insertion–deletion variant and inversion variants may

cover a range of �10 bases, and copy number variants

occur at between multiple of 103 bases (kb) and mul-

tiple of 106 bases (Mb).

The names of genetic markers are yet to

be standardized. However, copy number variants,

insertion–deletion variants, inversion variants, and

other genomic scale variants are called structural

variants.

The nature of detection of genetic markers evolves

with the development of biotechnology. An early type

of genetic marker during 1980s, restriction fragment

length polymorphism (RFLP), is less often used now as

there are more efficient technologies to detect other

types of genetic markers.

Genetic markers are essential for genetic studies

(mapping genotype–phenotype relationships), disease

gene mapping, and the resulting medical applications

(Strachan and Read 2010). It has also been increas-

ingly used in population genetics and evolutionary

biology. As genetic markers become surrogates of

genes or gene products, they can also be used in studies

of gene network and system biology.
Characteristics

Single Nucleotide Polymorphism

Single nucleotide polymorphism (SNP) is a prototypic

example of genetic marker (Fig.1). Due to the higher

mutation rates between nucleotide adenine (A) and

guanine (G), A ↔ G, and between thymine (T) and

cytosine (C), T ↔ C, at a given base position on

a chromosome, there are typically only two types of

nucleotide (e.g., A or G) present. These are the two

alleles of the SNP. For diploid species including

human, a pair of chromosomes could exhibit at most

http://dx.doi.org/10.1007/978-1-4419-9863-7_566
http://dx.doi.org/10.1007/978-1-4419-9863-7_100566
http://dx.doi.org/10.1007/978-1-4419-9863-7_101164


single nucleotide polymorphism

insertion−deletion variant

inversion variant

microsatellite

copy number variant

ATTGGCCTTAACCCCCGATTATCAGGAT

ATTGGCCTTAACCTCCGATTATCAGGAT

ATTGGCCTTAACCCGATCCGATTATCAGGAT

ATTGGCCTTAACCC −−− CCGATTATCAGGAT

ATTGGCCTTAACCCCCGATTATCAGGAT

ATTGGCCTTCGGGGGTTATTATCAGGAT

ATTGGCCTTAACACACACACAGGAT

ATTGGCCTTAACACACA −−−− GGAT

ATTGGCCTTA ... GGCCTTA ... ACCCCCGATA 

ATTGGCCTTA ... −−−−−−−−−− ACCCCCGATA 

Genetic Marker, Fig. 1 Examples of the main DNA variants

or genetic markers (modified from (Frazer et al. 2009)). Each

DNA sequence segment represents one possible state (allele)

Single nucleotide polymorphism (SNP), insertion–deletion var-

iant, and inversion variant typically have only two alleles,

whereas microsatellite markers have many possible states

depending on the number of simple repeats. Copy number var-

iants (CNVs) involve DNA segments of much longer lengths

(represented by dots in the graph), and it is common to have only

two alleles
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four ordered genotypes (e.g., A|A, A|G, G|A, G|G).

When the parental origin of the pair of chromosomes

is ignored, there are at most three genotypes for a SNP

(e.g., A/A, A/G, G/G).

Genotyping is an experimental determination of

the genotype of a genetic marker. The genotyping

technology evolves constantly. Many are based

on hybridization: single-stranded probe set binds the

single-stranded DNA segment containing a specified

SNP, and the binding strength differs between the two

alleles. The chip technology allows such hybridiza-

tion-based detection to be carried out for hundreds of

thousands of probes, making it possible to genotype

a large fraction of SNPs in human genome in one run.

SNP has been a popular choice of genetic marker

since mid-1990s. The total number of SNPs in human

genome that differentiate unrelated individuals is in

the range of several millions (Frazer et al. 2009). The

exact number of SNPs depends on a particular ethnic

population (e.g., Caucasian, Asian, African), and

depends on whether SNPs with very low minor-

allele-frequency are counted as polymorphism. An

evenly distributed set of 10 million SNPs in human

genome corresponds to one SNP per 300 bases on

average.

Microsatellite Markers

Microsatellite markers are one type of variable number

of tandem repeat markers of which the repeat sequence

is simple (1–6 bases) (Fig.1). The common genotyping
method for microsatellite markers is to first identify

the location of the repeat sequence by its flanking

sequence, then amplify the amount of repeats-

containing DNA segment by polymerase chain reac-

tion (PCR), and finally the repeat length is deter-

mined by a gel electrophoresis. Microsatellite

markers played an important role in the construc-

tion of genetic map of human genome during

1980s–1990s. The roughly 30,000 known microsat-

ellite markers in human genome cover on average

100 kb per marker.

Copy Number Variants

Copy number variants are also variable number of

repeats markers with a much longer repeating

sequence (1 kb or larger) (Feuk et al. 2006). The

normal number of copies of any DNA segment in

a diploid genome is 2, and a deletion (duplication)

leads to a reduced (increased) copy number of 1 (3).

Several mechanisms for the generation of copy number

variants have been proposed, such as nonhomologous

recombination.

More than a thousand CNVs have been observed in

human genome. The exact number of CNVs should

again depend on a particular ethnic population, and

depend on whether rare or newly created de novo

CNVs are counted. Even though the number of CNVs

might be low, more than 90% of base difference

between two individual’s genomes are due to CNVs

and other structural variants (Frazer et al. 2009).



Genetic Marker, Table 1 An illustration of a genetic association test. A total of 1,000 normal and 1,000 disease affected samples

are genotyped, and the sample counts for three genotypes (A/A, A/G, G/G) are listed in the table. The row–column correlation in the

2-by-3 genotype table can be tested by Pearson’s chi-square test: w2 ¼ 72.516 leading to p-value ¼ 2.22 � 10�16. The Cochran–
Armitage trend test statistic of the genotype table is CAT ¼ 66.366, corresponding to p-value ¼ 3.33 � 10�16. For the 2-by-2 allele
count table, w2 ¼ 69.829 leads to p-value ¼ 1.11 � 10�16. Two more quantities can be obtained from the 2-by-2 allele count table:

The minor allele frequency difference between the diseased and the normal group is 0.095, and odds-ratio is 2.13

Phenotype

Genotype count Allele count

A/A A/G G/G total A G total

Normal n0,AA ¼ 20 n0,AG ¼ 170 n0,GG ¼ 810 n0 ¼1,000 n0,A ¼ 210 n0,G ¼ 1,790 2n0 ¼ 2,000

2% 17% 81% 100% 10.5% 89.5% 100%

Diseased n1,AA ¼ 40 n1,AG ¼ 320 n1,GG ¼ 640 n1 ¼ 1,000 n1,A ¼ 400 n1,G ¼ 1,600 2n0 ¼ 2,000

4% 32% 64% 100% 20% 80% 100%
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Association Between Phenotypes and Genetic

Markers

The main application of genetic markers is as

a surrogate of genes for studying genotype–phenotype

relationship based on statistical correlation. One such

study is disease gene mapping, where the phenotype is

the disease status. Investigation of genotype–pheno-

type relationship can be carried out on family data

(linkage analysis (Ott 1999)), on a randomly selected

dataset in a population (association analysis (Balding

2006; Li 2008)), or on an exhaustive collection of

people in an isolated population. The latter contains

elements from both linkage and association analyses.

For a genetic marker to be surrogate of a gene, an

allele of the marker has to be in linkage disequilibrium

(LD) with that of a gene in proximity. LD is simply

a nonrandom statistical association between alleles at

two loci (Slatkin 2008). The presence or absence of LD

between neighboring markers partitions the human

genome into discrete LD blocks, and all markers in

a LD block can potentially be surrogates of genes

within the same block.

Genetic association carried out on the whole genome

level with a large number of genetic markers is called

a genome-wide association study (GWAS) (▶Genome-

wide Association Study). GWAS has generated a long

list of genetic markers associated with various human

diseases. Statistical analysis plays an important role in

marker-based genetic association studies (Balding 2006;

Li 2008). Table 1 shows how a typical association test

can be carried out for a single SNP.

Gene–Gene and Gene–Environment Interaction

Genetic markers can be used in studying gene–gene

and gene–environment interaction, based on the

assumption that these can be surrogates of genes at or
near the same chromosome location. The term “inter-

action” used in genetics, statistics, epidemiology, and

biochemistry has conflicting meanings, and has been

a source of confusion. We may loosely distinguish two

types of meanings of interaction.

Bateson’s interaction (or epistasis) (Cordell 2002;

Phillips 2008), after William Bateson (1861–1926),

refers to the situation when the nature of phenotype–

genotype relationship for gene 1 is modified by

a change of allele in gene 2. This is often discussed

when gene 1 is the major effect gene, and gene 2 is

a modifier gene.

Fisher’s interaction (or statistical interaction), after

Ronald Aylmer Fisher (1890–1962), refers to any devi-

ation from the linear phenotype–genotype relation:

y ¼ c1 g1 + c2 g2 where y is a quantitative phenotype,

g1 and g2 are numerical coding of two genes (e.g.,

number of minor alleles), and c1, c2 are regression

coefficients. If another model with a nonlinear term,

e.g., y ¼ c1 g1 + c2 g2 + c12 g1 g2 fits the data better

than the linear relationship (either in the sense of

model selection or in the sense of significant c12 coef-

ficient), a statistical interaction between genes 1 and 2

is claimed.

The term “interaction” in biochemistry, biological

pathway, and system biology has a more intuitive

meaning of a physical contact by chemical bonds, to

be in the same pathway, or being linked in a gene

network. The purpose to study Fisher’s or Bateson’s

interaction in genetic marker data is to discover the

true physical interaction among gene products.

The concept of gene–gene interaction can be

extended by gene–environment interaction (Thomas

2010). The Bateson’s interaction is particularly easy

to be translated in this context: where certain environ-

ment factor plays the role of modifier gene.

http://dx.doi.org/10.1007/978-1-4419-9863-7_267
http://dx.doi.org/10.1007/978-1-4419-9863-7_267


G 824 Genetic Material
Cross-References

▶Genome-wide Association Study
References

Balding DJ (2006) A tutorial on statistical methods for popula-

tion association studies. Nat Rev Genet 7:781–791

Cordell HJ (2002) Epistasis: what it means, what it doesn’t

mean, and statistical methods to detect it in humans. Hum

Mol Genet 11:2463–2468

Feuk L, Carson AR, Schere SW (2006) Structural variation in the

human genome. Nat Rev Genet 7:85–97

Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human

genetic variation and its contribution to complex traits. Nat

Rev Genet 10:241–251

Li W (2008) Three lectures on case-control genetic association

analysis. Brief Bioinfom 9:1–13

Ott J (1999) Analysis of human genetic linkage, 3rd edn. The

Johns Hopkins University Press, Baltimore

Phillips PC (2008) Epistasis - the essential role of gene interac-

tions in the structure and evolution of genetic systems. Nat

Rev Genet 9:855–867

Slatkin M (2008) Linkage disequilibrium – understanding the

evolutionary past and mapping the medical future. Nat Rev

Genet 9:477–485

Strachan T, Read A (2010) Human molecular genetics, 4th edn.

Garland Science, New York, Part 4

Thomas D (2010) Gene-environment-wide association studies:

emerging approaches. Nat Rev Genet 11:259–272
Genetic Material

▶Genome
Genetic Network

▶Gene Regulatory Networks
Genetic Polymorphisms

Vani Brahmachari and Shruti Jain

Dr. B. R. Ambedkar Center for Biomedical Research,

University of Delhi, Delhi, India
Synonyms

Genetic Variations
Definition

The stable coexistence of two or more variations in the

genotype in a population at a high frequency is called

genetic polymorphism. Based on these variations

populations can be divided into subgroups and

variability is seen in the gene pool. These polymor-

phisms lead to multiple alleles for a particular locus,

and in disease-associated genes, selective advantage

makes one allele protective and the another susceptible

to a disease. In enzyme coding genes, genetic poly-

morphism, may affect the biological activity or affinity

of the enzyme to the substrate. The fact that they

coexist stably in the population indicates that most

often they do not have drastic effects on the phenotype.
Cross-References
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Synonyms

Gene redundancy
Definition

Genetic redundancy is when two or more genes perform

the same biochemical function. Genetic redundancy is

usually defined at the phenotypic level, that is, to

describe situations in which mutations in one of these

genes has little or no effect on the organism’s fitness.

Duplicate (paralogous) genes are the most important

source of genetic redundancy. Since duplicated genes

may diverge in function, genetic redundancy does not

necessarily provide functional redundancy or overlap.

The prevalence of genetic redundancy represents

a paradox, since redundant functions should be

http://dx.doi.org/10.1007/978-1-4419-9863-7_267
http://dx.doi.org/10.1007/978-1-4419-9863-7_847
http://dx.doi.org/10.1007/978-1-4419-9863-7_364
http://dx.doi.org/10.1007/978-1-4419-9863-7_100567
http://dx.doi.org/10.1007/978-1-4419-9863-7_844
http://dx.doi.org/10.1007/978-1-4419-9863-7_100547
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evolutionarily unstable. Yet, particular scenarios explain

why genetic – and even functional – redundancy is

frequently generated and maintained in genetic systems.
G

Characteristics

Prevalence of Genetic Redundancy in Biological

Systems

Genetic redundancy is a salient feature of living

organisms. Genomes in all three domains of life – bac-

teria, archaebacteria, and eukaryotes – have a large pro-

portion of duplicated genes, ranging from over 15% and

up to 65% of their genes (Zhang 2003). Duplicate genes

are constantly originated through small-scale duplication

or by whole-genome duplication. The particular mecha-

nism of duplication and biological role are relevant for

the process of fixation and conservation of duplicate

genes: genes that are part of molecular complexes or

cellular networks are more likely retained if duplicated

bywhole-genome duplication. Likewise, genes with cer-

tain functions such as metabolic enzymes, transporters,

and transcription factors are often preserved in duplicate

(Conant and Wolfe 2008).

Duplicate genes have the potential for yielding novel

functions; however, not all gene duplications involve

functional innovation. In fact, most gene duplicates do

not confer novel functions and are probably preserved in

the genome by passive mechanisms such as partitioning

of the ancestral function (subfunctionalization) or selec-

tion for dosage (Conant and Wolfe 2008). Phylogenetic

analyses of genes in model eukaryotes have shown that

the functional overlap between duplicate genes is not

only a transient state after the duplication, but is often

a stable state across long evolutionary scales (Vavouri

et al. 2008).

The occurrence of synergistic (negative) genetic

interactions is used as a direct indication of functional

overlap between duplicate genes. For any two genes,

a synergistic interaction occurs when the phenotype of

the double-deletion mutant is quantitatively more

severe than the expected combined effects of the single

deletions. In the particular case of duplicate genes,

a synergistic interaction between the duplicates

indicates that they can compensate for each other’s

loss. Up to 55% of duplicate gene pairs in yeast

metabolism interact synergistically with each other,

which indicate that they carry out important and

overlapping functions (DeLuna et al. 2008).
Moreover, duplicate genes show on average

a lower number of genetic interactions with other

genes, which also reflects functional compensation

and overlap between the duplicates (VanderSluis

et al. 2010). Taken together, these observations

suggest that duplicate genes tend to maintain

a substantial functional overlap.

The Problem of Genetic Redundancy

It is challenging to account for genes with redundant

functions that have been conserved for long evolution-

ary times. Natural selection, in particular purifying

selection, acts to conserve genes that impact fitness of

an organism, thus a fully redundant function should in

principle not be under any kind of selective pressure.

This rationale makes genetic redundancy evolution-

arily unstable, which apparently contradicts the

prevalence of genetic redundancy across biological

species (Nowak et al. 1997).

Nowak et al. (1997) modeled several scenarios that

could explain why genetic redundancy is common

and even evolutionarily stable. Let us consider

a population of organisms that have two loci A and B

that perform one essential function F. If both genes

perform the function with similar efficacy and mutation

rates operate equally on both genes, genetic redundancy

is evolutionarily unstable. In a different scenario, one of

the genes, B, performs the function with slightly less

efficacy than its paralog A; redundancy is maintained

because B has lower mutation rate than A. Nowak et al.
(1997) also considered situations where genes per-

form more than one function, the overlap between

both genes affecting only one function, as well as

instances where developmental errors provide

a selective pressure to maintain genetic redundancy.

In addition, both genes performing exactly the same

function needed in high amounts would result in

deletions of any of the two genes causing fitness

defects; hence both genes would be under selective

pressure (Conant and Wolfe 2008).

Genetic Robustness, Genetic Redundancy, and

Functional Innovations

Living organisms are remarkably robust to genetic per-

turbations. Genome-wide surveys in model organisms

have shown that complete gene inactivation typically has

little or no phenotypic effect. There are two main

mechanisms that are responsible for such functional

compensation to mutations (genetic robustness). Genetic



Genetic Redundancy, Fig. 1 The utilization of genetic redun-

dancy in a responsive backup circuit. Two duplicate genes, A and

B, perform the same function, but they are regulated in

a different ways. Levels of protein B are negatively regulated

by its duplicate A that is positively regulated by an external

signal. The response is the sum of the two products. Even though

the signal upregulates A, this will prompt downregulation of B,
reducing fluctuations in overall protein and activity levels

(Adapted from Kafri et al. (2009))
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redundancy is one of these mechanisms, whereby dele-

tion of one gene has little effect due to the presence of its

duplicate and functionally overlapping paralogous gene.

The second mechanism of genetic robustness relies on

the distributed nature of genetic networks; interactions

between genes with unrelated functions also provide

functional compensation (Wagner 2008).

