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Abstract

This paper exploits the connection between the quantum many-particle density of states

and the partitioning of an integer in number theory. For N bosons in a one-dimensional har-

monic oscillator potential, it is well known that the asymptotic (N ! 1) density of states is

identical to the Hardy–Ramanujan formula for the partitions pðnÞ, of a number n into a

sum of integers. We show that the same statistical mechanics technique for the density of states

of bosons in a power-law spectrum yields the partitioning formula for psðnÞ, the latter being

the number of partitions of n into a sum of sth powers of a set of integers. By making an ap-

propriate modification of the statistical technique, we are also able to obtain dsðnÞ for distinct
partitions. We find that the distinct square partitions d2ðnÞ show pronounced oscillations as a

function of n about the smooth curve derived by us. The origin of these oscillations from the

quantum point of view is discussed. After deriving the Erdos–Lehner formula for restricted

partitions for the s ¼ 1 case, we use the modified technique to obtain a new formula for dis-

tinct restricted partitions.
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1. Introduction

The N -particle density of states of a self-bound or trapped system has attracted

the attention of physicists for a long time. We have in mind the work done in nuclear

[1] and particle physics [2], as well as in connection to black-hole entropy [3] in recent
times. In nuclear physics, one is generally interested in self-bound fermions at an ex-

citation energy E that is large compared to the average single-particle level spacing,

but is small compared to the fermi energy of the nucleus. In this energy range, the

density of states is given by the highly successful Bethe formula [1] that grows as

expða
ffiffiffiffi
E

p
Þ, and is insensitive to the details of the single-particle spectrum. The con-

stant a in the exponent is proportional to the single-particle density of states at the

fermi energy EF. In hadronic physics [2], the many-particle density of states grows

exponentially with E, and leads to the concept of a limiting temperature. The same
behavior is found to hold for a bosonic system like gluons in a bag [4].

It is well known that for ideal bosons in a one-dimensional harmonic trap, the as-

ymptotic (N ! 1) density of states is the same as the number of ways of partitioning

an integer n into a sumof other integers, and is given by the famousHardy–Ramanujan

formula [5]. It also grows exponentially as
ffiffiffiffi
E

p
, the same as the Bethe formula whenE is

identified with n. Grossmann andHolthaus [6] have studied this system, and have used

more advanced results from the theory of partitions [7] to calculate the microcanonical

number fluctuation from the ground state of the system as a function of temperature.
Combinatorial methods have also been used to compute the thermodynamic functions

for similar systems [8]. In this paper we use the N -particle quantum density of states

(that may be derived using the methods of statistical mechanics) to obtain some novel

results on the partitioning of an integer into a sum of squares, or a sum of cubes, etc.

Some of the results pertaining to the partitions of an integer to a sum of distinct powers

are new, and will be pointed out as they appear in the text. For the harmonic spectrum,

we are also able to obtain the leading order finiteN (Erdos–Lehner [7]) correction to the

asymptotic Hardy–Ramanujan formula using our method, and then get the corre-
sponding (new) result for distinct restricted partitioning.

In Section 2 of this paper, we consider ideal bosons with a single-particle spectrum

given by a sequence of numbers generated by ms ðm ¼ 1; 2; 3; . . .Þ for a given integer

sP 1. Such a spectrum has been studied before in a different context to examine the

nearest neighbor spacings of a quantum many-body system [9]. To set the method-

ology, we first derive the asymptotic many-particle density of states for this system

using the canonical ensemble and in the saddle-point approximation, and show that

it grows exponentially as the ðsþ 1Þth-root of the excitation energy. Specifically, in
the physically relevant case of a square well, this result implies that the density of

states grows exponentially as the cube root of energy. Our general expression for

the asymptotic density of states agrees with the Hardy–Ramanujan formula [5] for

psðnÞ, the number of ways an integer n may be expressed as a sum of sth powers

of integers. Throughout this paper, we drop the superscript s when s ¼ 1.

