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Abstract-We develop an information-theoretie view of the 
stochastic block model, a popular statistieal model for the 
large-scale structure of complex networks. A graph G from 
such a model is genera ted by first assigning vertex labels at 
random from a finite alphabet, and then connecting vertiees 
with edge probabilities depending on the labels of the end points. 
In the case of the symmetrie two-group model, we establish an 
explicit 'single-letter' characterization of the per-vertex mutual 
information between the vertex labels and the graph, when the 
graph average degree diverges. 

The explicit expression of the mutual information is intimately 
related to estimation-theoretie quantities, and -in particular
reveals a phase transition at the critieal point for community 
detection. Below the critieal point the per-vertex mutual infor
mation is asymptotieally the same as if edges were independent 
of the vertex labels. Correspondingly, no algorithm can estimate 
the partition better than random guessing. Conversely, above the 
threshold, the per-vertex mutual information is strietly smaller 
than the independent-edges upper bound. In this regime there 
exists a procedure that estimates the vertex labels better than 
random guessing. 

I. INTRODUCTION AND MAIN RESULTS 

The stochastic block model is the simplest statistical model 
for networks with a community (or cluster) structure. As such, 
it has attracted considerable amount of work across statistics, 
machine learning, and theoretical computer science [1], [2], 
[3], [4], [5]. A random graph G = (V, E) from this model has 
its vertex set V partitioned into r groups, which are assigned 
r distinct labels. The probability of edge (i, j) being present 
depends on the group labels of vertices i and j. 

In the context of social network analysis, groups correspond 
to social communities [1]. For other data-mining applications, 
they represent latent attributes of the nodes [6]. In all of these 
cases, we are interested in inferring the vertex labels from a 
single realization of the graph. 

In this paper we develop an information-theoretic viewpoint 
on the stochastic block model. Namely, we develop an ex
plicit ('single-letter') expression for the per-vertex conditional 
entropy of the vertex labels given the graph. Equivalently, 
we compute the asymptotic per-vertex mutual information 
between the graph and the vertex labels. Our results hold 
for in the large network limit, under suitable assumptions on 
the model parameters. In particular, we require that the mean 
vertex degree in the graph diverge (albeit arbitrarily slowly). 
While the asymptotic mutual information is of independent in-

terest but, as we will see, it is intimately related to estimation
theoretic quantities. 

In this paper, we focus on the symmetrie binary model. 
Namely, we assurne the vertex set V = [n] == {I, 2, ... ,n} to 
be partitioned into two sets V = V+ u V_, with JlD( i E V+) = 

JlD( i E V_) = 1/2 independently across vertices i. Conditional 
on the edge labels, edges are independent with 

if {i,j} ~ V+ or V_ 

otherwise. 
(1) 

Throughout we will denote by X = (Xi)iEV the set of 
vertex labels Xi E {+ 1, -I}, and we will be interested in 
the conditional entropy H(XIG) or -equivalently- the mutual 
information I(X; G) in the limit n --+ 00. We will write 
G rv SBM(n;p,q) (or (X,G) rv SBM(n;p,q)) to imply that 
the graph G is distributed according to the stochastic block 
model with n vertices and parameters p, q. 

Since we are interested in the large n behavior, two prelim
inary remarks are in order: 

1) Normalization. We obviously have1 0 -s: H(XIG) -s: 
n log 2. It is therefore natural to study the per-vertex 
entropy H(XIG)/n. As we will see, depending on the 
model parameters, this will take a value between 0 and 
log2. 

2) Scaling. The reconstruction problem becomes easier 
when Pn and qn are well separated, and more difficult 
when they are closer to each other. For instance, in an 
early contribution, Dyer and Frieze [2] proved that the 
labels can be reconstructed exactly -modulo an overall 
ftip- if Pn = P > qn = q are distinct and independent 
of n. In particular, such exact recovery results imply 
that H(XIG)/n --+ O. In this regime, the 'signal' is 
so strong that the conditional entropy is trivial. Letting 
'[in = (Pn + qn)/2 be the average edge probability. It 
turns out that the relevant 'signal-to-noise ratio' (SNR) 
is given by the following parameter: 

.An = n (Pn - qn)2 . 
4Pn (1 - Pn ) 

(2) 

Indeed, we will see that H (X I G) /n of order 1, and has 
a strictly positive limit when .An converges to .A of order 

1 Unless explicitly stated otherwise, logarithms will be in base e, and 
entropies will be measured in nats. 
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one. In this regime, the fraction of incorrectly labeled 
vertices has a limit in (0, 1). 