Early after gene duplication the sister copies may

experience a relaxed selection pressure; sequences of

duplicate genes tolerate more nucleotide changes than

their single-copy ancestral genes. Hence, genetic

redundancy provides not only functional backup and

robustness, but also the chance to accumulate sequence

changes that may diversify their functions. This inno-

vation mechanism has evolutionary potential. In fact,

there are several examples of the important role of

gene duplication in vertebrate radiation, flowering

plant evolution, and heart development (Wagner

2008). There is thus an important link between

genetic redundancy, mutational robustness, and

functional innovations, as their constant interplay

allows organisms to survive environmental pertur-

bations and yet have the ability to generate pheno-

typic diversity.

Dosage Effects and Increase of Metabolic Flux

Gene redundancy may increase gene expression

level. The process of gene duplication has an

immediate effect on gene dosage and this feature

can be beneficial for the organism, which in turn

drives the conservation of functionally overlapping

pairs of genes. Redundant genes encoding ribo-

somal proteins and some metabolic isoenzymes in

yeast have likely been retained in duplicate due to

selection for changes in gene dosage (Conant and

Wolfe 2008).

In yeast, about 25% of duplicate genes originated

from the whole-genome duplication are metabolic

enzymes. Analyses of metabolic networks and

flux-models indicate that genetic redundancy is not

more frequently associated with reactions with higher

flux and not to indispensable metabolic reactions,

suggesting that the reason for their retention is to

increase metabolic flux rather than providing func-

tional compensation (Papp et al. 2004). Most genes in

the glycolytic and fermentation pathways of Saccha-

romyces cerevisiae are present in more than one copy.

Following whole-genome duplication, an increase in

the products of these genes gave yeast a growth
advantage during adaptation to glucose-rich environ-

ments; the appearance of angiosperms on earth opened

an ecological niche for microorganisms with the abil-

ity to consume glucose and produce ethanol rapidly

through fermentation (Conant and Wolfe 2008).

Genetic redundancy may thus provide a beneficial

dosage-mediated effect underlying adaptation of an

organism to a novel environment.

Responsive Backup Circuits

Genetic redundancy could provide a mechanism to

reduce noise caused by the direct interaction between

a signal and the response. From a series of studies in

vertebrate developmental pathways, it has been noticed

that redundant duplicates are typically cross-regulated by

negative feedback, allowing one of the redundant pro-

teins, the responder, to respond to an alteration in the

expression of its partner, the inducer Fig. 1. This mutual

repression can be used to reduce stochastic fluctuations

in protein expression and to reduce the effects of noise in

environmental or developmental signals (Kafri et al.

2009). For example, MyoD and Myf5 are two function-

ally overlapping regulators of skeletal muscle
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development, which are expressed in separate cell line-

ages. Mutations in MyoD induce increased proliferation

of the Myf5-positive cell lineage thus increasing expres-

sion of the Myf5 isoform. In this case, extracellular

signals regulate a “responsive circuitry” comprising

MyoD and Myf5 that effectively buffers against fluctu-

ations in MyoD levels (Kafri et al. 2009).

In yeast, a modest fraction of proteins show

significant upregulation upon deletion of their dupli-

cate genes. Metabolic enzymes are over-represented

among such paralog-responsive proteins that match

almost exclusively duplicate pairs whose overlapping

function is required for growth. Moreover, media

conditions that add or remove requirements for

the function of a duplicate gene pair specifically

eliminate or create responsiveness of duplicate genes

(DeLuna et al. 2010). These observations suggest that

responsiveness between duplicate genes could indeed

provide an important mechanism for compensation of

genetic, environmental, or stochastic perturbations in

protein abundance.
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Definition

Genetic information is carried in the form of genetic

code in the DNA of an organism and corresponding

genes need to be expressed to yield a specific response

or phenotype. Gene expression is a multistep process

which is precisely coordinated and controlled by

various complex regulatory mechanisms for an opti-

mal performance and is termed as genetic regulation

(Perdew et al. 2006).
Characteristics

The gene expression is a process by which the genetic

information is transferred from DNA to RNA and RNA

to proteins via ▶ transcription and translation, respec-

tively. The expression is triggered by the preceding

signaling cascades which activate the ▶ transcription

factors for the initiation of the transcription. RNA poly-

merases, along with other protein complexes, facilitate

transcription process. The gene products of the transcrip-

tion are RNA molecules, which after further processing

and modification (capping, splicing, termination, cleav-

age, and polyadenylation) are transported from nucleus

to cytoplasm for translation into functional proteins.

Prokaryotic and eukaryotic gene expression have sev-

eral regulatory mechanisms in common; however, they

differ in their cellular structures, wherein prokaryotic

cells lack the nuclear envelope and the chromatin struc-

tures. Hence, the events of nucleocytoplasmic transport

and chromatin remodeling are very specific to eukary-

otic systems In prokaryotes, genes are clustered

together to form an operon which encodes the proteins

required for coordinated functioning and follow certain

order of expression. Further, the multiple operons coor-

dinate together to form a regulon, which is typically

regulated through common regulatory mechanisms.

Gene expression is regulated at various stages

from transcription of RNA to the post-translational

http://dx.doi.org/10.1007/978-1-4419-9863-7_304
http://dx.doi.org/10.1007/978-1-4419-9863-7_302
http://dx.doi.org/10.1007/978-1-4419-9863-7_302
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modification of the proteins. Usually, the regulation is

achieved by altering the rates of various steps men-

tioned above. The various mechanisms that elicit such

kind of regulations are briefed below (see Fig. 1)

(Perdew et al. 2006; White and Sharrocks 2010).

Protein-DNA Interactions

Protein-DNA interactions are the most fundamental

interactions in regulation of the gene expression

where various regulatory proteins bind to the DNA

(Fig. 1a) to accomplish transcription. A gene contains

a core promoter region and contains sequence called as

TATA box where the proteins complexes including dif-

ferent transcription factors (TFIID,-B,-E,-F,-H), TBPs

(TATA-binding proteins), and TAFs (TBP-associated

factors) can bind to facilitate transcription. The process
of gene expression is initiated with the activation and

binding of ▶ transcription factors (TF) to the promoter

regions. TFs also help in activating and recruiting RNA

polymerases (enzymes involved in RNA synthesis) to

the transcriptional initiation site. A single TF can act as

an activator or repressor for two different genes or mul-

tiple genes at a time. There are certain enhancer and

silencer regions on the DNA, which when bound by the

respective transcription factors drastically increase

and decrease the rate of transcription, respectively.

Moreover, binding of certain activator or repressor mol-

ecules to the promoter regions increases or decreases the

rate of transcription, respectively. Similarly in prokary-

otes, certain operons are catabolite-regulated operons

(e.g., lac-operon) where catabolite acts as an activator

for energy metabolism whereas for attenuated operons

http://dx.doi.org/10.1007/978-1-4419-9863-7_302
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(e.g., trp-operon) the proteins act as a repressor for its

own synthesis (Orphanides and Reinberg 2002; Levine

and Tjian 2003; Kornberg 1999).

Protein-Protein Interactions

Various protein molecules and protein complexes are

known to interact with the TFs and RNA polymerases

to modulate the regulation of the gene expression

(Fig. 1b). The rate of gene expression can be regulated

bymodulating either the probability of the TF binding or

the strength (affinity) of the TF binding to the promoter

region. It is found that the increase in TF binding strength

is achieved by the formation of dimeric or multimeric

protein-DNA complex. Multimeric protein-DNA inter-

actions have been shown to yield steep sensitive

responses through the effect of stoichiometry as com-

pared to a binding of single TF. Several proteins act as

specificity factors, inducers, activators, repressors, core-

pressors, coactivators, and mediator complexes to regu-

late gene expression. Specificity factors are the proteins

that alter (increase or decrease) the specificity of the

RNA polymerases to the promoter regions. Inducers

are the molecules that interact with the activators and

repressors to induce the transcription through positive

and negative controls, respectively. Activators enhance

the rate of transcription by increasing the affinity of the

RNA polymerase to the respective promoter regions.

Repressors intervene the association of the RNA poly-

merases and TF binding to the promoter regions and

decrease the rate of transcription. The mediator protein

complex is an important interface that compounds the

activity of RNA polymerases with the activator protein

complex to facilitate the transcriptional regulation.

Moreover, there are various interactions of coactivators

and corepressors with activators and repressors leading

to positive and negative control mechanisms (Perdew

et al. 2006; Orphanides and Reinberg 2002; Levine and

Tjian 2003; Kornberg 1999).

Protein Modifications and Stability

The cell has to respond to changing environmental

stimuli and correspondingly regulates the net protein

abundance at a given instance. This is achieved by

controlling the rates of synthesis and degradation of

the proteins and altering the stability of the mRNAs

and proteins as the requirement. Various cofactors

assign the functional groups to the amino acid residues

and help in catalyzing the enzymatic reactions

for protein stabilization and degradation. Several
modifications in TFs and proteins are ubiquitination,

phosphorylation, acetylation on lysine residues,

methylation on arginine and lysine residues, glycosyl-

ation, fatty acylation, disulfide bond formation, and

proteolysis (Orphanides and Reinberg 2002).

Multiple Binding Sites and Cooperativity

Certain promoter regions possess multiple binding

sites for the TFs which can modulate the genetic

responses (Fig. 1c). It is observed that higher promoter

occupancy and higher strength of TF binding leads to

increased rate of transcription and vice versa. The avail-

ability of the multiple binding sites provides a room for

altering the rates of transcription based upon the combi-

natorial effect of the upcoming signals. The bound

subunit has the cooperative effect on the binding of the

next subunit by increasing or decreasing its affinity

toward the binding region exhibiting positive or negative

cooperativity, respectively. The stoichiometry of inter-

action is drastically affected and the equilibrium is so

shifted that a steep rise in the rate of expression is

obtained with increasing number of binding sites. Occu-

pancy of multiple binding sites has shown to yield

ultrasensitive and subsensitive responses by the binding

of activators and repressors, respectively. Such responses

also facilitate initial delays and are operational only by

certain activation or repression thresholds (Chin et al.

1999; Sacketta and Saroff 1996).

Auto-Regulation and Feedback Mechanisms

Auto-regulation is a phenomenon in which the rate of

gene expression is directly or indirectly regulated by

its own gene product with certain feedback mecha-

nisms (Fig. 1d). The process by which a gene product

upregulates its own production by increasing the rate of

its gene expression as a result of positive feedback is

called as positive auto-regulation (PAR). PAR exhibits

slower response time due to the delay in activation and is

sensitive to the inherent noise leading to cell-to-cell

variability in the gene product concentrations. It helps

in signal amplification and pattern generation. The pro-

cess by which the gene product downregulates its own

production by the decreasing rate of its gene expression

as a result of negative feedback is called as negative auto-

regulation (NAR). NAR fastens the response time and

is resistant to the inherent noise leading to reduced

cell-to-cell variability of gene product concentrations.

Various combinations of positive and negative feedback

loops have shown to elicit memory, bistability,
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oscillations, and robustness in the gene expression pro-

files. Moreover, such feedback mechanisms allow the

cells to filter out transient input signals and aids in

appropriate decision making by responding to the multi-

ple regulatory pathways (Alon 2007).

Nucleocytoplasmic Transport

In eukaryotes, a potential way of regulating gene

expression is by controlling nucleocytoplasmic trans-

port (Fig.1e) through the nuclear pore complexes and

the selective exchange of RNA (export) and protein

molecules (import) in the two compartments.

The nuclear and cytoplasmic environment is spatially

separated by the nuclear envelope, which facilitates the

separation of transcriptional and translational machin-

ery. The transport of the RNA and proteins are medi-

ated by the specialized transport motifs called as

nuclear export signals (NES) and nuclear localization

signals (NLS), respectively. The shuttling of the

heterodimeric complex (to and fro) from nucleus to

cytoplasm serves as a quality control mechanism by

selective transport of the only mature RNAs to the

translational machinery. This transport can also be

regulated by the covalent modifications of the NES

and NLS molecules. Furthermore, the event of RNA

export is coupled with the transcription and pre-mRNA

processing by the capping and splicing mechanisms.

Many proteins shuttle continuously between cyto-

plasm and nuclease based on their requirement and

localization at the respective sites (Orphanides and

Reinberg 2002; Dimaano and Ullman 2004).

Chromatin Remodeling and Histone Modification

In eukaryotes, DNA is not easily accessible to the tran-

scription interactions as it is supercoiled around the core of

octameric histone proteins in the nucleosomes leading to

a highly compact structure called as chromatin. Various

coregulatory proteins are recruited along with the tran-

scriptional factor to facilitate chromatin decompaction

and conformational changes that provide access to the

promoter regions for recruitment of RNAPII and general

transcriptional machinery. This process is coupled with

the transcription elongation. The chromatin structure

can be temporarily modified by the phosphorylases

from signaling cascades and permanently modified by

methylation of DNA, termed as gene silencing. For the

activaton of the genes, activator proteins recruit

HATs (Histone acetyltransferse) and HMTs (Histone

methyltransferase) to the promoter regions of the genes,
which leads to acetylation and methylation of N-terminal

residues of histone tails. On the contrary, the transcrip-

tional repressors recruit HDACs (Histone deactylases)

that leads to deacetylation of the histone tails and subse-

quent repression of the transcription (Orphanides and

Reinberg 2002; Kornberg 1999).

The above discussed mechanisms work in coordina-

tion with different levels to regulate gene expression.

Cells have engineered gene regulatory motifs involving

these mechanisms in combination with feed forward and

feedback loops to elicit a system level regulation. More-

over, the global regulatory pathways from signaling and

metabolic networks also coordinate to govern the gene

expression profiles. With advances in research in this

area, newer interactions and mechanisms are being

explored that elicit precise regulation.
Cross-References
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Synonyms

Genetic material
Definition

The genome is defined as the entire geneticmakeup of an

organism. It can be either DNA or RNA (as is in the case

of some viruses). It includes the nuclear as well as

organelle DNA. The complexity and the size of the

genome vary between organisms. The average human

genome size is 3.2 � 109 base pairs and corresponds to

one copy of each of the 23 chromosomes (haploid set) as

opposed to 4.6 � 106 base pairs for Escherichia coli.
Cross-References
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Genome Annotation

Akos Dobay
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Definition

Genome annotation is the process of attaching higher-

level information to primary sequences. The whole
process consists of starting with raw DNA sequences

and giving a biological meaning to its content (Stein

2001). The first step in annotating a raw sequence will

require themapping of structural elements in the genome

by comparing the latter against a library of already

known sequences. This especially includes genetic

markers, genetic polymorphisms, protein-coding regions

(▶Protein Structure Comparison, High-Performance

Computing,▶Proteome,▶ProteomeAnalysis Pipeline,

▶Proteomics), as well as other functional elements such

as non-translated RNAs (▶RNA-seq), repetitive ele-

ments, duplicated genes, and regulatory regions

(▶Gene Regulation, ▶Regulation, ▶Regulation and

Autoregulation, ▶Regulation Function). The structural

elements are aligned using a specialized search tool,

such as BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

developed at the National Center for Biotechnology

Information Database (Altschul et al. 1990), or

GENSCAN (http://genes.mit.edu/GENSCAN.html) by

Burge and Karlin (1997). The second step in annotation

involves the association of biological processes to the

sequences identified from the first step. These processes

include metabolic functions, regulation (▶Gene

Regulation), interactions (▶Binding Affinity), and gene

expression (▶Gene Expression). In 1999, a consortium

created the gene ontology (http://www.geneontology.

org) to standardize the vocabulary used for describing

genes, gene products, and genomes.
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Medical Sciences, University of Surrey, Guildford,

Surrey, UK
Definition

Genome-scale metabolic network is the list of bio-

chemical reaction formulas implied by the repertoire

of enzymes identified in the genome of the organism

under investigation.
Cross-References

▶Mycobacterium Tuberculosis
Genome-Scale Metabolic Network
Inference
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Definition

The metabolic network is the biochemical backbone for

all chemical reactions in a cell, organ, or organism.

Metabolism is a basic sign of life and metabolic dysfunc-

tions may cause or be the result of many diseases. The

structure of the network and the identity of the proteins

(here enzymes) determine the metabolic behavior of

the system. With the availability of genome-scale
information and a huge knowledge about identity and

specificity of enzymes, first efforts have been undertaken

to reconstruct the metabolic network from genome data.

Therefore data from several biological layers, e.g.,

genome, transcriptome, proteome, and metabolome,

can be used to infer the specific metabolic network.

The genome contains the information which proteins

a cell can in principle produce. Therefore, a metabolic

network can in principle be derived from the genome by

assembling all enzymes for which a coding region in the

genome has been identified. However, several issues

make this task nontrivial. Firstly, to identify a function

of a particular gene relies on finding similarities, or

homologies, to known and previously annotated genes.

This is essentially a statistic process and therefore there is

no certainty whether new annotations are correct. But

even if this problem could be resolved, the next difficulty

arises in defining the abstract, computer-readable

description of the metabolic network. Which reactions

should be included in the model and where should

a “boundary” of metabolism be defined? Clearly, mac-

romolecular assembly, such as protein orRNA synthesis,

cannot be included, but it is by nomeans trivial to define

a suitable threshold for the complexity of the included

metabolites. For example, small proteins such as ferre-

doxins or thioredoxins are important cofactors and as

such a description of a metabolic network without these

compounds is somewhat incomplete. Finally, a network

defined from the genome sequence represents the max-

imal metabolic capabilities of a cell or organism; how-

ever, which enzymes are actually expressed and active

depends greatly on the environmental conditions or the

specific tissue into which a cell has been differentiated.