We next extend our method to obtain asymptotically the number of distinct par-

titions dsðnÞ of an integer n using the partition function of the fermionic particle

spectrum (excluding the hole distribution, to be explained later). This analysis is
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presented in Section 3, where the smooth part of the asymptotic density of states

(which reproduces the average behavior of the distinct partitions) is derived using

the saddle-point approximation. While the asymptotic formula for distinct partition

for s ¼ 1 is known, we believe that our general formula for any s given by Eq. (23) is

new. Interestingly, for the s ¼ 2 case where the integer n is expressed as a sum of dis-
tinct squares of integers, computations of the exact values of d2ðnÞ reveal large fluc-
tuation about the smooth average curve. These fluctuations wax and wane in a

beating pattern. The ratio of the amplitude of the oscillations to the smooth part

of d2ðnÞ goes to zero as n ! 1. From the quantum angle, these oscillations in the

many-particle density of states have their origin in the fluctuation of the degeneracy

of the many-particle density of states about the average value. This, in turn, is related

to the oscillatory part of the single-particle density of states of a one-dimensional

square-well potential, and the constraint brought about by the Pauli principle.
In Section 4, we discuss the corrections to the saddle-point approximation when

the number of particles N is finite. In the theory of partitions this is known as

restricted partitions (because of the upper limit on the number of partitions), as

opposed to the unrestricted partitions discussed in Sections 2 and 3. We restrict

our derivations to the harmonic oscillator (s ¼ 1) spectrum in this section, since

the canonical partition function is exactly known even for finite N in this case.

For the bosonic case, using this partition function, we derive exponentially small

corrections for finite N , a result that agrees with the Erdos–Lehner [7] asymptotic
formula for s ¼ 1. This method is then extended for finding the finite N correction

for distinct partitions, a result that to our knowledge is new. We conclude with a

summary of the main results.
2. The many-particle density of states

We first discuss the general statistical mechanical formulation for a N -particle sys-
tem. The canonical N -particle partition function is given by
ZN ðbÞ ¼
X
EðNÞ
i

gi expð�bEðNÞ
i Þ ¼

Z 1

0

qN ðEÞ expð�bEÞdE; ð1Þ
where b is the inverse temperature, EðNÞ
i are the eigenenergies of the N -particle system

with degeneracies gi, and qN ðEÞ ¼
P

i gidðE � EðNÞ
i Þ is the N -particle density of states.

The density of states qN ðEÞ may therefore be expressed through the inverse Laplace

transform of the canonical partition function
qN ðEÞ ¼
1

2pi

Z i1

�i1
expðbEÞZN ðbÞdb: ð2Þ
In general, it is not always possible to do this inversion analytically. Note that the

single-particle density of states may be decomposed into an average (smooth) part,

and oscillating components [10]. This, in turn, results in a smooth part �qN ðEÞ, and an

oscillating part dqN ðEÞ [11] for the N -particle density of states:
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qN ðEÞ ¼ �qNðEÞ þ dqN ðEÞ: ð3Þ

The smooth part �qN ðEÞ may be obtained by evaluating Eq. (2) using the saddle-point
method [12]. Unlike the one-particle case, where the oscillating part may be obtained

using the periodic orbits in a ‘‘trace formula’’ [10], it remains a challenging task to

find an expression for the oscillating part dqNðEÞ [11]. In what follows, we shall use

the saddle-point method to obtain the smooth asymptotic �qN ðEÞ, and identify it with

the Hardy–Ramanujan formula for psðnÞ.
Before doing this, we note that the canonical partition function ZN ðbÞ for a set of

non-interacting particles with single-particle energies �i, occupancies fnig, may also

be written as
ZN ðbÞ ¼ exp
�
� bEðNÞ

0

�X
fnig

XðN ;ExÞ expð�bExfnigÞ: ð4Þ
In the above, EðNÞ
0 is the ground-state energy which we set to zero, and Ex is the

excitation energy. The sum is over the allowed occupation numbers for particles such

that Ex ¼
P

i ni�i. Note that for a given Ex, the number of excited particles in the

allowed configurations may vary from one to a maximum of N . We denote by

XðN ;ExÞ the total number of such distinct configurations allowed at an excitation

energy Ex. We set the lowest single-particle energy at zero in order that EðNÞ
0 ¼ 0, and

consider a single-particle spectrum �m ¼ ms. If now the excitation energy Ex takes
only integral values n, then XðN ;EÞ is the same as the number of restricted partitions

of n, denoted by psN ðnÞ, and asymptotically equivalent to the density of states �qN ðEÞ.
Omitting the subscript N , as in psðnÞ, will imply that we are taking N ! 1, corre-

sponding to unrestricted partitioning.

To perform the saddle-point integration of Eq. (2), note that the integrand may be

written as exp½SðbÞ�, where SðbÞ is the entropy given by,
SðbÞ ¼ bE þ log ZN : ð5Þ

Expanding the entropy around the stationary point b0 and retaining only up to

the quadratic term in the expansion in Eq. (2) yields the standard result [12]
qN ðEÞ ¼
exp½Sðb0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pS00ðb0Þ

p ; ð6Þ
where the prime denotes differentiation with respect to inverse temperature and
E ¼ � o lnZN

ob

� �
b0

: ð7Þ
We now proceed with a single-particle spectrum given by �m ¼ ms; where the in-

teger mP 1, and s > 0 for a system of bosons. The energy is measured in dimension-

less units. For example, when s ¼ 1 the spectrum can be mapped on to the spectrum

of a one-dimensional oscillator where the energy is measured in units of �hx. For
s ¼ 2, it is equivalent to setting energy unit as �h2=2m, where is m is the particle mass
in a one-dimensional square well with unit length. These are the only two physically

interesting cases. We, however, keep s arbitrary even though for s > 2 there are no
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quadratic Hamiltonian systems. In particular s need not even be an integer except to

allow a comparison between the number theoretic results for psN ðnÞ and the density of

states qN ðEÞ that we obtain here. We first obtain the asymptotic results for unre-

stricted partitioning by letting N ! 1 and discuss the N -dependent correction later.

The canonical partition function in this limit may be written as
Z1ðbÞ ¼
Y1
m¼1

1

½1� expð�bmsÞ� ; ð8Þ
where we have used the power-law form for the single-particle spectrum. By setting

x ¼ expð�bÞ, we see that the bosonic canonical partition function is nothing but the

generating function [13] for psðnÞ in number theory, the number of partitions of n
into perfect sth powers of a set of integers [5]:
Z1ðxÞ ¼
X1
n¼1

psðnÞxn ¼
Y1
n¼1

1

½1� xns � : ð9Þ
In the limit N ! 1, psðnÞ is the same as XðEÞ where the energy E is replaced by

the integer n. In general the above form holds for all s in the limit of N ! 1, but is

exact for finite N only for the oscillator (s ¼ 1) system [14,15]. Using Eqs. (5) and (8),

and the Euler–MacLaurin series, we obtain
S ¼ bE �
X1
n¼1

ln½1� expð�bnsÞ�

¼ bE þ CðsÞ
b1=s

þ 1

2
ln b� s

2
lnð2pÞ þOðbÞ; ð10Þ
where
CðsÞ ¼ C 1

�
þ 1

s

�
f 1

�
þ 1

s

�
: ð11Þ
In the leading order, for determining the stationary point, we ignore the ln b term
in the derivatives of S and keeping only the dominant term we obtain
S0ðbÞ ¼ E � 1

s
CðsÞ
bð1þ1=sÞ : ð12Þ
Therefore the saddle-point is given by
b0 ¼
CðsÞ
sE

� �s=ð1þsÞ

: ð13Þ
The notation may be simplified by setting
js ¼
CðsÞ
s

� �s=ð1þsÞ

; ð14Þ
so that b0 ¼ jsE�s=ð1þsÞ. Substituting this value in the saddle-point expression for the
density of states in Eq. (6)
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�qs
1ðEÞ ¼

js

ð2pÞðsþ1Þ=2

ffiffiffiffiffiffiffiffiffiffiffi
s

sþ 1

r
E�ð3sþ1Þ=ð2ðsþ1ÞÞ exp jsðs

�
þ 1ÞE1=ð1þsÞ�: ð15Þ
The RHS of the above equation is identical to that given for psðnÞ in [5], the number

of ways of expressing n as a sum of integers with sth powers, if we replace E by the
integer n. For s ¼ 1, for example, we have
�q1ðEÞ ¼
exp p

ffiffiffiffiffiffiffiffiffiffiffi
2E=3

ph i
4
ffiffiffi
3

p
E

; ð16Þ
which is simply the number of partitions of an integer E in terms of other integers.