The following general strategy allows exploiting

different types of high-throughput data with heteroge-

neous origin:

The reconstruction process typically begins with

the sequenced and annotated genome. With the help of

biochemical databases such as KEGG, BRENDA,

Reactome, or MetaCyc, the annotated genes are mapped

to enzymes and the catalyzed biochemical reactions.

Depending on the envisaged computational analysis,

this established list of reactions has to be curated. Most

importantly, stoichiometric inconsistencies have to be

detected and removed. Reactions in which the numbers

of atoms in the substrates and products are not balanced

are fatal for any further computational analysis because

the models may predict that metabolites are created from

nothing or completely annihilated. More difficult to

http://dx.doi.org/10.1007/978-1-4419-9863-7_1143
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detect are thermodynamic inconsistencies which may

lead to energy-producing cycles which clearly violate

fundamental laws of thermodynamics. This curation

process leads to a draft metabolic network which can

be used for further computational analyses including

constraint-based models, such as flux balance

analysis (FBA).

The second task is typically the identification of miss-

ing reactions and subsequent completion of the draft

network. The principle strategy is to query the model

and validate whether it agrees with experimental obser-

vations. The most fundamental observation is that a cell

is actually alive and growing, which implies that the

metabolic network must be able to produce all biomass

precursors from the available nutrients. Knowledge of

the chemical composition of the growth medium and the

biomass allows the definition of fluxes which the model

must be able to support. Metabolome data are highly

useful to refine this analysis. Model consistency

demands that, besides biomass precursors, all other

experimentally observed metabolites must also be pro-

ducible by the network. After those experimentally

observed metabolic functions have been identified

which the draft network is not able to support, candidate

reactions must be found which, when added to the draft,

provide the network with the missing functionality. Sev-

eral methods for this gap-filling have been proposed.

One approach which allows integrating genomic, prote-

omic, and metabolomic data is described by Christian

et al. (2009). Essentially, the draft network is embedded

in a reference network derived from a biochemical

database containing enzymatic reactions from a large

number of different organisms. With a simple search

algorithm, minimal sets of reactions are identified

which complete the draft to consistency. Subsequently,

the identified reactions are ranked according to howwell

the genome sequence and proteomic data support the

existence of a catalyzing enzyme. In this way, the

genome annotation of Chlamydomonas reinhardtii
could be considerably improved. The caveat of this and

similar approaches is that only those reactions can be

identified which have been previously reported. A future

challenge is to develop computational methods which

allow for the identification of hitherto unknown meta-

bolic reactions. In principle, such a method could be

based on chemical reaction patterns from which theoret-

ically feasible reactions can be computed that may be

catalyzed either by known enzymes or by putative

enzymes with functional similarities to known enzymes.
In multicellular organisms the different cell types

fulfill specific metabolic functions and therefore each

cell displays a specific expression pattern for metabolic

enzymes. Also single cellular organisms adapt their

molecular repertoire according to external or internal

stimulation. Thus, not all genome encoded reactions

are expressed all the time in all cells. Using further

information from transcriptome analyses or protein

expression data, active metabolic subnetworks can

be inferred. A strategy which is exemplified on

different human tissues has been described by

Jerby et al. (2010).

A still unresolved challenge is to combine genome-

scale metabolic models with global gene regulatory

models. The expressed subnetwork can be viewed as

a result of the genetic up- or downregulation of genes

encoding the respective enzymes. However, also the

metabolic state of the cell is signaling back to the

transcriptional regulatory system. An approach how

the metabolic and gene regulatory subsystems can be

simultaneously described by timescale separation has

been proposed by Baldazzi et al. (2010). However,

this method has so far only been demonstrated for

very small systems and its application to large-scale

models seems difficult. To validate these kinds of

combined models, however they may be realized in

detail, it will be necessary to simultaneously mon-

itor the dynamics of concentrations of metabolites

(small molecules), the level of transcripts, and the

activity of enzymes.
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Synonyms

Genome-wide case-control studies; Genome-wide

genetic association analysis
Definition

Genome-wide association studies (GWAS) are pro-

jects to investigate the statistical association between

phenotypes and a dense set of genetic markers

(▶Genetic Marker) that capture a substantial amount

of genetic variations in the genome, using a large num-

ber of matched samples.

Phenotypes can be qualitative traits such as disease

status or quantitative traits such as blood pressure. Statis-

tical association between disease status and alleles of

a geneticmarker is carried out bycategorical data analysis.

Genetic markers are usually genotyped bymicroarray

chips. Whether a substantial genetic variation in the

genome, including common, rare, and structural varia-

tions, is captured by the set of markers depends on the

number of markers and their chromosome locations.

The typical number of single nucleotide polymor-

phism (SNP) markers used in a current GWAS is 300 k

(300,000), 500 k (500,000), or 1 M (1,000,000). The

number of samples collected in a GWAS range from

hundreds to tens of thousands. These large number of

markers present a particular problem for statistical

analysis called multiple testing.

Stringent data quality control procedures are usu-

ally required before statistical analysis, as biased

genotyping rates between case and control groups

could lead to false positives.

The diseased (case) and normal (control) samples in

a GWAS have to be appropriately matched by their

ethnic or geographic origin, to avoid true signal being

overwhelmed by genetic variations unrelated to the

disease. Using GWAS genotyping data, it is possible

to uncover unmatched samples and outliers by
statistical methods such as cluster analysis. Depending

on the study, matching can also be done by other

criteria, such as gender and environmental exposure.

Lack of proper sample matching is a common cause of

false positive results.
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Definition

Genomic databases store datasets related to the genomic

sequencing of different organisms and gene annotations.

Differently from gene databases, containing only coding

DNA sequences, genomic databases contain also non-

coding intergenic sequences. Genomic databases are

listed among the data resources useful in systems biology.

FASTA Format

Each entry of a FASTA document consists of three com-

ponents: (1) a comment line that is optional and reports

brief information about the sequence and the GenBank

entry code; (2) a sequence that is represented as a string

on the alphabet {A, C, G, T} of the nucleotide symbols;

and (3) a character denoting the end of the sequence.
Characteristics

Systems biology focuses on studying (complex)

interactions involving various components (among

others, genes, proteins, enzymes, pathways, and such)

in biological systems. Therefore, studies in systems biol-

ogy often rely on (sometimes massive) bunches of data

that are stored nowadays in biological databases.
The number of relevant biological data sources

available to date can be estimated in about 970 units

(Galperin 2007). Among them, there are about 100

genomic databases that can be classified by consider-

ing different characteristics.

One way to go is by employing five different and

orthogonal characteristics (De Francesco et al. 2009),

that are:

Typologies of recoverable information (e.g., genomic

segments or clone/contig regions)

Database schema types (e.g., Genolist schema or

Chado schema)

Query types (e.g., simple queries or batch queries)

Search methods (e.g., graphical interaction–based or

query language–based methods)

Result formats (e.g., flat files or XML formats)

These characteristics are more thoroughly

discussed next.

Recoverable Information

Genomic databases contain a large set of data types.

Some archives report only the sequence, the function,

and the organism corresponding to a given portion of

genome, and other ones contain also detailed informa-

tion useful for biological or clinical analysis. Figure 1

shows a taxonomy of the main classes of information
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that are recoverable from genomic databases. For

example, Genomic segments include all the nucleotide

subsequences that are meaningful from a biological

point of view, such as genes, clone/clontig sequences,
polymorphisms, control regions, motifs, and structural

features of chromosomes.

Database Schemas

Most genomic databases are relational, even if relevant

examples exist based on the object-oriented or the

object-relational model (see e.g., (WormBase 2006;

Twigger et al. 2002)). Four different types of database

schema that are designed “specifically” to manage

biological data can be distinguished from other

unspecific database schemas, which are mostly generic
relational schemas, whose structure is anyways inde-

pendent from the biological nature of data (see Fig. 2).

For example, the Genomics Unified Schema (GUS)

(GUS 2006) is a relational schema suitable for a large

set of biological information, including genomic data,

genic expression data, and protein data, while the

Pathway Tools Schema (Karp 2000) is an object

schema used in Pathway/Genome databases.

Query Types

In Fig. 3, a taxonomy of query types supported by most

genomic databases is illustrated.

By simple querying, it is possible, for example, to

recover data satisfying some standard search parameters

such as gene names, functional categories, and others.
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Analysis queries are more complex and, somehow, more

typical of the biological domain. They consist in retriev-

ing data based on similarities (similarity queries) and

patterns (pattern search queries). The former ones take

as input a DNA or a protein (sub)sequence and return

those sequences found in the database that are the most

similar to the input sequence. The latter ones take as

input a pattern p and a DNA sequence s and return

those subsequences of s which turn out to be most

strongly related to the input pattern p.

Search Methods

A further classification criterion is related to methods

used to query available databases, as illustrated in

Fig. 4 where four main classes of query methods

are distinguished: text-basedmethods, graphical interac-

tion–based methods, sequence-based methods, and

query language–based methods. The most common

methods are the text-based ones, further grouped in two

categories: free text and forms. In both cases, the query

can be formulated specifying some keywords. With the

free textmethods, the user can specify sets of words, also

combining them by logical operators. With forms,

searching starts by specifying the values to look for that

are associated to attributes of the database.

Result Formats

In genomic databases, several formats are adopted to

represent query results (see the taxonomy in Fig. 5).

Web interfaces usually provide answers encoded in

HTML, but other formats are often available as well.

For example, flat files are semistructured text files

where each information class is reported on one or

more consecutive lines, identified by a code used to

characterize the annotated attributes. Often, special

formats have been explicitly conceived for biological

data. An example is the FASTA format (Mount 2004),

commonly used to represent sequence data. More
recently, in order to facilitate the spreading of infor-

mation in heterogeneous contexts, the XML format is

sometimes supported.
Cross-References
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▶Genomic Databases
Genomic Imprinting

Vani Brahmachari and Shruti Jain
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University of Delhi, Delhi, India
Synonyms

Differential expression of homologous genes;

Parental-origin-effect; Transcription repression
Definition

Genomic imprinting is an epigenetic phenomenon due

to which only one copy of the gene, inherited from

the mother or the father is expressed. The term imprint-

ing is borrowed from behavioral science, implying

parental-origin effect on the genes. The transcriptional

activity of genes inherited from the maternal side

through the egg or oocyte could be different from

that of the same genes inherited through the sperm,

even if they have identical DNA sequence. Thus

genomic imprinting is a special case of epigenetic

inheritance where DNA methylation and histone

modifications are responsible for differential regula-

tion of the homologous genes or chromosomes and the
epigenetic marking is transmitted through meiosis.

Only a small subset of genes in the human genome

are subjected to genomic imprinting. If a gene is said to

be maternally imprinted it means that the copy of the

gene coming from the maternal side is repressed, as per

the convention in the field (Ideraabdullah et al. 2008).
Cross-References
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Synonyms

Genome browsers
Definition

Genome browsers are graphical interfaces that allow

the viewing of the DNA of sequenced species at dif-

ferent scales, ranging from a few bases, to thousands of

bases at the level of genes, up to whole chromosomes.

To display a large amount of heterogeneous data,

genome browsers use the genomic coordinates as the

main axis and data are displayed as different tracks that

run parallel to it.
Characteristics

The data provided by genome browsers include gene

annotations, transcript evidence, regulatory information,

repeat elements, alignment with other genomes, epige-

netic marks, genomic variants, etc. Users can select

http://www.gusdb.org/documentation.php
http://www.gusdb.org/documentation.php
http://www.wormbase.org/
http://dx.doi.org/10.1007/978-1-4419-9863-7_990
http://dx.doi.org/10.1007/978-1-4419-9863-7_100359
http://dx.doi.org/10.1007/978-1-4419-9863-7_101108
http://dx.doi.org/10.1007/978-1-4419-9863-7_101534
http://dx.doi.org/10.1007/978-1-4419-9863-7_567
http://dx.doi.org/10.1007/978-1-4419-9863-7_100568


Gillespie Stochastic Simulation 839 G

G

specific tracks that are only relevant to the biological

question they are trying to answer. Genome browsers

may allow the retrieval of the data that they provide.

Genome browsers can be web-based or can be

downloaded as a stand-alone program. Since their use

involves huge amounts of raw data, most popular

genome browsers are web-based as they do not require

the user to download data locally. Another advantage

of web-based genome browsers is that they can auto-

matically update the data that they provide. Genome

browsers can also be classified into multi-species or

species-specific browsers. A short description of some

of the most popular multi-species web-based browsers

is given below.

The UCSC Genome Browser (www.genome.ucsc.

edu; Kent et al. 2002) is one of the most widely

used genome browsers worldwide. It provides verte-

brate, deuterostome, insect, nematode and microbial

genomes. It also provides a large amount of annotation

data and functional data from next generation sequenc-

ing experiments. It allows the retrieval of almost all

data that it provides.

The Ensembl browser (www.ensembl.org; Flicek

et al. 2011) provides the genome and annotation of

vertebrate genomes, but also has sister sites that pro-

vide metazoan, plant, fungi, and unicellular eukaryote

and prokaryote genomes.

The VISTA browser (www.genome.lbl.gov/vista;

Frazer et al. 2004) consists of a suite of programs and

databases for comparative genomics.
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Genomics

▶Disease System, Malaria
Genomics Network

▶ Functional/Signature Network Module for Target

Pathway/Gene Discovery
Geometric Networks

▶ Stem Cell Networks
Gibbs Sampler

▶Markov Chain Monte Carlo
Gillespie Algorithm

▶Chemical Master Equation

▶ Stochastic Simulation Algorithm
Gillespie Stochastic Simulation

Ruiqi Wang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

Consider the master equation
@pðX; tÞ
@t

¼
XM
k¼1
fwkðX � ykÞpðX � yk; tÞ�wkðXÞpðX; tÞ:

(1)

Although the analytical solution of the master equa-

tion is rarely available, the density function can be

constructed numerically using the stochastic simulation
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algorithm (SSA). Generally, the SSA first constructs

numerical realizations and then averages the results of

many realizations. The goal of stochastic simulation is

then to describe the evolution of the stateXðtÞ from some

given initial state Xð0Þ.
The reaction probability density function

PðDt; mjX; tÞ is the joint probability density function

of two random variables, i.e., the time to the next

reaction Dt and the index of the next reaction m,
given X. The reaction probability density function for

the master equation takes the form
PðDt; mjX; tÞ ¼ wmexpð�a0ðXÞDtÞ (2)

with

a0ðXÞ ¼
XM
j¼1

wjðXÞ;

where Dt � 0 and m ¼ 1; � � �M.

The reaction probability density function provides

the basis for the SSA.

According to the joint density function (Eq. 2), the next

reaction and the time of its occurrence can be generated

through the direct method. Draw two random numbers r1
and r2 from a uniform distribution in the unit interval

[0, 1]. The time to the next reaction Dt and the index of

the next reaction m, given X, can be taken as follows:
Dt ¼ 1

a0ðXÞ lnð
1

r1
Þ; (3)

m ¼ the smallest integer satisfying
Xm
j0

wj0 ðXÞ > r2a0ðXÞ: (4)

The Gillespie direct method for exact simulation of

the master equation is as follows:

Step 1. Initialization: set t ¼ 0 and fix the initial num-

bers of molecules Xð0Þ.
Step 2. Calculate the propensity function wk,

k ¼ 1; � � �M:

Step 3.Generate two randomnumbers r1 and r2 in [0, 1].

Step 4.Determine Dt and m according to (Eqs. 3 and 4).

Step 5. Execute reaction m and advance time Dt, i.e.,
t tþ Dt. If t reaches Tmax, terminate the compu-

tation. Otherwise, go to Step 2.
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▶Cellular Potts Model
GLM

▶Generalized Linear Models
Global Linearization

▶Quasilinearization
Global Maximum

▶Global Optimum
Global Minimum

▶Global Optimum
Global Network Alignment

Shihua Zhang1 and Zhenping Li2
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2School of Information, Beijing Wuzi University,
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Synonyms

Local network alignment; Network alignment
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Definition

Global network alignment problem is used to find the

best overall alignment between the input networks. The

mapping for it should cover all of the input nodes. Each

node in an input network is eithermatched to one ormore

nodes in the other network(s) or explicitly marked as

a gap node which has no match in another network

(Singh et al. 2008; Zaslavskiy et al. 2009).
G

Cross-References

▶Local Network Alignment

▶Multiple Network Alignment

▶Network Alignment
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Lin Wang

School of Computer Science and Information
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Technology, Tianjin, China
Synonyms

Global maximum; Global minimum
Definition

Optimum indicates minimum and maximum, respec-

tively. Let f : Rn ! R be a real valued function and

M 	 Rn. A point �x 2 M is called a global minimum

(respectively, global maximum) if there exists

f ð�xÞ � f ðxÞ (respectively, f ð�xÞ � f ðxÞ) for all x 2 M.
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Definition

Global sensitivity analysis is an alternative to the

widely used local sensitivity analysis to quantify

parameter effects on the output. The advantage of

global sensitivity analysis over the local counterpart

is that parameter uncertainty is taken into account

in the calculation of the sensitivity value and the

sensitivity is not dependent on the nominal values

of the parameters. Furthermore, global sensitivity

analysis allows to vary several parameters simulta-

neously and over a large range to investigate their

effects on the output. Global sensitivity analysis

returns more detailed information about parameter

effects and can also capture interactions among

parameters.

Various techniques for global sensitivity analysis

have been developed (Saltelli et al. 2008); some pop-

ular ones include the Morris’ screening method, sam-

pling-based approaches, and variance-based indices.

All these techniques identify the effect of parameter

variations on the output; however, each one looks at

this problem from a different perspective.

The main challenge of global sensitivity analysis is

the required computational effort. Many global sensi-

tivity measures need to evaluate a multidimensional

integral, and computationally intensive approaches

such as the Monte Carlo method have to be applied to

compute the integral.
Cross-References
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Definition

Global stability means that the attracting basin of

trajectories of a dynamical system is either the state

space or a certain region in the state space, which is the

defining region of the state variables of the system.

In other words, global stability means that any trajec-

tories finally tend to the attractor of the system, regard-

less of initial conditions. Most of biological systems,

e.g., gene regulatory systems, are needed to be globally

stable.

To help understand global stability, here we give an

example. Consider the famous Lorenz system:
Global State, Boolean Model, Table 1 The truth table

State v1 (t) v2(t) f (1) f (2)

1 0 0 1 1

2 0 1 1 0

3 1 0 1 0

4 1 1 0 0
dx

dt
¼ a y� xð Þ

dy

dt
¼ cx� xz� y

dz

dt
¼ xy� bz

If a ¼ 10; b ¼ 3; c ¼ 28, then we know that it has

an attractor (called the Lorenz attractor). This attractor

is globally stable since any trajectories beginning at

initial points in the state space of the system finally

tend to the attractor of the system.

Global stability is different from both the local

stability of a steady state and structural stability,

where the former describes how the trajectories

near the steady state respond to a perturbation and

the latter describes how the trajectories are changes

when the parameters of a system are changes.

Global stability belongs to a kind of asymptotic

stability.
Global State, Boolean Model

Xi Chen, Wai-Ki Ching and Nam-Kiu Tsing

Advanced Modeling and Applied Computing

Laboratory, Department of Mathematics, University of

Hong Kong, Hong Kong, China
Synonyms

State
Definition

In a Boolean model, a global state is a gene state vector

consisting of all the gene expression states. A Boolean

model actually consists of a set of n nodes (where each
node corresponds to a gene):
V ¼ fv1; v2; . . . ; vng

and a list of Boolean functions (which represent the

regulatory rules for nodes). Define vi(t) to be the state

(0 or 1) of the node vi at time t. Here we let:
vðtÞ ¼ v1ðtÞ; v2ðtÞ; . . . ; vnðtÞð ÞT

which is called the Gene Activity Profile (GAP). The

GAP can take any possible form from the set:
S ¼ ðv1; v2; . . . ; vnÞT : vi 2 f0; 1g
n o

where each element in the set S is a global state,

and thus totally there are 2n possible (global) states

in the network. An example of a two-gene network

is given in Table 1. From the table, there are four

global states in this network: (0, 0), (0, 1), (1, 0),

and (1, 1).

http://dx.doi.org/10.1007/978-1-4419-9863-7_101392
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Glutathione
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Definition

Glutathione, a tripeptide (g-L-glu-L-cys-gly; GSH), is
themost abundant nonprotein thiol biomolecule inmam-

malian tissues. GSH also occurs as GSSG, the oxidized

form of GSH and as GSSR representing GSH-cysteine

disulphides linked to proteins. GSH mainly functions as

a cellular antioxidant involved in detoxification of toxic

free radicals (namely, peroxynitrite) and xenobiotics.

GSH acts as an electron donor in the reduction of perox-

ides. Apart from this, GSH is also involved in mainte-

nance of redox potential, transportation and storage of

cysteine and as a cofactor. GSH has a role in signal

transduction, cell proliferation, storage of nitric oxide,

and regulation of gene expression. GSH also plays an

important role in DNA metabolism, protein synthesis,

activation of certain enzymes, and enhancement of

immune function.

De novo synthesis of GSH in vivo occurs in the

cytosol from the constituent amino acids in two con-

secutive steps catalyzed by g-glutamyl cysteine ligase

(GCL), the rate limiting enzyme and GSH synthase.

Cellular GSH level is also contributed by reduction of

GSSG to GSH. Conversely, GSH levels could be

decreased when it is converted to GSH conjugates,

GSSG, or by release from cells. Approximately 10%

of cellular GSH is transported to the mitochondria by

an energy-dependent mechanism. There exists

a steady-state balance between synthesis and depletion

of cellular GSH.

Compared to other organs in the human body, the

brain is more susceptible to oxidative damage due to
various biochemical and physiological factors. To pre-

vent oxidative damage, GSH is present in millimolar

concentrations in the brain; however, the concentra-

tions are higher in the astrocytes compared to neurons.

Age-dependent decline in GSH in the brain and cere-

brospinal fluid has been observed in many organisms

including humans. Further, the SN region of the mid-

brain has lower levels of GSH compared to other ana-

tomical areas. However, during PD, there is a further

decrease in SN GSH levels. GSH depletion is one of

the first known indicators of oxidative stress and

neurodegeneration in PD prior to selective inhibition

of CI activity and DA loss. GSH depletion exacerbates

the neurotoxicity of PD causing chemical toxins such

as MPTP and 6-hydroxydopamine suggesting that

disruption of the redox homeostasis of the cells triggers

disease pathways in PD (Bharath et al. 2002).
Cross-References

▶Disease System, Parkinson’s Disease
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Definition

Goodwin oscillator is a quintessential example of

a biochemical oscillator based on negative feedback

alone that was invented by Brain Goodwin (Goodwin

1965, 1966). The oscillator consists of mRNA, protein,

and protein product (repressor). MRNA is the control-

ling factor for protein synthesis. Protein is the

controlling factor for the production of protein prod-

uct. The repression of mRNA synthesis by protein

product follows the same law of surface adsorption as

does protein inhibition (Fig. 1) (Goodwin 1965, 1966).

http://dx.doi.org/10.1007/978-1-4419-9863-7_566
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Goodwin Oscillator, Fig. 1 A schematic representation of the

Goodwin oscillator
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The kinetic equations describing the Goodwin

oscillator are
dX

dt
¼ v0

1þ ðX=KÞp � k1X

dY

dt
¼ v1X � k2Y

dZ

dt
¼ v2Y � k3Z

(1)

Here X, Y, Z are concentrations of mRNA, protein,

and protein product, respectively; v0, v1, and v2 deter-

mine the rates of transcription, translation, and cataly-

sis; k1, k2, and k3 are rate constants for degradation of

each component; 1/K is the binding constant of protein

product to transcription factor; and p is a measure of

the cooperativity of the repressor.

▶Hopf bifurcation analysis in Goodwin’s model

shows that to obtain biochemical oscillation, the

cooperativity of the negative feedback must be very

high, say p > 8, and the degradation rate constants of

the three components have to be nearly equal.

Bliss, Painter, andMarr (1982) fixed these problems

by a slight modification of Goodwin’s model:
dX

dt
¼ v0

1þ X
� k1X

dY

dt
¼ v1X � k2Y

dZ

dt
¼ v2Y � k3

Z

1þ Z=K
:

(2)

Now the feedback step is no longer cooperative, and

the uptake of protein product has a form of Michaelis-

Menten function.
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GPGPU

▶GPU Computing
GPU
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Synonyms

Visual processing unit (VPU)
Definition

A Graphic Processing Unit (GPU) is a specialized

processor dedicated to the creation of the images visu-

alized on the screen. It implements a set of the most

frequently used graphics primitive operations, so as the

CPU is not involved in the time-expensive graphical

computation. GPUs, originally designed for personal

computers, are currently used in many other kinds of

devices, such as mobile phones, games consoles,

tablets, or embedded systems. In a PC a GPU can be

included as a standalone graphic card (usually in the

mid-high-level solutions) or embedded in the mother-

board (in low-level models). Finally, at the end of

2010, CPUs with integrated GPU were released:

a solution particularly efficient to reduce communica-

tion times among the processors and to limit battery

consumption in mobile devices (as notebooks or

netbooks).
Cross-References
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Synonyms

General-Purpose GPU; GPGPU
G

Definition

The use of GPUs (Graphics Processing Units) to accel-

erate the computation of scientific and engineering

applications.
Characteristics

At first the goal of the Graphics Processing Units

(GPUs) was to accelerate the specific computation

related to the visualization in the computer; in this

way the CPU could be entirely dedicated to the com-

putation of general applications. So GPU hardware

resources were specialized in graphic computation

and included several specific Arithmetic Units and

a particular memory hierarchy connected to the central

process unit (CPU). Later, the role of GPUs has been

more relevant and the graphic software to exploit the

GPUs was based on graphics-specific programming

languages like OpenGL and Cg with a substantial

cost of programming.

In the last decade the evolution of GPU technology

has been based on the following:

1. The amount of hardware resources has been signif-

icantly increased.

2. The GPU was only focused on graphic computa-

tion, so it became an underutilized resource in the

computer.

3. A wide range of applications in Science and Engi-

neering share the characteristics of the graphic

processes.

Thus, the main recent advances in GPU technology

have focused on the development of Application Pro-

gramming Interfaces (APIs), such as Compute Unified
Device Architecture (CUDA) of NVIDIA, that greatly

facilitate the programming of applications targeted at

GPUs. The use of GPUs for general-purpose applica-

tions has exceptionally increased in the last few years

due to the evolution of both GPU programming

resources and the semiconductors technology. In this

way, GPUs have emerged as new computing platforms

that offer massive parallelism and provide incompara-

ble performance-to-cost ratio for scientific computa-

tions (Kaeli and Leeser 2008). Currently, NVIDIA is

leading the GPU computing and its interface CUDA is

the key of thousands of applications which are accel-

erated by the NVIDIA GPUs; a relevant percentage of

these applications are referred to the systems biology.

CUDA is based on the programming model SIMT

(Single Instruction, Multiple Threads), that is, every

instruction in the program is executed by hundreds of

threads with different data. The mapping of the threads

on the GPU cores is automatically carried out by

CUDA (Kirk and Hwu 2010).

An approach to facilitate the GPU programming is

based on the use of basic routines or libraries which

(1) compute the most used operations in the applica-

tions and (2) are optimally accelerated by GPU. In this

line, NVIDIA supplies a wide set of routines related to

several kinds of applications such as CuBLAS,

CuFFT, and so on.

It should be noted that the computation related to

every application can be classified in two kinds:

• Computationally intensive, if it includes large

sequences of arithmetic-logic operations over

large data sets. So, these operations can be com-

puted by a large set of threads which are mapped on

the high number of cores into the GPU and all of

them execute the same sequence of instructions.

Then, the SIMT programming model is suitable

for the computation and it can be accelerated by

the massive parallelism of the GPU (see Fig. 1).

• Control-flow intensive, if the process is dominated

by control-flow operations, that is, decision points,

in order to drive different instructions over different

data. This computation is not suitable for the SIMT

programming model and it is not accelerated by the

GPU. This kind of computation can achieve better

performance on the multicore CPU.

Consequently, the GPU computing cannot substi-

tute the “CPU computing” because both can improve

the performance of different kinds of computations

included in the applications. So, currently, the

http://dx.doi.org/10.1007/978-1-4419-9863-7_100557
http://dx.doi.org/10.1007/978-1-4419-9863-7_100591
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GPU Computing, Fig. 1 GPU computing can strongly accelerate the computationally intensive procedures in the program
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high-performance computation (HPC) is based on het-

erogeneous computation (GPU-multicore computing)

and the effort of programming is relevant in this con-

text, because the programmers have to identify both

types of computations and develop the program com-

bining two parallel interfaces. However, if one kind of

computation dominates the application, then, only one

parallel interface can be considered.

GPU Computing for Systems Biology

Electron Tomography (ET) is taken as an illustrative

example related to the systems biology in order to

analyze the role played by GPU computing in this

field. ET has emerged as the leading technique for the

structural analysis of unique complex biological spec-

imens. It combines electron microscopy with the

power of 3D imaging. ET has made it possible to

directly visualize the molecular architecture of organ-

elles, cells, and complex viruses. Furthermore, ET

allows the identification of the macromolecular assem-

blies in their native cellular environment and the study

of their distribution in 3D as well as their interactions.

ET has been crucial for recent breakthroughs in life

sciences (see Lucic et al. (2005); Frank (2006) for

reviews).

Computer-automated data collection has been

essential for the advent of ET as a structural technique

in cellular biology. It allows to automate specimen

tilting, area tracking, focusing, and recording of

images under low electron-dose conditions in order to
preserve the specimen from radiation damages. But,

as a consequence, the computed images are blurred,

that is, they exhibit poor signal-to-noise ratio (SNR).

Then, in ET it is necessary to apply either a simple

3D-reconstruction method which produces blurred

images plus a sophisticated denoising method, or

sophisticated 3D-reconstructions which are capable

generating images with high resolution. Both alterna-

tives need long run-times to compute the reconstruc-

tion because both are computationally intensive. So,

HPC is paramount in this context to cope with those

computational needs.

The GPU computing has emerged as a new HPC

technique that offers massive parallelism. It is based on

the GPUs platforms which are very suitable for their

integration in laboratories of structural biology due to

their incomparable performance-to-cost ratio and easy

maintenance and use.

The specific methods in ET are computationally

intensive and can be strongly accelerated on GPU

platforms. However, it is necessary to reprogram

them or even to propose a new approach to define

the ET algorithms, in order to better exploit the paral-

lelism of the GPU platforms. In this line, several ET

approaches have already been proposed (Castaño-Diez

et al. 2008; Vazquez et al. 2010; Xu et al. 2010).

Tomographic Reconstruction

Tomographic reconstruction can be modeled as a least

square problem that can be solved by means of
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algorithms based on matrix operations (Herman 1980).

Large sparse matrices are involved in these algorithms.

However, matrix data structures have not been tradi-

tionally included in the implementations due to their

large memory requirements. As a consequence, the

algorithms usually recompute of matrix coefficients

when needed. Nonetheless, modern computers have

large memory units available, so it is now possible to

improve the performance of reconstruction algorithms

by storing large matrices in core.

Assuming the single tilt axis geometry and using

voxels to represent the volume to be reconstructed,

the 3D reconstruction problem can be decomposed into

a set of independent 2D reconstruction subproblems

corresponding to the slices perpendicular to the tilt

axis. Each of the 2D slices of the volume can then be

computed from the corresponding set of 1D projections

(usually known as sinogram). The reconstructed 3D

volume is obtained by simply stacking the 2D slices.

The standard method to solve this problem is

Weighted Back Projection (WBP) (Frank 2006). Briefly,

the method uniformly distributes the object mass present

at the projection images over computed backprojection

rays. The intersection of the backprojection rays from the

different images reinforces the density at the points

where the mass is in the original structure. Therefore,

the mass of the object is reconstructed. Formally, the

backprojection can be defined by means of the matrix

backprojection operator B as:
g ¼ B 
 ps (1)

where B is a sparse matrix related with the projection

geometry and ps is the vector of sinograms for the

different tilt angles of the slice s. When the number of

tilt angles is large enough, the vector g is a good estima-

tion of the slice g*. Therefore, the 3D reconstruction

consists of the following set of matrix-vector products:
gs ¼ B 
 ps with 0 � s � Nslices (2)

where Nslices is the total number of slices.

It is important to note that the matrix B is sparse

and the location of nonzero coefficients exhibits

some regularity and several kinds of symmetries. These

characteristics are key to develop efficient matrix

implementations of 3D WBP. At the beginning of 3D

reconstruction process, the nonzeroes of B are computed

and stored into one sparse matrix data structure.
Afterward, that matrix is used to reconstruct all the slices

by SparseMatrix-Vector products (SpMV). So, theWBP

method is computationally intensive and the acceleration

of SpMV is the key to achieve a high performance.

Thismatrix formulation ofWBP allows to use CUDA

routines previously developed, which efficiently accel-

erate the operationSpMVon theGPU. The routine based

on the format called ELLPACK-R achieves highest per-

formance on GPUs (Vazquez et al. 2011) and facilitates

the development based onCUDAofWBP.Additionally,

the particular operation SpMV (B ∗ ps) involved in the

matrix implementation of WBP has some specific char-

acteristics that can be exploited to accelerate these oper-

ations with GPUs. Using the general implementation of

SpMV on GPU based on ELLPACK-R as a starting

point, the three geometry-related symmetry properties

allow a significant reduction of the memory require-

ments to store the matrix B. The corresponding formats

to compress the matrix related to these symmetries are

referred as sym1, sym2, and sym3.

The matrix WBP approach has been implemented

with CUDA and evaluated on a NVIDIA GeForce

GTX 295 GPU. In order to evaluate the use of matrix

WBP and GPU computing, the speedup factors against

the standard recomputation-based WBP on the CPU

were computed. As it is shown in the evaluation results

at Fig. 2, matrix WBP on the GPU yield excellent net

speedups up to 165x, especially for huge datasets as

commonly used in the tomography field.

Denoising Method

Several simple linear methods, Gaussian or kernel-based

filtering, reduce the noise at reasonable time but at the

expense of blurring the structural features; then, in ET it

is essential to apply nonlinear methods, such as the

Anisotropic Nonlinear Diffusion or Beltrami filter,

which preserve or even highlight the structural features.

They are computationally intensive and GPU computing

can relevantly reduce their run-times.