For example 5¼ 5, 1 + 4, 2 + 3, 1 + 1+ 3, 1+ 2+ 2, 1 + 1+ 1+2, and 1+ 1+ 1+ 1+ 1,

so pð5Þ ¼ 7. Of course, the above asymptotic formula is not expected to be accurate

for such a small integer, but it improves in accuracy for large numbers.

While the ‘‘physicists derivation’’ of the number partitions has been known for a

while and indeed has been extensively used in the analysis of number fluctuation in
harmonically trapped Bose gases [6], the derivation for a general power-law spec-

trum given above is novel even though the result was derived long ago by Hardy

and Ramanujan [5] using more advanced methods. Equally interesting from the

point of view of physics is the sensitivity of the bosonic density of states on the sin-

gle-particle spectrum, in contrast to the fermionic Bethe formula. For example,

where as in a harmonic well, both fermions and bosons have the exponential

square-root dependence in energy for the density of states, as given in Eq. (16), in

a square well only the fermions obey such a relation when the low temperature ex-
pansion is used. For the bosonic case, from Eq. (15), the density of states is
�q2
1ðEÞ ¼

ffiffiffi
2

3

r
j2

ð2pÞ3=2
exp½3j2E1=3�

E7=6
: ð17Þ
This is the same as the asymptotic formula derived by Hardy and Ramanujan for

the partition of E into squares, for example 5 ¼ 12 þ 22; 12 þ 12 þ 12 þ 12 þ 12. It is

to be noted that in making the identification of p2ðnÞ with q2
1ðEÞ, E ¼ n is to be iden-

tified as the excitation energy of the quantum system with a fictitious ground state at

zero energy added to the square well.

In Fig. 1 we show a comparison between the exact (computed) pðnÞ (continuous
line), and �q1ðnÞ (dashed line), as given by Eq. (16). We note that the Hardy–Raman-

ujan formula works well even for small n. Similarly, in Fig. 2, the computed p2ðnÞ is
compared with q2

1ðnÞ, as given by Eq. (17). It will be noted from Fig. 2 that the com-

puted p2ðnÞ has step-like discontinuities, unlike the smooth behavior of q2
1ðnÞ, spe-

cially for small n. We should remind the reader that these results are not new, and the

corrections to the leading order Hardy–Ramanujan formula are also known in the

number theory literature. We shall, however, obtain some new results using our

method for distinct partitions d2ðnÞ in the next section.

Before we conclude this section, we note that keeping terms of order b in the sad-

dle-point expansion of S merely shifts the energy E by the coefficient of the term pro-
portional to b. For the s ¼ 1 case in Eq. (10), there is indeed a term like � 1

24
b,



Fig. 2. Comparison of the exact p2ðnÞ (solid line) and the asymptotic �q2
1ðEÞ (dashed line), obtained from

Eq. (17) for s ¼ 2.

Fig. 1. Comparison of the exact pðnÞ (solid line) and the asymptotic �q1ðEÞ (dashed line), obtained from

Eq. (16) for s ¼ 1.
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leading to the replacement of E by ðE � 1
24
Þ in Eq. (16). The resulting asymptotic ex-

pression for the density is the first term of the exact convergent series for partitions

obtained by Rademacher [16]. Interestingly, for s ¼ 2, there is no term of order b in

the Euler–MacLaurin expansion. A similar situation prevails for distinct partitions

as will be shown in the next section.
3. Asymptotic density of states with distinct partitions

We now modify the method to obtain distinct partitions of an integer n into sth
powers, to be denoted by dsðnÞ. For example, for s ¼ 1, n ¼ 5, the number of distinct

integer partitions are 5, 2 + 3, and 1+ 4, so dð5Þ ¼ 3. For distinct partitions, the first

guess would be to use the fermionic partition function instead of the bosonic one of
the previous section since distinctiveness of the parts is immediately ensured by the

Pauli principle. However, there is a problem here which we illustrate using the s ¼ 1

spectrum. For this case the fermionic partition function of non-interacting particles

is given by (setting x ¼ expð�bÞ as before),
ZN ðxÞ ¼ xN
2=2
YN
m¼1

1

ð1� xmÞ ¼ xN
2=2
X1
n¼0

XðN ; nÞxn; ð18Þ
which is the same as the bosonic partition function in a harmonic potential, except
for the prefactor which is related to the ground-state energy of N particles in the

trap. Obviously, the XðN ; nÞ is the same for both fermions and bosons even though

dN ðnÞ is different from pNðnÞ. This is because the quantum mechanical ground state

of fermions consists of occupied levels up to the fermi energy, unlike the bosons

which all occupy the lowest energy state. Thus, for the fermions at any excitation

energy, one should consider the distribution among particles as well as holes, each of

which is separately distinct [17], and obey the Pauli principle. As we show below, the

particle distribution at a given excitation energy measured from the Fermi energy
identically reproduces (the unrestricted) but distinct partitions of an integer n, when
n is identified with the excitation energy.

The relevant ‘‘partition’’ function for the ms spectrum is given by,
ln Z1ðbÞ ¼
X1
m¼1

ln½1þ expð�bmsÞ�; ð19Þ
and the entropy SðbÞ is obtained as usual by adding bE to the above expression. Notice
that this resembles the entropy of anN -fermion system, but with the chemical potential

l ¼ 0. In the normal N -fermion system at any given excitation energy the number of

macro states available depends on the distribution of both particles above the Fermi

energy and holes below the Fermi energy in the ground states. By setting l ¼ 0 we are

ignoring the hole distribution but only taking into account the states associated with

the particle distribution. Because of Pauli principle implied in the above form for the

entropy, only distinct partition of energy E is allowed. Again, using the variable

x ¼ expð�bÞ in Eq. (19), Z1ðxÞ above is seen to be the generating function for distinct
partitions dsðnÞ of an integer n into sth powers of other integers [13].
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Once this point is noted, the rest of the calculation proceeds as in the case of

bosons and we obtain the following expression using the Euler–MacLaurin series
SðbÞ ¼ bE þ DðsÞ
b1=s

� 1

2
lnð2Þ þOðbÞ; ð20Þ
where
DðsÞ ¼ C 1

�
þ 1

s

�
g 1

�
þ 1

s

�
; ð21Þ
where gðsÞ ¼
P1

l¼1
ð�1Þl�1

ls denotes the alternating zeta function. Note that there is no

logðbÞ term in Eq. (20). The saddle point b0 is obtained by setting S0ðb0Þ ¼ 0 as

before. Defining
ks ¼ ðDðsÞ=sÞs=ðsþ1Þ ð22Þ

and using Eq. (6), we obtain
�qs
1ðF ÞðEÞ ¼

ffiffiffiffiffiffi
sks

p exp ð1þ sÞksE1=ð1þsÞ� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1þ sÞEð2sþ1Þ=ðsþ1Þ

p ; ð23Þ
where the subscript ðF Þ in q is to remind the reader that Fermi statistics has been

used (with l ¼ 0). Once again for s ¼ 1 we recover the well-known asymptotic

formula for the unrestricted but distinct partitions dðnÞ of an integer [18], namely
�q1ðF ÞðEÞ ¼
exp½p

ffiffiffiffiffiffiffiffi
E=3

p
�

4� 31=4E3=4
; ð24Þ
where, as usual, E should be read as n. Similarly the asymptotic expression for dsðnÞ
is given by in Eq. (23). We have not found this general expression in the literature. In
Fig. 3, we show a comparison of the asymptotic density �q1ðF Þ and the exact distinct

partitions dðnÞ of integer n for s ¼ 1. As in the case of bosonic partitions pðnÞ, the
asymptotic formula for dðnÞ works reasonably, except for n < 10. But the really

interesting result is shown in Fig. 4 where we compare Eq. (23) for s ¼ 2 with exact

computations of d2ðnÞ. The asymptotic density of states follows the average of the

exact d2ðnÞ closely, but there are pronounced beat-like structure superposed on this

smooth curve. This has come about because we have joined the computed points of

d2ðnÞ for discrete n�s by zig-zag lines. Note that compared to dðnÞ, the magnitude of
d2ðnÞ is very small, and this is one reason that the fluctuations in d2ðnÞ look so

prominent. We have checked numerically, however, that the ratio of the amplitude

of the oscillations to its smooth average value decreases from about 1.5 to 0.2 as n is

increased to 1000. This means that for n ! 1, the smooth part will eventually mask

the fluctuations.