The Beltrami flow is a selective noise filtering

method that preserves structural features; its formula-

tion is based on the iterative solution of the following

differential equation (Kimmel et al. 2000):
It ¼ 1ffiffiffi
g
p div

HIffiffiffi
g
p

� �
(3)

where It ¼ @I @t= denotes the derivative of the image

density I with respect to the time t; ∇I is the gradient
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Fig. 3 From left to right, the
original HIV-1 reconstruction

and the results with the noise

reduced at 10, 25, 50, 100,

150, and 200 iterations are

shown. Only a representative

slice of the 3D reconstruction

is presented

128 192 256 384

Datasets

512 768 1024

180

160

140

120

100

80

60

40

20

0

S
pe

ed
-u

p

sym3

69,50

106,97

136,72

163,52

Standard (CPU) vs GPU

150,65

167,46 163,78

sym2
sym1
general
standard

GPU Computing,
Fig. 2 Effective speedup

derived from different

approaches (the standard

based on recomputation and

the four matrix approaches) on

the GPU compared to the

standard approach on the CPU

GPU Computing, Table 1 Run-times(s) of Beltrami Filter on a core of CPU based on 2 Quad Core Intel Xeon 2,26 Ghz and GPU

code on one Tesla C1060 card for 3D images of dimension V � V � V

V 128 192 256 384 512 640 768

Sequential Beltrami 8,2 28,2 98,7 335,5 800,5 1552,1 2729,3

GPU Beltrami 0,5 1,0 2,1 5,7 14,6 22,9 38,7

Speedup 16,4 28,2 47,0 58,9 54,8 67,8 70,5

G 848 GPU Computing
vector, that is ∇I ¼ (Ix, Iy, Iz), Ix ¼ ∂I/∂x being the

derivative of I with respect to x (similar applies for

y and z); g denotes the determinant of the first funda-

mental form of the surface, which is g¼ 1 + |∇I|2; and
div is the divergence operator.

Figure 3 is intended to illustrate the performance of

this method in terms of noise reduction and feature

preservation over a representative ET dataset that was

taken from the Electron Microscopy Data Bank (http://

emdatabank.org).

To sum it up, the Beltrami Method is translated into

an iterative method where every step includes the same
arithmetic operations over every voxel in the 3D

image. So, GPU computing is capable of accelerating

its computation due to a highly computationally inten-

sive nature of the algorithm. This characteristic is

frequently shared by most of the advanced filtering

methods. The results in Table 1 show that the acceler-

ation of Beltrami filter based on GPU computing is

very relevant, specially for larger images.

Conclusions

Currently, the GPU computing is paramount to

cope with the high computational needs in the

http://emdatabank.org
http://emdatabank.org
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systems biology field. It is capable of accelerating

the processes computationally intensive. However

its performance decreases for control-flow inten-

sive processes. There is a wide range of applica-

tions in systems biology which can be accelerated

by GPU computing, but their software must be

reprogrammed or even the algorithms need

rethinking in order to adapt them to the GPU

platforms.
G
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Definition

Granular computing is an emerging paradigm in

computing and applied mathematics to process

data and information, where the data or information

are divided into so-called information granules that

come about through the process of granulation. An

information granule is a collection of entities that,

in the scope of granular computing, usually origi-

nate from numerical analysis to group entities

together at a certain level of granularity, thanks to

their similarity, functional or physical adjacency, or

indistinguishability.

The principal techniques used in granular comput-

ing are machine learning (▶ Identification of Gene

Regulatory Networks, Machine Learning), fuzzy sets

and logic (▶ Fuzzy Logic), rough sets, ▶ clustering,

▶ data mining, and, to a lesser extent, ontologies.

Hence, the principal approach with granular comput-

ing is that of scale-based, quantitative, ▶ granularity

with a focus on classifying instance data into their

appropriate level of granularity as well as attempts to

generate the best possible partitioning and, thereby, the

optimal hierarchy of levels of granularity.

Meyers (2009) contains several entries for granular

computing, and Yao (2010) provides a recent state of

the art concerning theoretical foundations and applica-

tions of granular computing.
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Granularity, Table 1 Sample granular perspective for human

structural anatomy (criterion) granulated by parthood (nrG type

of granularity), with six granular levels and sample entities

residing at each level (which also could be their respective

instances)

Name of level Sample contents of each level

Body Male human body

G 850 Granularity
Granularity

C. Maria Keet

KRDB Research Centre, Free University of Bozen-

Bolzano, Bolzano, Italy
Organ Liver, pancreas

Tissue Epithelium, smooth muscle

Cell Erythrocyte, melanocyte

Organelle Ribosome

Molecule b-galactosidase, Insulin
Definition

Granularity concerns the ability to represent and operate

on different levels of detail in data, information, and

knowledge that are located at their appropriate level.

The entities are described relative to that level, which

may be more coarse-grained or concern fine-grained

details. Devising these ordered levels of granularity in

a granular perspective are either determined by the laws

of nature or are a resultant of human cognition to divide

the data, information, or knowledge.
Characteristics

Introduction

Multiscale analysis of biological systems, such as in

metagenomics, requires one to traverse from the molec-

ular level of detail, to cells, bacterial communities, up to

micro- and macro-environments and habitats. Longer

established disciplines, such as plant and animal taxon-

omy, categorize specimens in the tree that contains more

(Genus-level) or less (e.g., Family-level) details. That

biology concerns different levels of detail and hierarchi-

cal systems has been noted widely (Vogt 2010; Salthe

1985), and efforts have gone into the characteristics of

granularity, how one canmodel it, and how to effectively

use it to manage the large amounts of data, information,

and knowledge.

Granularity is relatively static: once the granular

levels and hierarchies in a subject domain are charac-

terized, it is a static structure (a granularity frame-

work) either imposed on the data, information, or

knowledge being granulated or based on it being inher-

ent in the entities in reality themselves. Entities can

undergo changes and thereby move from a finer-

grained level to a coarser-grained one, or vice versa,

but are not present at two levels in the same hierarchy

at the same time; e.g., a single cell at the Cell-level of

granularity develops into a multicellular organism at the

Organism-level. Entities are somehow “assigned to”
a certain level. The first basic questions that arise,

then, are: what are the components that have to do
with granularity, and how does one obtain them? The

answers to these questions may depend on the emphasis

one takes regarding granularity, where the principal

dimensions are:

1. Arbitrary scale versus non-scale-dependent

granularity, roughly fitting with quantitative versus

qualitative granularity

2. How levels, and its contents, in a granular perspec-

tive relate to each other

3. Difference in emphases, being focused on either

the entities, their relations, or the criterion for

granulation

4. The (mathematical) representation, such as based

on set theory, ▶mereology, or an encompassing

framework that accommodates both

Such different emphases have brought forward var-

ious proposals for representing granularity and, to

a lesser extent, how one can manage the granulated

data, information, and knowledge.

Theories of Granularity

Theories of granularity are predominantly informal

and subject domain oriented (Salthe 2001), with

a few exceptions that focus on the subject domain

independent logic-based representation (Bittner and

Smith 2003; Keet 2008). Thus far, the most compre-

hensive effort to find answers to the two aforemen-

tioned questions is proposed by Keet (2008), which

takes into account the four distinct emphases regarding

granularity and it provides a formal characterization

informed by ontology. The principal “ingredients” for

any granularity framework, are the entities that are

assigned to different levels of granularity that, in

turn, form a hierarchy of levels so that one obtains

http://dx.doi.org/10.1007/978-1-4419-9863-7_921


   sgrG
Cell wall
represented
as line (IL1),
lipid bi-layer
(L2), and
3D-structure
(L3)

   sgpG
Physical
size: coin
separator,
or dialysis
tubes

saoG
Map of the
earth with
isotherms in
steps of 10
(L1), 5 (L1)
or 1 (L3)
degrees

samG
Aggregate
by hour (L1),
minute (L2),
and second
(L3)

 nrG
Single
granulation
relation, e.g.
part-of,
spatial
containment

sgG saG

sG

cG

nG

naG  nfG
‘black boxes’,
folding entities
and relations
(L2) into one
entity (L1)

nasG
Set of
organs (L1),
division into
Pancreas,
Liver (L2)

   nacG
Team (L1) as
aggregate of
its players
(L2), colony
(L1) as
aggregate of
bacteria (L2)

Granularity, Fig. 1 Top-

level taxonomy of types of

granularity, each with one or

more examples, where Lx
stands for a particular level in

the granular perspective

Granularity, Table 2 Distinguishing characteristics at the

branching points of the top-level taxonomy of types of granular-

ity of Fig. 1

Branching

point Distinguishing feature

sG – nG Scale (quantitative) – non-scale (qualitative)

sgG – saG Grain size (scale on entity) – aggregation (scale of
entity)

sgrG – sgpG Resolution – size of the entity

saoG – samG Overlay aggregated – entities aggregated

according to scale

naG – nrG –

nfG

Semantic aggregation – one type of relation

between entities in different levels – different

type of relation between entities in levels and

relations among entities in level

nacG – nasG Parent-child not taxonomic and relative

independence of contents of higher/lower level –

parent-child with taxonomic inheritance

Granularity 851 G
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a granular perspective on a particular domain of inter-

est, provided the granulation is carried out in

a consistent manner using a particular criterion for

granulation and type of granularity (mechanism of

granulation, see below). It can be proven that to be

able to have an instance of a granularity framework, it

requires at least two adjacent levels of granularity in

a granular perspective; an informal example of

a granular perspective is shown in Table 1. The gran-

ular perspectives within one granularity framework

can be linked to each other, provided the contents in

the levels of different perspectives overlap; e.g., Insu-

lin is located at the Molecule-level as a subtype of

Peptide and as a subtype of Hormone in a functional

perspective.

Granulation is the act of devising the granular

levels and perspectives and assigning contents to

those levels, which can be done manually or computa-

tionally. For data and information granulation, the

automated approach is generally called ▶ granular

computing (Yao 2010), whereas at the knowledge

layer with its entities at the intensional level (classes,

concepts, relationships, etc.), one uses processes such

as▶modularization,▶ abstraction, and expansion that

are constrained by the criterion for granulation and

type of granularity that together determine uniqueness

of a granular perspective.

Types of Granularity

Good granular perspectives adhere to underlying prin-

ciples regarding how the levels are identified. This can

be structured in a taxonomy of types of granularity that
categorizes the mechanism of granulation, of which

the eight principle types are described in Fig. 1 and

Table 2 (see Keet 2008, Chap. 2 for motivation

and explanation). The main distinction is between

quantitative and qualitative granularity. Concerning

qualitative granularity, nrG’s granulation relations

include part-whole relations that are either a type of

true parthood (▶Mereology) or motivated by linguis-

tics (▶Meronymy), such as structural part-of (e.g.,

Table 1), contained in, and being a member of some-

thing. Examples for nfG are the MAPK cascade and

the Secondmessenger systemwith its components, and

clustering in ERmodels. nacG’s aggregate generally is

termed with a meaningful collective noun and such

http://dx.doi.org/10.1007/978-1-4419-9863-7_920
http://dx.doi.org/10.1007/978-1-4419-9863-7_920
http://dx.doi.org/10.1007/978-1-4419-9863-7_923
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http://dx.doi.org/10.1007/978-1-4419-9863-7_922


Granularity, Table 3 Typical classification levels in ecosystems using as criteria for granulation similar spatial scales and

subdivisions in biotic and abiotic environments, resulting in seven granular perspectives (depicted as columns) that each contains

eight granular levels or less (rows). Each named level contains instances, such as Palearctic and Afrotropic in the Ecozone-level

Biotic Abiotic

Ecosystem Biogeography Zoogeography Phytogeography Physiography Geology Pedology

Ecozone Biome Floral kingdom

Ecoprovince Zoogeographic province Floral province Geoprovince

Ecoregion Bioregion Floral region Physio-region Georegion Pedoregion

Ecodistrict

Ecosection

Ecosite

Ecotope Biotope Zootope Phytotope Physiotope Geotope Pedotope

Ecoelement Bioelement Geoelement

Granularity, Table 4 Two abbreviated granular perspectives

(table columns), one for plant anatomy with parthood and one

time granularity, which are linked at three levels in the hierarchy

(denoted with “,”) so that cross-granular conditions can be

asserted and, e.g., information retrieved from the information

system

Plant sample Time granularity

Tissue , Day

↕ ↕
Cell , Hour

↕ ↕
Molecule , Millisecond
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that the instances of the aggregate are different from

instances of its members and a change in its members

does not change the meaning of the whole. sgrG’s

grain size with respect to resolution can also be applied

in GIS; e.g., the city of Paris is represented on carto-

graphic maps as polygon or as point. With sgpG, one

focuses on the physical size of the entities themselves;

within one level one can distinguish instances of, say,

<5 and �1 mm, but instances <1 mm are indistin-

guishable from each other (but are distinguishable in

a finer-grained level), such as sieves with different

pore sizes or two objects touching each other, like the

wallpaper and the wall where, when zoomed in, we

also observe the glue that connects the wallpaper to the

wall. samG has an associated mathematical function

for measured aggregation (1960s in a minute and so

forth). An example of granulationmotivated by scale is

included in Table 3.

Challenges

Currently, there is still a gap between the▶ knowledge

representation of granularity with its (onto)logical

foundations and implementations (▶Granular Com-

puting), being how to relate structured thinking and

structured problems solving, respectively (Yao 2005),

in particular with respect to dealing with attributes in

granular computing and its ontological counterpart

of criterion of granulation. In addition, conditional

granularity across granular perspectives is to be

addressed in applications, such as linking time granu-

larity (Euzenat and Montanari 2005) together with

qualitative granularity that already can be modeled

unambiguously with the theory of granularity (Keet

2008; Vogt 2010). Examples for its need are abound:

for instance, in a multiscale analysis, one has to know
that, say, biological sample analysis of a cell culture –

be it the structural components or the processes it is

involved in – yields information at a time granularity

of hours (Table 4).

The interaction of granularity with notions such

as ▶ emergence, ▶ holism, and ▶ reduction is to be

explored further. Granularity can provide a methodo-

logical modeling framework to enable structured

examination of claims of emergence both from

a formal ontological modelling and computational

angle by making the complex at least less complex,

and aids understanding which levels are essential for

explanation of some property of observed behavior.
Cross-References
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▶Mereology

▶Meronymy

▶Modularity

▶Modularization

▶Organism State, Lymphocyte

▶Reduction

▶Top-Down Decomposition of Biological Networks
G
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Definition

A graph is an abstract representation of a set of objects,

some of which are connected by links. The objects are

represented with vertices (also called nodes) and the

links with edges or arcs. Several types of graphs are

used depending on what is suitable for a particular

application.

An undirected graph is a tuple (V,E) where V is a set

of vertices and E � {{x,y}x,y2V} is a set of edges.
A directed graph is a tuple (V,E) where V is a set of

vertices and E � {(x,y)x,y2V} is a set of arcs. There-

fore, (x,y) and (y,x) are different arcs, while for an

undirected graph, {x,y} and {y,x} are two representa-

tions of the same edge.

An edge {v,w} (or arc (v,w)) is said to be incident

with vertices v and w. v and w themselves are said to be

adjacent. The degree of a vertex is the number of edges

(arcs) incident with it.

A labeled graph is a tuple (V,E,l) where (V,E) is

a graph (either directed or undirected) and l:V[E! S
is a labeling function assigning to all vertices and

edges (or arcs) labels from some alphabet of labels S.
A hypergraph is a graph whose edges (arcs) can link

more than two vertices. A multigraph is a graph where

there may be more than one edge (arc) between a given

pair of vertices.

Graph theory is the study of the properties of graphs

(Diestel 2002). Algorithmic graph theory is the study

of algorithms to compute properties of graphs (Gross

and Yellen 2004). ▶Graph mining is the study of

performing data mining on and machine learning

from data represented with graphs.
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Characteristics

Graph Theory

We first define necessary terminologies in graph

theory. For more details, see (Bondy and Murty 1976;

West 2001).

A graph is a popular mathematical structure for

modeling entities and the relationships between

them. A graph G ¼ (V, E) consists of a set of
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a directed graph

1

2 3

4

1

2 3

4

a b c 1

2 3
Graph Algorithms in
Network Analysis,
Fig. 2 Example of (a)
a DAG, (b) a directed graph
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directed cycle in (b)
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vertices (or nodes)V and a set of edges E, where an edge

e2E is defined by a pair of vertices v, w2V and denoted

by e¼ (u, v).We say that an edge e¼ (u, v) is incident to
vertices u and v, and that u and v are adjacent to each

other. The vertices u and v are called the endvertices of

e. The degree of a vertex v 2 V in a graph G is the

number of edges incident to v. For example, vertex 3 of

the graph shown in Fig. 1a has degree 5.

An undirected graph is a graph in which the edges

have no orientation. A directed graph (or digraph) is

a graph in which the edges have an orientation, i.e., an

edge e ¼ (u, v) is defined by an ordered pair of two

vertices v, w 2 V. For example, Fig. 1a shows an

undirected graph, and Fig. 1b shows a directed graph.

A weighted graph is a graph in which the edges have

weights, such as integers or real numbers.

A loop is an edge e whose endvertices are the same

vertex, i.e., e ¼ (v, v). An edge e ¼ (u, v) is called

amultiple edge, if there is another edge e 0 ¼ (u, v) with

the same endvertices u and v. A multigraph is a graph

with multiple edges. For example, the undirected graph

in Fig. 1a has multiple edges between vertex 1 and

vertex 3, and the directed graph in Fig. 1b has a loop at

vertex 4. A simple graph has no multiple edges or

loops. In most cases, the graph refers to a simple undi-

rected graph.
A path in a graph is a sequence of vertices such that

each vertex in the sequence is connected by an edge to

the next vertex in the sequence. The length of a path

is the number of edges in the path.A cycle is a pathwhere

the starting vertex is the same as the ending vertex.