Although we cannot analytically reproduce these fluctuations in the many-particle

density of states (or equivalently in d2ðnÞ), we can show from the quantum point of

view that the smooth part �q2
1ðF Þ arises strictly from the smooth part of the single-par-

ticle density of states. To make this point, let us derive the single-particle density of

states, gð�Þ, for the n2 spectrum. We begin with the knowledge of the exact single-

particle spectrum, and write the canonical partition function:



Fig. 4. Comparison of the exact d2ðnÞ (solid line) and the asymptotic �q2
1ðF ÞðEÞ (dashed line), obtained

from Eq. (23) for s ¼ 2 and distinct partitions. Note that the y-axis is no longer in log scale.

Fig. 3. Comparison of the exact dðnÞ (solid line) and the asymptotic �q1ðF ÞðEÞ (dashed line), obtained from

Eq. (24) for s ¼ 1 and distinct partitions.
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Z1ðbÞ ¼
X1
n¼1

expð�bn2Þ: ð25Þ
To express this in a tractable form for Laplace-inverting, we use the (exact) Pois-
son sum formula
X1

n¼�1
F ðnÞ ¼

X1
q¼�1

FðqÞ; ð26Þ
where Z

FðqÞ ¼

1

�1
dnF ðnÞ expð2piqnÞ: ð27Þ
Taking F ðnÞ ¼ expð�bn2Þ then gives FðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
p=ðbÞ

p
expð�p2q2=ðbÞÞ. Using this

result, we obtain
Z1ðbÞ ¼
1

2

p
b

� �1=2

� 1

2
þ p

b

� �1=2X1
q¼1

expð�p2q2=bÞ: ð28Þ
On Laplace-inverting term by term, we obtain the exact result for the single-par-

ticle density of states:
gð�Þ ¼ 1

2
ffiffi
�

p � 1

2
dð�Þ þ 1ffiffi

�
p
X1
q¼1

cos 2pq
ffiffi
�

p� 	
; ð29Þ

¼ gð�Þ þ dgð�Þ; ð30Þ
where gð�Þ is the ‘‘smooth’’ part consisting of the first two terms on the RHS of

Eq. (29), and dgð�Þ denotes the remaining oscillating terms. We can now evaluate

Eq. (19) for s ¼ 2 using the above gð�Þ:
ln Z1 ¼
Z 1

0

gð�Þ ln½1þ expð�b�Þ�d�: ð31Þ
Evaluating the integrals, and adding bE to it, we get the entropy
SðbÞ ¼ bE þ Dð2Þ
b1=2

� 1

2
lnð2Þ þ

ffiffiffi
p
b

r X1
q¼1

X1
l¼1

ð�Þlþ1

l3=2
exp

�p2q2

bl

� �
: ð32Þ
We note that the first two terms on the RHS of the above equation are the same as

obtained earlier in Eq. (20) using the Euler–MacLaurin expansion. These yielded the
smooth many-body density of states given by Eq. (23) on using the saddle-point ap-

proximation. The term with the double sum in Eq. (32), which arise from dgð�Þ in Eq.

(30) and Fermi statistics, must be the source of the fluctuations seen in the density of

states in Fig. 4 (the same dgð�Þ, when used in the bosonic case, gives a very different

contribution to SðbÞ). In principle, exact Laplace inversion of exp½SðbÞ�, where SðbÞ
is given by Eq. (32), should yield the fluctuating degeneracies of the quantum states

with E, and hence of d2ðnÞ. We have not been able, however, to do this Laplace

inversion. Since the oscillation in the exact partitions d2ðnÞ resembles a beat-like
structure, at least two frequencies must be interfering to give the pattern. Further

work is needed to unravel this interesting point.
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4. Finite size corrections, or restricted partitions

The smooth part of the many-particle density of states was derived in the previous

sections for a system with N ! 1, that corresponded to unrestricted partitions. We

now apply the samemethod to obtain the asymptotic density of states for systems with
finite size, that is when the number of particles is kept finite and equal to N . This cor-

responds to allowing the number of parts to be at most N . Consider, for example, for

s ¼ 1,N ¼ 4, n ¼ 5. Then, in restricted partitioning, the allowed partitions are 5, 4 + 1,

3+ 2, 3+ 1+ 1, 2+ 2+ 1, and 2+ 1+1+1. The partitionwith 5 parts, 1 + 1+ 1+ 1+ 1 is

not allowed, since the number of parts in this case is greater than 4. The above example

is for restricted case that includes identical parts in a partition. Thesewill be denoted by

psN ðnÞ in general, but for s ¼ 1, the superscript will be dropped as usual. For the above

example with restricted and distinct partitions, however, only 5, 1 + 4, and 2+ 3 are
allowed. We denote such partitioning by ds

N ðnÞ in general. In this section, we restrict

to s ¼ 1, and first present the leading order asymptotic expression for pN ðnÞ, using
our method of calculating qN ðEÞ. This result is already known in the literature by the

Erdos–Lehner formula [7], but is derived here because we generalize it for obtaining

the asymptotic expression for dN ðnÞ. To the best of our knowledge, this is a new result.

4.1. Asymptotic formula for pN ðnÞ

The N -boson canonical partition function in this case is exactly known:
ln ZN ðbÞ ¼ �
XN
m¼1

ln½1� expð�bmÞ�: ð33Þ
The canonical entropy SN is obtained as before by adding bE to the above equa-

tion. Expanding the above using Euler–MacLaurin series, and assuming that N is

large so that x ¼ expð�bNÞ � 1, even though b � 1. We then obtain
SN ðbÞ ¼ S1ðbÞ � expð�bNÞ 1

b



� 1

2

�
; ð34Þ
The stationary point is determined as before by the condition in Eq. (7) and for N
large it is the same as in Eq. (13). Substituting this in the saddle-point expression for

the density of states in Eq. (6) we get
qN ðEÞ ¼ q1ðEÞ exp
"
�

ffiffiffiffiffiffi
6E

p

p

 
� 1

2

!
exp

�
� pNffiffiffiffiffiffi

6E
p

�#
: ð35Þ
The above expression reproduces the well-known correction to the unrestricted

partitions due to the restriction on the number of particles (see Erdos and Lehner

[5]) apart from the constant term proportional to 1/2 in the exponent. This constant

may, however, be neglected when E is large. Using the conditions b0 � 1 and

b0N � 1, we see that formula (35) is valid in the region Cð1Þ � E � Cð1ÞN 2, where

Cð1Þ � 1:645. In Fig. 5 we compare the two differences, q1ðEÞ � pNðnÞ½ �, and
qN ðEÞ � pN ðnÞ½ � for N ¼ 20 (Fig. 5A), and N ¼ 30 (Fig. 5B). In the above, q1ðEÞ
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is obtained from Eq. (16), q20ðEÞ is the Erdos and Lehner formula as given by Eq.

(35), and p20ðnÞ is the exact (computed) restricted partitions. Clearly, the former is

much larger than the latter, indicating that Eq. (35) gives a better approximation

to the exact values for restricted partitions.

4.2. Asymptotic formula for dN ðnÞ

Next we present the finding of an equivalent asymptotic formula to Eq. (35) for

the restricted and distinct partition. This brings us back to the fermionic particle

spectrum as discussed in Section 2 and [17]. Eq. (19) of Section 2 does not apply here,

however, since it is applicable only for the unrestricted distinct partition, i.e.:

N ! 1. What we need is the exact canonical partition function for the particle

space. From number theory [17,19], we found a formula for the (exact) number of
ways of partitioning an integer n to at most N distinct parts:
Fig. 5

where

and p2
dN ðnÞ ¼
XN
i

pi n
�

� iðiþ 1Þ
2

�
; ð36Þ
where piðnÞ is the (exact) number of partitions of n to at most i parts, which may be

generated by the partition function given by Eq. (33). Eq. (36) implies that the

partition or generating function for the restricted and distinct partition is given by:
. (A) Comparison of q1ðEÞ � p20ðnÞ½ � (dotted line) and q20ðEÞ � p20ðnÞ½ � (solid line) for N ¼ 20,

q1ðEÞ is obtained from Eq. (16), q20ðEÞ is the Erdos and Lehner formula as given by Eq. (35),

0ðnÞ is the exact (computed) restricted partitions. (B) Same for N ¼ 30.