A path or cycle is called Hamiltonian if it visits all the

vertices of the graph exactly once. A graph is acyclic if it

contains no cycles. A directed acyclic graph is called a

DAG. For example, the directed graph in Fig. 2a is a

DAG, while the directed graph in Fig. 2b is not a DAG,

since it contains the directed cycle shown in Fig. 2c.

A tree T is a connected simple graph with no cycles.

A vertex of degree 1 in a tree is called a leaf. A non-leaf

vertex is called an internal vertex. A rooted tree has

a special vertex called the root, and is often treated as

a DAG with the edge directions originating from the

root. A k-ary tree is a rooted tree in which every

internal vertex has at most k children. In particular,

a 2-ary tree is called a binary tree. For example, Fig. 3b

shows a tree, and Fig. 3c shows a rooted binary tree.

A bipartite graph G ¼ (V, W, E) consists of two

disjoint vertex sets V and W (i.e., no two vertices in V

are adjacent and no two vertices inW are adjacent), and

an edge set E, where every edge e ¼ (v, w) has an

endvertex v 2 V and the other endvertex w 2 W.

Figure. 3a shows an example of a bipartite graph.



1
a b c d

2

4 3

1 2

3

1 2

4 3

1 2

4 3

Graph Algorithms in
Network Analysis,
Fig. 4 Example of (a)
a clique, (b) a subgraph of (a),
(c) a spanning subgraph of (a),
and (d) a spanning tree of (a)

1a

b

1
2

2

3

3

4 4

5

6

7

8

9 5

10

Graph Algorithms in
Network Analysis,
Fig. 5 Example of (a)
a disconnected graph, and (b)
a graph with a cut vertex

1a
b

c1 1
2

2

2

3

3

3

4

4
4

5

5 5

6

6 7

8 9

12

9 10 11

7

8

Graph Algorithms in
Network Analysis,
Fig. 3 Example of a (a)
bipartite graph, (b) a tree, and
(c) a rooted binary tree

Graph Algorithms in Network Analysis 855 G

G

A regular graph is a graph in which every vertex

has the same degree. For each n, the complete graph,

denoted by Kn, is a simple graph with n vertices in

which every vertex is adjacent to all the other vertices.

An (induced) subgraph G0 ¼ (V0, E0) of a graph

G ¼ (V, E) is a graph where V0 is a subset of V, E0 is
a subset of E, and all endvertices of e 2 E0 are in V0.
A subgraph G0 is a spanning subgraph of G if V ¼ V0.
A spanning tree is a spanning subgraph that is a tree.

For example, Fig. 4a shows complete graph K4, and

Fig. 4b shows a subgraph of K4. Fig. 4c shows a

spanning subgraph ofK4, and Fig. 4d shows a spanning

tree of K4.

A pair of vertices v and w in a graph G is reachable,

if there is a path between v and w in G. A graph G is
connected, if every pair of vertices is reachable; other-
wise, it is disconnected. A directed graph is weakly

connected, if it contains an undirected path for every

pair of vertices. It is strongly connected, if it contains
a directed path for every pair of vertices. A cut vertex is

a vertex whose removal disconnects the remaining

subgraph. A bridge (or cut edge) is an edge whose

removal disconnects a graph. If a graph is still

connected after removing any k�1 vertices, then the

graph is called k-connected. For example, the graph in

Fig. 5a is disconnected, and the graph in Fig. 5b is

connected, with vertex 1 as a cut vertex.

The distance d(u, v) between two vertices u and v in
a graph G is the length of the shortest path between

them. The eccentricity of a vertex v in a graph G is the
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maximum distance from v to any other vertex. A center

is a vertex with the minimum eccentricity. The diam-

eter of a graph G is the maximum eccentricity over all

vertices in that graph. For example, the graph in Fig. 5b

has a diameter 2, and vertex 1 is the center of the graph.

The distance between vertex 2 and vertex 5 is 2.

Graph Algorithms

We now briefly explain basic graph algorithms. For

more details on the full description of each algorithm,

see (Cormen et al. 2001; Goodrich and Tamassia

2001).

Graph Traversal

A graph traversal is a method of visiting all the vertices

of a graph G, starting from a given vertex v, where the

elementary move is from one vertex to another along

an edge connecting them. There are two well-known

traversal methods: breadth-first search (BFS) and

depth-first search (DFS).

BFS begins at a chosen vertex v, and visits all neigh-

bor vertices u1, u2,. . .,uk adjacent to v; then it recursively

visits all the neighbors of ui, until it explores all the

vertices ofG that are reachable from v. In this way, BFS

visits all the vertices of distance k from v, before it visits

the vertices of distance k + 1 from v.
BFS produces a breadth-first tree with root v which

contains all the reachable vertices u from v. The path

from v to u in the breadth-first tree corresponds to the

shortest path (i.e., the path containing the smallest

number of edges) from v to u in G.

DFS explores a graph G from a chosen vertex v by
searching deeper in the graph whenever possible; it

traverses the depth of G before the breadth of G. DFS

explores unexplored edges from the most recently vis-

ited vertex u, until it explores all the edges from u. It

then backtracks to a vertexw, that was discovered from

v, and explores the other unexplored edges from w.
DFS repeats this process until it visits all the vertices

that are reachable from v.
Both theDFS andBFS algorithms can be implemented

to run in O(|V| + |E|) time, i.e., linear in the size of the

graph G. For details, see (Cormen et al. 2001; Goodrich

and Tamassia 2001). For example, Fig. 6 depicts exam-

ples of BFS and DFS, where the number of a vertex

represents the ordering performed by BFS and DFS.

Connected Components

A connected component of an undirected graph

G ¼ (V, E) is a maximal connected subgraph

G0 ¼ (V0, E0) of G in which any two vertices u and v

in G0 are reachable from each other (i.e., they are

connected by a path in G0). For example, the graph

shown in Fig. 5a has three connected components: One

consists of vertices {1, 2, 3, 4}, and the others consists

of vertices {5, 6, 7, 8, 9} and an isolated vertex 10.

A strongly connected component of a directed

graph G ¼ (V, E) is a maximal strongly connected

subgraphG0 ¼ (V0, E0) ofG in which every two vertices

u and v in G0 are reachable from each other in both

directions (i.e., they are connected by a directed path

from u to v and a directed path from v to u).

It is easy to compute the connected components of

an undirected graph G in linear time, by using either

BFS or DFS. One can use DFS to compute the strongly

connected components of a directed graph G in linear

time. For details, see (Cormen et al. 2001; Goodrich

and Tamassia 2001).

Minimum Spanning Tree

A minimum spanning tree (MST) of a connected

weighted undirected graph G is a spanning subtree T
of G that connects all the vertices of G with the min-

imum total edge weight, among all possible spanning

trees of G. For example, Fig. 7b shows a minimum

spanning tree of a graph in Fig. 7a.

There are two well-known algorithms to compute

a MST of a weighted undirected graph: Prim’s algo-

rithm and Kruskal’s algorithm. Both algorithms are

greedy algorithms, i.e., they make the best possible
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available choice at each stage of the algorithm. More

specifically, at each step of the algorithm, they add one

safe edge at a time (i.e., an edge that does not create

a cycle), preserving the minimumweight spanning tree

property.

Kruskal’s algorithm first sorts the edges in

a nondecreasing order by their weights. It then finds

a safe edge to add to the growing forest (i.e., a set of

disconnected trees), by finding an edge e ¼ (u, v) with

the minimum weight among all the edges that connect

any two trees in the forest.

Prim’s algorithm maintains a single tree T ¼ (VT,

ET) at each stage of the algorithm. The tree initially

only contains an arbitrary vertex v and grows until it

spans all the vertices in the graph. At each step, it finds

a safe edge with the minimum weight among all edges

e ¼ (u, v), where u 2 V � VT and v 2 VT (i.e., an edge

connecting a vertex in T and a vertex in G � T).

The running time of Prim’s algorithm and Kruskal’s

algorithm depends on the data structures that are used. For

example, Prim’s algorithm can be implemented to run in

O(|E|log|V|) time, using a binary heap data structure.

Kruskal’s algorithm can be implemented to run in O(|E|
log|V|) time, using a disjoint-set data structure. For faster

implementations using more complex data structures, see

(Cormen et al. 2001; Goodrich and Tamassia 2001).

Shortest Path

The aim of the shortest path problem is to find a path

between two vertices in a weighted graph, such that the

sum of edge weight is minimized. For example, Fig. 8b
shows a shortest path between vertex 1 and vertex 6 of

the graph in Fig. 8a.

There are two problems: the single-source shortest

path problem and the all-pair shortest path problem.

Single-Source Shortest Path The aim of the single-

source shortest path problem is to find shortest paths

from a chosen source vertex v to all the other vertices in
the graph. For unweighted graphs, one can use breadth-

first search algorithm to compute a shortest path from v

to all the other vertices. For weighted graphs, there are

two well-known algorithms: Dijkstra’s algorithm and

the Bellman-Ford algorithm.

Both algorithms produce a shortest path tree,

starting from the source vertex v to all the other reach-

able vertices in the graph. Each vertex u has a value on

shortest path estimate (initially assigned with a very

large value). Each step of the algorithms tries to

decrease the estimate value, using the relaxation tech-

nique. More specifically, relaxing an edge e ¼ (u, w)
tests whether one can improve the shortest path from v

to w by rerouting the path through u.

Dijkstra’s algorithm solves the single-source

shortest path problem on a weighted directed graph

G ¼ (V, E), with nonnegative edge weights. It also

uses a greedy approach, and maintains a set S of ver-

tices whose final shortest-path weights from v have

already been determined. The algorithm repeatedly

chooses a vertex u 2 V � S with the minimum

shortest-path estimate, adds u to S, and relaxes all the

edges leaving u. Dijkstra’s algorithm can be
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implemented to run in O(|V|log|V| + |E|) time. For

details, see (Cormen et al. 2001; Goodrich and

Tamassia 2001).

The Bellman-Ford algorithm solves the single-

source shortest path problem on a weighted directed

graph G ¼ (V, E), where the edge weights may be

negative. It either detects negative-weight cycles, or

progressively decreases an estimate on the weight of

a shortest path from v until it discovers the actual

shortest-path weight. The running time of the algo-

rithm is O(|V||E|). For details, see (Cormen et al.

2001; Goodrich and Tamassia 2001).

All-Pair Shortest Path The aim of the all-pair

shortest path problem is to find the shortest paths

between every pair of vertices u and v in the graph.

The problem can be solved by repeatedly using the

algorithm for the single-source shortest path problem,

for each vertex v 2 V as a source vertex.

Alternatively, the Floyd-Warshall algorithm solves

the all-pairs shortest path problem inO(|V|3) time using

a dynamic programming approach. The algorithm

operates on directed graphs that may have negative-

weight edges, but do not contain any negative-weight

cycles. For details, see (Cormen et al. 2001; Goodrich

and Tamassia 2001).

Network Analysis

A network is an extension of the concept of a graph.

The network sometimes contains more information,

such as vertex attributes and edge attributes. Network

analysis spreads from social sciences to complex sys-

tems, communication networks, bioinformatics, trans-

portation systems, and project planning.

Roughly speaking, there are three different levels of

analysis:

• Individual-level: Examples include centrality mea-

sures such as degree centrality and betweenness

centrality.

• Group-level: Examples include clique analysis,

k-core analysis, structural equivalence, and

blockmodeling.

• Network-level: Examples include network statistics

(such as degree distribution, diameter, average path

length, and clustering coefficient) and network com-

parison (such as graph isomorphism and similarities).

In the following, we describe some of the basic

concepts and methods in network analysis. For details

on social network analysis, see (Wasserman and Faust
1994). For algorithmic aspects of network analysis, see

(Brandes and Erlebach 2005). For network analysis of

biological networks, see (Junker and Schreiber 2008).

Individual-level Analysis

The centrality index aims to compute the importance
of actors in a social network. There are many different

centrality measures available, which are based on the

definition of importance in specific applications. For

definitions of various centrality measures, see (Bran-

des and Erlebach 2005; Wasserman and Faust 1994).

For algorithms for computing each centrality measure,

see (Brandes and Erlebach 2005).

Degree Centrality For undirected graphs, the degree

centrality of a vertex v is defined as the degree of v. For

example, in the undirected graph in Fig. 9, vertices 2

and 3 have the highest degree centrality.

For directed graphs, there are two variants of degree

centrality: the in-degree centrality (i.e., the number of

incoming edges) and the out-degree centrality (i.e., the

number of outgoing edges).

Closeness Centrality In a social network analysis,

a vertex with a small total distance maybe more impor-

tant than a vertex with a high total distance. More

formally, closeness centrality of a vertex u can be

defined as follows:
cCðuÞ ¼ 1

sðuÞ (1)

where s(u) denotes the sum of the distances from

a vertex u 2 V to all the other vertices v in a graph

G ¼ (V, E). For example, vertex 1 of the graph shown

in Fig. 9 has the highest closeness centrality.

Eccentricity Centrality Hage and Harary defined the

eccentricity e(u) of a vertex u as the maximum distance
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from u to a vertex v in the graph (i.e., e(u)¼ max{d(u,
v) : v 2 V }). More formally, eccentricity centrality of

a vertex u is defined as follows:
k=3
cEðuÞ ¼ 1

eðuÞ ¼
1

maxfdðu; vÞ : v 2 Vg (2)
k=2

k=1
Stress Centrality The definition of stress centrality is

based on the set of shortest paths in a graph. The formal

definition of stress centrality of a vertex u is as follows:

Graph Algorithms in Network Analysis, Fig. 10 Example of
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cSðuÞ ¼

X
s6¼u2V

X
t 6¼u2V

sstðuÞ (3)

where sst (u) denotes the number of shortest paths

between s and t containing u. For example, vertex 1

of the graph in Fig. 9 has the highest stress centrality.

Shortest Path Betweenness Centrality Let dst (u)
denote the fraction of shortest paths between s and t

that contain vertex u; i.e.,
dstðuÞ ¼ sstðuÞ
sst

(4)

where sst denotes the total number of shortest paths

between s and t.
More formally, the shortest path betweenness

centrality of a vertex u is defined as follows:
cBðuÞ ¼
X
s6¼u2V

X
t 6¼u2V

dstðuÞ: (5)

For example, the vertex 1 of a graph in Fig. 9 has

highest shortest path betweenness centrality.

Group-level Analysis

Clique Analysis A clique is a dense cohesive sub-

group in a network. Formally, a clique of an undirected

graphG¼ (V, E) is a subsetU of V, such that every pair

of vertices u, v 2 U are adjacent (i.e., the induced
subgraph G[U] is a complete graph). A maximum

clique of a graph G is a clique with the largest size.

However, testing whether a given graph G has

a clique of size k is an NP-complete problem, which

is difficult to solve. For details, see (Brandes and

Erlebach 2005).
k-Core Analysis Another way to identify dense sub-

graphs in a graph is k-core analysis. The k-core of

a graph G is a maximal connected subgraph of G, in

which all the vertices have degree at least k. Equiva-
lently, a k-core is a connected component of the sub-

graph of G, formed by repeatedly deleting all vertices

of degree less than k. The k-core of a graph G can be

computed efficiently in linear time by repeatedly

removing the vertex with the smallest degree.

Note that a k-core is a subgraph of a (k�1)-core. For
example, in Fig. 10, the dark gray region indicates the

3-core of the graph, and the light gray region shows the

2-core of the graph.

Structural Equivalence and Blockmodel Two ver-

tices u and v are structurally equivalent, if they are

connected to exactly the same vertices in a graph G

(intuitively, they hold identical positions in the net-

work). More formally, two vertices u and v are struc-

turally equivalent if, for each edge (u, x) in G, there is

an edge (v, x) inG, and for each edge (v, x) inG, there is
an edge (u, x) in G.

We can partition the vertex set V ofG into structural

equivalence classes or blocks such that if u and v are

structurally equivalent, then they belong to the same

equivalence class X. For algorithms for computing struc-

tural equivalence, see (Brandes and Erlebach 2005).

Given a structural equivalence relation, if a vertex u

in block X is connected to a vertex w in block Y, then

every vertex in block X is connected to every vertex in

block Y. Then, by defining an edge (x, y) between the

blocks X and Y, we can construct a reduced graph or

blockmodel of the network.
Intuitively, blockmodeling represents the relation-

ships between social positions. For example, Fig. 11b
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shows a blockmodel of the graph in Fig. 11a, defined

according to structural equivalence. Block a consists

of vertex 1, block b consists of vertex 2, block e
consists of vertex 5, and block f consists of the vertex

set {6, 7}.

There are two relaxations of structural equivalence:

automorphic equivalence and regular equivalence.

Informally, automorphically equivalent vertices have

the same position in a network in a more abstract sense

than structurally equivalent vertices: They are not

connected to the exactly same vertices, but to vertices

that play analogous roles in the network.

Tomake this idea more formal, we need the concept

of an automorphism. A permutation a of V is an auto-

morphism of the graph G ¼ (V, E) if, for each edge

(u, x) in G, (a(u), a(x)) is an edge in G, and vice versa.
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of blockmodels of a graph in (a), based on (b) structural equiv-
alence, and (c) automorphic equivalence
Vertices u and v are automorphically equivalent if

v ¼ a(u) for some automorphism a. For example,

Fig. 11c shows a blockmodel of the graph in Fig. 11a

as defined by automorphic equivalence. Block a

consists of vertex 1, block b consists of the vertex

set {2, 3}, block c consists of the vertex set {4, 5},

and block d consists of the vertex set {6, 7}.

Computing the automorphisms of a given graph is

a computationally hard problem known as isomor-
phism complete. However, for special classes of graphs

such as trees and planar graphs, an automorphism can

be computed efficiently in linear time. For details, see

(Brandes and Erlebach 2005).

Network-level Analysis

Graph Isomorphism An isomorphism between two

graphs is a mapping between the vertex sets of the two

graphs, which preserves adjacency. An isomorphism

of graphs G and H is a bijection f: V (G) ! V (H)

between the vertex sets of G and H, such that any two

vertices u and v of G are adjacent in G if and only if f
(u) and f (v) are adjacent in H.

For example, Fig. 12a and b are isomorphic graphs,

since we can define a mapping as follows: {(4, a),
(1, b), (5, e), (2, c), (6, f), (7, g), (3, d), (8, h), (9, i),

(10, j)}. However, Fig. 12a and c are not isomorphic

graphs, since there is no mapping between the two

vertex sets that preserves adjacency.

Testing whether two graphs are isomorphic is a com-

putationally hard problem. The time complexity of the

problem is not known for general graphs. However,

the problem can be solved efficiently in linear time, for

special classes of graphs such as trees and planar graphs.

For details, see (Brandes and Erlebach 2005).
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Graph Alignment, Protein Interaction
Networks

Michal Kolář

Institute of Molecular Genetics, Academy of Sciences

of the Czech Republic, Prague, Czech Republic
Synonyms

Alignment, protein interaction networks; Network

alignment, protein interaction networks
Definition

Graph alignment of protein–protein interaction

networks (▶ Protein-Protein Interaction Networks) is

a method of comparison of protein interaction data

between two or more species and is one of the methods

of▶ comparative analysis of molecular networks. The

method represents the interaction data in a form

of a graph (▶Graph, ▶Protein-Protein Interaction

Networks, ▶ Interactome) and constructs a mapping

between the nodes of the graph (proteins) and the

corresponding links (protein–protein interactions).
Similarly to sequence alignment, it provides means

for functional and phylogenetic comparison of the

proteins.
Characteristics

Graph Alignment Structure

A graph alignment (▶Network Alignment) compares

protein–protein interaction networks (Protein–Protein

Interaction Network) (PIN) and groups their proteins

into equivalence (analogy) classes. In the case of

a pair-wise comparison, the equivalence is conveniently

represented by a pairing of the analogous proteins thus

creating a map between the nodes (proteins) of the two

networks. The alignment of the links (protein–protein

interaction) results from the aligned nodes.

Figure 1 represents a pair-wise graph alignment

between two PINs representing a part of the ribosomal

complex in two distinct species. Proteins are represented

as the nodes of the network and the protein–protein

interactions as the links. The alignment is shown by

dashed lines, which interconnect the proteins in the

same equivalence class. The alignment of nodes forces

the alignment of links. Several modalities exist for the

aligned links. The links may be either present in both

species resulting from matching protein–protein interac-

tions or they may be absent in one or both species.

In practice, the alignment of the two networks is

represented as in Fig. 2. The proteins belonging to the

same equivalence class are overlaid. The line type indi-

cates presence or absence of the protein–protein interac-

tions in individual PINs and thus themodality of the link.

An alignment of multiple networks is represented simi-

larly, for example, see Fig. 3. There, the nodes represent

proteins of the same equivalence class (e.g., MRPL19,

RPLK, and RLX1). Some equivalence classes may be

absent in one or more of the networks (e.g., MRPL4 and

HP1409 do not have an analogous protein in fish).

A pair-wise graph alignment of networksG1(V1,E1)

andG2(V2, E2) is formally defined as a mapping A from

the vertex (node) set V1 to the vertex set V2;A: i2 V1!
i0 2 V2. An edge (link) (i, j) 2 E1 is told to be aligned to

an edge (i0, j0) 2 E2 if and only if A(i)¼ i0 and A(j)¼ j0.
The type of the mapping A distinguishes whether

the alignment is considered global or local. The global

graph alignment (▶Global Network Alignment) is

defined by a (total) injective mapping A. Thus, each
node in the smaller network is aligned to some node in

http://dx.doi.org/10.1007/978-1-4419-9863-7_995
http://dx.doi.org/10.1007/978-1-4419-9863-7_100040
http://dx.doi.org/10.1007/978-1-4419-9863-7_101006
http://dx.doi.org/10.1007/978-1-4419-9863-7_101006
http://dx.doi.org/10.1007/978-1-4419-9863-7_878
http://dx.doi.org/10.1007/978-1-4419-9863-7_480
http://dx.doi.org/10.1007/978-1-4419-9863-7_1289
http://dx.doi.org/10.1007/978-1-4419-9863-7_878
http://dx.doi.org/10.1007/978-1-4419-9863-7_878
http://dx.doi.org/10.1007/978-1-4419-9863-7_876
http://dx.doi.org/10.1007/978-1-4419-9863-7_482
http://dx.doi.org/10.1007/978-1-4419-9863-7_485
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small part of protein–protein interaction networks

(Protein–Protein Interaction Network) of a bacterium

(Helicobacter pylori) and yeast (Saccharomyces cerevisiae)
representing protein components of the ribosome. Each node

represents a protein and is labeled by its symbol. The links

stand for protein–protein interactions. The bacterial network is

sparse with only several interactions described in the databases.

The yeast network on the other side forms an almost complete

clique. The graph alignment, which is denoted by dashed lines,

may be used to predict physical interactions among the bacterial

genes. The figure is based on Sharan et al. (2005) and updated

using STRING db version 8.3 (http://string-db.org)
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the larger network. No two nodes from the smaller

network may be aligned to the same node in the larger

network. The local graph alignment (▶Local Network

Alignment) is defined by a partial injective mapping A.
Thus, only elements of a subset of the node set V1 are

aligned to some nodes in V2. Still, no two nodes from

one network may be aligned to the same node in the

other network. In some definitions of the graph align-

ment, the injective property of the mapping is lifted,

allowing for alignment of two or more nodes of one

network to the same node in the other network. This

option allows for the representation of, for example,

protein duplications.

A multiple graph alignment (▶Multiple Network

Alignment) of N graphs Gi(Vi,Ei), i ¼ 1, . . ., N is an

equivalence relation A over the nodes V ¼ V1 [ . . . [
VN. An equivalence relation is transitive and partitions

V into a set of disjoint equivalence classes. A local

alignment is a relation over a subset of the nodes in V;
a global alignment is a relation over all nodes in V.

Figure 3 shows an example of an alignment of three
protein–protein interaction networks. Nodes (proteins)

in the same equivalence class are considered function-

ally analogous.

Score of a Graph Alignment

The alignment is scored by interaction similarity

and protein similarity. Each equivalence class of

aligned proteins (or a pair of aligned proteins in case

of a pair-wise graph alignment) contributes to a node

score (▶Node Score, Graph Alignment) Sn, which
rewards similarity of the aligned proteins (e.g., level

of their homology, say a BLAST bit score) and penal-

izes similarity among proteins not respected by the

graph alignment and its equivalence classes. Aligned

protein pairs contribute a positive link score (▶Link

Score, Graph Alignment) Sl if the interaction between

the proteins is conserved in all or some networks. Thus,

the interaction between equivalence classes (MRPL16,

RPLP, MRPL16) and (YML6, RPLD, MRPL4) in

Fig. 3 would contribute a positive link score (Link

Score, Graph Alignment), as the protein–protein

http://dx.doi.org/10.1007/978-1-4419-9863-7_486
http://dx.doi.org/10.1007/978-1-4419-9863-7_486
http://dx.doi.org/10.1007/978-1-4419-9863-7_484
http://dx.doi.org/10.1007/978-1-4419-9863-7_484
http://dx.doi.org/10.1007/978-1-4419-9863-7_996
http://dx.doi.org/10.1007/978-1-4419-9863-7_997
http://dx.doi.org/10.1007/978-1-4419-9863-7_997
http://string-db.org
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Graph Alignment, Protein Interaction Networks,
Fig. 3 Illustration of an alignment of multiple networks. In

addition to the bacterium and yeast, the protein–protein interac-

tion network of fish (Oryzias latipes) also has been aligned. The
nodes correspond to the equivalence classes and the protein

symbols in the three species are given (from the top: yeast,
bacterium, and fish). The protein–protein interactions present

in each of the networks are given in different line type. The

equivalence class consisting of MRPLl4 in yeast and HP1409

in the bacterium is not represented in fish

YML6
RPLD

MRPL19
RPLK

MRP7
UVRA

MRPL10
RPLO

MRPL4
HP1409

MRPL16
RPLP

both
bacterium
yeast

Graph Alignment, Protein Interaction Networks, Fig. 2 A

more concise representation of the alignment in Fig. 1 is created

by overlaying the aligned nodes and coding the modality of the

links by line types. Here, full strong lines stand for the interac-

tions present in both species, dashed lines for the interactions

present in yeast only, and dotted lines for the interactions present
in the bacterium only
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interaction is present in all three networks. On the other

side, the interactions present in a single network only

would be penalized by the link score (Link Score,

Graph Alignment) (e.g., interaction between the

classes (MRPL10, RPLO, MRPL8) and (MRP7,

UVRA, MRPL27) in Fig. 3). The node score (Node

Score, Graph Alignment) and the link score

(Link Score, Graph Alignment) form the full scoring

function (▶ Scoring Function, Graph Alignment) of

the graph alignment S ¼ Sn + Sl.

Construction of a Graph Alignment

The graph alignment problem stands in finding the

highest scoring graph alignment among all possible

alignments of the protein–protein interaction net-

works. As opposed to the sequence alignment, finding

an optimal graph alignment is a computationally hard

problem. The underlying subgraph isomorphism prob-

lem, which asks if one ▶ graph exists as an exact

subgraph of the other graph, is ▶NP-hard. This

means that no exact and efficient algorithm can be

found. All current methods use some heuristic algo-

rithms (▶Heuristic Optimization) to find the best

graph alignment with a notable exception of Natalie
(https://www.mi.fu-berlin.de/w/LiSA/Natalie), which

employs Lagrangian relaxation.

Graph alignment heuristics have been proposed based

on three main ideas: The first kind of algorithm forces

alignment of orthologous proteins (▶Orthologs) in the

PINs. Thus, these aligners use only the information on

the nodes of the network. This approach allows to iden-

tify ancestral networks, network parts enriched in con-

served edges, or to decide between paralogous genes.

The second approach utilizes only the information

on the interaction patterns of the proteins. It allows to

discover common regulatory motives in PINs and to

study phylogeny. Similarity of the aligned proteins is

not required in this approach as common topological

structures are searched for.

The third strategy relies both on aligning homolo-

gous proteins and on aligning topologically analogous

subnetworks. This is the most complete approach,

which allows direct evolutionary comparison of the

graphs. Several algorithms have been proposed. For

excellent reviews of particular algorithms and their

http://dx.doi.org/10.1007/978-1-4419-9863-7_995
http://dx.doi.org/10.1007/978-1-4419-9863-7_1289
http://dx.doi.org/10.1007/978-1-4419-9863-7_409
http://dx.doi.org/10.1007/978-1-4419-9863-7_411
https://www.mi.fu-berlin.de/w/LiSA/Natalie
http://dx.doi.org/10.1007/978-1-4419-9863-7_955
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applications, see references Sharan and Ideker (2006),

Chen et al. (2009), Stumpf andWiuf (2009), Cannataro

et al. (2010), and Pržulj (2011).

Purposes of a Graph Alignment

Similarly to sequence alignment the graph alignment

provides a broad applicability. The local graph alignment

has been used for detection of conserved network

motives (▶Network Motif) or pathways (▶Pathway)

among different species, for detection of paralogous

pathways in a single species or for a database

search in which a small query pathway is searched

within a large protein–protein interaction network

of a target organism.

Graph alignment may further help in decision on

protein orthology in cases where sequence homology

is not conclusive enough (e.g., when proteins have

a weak sequence homology only or when several

▶ paralogs exist). The global alignment immediately

suggests functional orthologs across species. In addi-

tion, the method of graph alignment allows detection

of a functional replacement of a protein by an

unrelated nonhomologous protein (non-orthologous

gene displacement). The alignment may also be

used to predict the function of a protein based on

the functional annotation of other proteins in the same

equivalence class.

Global graph alignment may be used to recover

species phylogeny. Topology-only-based alignments

have the potential to provide a completely new, inde-

pendent source of phylogenetic information.

While comparison of the PINs has been given the

major focus in the recent years, mainly because of good

quality and availability of the data, many applications

emerged also in comparison of other Biological Network

Models, including protein contact maps (▶Protein

Contact Maps), ▶metabolic and signaling networks,

gene ▶ co-expression networks, and ▶ gene regulatory

networks (▶Comparative Analysis of Molecular

Networks).

Strengths and Weaknesses

As the graph alignment employs for detection of anal-

ogy of proteins two pieces of biological information

(▶ Information, Biological) – similarity of the

aligned proteins and similarity of the topology of

their interactions – it is much stronger than sequence

alignment and it may detect orthologous proteins also

in case of a weak sequence similarity. However, the
complexity of the data leads also to its weakness: the

computational cost of the algorithms for finding of

the optimal graph alignment is large.

Algorithms and Tools

There is a large variety of graph alignment algorithms

and tools; tools with academic licensing include:

• GRAAL (http://bio-nets.doc.ic.ac.uk/GRAAL_suppl_

inf)

• Græmlin (http://graemlin.stanford.edu)

• GraphAlignment (http://bioconductor.org/pack-

ages/bioc/html/GraphAlignment.html)

• IsoRank (http://groups.csail.mit.edu/cb/mna)

• Natalie (https://www.mi.fu-berlin.de/w/LiSA/Natalie)

• PathBlast (http://pathblast.org)
Cross-References
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Graph Mining

Jan Ramon

Declarative Languages and Artificial

Intelligence Group, Katholieke Universiteit Leuven,

Leuven, Belgium
Synonyms

Learning from graph structured data; Network analysis
Definition

Graph mining is the study of how to perform ▶ data

mining and machine learning (▶ Identification of Gene

Regulatory Networks, Machine Learning) on data

represented with graphs. One can distinguish between,

on the one hand, transactional graph mining, where

a database of separate, independent graphs is considered

(such as databases of molecules and databases of

images), and, on the other hand, large network analysis,

where a single large network is considered (such as

chemical interaction networks and concept networks).
Characteristics

Graph-Structured Data

In many applications, it is natural to represent data

with ▶ graphs. One can distinguish two main settings.
First, in the transactional graph mining setting, databases

of separate, independent graphs are considered.

For example, in a molecule database, molecules are

commonly represented using one vertex for every atom

and one edge for every bond between two atoms. Large,

publicly available databases of chemical compounds

include the NCI dataset (http://cactus.nci.nih.gov/) and

the ZINC dataset (http://zinc.docking.org/).

Second, in the single (large) network setting, all data

is represented in one large, connected network. Exam-

ples of such networks include the Internet, social net-

works, citation networks, concept networks, computer

networks, chemical interaction networks, gene regula-

tory networks, socioeconomic networks, and encyclope-

dias. Sample datasets are publicly available at, among

others, http://snap.stanford.edu/data/. In a chemical

interaction network, molecules are represented by verti-

ces connected by chemical reactions. The level of detail

and the exact representation may be different among

datasets. For example, chemical reactions may be

represented as separate nodes in the network with arcs

from/to the participating compounds, or they may be

implicit, in which case compounds which are involved

in the same chemical reaction are just connected

with an undirected edge. Next to networks of chemical

compounds, it is also common to consider higher-level

networks such as protein interaction networks and gene

regulatory networks. For example, in gene regulatory

networks nodes represent genes and arcs between

nodes indicate that one gene codes for a transcription

factor regulating the other gene. In comparison to the

transactional setting, an important challenge in the single

network setting is that one’s beliefs on all data may be

dependent on one another. Most traditional machine

learning techniques assume that examples are drawn

identically and independently (i.i.d.) (Fig. 1).
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http://zinc.docking.org/
http://snap.stanford.edu/data/
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Other abstractions are sometimes preferred to graphs

in order to represent similar data, such as relational data-

bases and logic. The domains focusing on data mining

using these representations are called relational data min-

ing and inductive logic programming, respectively.

Representing data with graphs has several advantages.

First, the representation language is simple and therefore,

allows for the fast development of algorithms. Second,

the representation language is expressive and adequate

for the majority of applications. Finally, there is a vast

literature on efficient graph algorithms. A potential dis-

advantage, especially in order to use algorithms

implemented only for simpler graph representation, is

that it may be necessary to transform the data into

a simpler (but equally expressive) graph format in

a preprocessing step.

Transactional Graph Mining Methods

Graph mining methods cover the whole range of

methods from data mining and machine learning. We

only list here a few examples of methods which

received significant attention in the literature.

Graph Pattern Mining

Graph pattern mining methods perform▶pattern mining

on graph-structured data, i.e., they list all patterns which

satisfy some interestingness criterium such as being

frequent. A frequent pattern is a pattern which is

a subgraph of at least a certain fraction of the transaction

graphs in the database.Well-knowngraphmining systems

are gSpan (Yan and Han 2002) and Gaston (Nijssen and

Kok 2004).

A popular strategy for the application of these systems

and related ones to quantitative structure–property rela-

tionship (QSPR) modeling (i.e., the modeling of the rela-

tionship between the structure of molecules and their

chemical properties) is to first generate frequentmolecular

fragments, then to generate one boolean feature per pat-

tern (with value 1 for molecules having the pattern as

substructure and with value 0 for other molecules), and

then to apply some suitable ▶ classification algorithm

(such as a support vector machine (▶Biomedical

Decision Support Systems)) on these features.