Fig. 6

where

stricted
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ZðdÞ
N ðbÞ ¼

XN
i¼1

xiðiþ1Þ=2
Yi
n¼1

1

1� xnð Þ

¼
Y1
n¼1

1ð þ xnÞ �
X1
i¼Nþ1

xiðiþ1Þ=2
Yi
n¼1

1

1� xnð Þ : ð37Þ
The first term on the right-hand side of Eq. (37) is the generating function for the

unrestricted distinct partition Eq. (19), and the second term is a sum of the gener-

ating functions for the restricted non-distinct partition Eq. (33) with the integer
shifted to iðiþ 1Þ=2. To find an asymptotic formula for the restricted distinct par-

tition dN ðnÞ, as usual, we take inverse Laplace transform of Eq. (37):
dN ðnÞ ¼ L�1
b

Y1
n¼1

1ð
(

þ xnÞ
)

�
X1
i¼Nþ1

L�1
b xD

Yi
n¼1

1

1� xnð Þ

( )

¼ dðnÞ �
X1
i¼Nþ1

piðn� DÞ � �q1ðF ÞðEÞ �
X1
i¼Nþ1

qiðE � DÞ

¼ exp½p
ffiffiffiffiffiffiffiffi
E=3

p
�

4� 31=4E3=4
�
X1
i¼Nþ1

q1ðE � DÞ exp
"
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðE � DÞ

p
p

 
� 1

2

!

� exp

 
� pNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðE � DÞ
p

!#
¼ qNðF ÞðEÞ; ð38Þ
. (A) Comparison of ½q1ðF ÞðEÞ � d20ðnÞ� (dotted line) and ½�q20ðF ÞðEÞ � d20ðnÞ� (solid line) for N ¼ 20,

q1ðF ÞðEÞ is obtained from Eq. (24), �q20ðF ÞðEÞ from Eq. (38), and d20ðnÞ is the exact (computed) re-

distinct partitions. (B) Same for N ¼ 30.



218 M.N. Tran et al. / Annals of Physics 311 (2004) 204–219
where D � iðiþ 1Þ=2, x � expð�bÞ and n is identified with E. Note that since the

asymptotic expression for the restricted partition �qN ðEÞ is valid only for

Cð1Þ � E � Cð1ÞN 2, Eq. (38) is thus valid only in this range. Fig. 6 displays the two

differences, ½�q1ðF ÞðEÞ � dNðnÞ�, and ½qNðF ÞðEÞ � dN ðnÞ� for N ¼ 20 (Fig. 6A), and

N ¼ 30 (Fig. 6B). In the above differences, q1ðF ÞðEÞ is obtained from Eq. (24),
qNðF ÞðEÞ from Eq. (38), and dNðnÞ is the exact (computed) restricted distinct parti-

tions. Again, similar to the non-distinct case (Fig. 5), the N -correction asymptotic

formula gives a better approximation to the exact finite N partition than the infinite

distinct one.
5. Discussion

This work emphasizes the connection between the many-body quantum density of

states in a power-law spectrum with the number theoretic partitions psðnÞ, and the

distinct partitions dsðnÞ. This was already well known to the physics community

for pðnÞ. While many of the results derived in this paper are known in the mathemat-

ical literature, the asymptotic formula for dsðnÞ (Eq. (23)), and the generalized for-

mula (38) for restricted distinct partitions are, to the best of our knowledge, new.

The fluctuations in d2ðnÞ, shown in Fig. 4, are interesting from the quantum mechan-

ical point of view since these may be linked to the oscillating part of the density of
states in a square-well potential, and the Pauli principle. However, we are not able to

completely demonstrate this point to our satisfaction because of the difficulty of La-

place inversion of exponentiated quantities.
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