Comparing Graphs

In order to compare small graphs, such as molecular

graphs, one can use graph kernels, graph metrics, and
maximum common subgraph operators. Kernels on

molecular graphs such as presented in (De Grave and

Costa 2010) can be used with any kernel-based learn-

ing (▶Learning, Kernel-based) method such as sup-

port vector machines and Gaussian processes. Metrics

and maximum common subgraph operators can be used

in instance-based learning approaches, or as features for

a wide range of classification algorithms (Schietgat et al.

2010).

Methods for Analyzing Large Networks

Analyzing Overall Network Regularity

An important starting point for many methods

for analyzing large networks is the observation that

large real-world networks, independently of the domain,

satisfy a number of statistical regularities. For example,

many networks satisfy the small world model, which

informally corresponds to the fact that the number of

highly connected nodes is much smaller than the number

of low degree nodes. Also, many networks can be clus-

tered in modules of nodes which are much better

connected to each other than to nodes in other modules.

As a consequence, much inspiration has come from ran-

dom graph theory (Bollobás 2001; Durrett 2007) and

spectral graph theory (Chung 1997), which study the

statistical properties of such graphs. Alon (2007) dis-

cusses motifs in biological networks and the surprising

deviation of frequencies of certain motifs from what one

would expect if the given network were completely

random.

Predicting Node Properties

Often however, in addition to network-level regulari-

ties, also a more detailed node-by-node analysis of

a network is necessary. Several approaches aim at

modeling properties of nodes in a network. First, in

the field of statistical relational learning (Getoor and

Taskar 2007), probabilistic models are being studied

which allow to reason about beliefs of the properties of

individual nodes and their connections in a Bayesian

network manner. Second, semi-supervised learning

(Zhu and Goldberg 2009) aims at learning predictive

models exploiting not only the information about the

training examples but also the information about the

unlabeled examples. This is especially useful in net-

works where nodes and their connections are known,

but not the value of some target attribute.

http://dx.doi.org/10.1007/978-1-4419-9863-7_600
http://dx.doi.org/10.1007/978-1-4419-9863-7_606
http://dx.doi.org/10.1007/978-1-4419-9863-7_627
http://dx.doi.org/10.1007/978-1-4419-9863-7_627
http://dx.doi.org/10.1007/978-1-4419-9863-7_604
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Synonyms

Concentration graph model; Covariance selection

model
Definition

Graphical Gaussian model (CGM) (Crzegorxczyk et

al. 2008; Hache et al. 2009; Werhli et al. 2006) is

an undirected graph whose nodes are genes and

two genes are linked by an edge if there is an

interaction between them. The interactions are mea-

sured by the partial correlation coefficients condi-

tioned on all the other genes. After the correlation

coefficients are determined, a statistical significance

test is employed, and the two genes whose score is

significantly large are considered to have an inter-

action. Otherwise they are considered to be condi-

tional independence and there is no edge between

them. Under the assumption that the data are dis-

tributed according to a multivariate Gaussian distri-

bution, the partial correlation coefficient of gene

x and gene y is given as:
scoreðx; yÞ ¼ � C�1xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C�1xx C

�1
yy

q

where C�1xy is the element of C�1, inverse of the covari-
ance matrix C of the data.
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Xiujun Zhang

Institute of Systems Biology, Shanghai University,

Shanghai, China
Definition

A graphical model is a way of representing probabilistic

relationships between random variables. In a graphical

model, variables are represented by nodes, conditional

independencies (independencies) are represented by

(missing) edges (Koller and Friedman 2009). Figure 1

gives a simple graphicalmodel in which the nodes ‘A–E’

indicate variables and the arrows indicate dependencies

between variables. In this graphical model, ‘C’ depends

on ‘A’ and ‘B’, ‘E’ depends on ‘C’ and ‘D’. The two

most common forms of graphical models are directed

graphical models and undirected graphical models.

One of the most popular directed graphical model is

Bayesian network.
BA

C D

E

Graphical Model, Fig. 1 Simple graphical model
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Grid Computing, Parallelization
Techniques

Giuseppe Agapito

Department of Experimental Medicine and Clinic,

University Magna Graecia of Catanzaro,

Catanzaro, Italy
Synonyms

Data parallel; Distributed data access; Distributed

data management; Integration technologies; Parallel

computing
Definition

A Computational Grid is a collection of heterogeneous

computers and resources spread across the networkmak-

ing a confederation of multiple administrative domains

with the intent to provide users uniform access to these

resources to reach a common goal. To provide an

http://dx.doi.org/10.1007/978-1-4419-9863-7_1096
http://dx.doi.org/10.1007/978-1-4419-9863-7_1312
http://dx.doi.org/10.1007/978-1-4419-9863-7_274
http://dx.doi.org/10.1007/978-1-4419-9863-7_100318
http://dx.doi.org/10.1007/978-1-4419-9863-7_988
http://dx.doi.org/10.1007/978-1-4419-9863-7_979
http://dx.doi.org/10.1007/978-1-4419-9863-7_979
http://dx.doi.org/10.1007/978-1-4419-9863-7_100700
http://dx.doi.org/10.1007/978-1-4419-9863-7_101097
http://dx.doi.org/10.1007/978-1-4419-9863-7_101097


Grid Computing, Parallelization Techniques 869 G

efficient use of resources of a Computational Grid, many

protocols to access resources have been developed. Each

access protocol has unique security requirements and

implications for both the user and the resource provider.

Grid Computing was developed to provide scalable

access to wide area distributed resources.
G

Characteristics

Research in many areas of life sciences, such as geno-

mics and proteomics, are particularly computationally

intensive. This generated the need for a huge amount of

computational resources for running algorithms of

ever-increasing complexity over data of ever-

increasing size. Grid provides the optimal solution to

meeting many of the computational needs of research

in life sciences as described in Krishnan (2004). One of

the major challenges for the bioinformatics is to pro-

vide the tools needed to analyze the sequences pro-

vided by whole genome sequencing. The existent data

are distributed in different domains (since data exper-

iments are conducted in different laboratories and

research centers), reason for which Grids represent

the solution to develop applications able to speed up

the analysis of the whole genome, in order to predict

the function of a new gene, or identify important

regions in genomic sequences.

The computational Grids can be viewed such as

persistent environments that enable the realization of

software able to integrate visualizations, computing

and analysis resources belonging to different domains

and geographically distributed.

In Grid, the sharing is not limited to data, but it is

extended to applications and hardware, and it is possi-

ble to share the resources among different organiza-

tions spread in the network. The access to resources is

regulated by different policies enabling the use to only

authorized users. Furthermore, Grid allows the users to

access and use resources and services spread across the

network in a transparent way, without requiring that

they are aware of the physical locations of the resource.

In fact, supposing that a job submitted on a nodeof the

Grid crashes due to some reasons, the Grid automatically

resubmits the job on another available node. This is an

advantage for the users that only have to submit their

service requests at the Grid, which then automatically

locates the available computing resources to serve the

requests.
Grid Computing is a special category of parallel

computing because it relies on a network of heteroge-

neous computers spread across the network that is in

contrast to the traditional notion of a supercomputer,

which has many processors connected by local

high-speed connectors. The major advantage from the

Grid Computing is the easiness and cheapness

whereby it is possible to increase the computational

power. The increasing of the computational power is

done by combining more resources such as traditional

computers, clusters, and different kind of resources,

thus obtaining a computational power similar to that of

a multiprocessor supercomputer but at a lower cost.

Developing Grid applications presents significant

challenges, considering the high heterogeneity of

resources and the dynamic behavior of Grid environ-

ments. Grid applications need to be designed to exploit

the heterogeneous capacities of the available resources

and overcome the problems related to fluctuations in

both performance and availability of these shared

resources. In such context, it seems that writing effi-

cient and stable programs for the Grid is more difficult

than write applications for traditional parallel machine.

But nevertheless, it is possible to use classical pro-

gramming techniques based on the exchange of mes-

sages to develop Grid applications. The most common

techniques are developed starting from the Message

Passing Interface (MPI). For scientific applications,

the MPI specification is the most widely used, and

there exist several versions of MPI optimized for the

Grid. The efficient and reliable execution of real sci-

entific applications is the reason for which applications

for the Grid are developed using MPI (Nascimento

et al. 2007). The Message Passing Interface Standard

is a message passing library, and its goal is to establish

a portable, efficient, and flexible standard for writing

message passing programs.

To simplify the development of Grid-based appli-

cations, the GridMPI and MPICH-G2 standards were

developed.

GridMPI is an implementation of MPI designed to

obtain high-performance computing in the Grid.

GridMPI can establish multiple connections among

geographically distributed computers in order to obtain

a high computational power in an easy way.

MPICH-G2 is a Grid-enabled implementation of

the MPI standard that allows the user to couple multi-

ple machines, potentially of different architectures, to

run MPI applications.



G 870 Grid Computing, Parameter Estimation for Ordinary Differential Equations
Cross-References

▶Cores
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for Ordinary Differential Equations

Ivan Merelli, Ettore Mosca and Luciano Milanesi

Institute for Biomedical Technologies – CNR

(Consiglio Nazionale delle Ricerche), Segrate,

Milan, Italy
Synonyms

Fitting of continuous and deterministic models; High

throughput computing
Definition

The parameter estimation for ordinary differential equa-

tions with grid computing refers to the exploitation of

a combination of computer resources, usually character-

ized by loose coupling, heterogeneity, and geographical

dispersion, to carry out the calculations required to

identify a particular set of values for the parameters

included in continuous and deterministic models.
Characteristics

Systems biology kinetic models contain parameters that

usually describe physical and chemical properties of
macromolecules and biological processes represented

by the models. Just to mention a few cases, these param-

eters can be the constants appearing in the Michaelis-

Menten kinetics (Nelson and Cox 2005), the association

constant for two proteins interacting to produce a protein

complex or the diffusion coefficient of a protein between

two compartments (e.g., between the cytoplasm and

nucleus).

Due to the lack of experimental measurements,

experimental errors, and biological variability, the

value of many of these parameters is yet unknown or

uncertain (Gunawardena 2010). Since variations of the

parameter values can dramatically affect the system’s

trajectory over the phase space, the selection of

a “proper” set of parameter values is a crucial task for

the usability of a model as a tool for the in silico

investigation of the properties of the modeled system.

The Parameter Estimation Problem

The parameter estimation problem of nonlinear

dynamical systems is stated as the minimization of

a cost function J(Y, Y∗) that measures the goodness

of the model output Y∗ with respect to a given data set

Y (experimental data), subject to constraints that are

the model itself f(dx/dt, x, p, t) ¼ 0 (where x are the

variables and p parameters), the initial conditions

x(t0) ¼ x0, other possible algebraic equalities

g(x, p)¼ 0 and inequalities h(x, p)� 0, and the bounds

over the parameter values pL � p � pU (Moles et al.

2003). Thus, it is mathematically defined as

a nonlinear programming problem with differential-

algebraic constraints, shortly a NLP-DAE problem.

Global Optimization

The nonlinearity and the constrained nature of the

system dynamics make usually these problems non-

convex. This means that the NLP-DAE solution must

be searched with a global optimization (GO) method,

since it is very likely that a local method would identify

a solution of local nature. GO strategies can be classi-

fied in two broad classes, deterministic and stochastic:

generally speaking, deterministic approaches can

assure a higher degree of assurance that the global

optimum will be reached, but no algorithm can guar-

antee the identification of the global optimum with

certainty in finite time and, moreover, the computa-

tional cost increases very quickly with the problem

size; stochastic methods have weak theoretical guar-

antees of convergence to global optimality, but can
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locate the vicinity of it in modest computation time,

and, moreover, are easy to implement and do not

require a transformation of the original problem

(Moles et al. 2003).

Evolution strategies (ES), a sub-class of nature-

inspired stochastic optimization methods belonging to

the class of evolutionary algorithms (Fogel 2006), are

a good candidate to cope with NLP-DAE problems

exploiting grid platform. In fact, they have shown good

performance when applied to parameter estimation in

biochemical pathways (Moles et al. 2003), and it is

possible to implement them in a data parallel manner,

which is the best solution to obtain very good perfor-

mance with grid computing. More precisely, it is possi-

ble to run different instances of an ES algorithm

simultaneously, swapping periodically the best results

among the processes. Importantly, this approach speeds

up the convergence to the optimal solution since a wider

search over the solutions space is performed.

Distributed Implementation

To manage the distribution of each run of the ES

algorithm on different computational resources and to

enable the asynchronous communication among these

runs, a software environment is required. A possible

solution, described in Mosca et al. (2008), involves

a relational database that stores the results achieved

during each evolution process. More precisely, each

run is performed on a computational resource, which

can be completely independent of the others. The only

requirement is the availability of a communication

network to establish a connection to the database.

Each run starts by contacting the main database to

inform the system of its presence, then it randomly

initializes the population and runs the optimization.

After the accomplishment of each iteration, each pro-

cess stores its solutions along with the corresponding

cost function (that evaluates the quality of the solu-

tion). If the other processes are ready to swap their

results, the algorithm downloads from the database

a subset of the solutions (e.g., sorted by the fitness

value) from another randomly selected process and

adds them to its current set of results.

The coordination of the swap among the processes is

delegated to a script which runs in close association

with the database. This script queries the database to

check if all processes are ready to exchange their indi-

viduals, which means that they have performed

a minimum number of iterations from the beginning or
after the previous swap. If this is the case, the script flags

a specific field in the database that enables the exchange

when each process has completed the current step.
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Definition

GridMPI is an open source project with the aim

to provide an efficient and easy use of the MPI
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(Message Passing Interface) standard in the Grid envi-

ronments. GridMPI unlike from MPI comes with

a collection of functions and services specific for

the Grid environments that allow the user to over-

come in an easy way problems typical of the Grid,

related with the development of Grid applications.

Typical examples regarding such problems often

include a connection between different resources

and organizations in order to improve the compu-

tation costs associated with scientific applications

tipically performed by limiting the latency time,

and managing and managing security problems

automatically and in a transparent way.
Cross-References

▶Grid Computing, Parallelization Techniques
Groove (G) Domain

Marie-Paule Lefranc

Laboratoire d’ImmunoGénétique Moléculaire,

Institut de Génétique Humaine UPR 1142, Université

Montpellier 2, Montpellier, France
Synonyms

G domain; G type domain; Groove domain
Definition

The Groove (G) domain is a type of structural unit

(domain) that characterizes a protein chain belonging
Groove (G) Domain, Table 1 G-domain description per recepto

G domain Receptor type

G-DOMAIN MH class I (MH1)

MH class II (MH2)

G-LIKE-DOMAIN MhSF other than MH (RPI-MH1Like)
to the major histocompatibility (MH) superfamily

(MhSF) (▶MH Superfamily (MhSF)). The G domain

comprises the G-DOMAIN of the MH and the G-

LIKE-DOMAIN of the MhSF proteins other than MH

(or related proteins of the immune system (RPI)-

MH1Like).

A G domain (G-DOMAIN or G-LIKE-DOMAIN)

is usually encoded by one exon of a gene. Two

G domains participate to the characteristic groove

structure that, in the MH, binds a peptide. Each

G domain is very conserved and comprises four anti-

parallel beta strands (floor of the groove) and a helix

(wall of the floor). In the MH class I (MH1) or in the

RPI-MH1Like, the two G domains belong to the same

chain (MH1-Alpha, or RPI-MH1Like-Alpha), whereas

in the MH class II (MH2), the two domains belong

to different chains, MH2-Alpha and MH2-Beta

(Lefranc et al. 2005). The G-domain description per

receptor type and chain type, based on the ▶ IMGT-

ONTOLOGY concepts, is shown in Table 1. IMGT®

labels are in capital letters.

Analysis of G-domain amino acid sequences can be

performed by tools of IMGT®, the international

ImMunoGeneTics information system® (http://www.

imgt.org) (▶ IMGT® Information System).

IMGT/DomainGapAlign tool (Ehrenmann et al.

2010) aligns the user amino acid sequences with the

closest G domains of the IMGT domain reference

directory, creates gaps according to the ▶ IMGT

unique numbering for G domain (Lefranc et al.

2005), delimits the strands, loops and helix, highlights

differences with the closest reference(s), and generates

the IMGT Colliers de Perles (▶ IMGT Collier de

Perles).

ForMH proteins with known three-dimensional (3D)

structures, IMGTColliers de Perles are used for compar-

ison of pMH contact analysis (Kaas et al. 2008). Contact

analysis between V-ALPHA and V-BETA (▶Variable

(V) Domain of the T cell receptor TR-Alpha, and
r type and chain type

G-domain description per chain type

G-ALPHA1 On the same chain

G-ALPHA2

G-ALPHA

G-BETA

G-ALPHA1-LIKE On the same chain

G-ALPHA2-LIKE
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TR-Beta chains, respectively) and G-ALPHA1 and G-

ALPHA2 (G domains of the MH1-Alpha chain) or G-

ALPHA and G-BETA (G domains of the MH2-Alpha

and MH2-Beta chains, respectively) are available in the

3D database (IMGT/3Dstructure-DB) of the ▶ IMGT®

information system (Ehrenmann et al. 2010).
G

Cross-References

▶ IMGT Collier de Perles

▶ IMGT Unique Numbering

▶ IMGT® Information System

▶ IMGT-ONTOLOGY
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