A. Main results: Limiting mutual information and MMSE 

Our main resuIt provides a single-letter characterization for 
the per-vertex mutual information. This is given in terms 
of an effective Gaussian scalar channel. Namely, define the 
Gaussian channel 

Yo = Yoh) = v0 X o + Zo, (3) 

where X o rv U niform( { + 1, -I}) independent2 of Zo rv 

N(O, 1). We denote by mmseh) and Ih) the corresponding 
minimum mean square error and mutual information: 

Ih) = IE log {dPYIX(Yoh)IXo)} (4) 
dpy(Yoh)) , 

mmseh)=IE{(Xo -IE{XolYoh)})2}. (5) 

In the present case, these quantities can be written explicitly 
as Gaussian integrals of elementary functions: 

Ih) = ,- IElogcosh (r + v0 Zo), (6) 

mmseh) = 1 - IE{ tanhh + v0 ZO)2} . (7) 

The foIlowing theorem gives a single-letter characterization of 
the limiting per-vertex mutual information. 

Theorem 1.1. For any A > 0, let '* = '* (A) be the largest 
non-negative solution of the equation: 

,= A(l - mmseh)). (8) 

We refer to ,*(A) as to the effective signal-to-noise ratio. 
Further, define Wh, A) by: 

A ,2 , 
Wh, A) = "4 + 4A - "2 + I h) . (9) 

Let the graph G and vertex labels X be distributed ac
cording to the stochastic block model with n vertices and 
parameters Pn, qn (i.e. (G, X) rv SBM(n; Pn, qn)) and define 
An == n (Pn - qn)2/(4Pn(1 - Pn))· 

Assume that, as n -+ 00, (i) An -+ A and (ii) nPn(1 -
Pn ) -+ 00. Then, 

. 1 
11m - I(X; G) = Wh*(A), A) 

n---+oo n 
inf Wh, A). (10) 

,E[O,oo] 

This theorem and its proofhas implications on the minimum 
error that can be achieved in estimating the labels X from the 
graph G. For reasons that will become clear below, a natural 
metric is given by the matrix minimum mean square error 

MMSEn(A) == n(n 1_ 1) IE{ IIXXT - IE{XXTIG}II~ }. 

(11) 

2Throughout the paper, we will generally denote scalar equivalents of 
vector/matrix quantities with the 0 subscript 

Theorem 1.2. Under the assumptions of Theorem 1.1 (in 
partic~tlar assuming An -+ A as n -+ (0), the following limit 
holds for the matrix minimum mean square errar 

Further, this implies limn---+ oo M MSEn (An) = 1 for A .-::: 1 and 
limn---+= MMSEn(An) < 1 for A > 1. 

A couple of remarks are in order 

Remark 1.3. Notice that our assumptions require nPn (1 -
Pn) -+ 00 at any, arbitrarily slow, rate. In words, this 
corresponds to the graph average degree diverging at any, 
arbitrarily slow, rate. Recently (see Section 11 for a discussion 
of this literature), there has been considerable interest in the 
case of bounded average degree, namely 

a 
Pn = -, 

n 

b 
qn = -, 

n 
(13) 

with a, b bounded. Our proof gives an explicit error bound in 
terms of problem parameters even when nPn (1 - Pn) is of 
order one. Hence we are able to characterize the asymptotic 
mutual information for large-but-bounded average degree up 
to an offset: 

1

1 1 CA3 
limsup -I(X; G) - Wh*(A), A) .-::: ~, (14) 

n---+= n va + b 

Further, our mild condition on diverging average degree should 
be contras ted with the phase transition of naive spectral 
methods. It is weIl understood that the community structure 
can be estimated by the principal eigenvector of the centered 
adjacency matrix G - IE{G} = (G - PnllT ). (We denote 
by G the graph as weil as its adjacency matrix.) This ap
proach is successful for A > 1 but requires average degree 
nPn ::;:, (log n)e for c a constant [7], [8]. 

Remark 1.4. The reader will notice that the Iimiting expres
sions for the mutual information and MMSE are related by 
the identity: 

(15) 

Such an identity relating mutual information and MMSE is 
well-known for estimation in Gaussian noise [9], and its 
appearance in the setting of the SBM is apriori surprising. 
However, it is hardly coincidental, as our proof strategy 
involves reducing the SBM to an analogous "Gaussian noise" 
setting (see Section III). 

The rest of the paper is organized as foIlows. We discuss 
related work on the stochastic block model in Section 11. In 
Section 111, we discuss some consequences of our main results 
for other estimation metrics. Finally, in Section IV, we outline 
our proof strategy. We refer the reader to the tüll version [10] 
for proofs of the results. 
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11. RELATED WORK 

The stochastic block model was first introduced within the 
social science literature in [1]. Around the same time, it was 
studied within theoretical computer science [11], [2], [12], 
under the name of 'planted partition model. A large part of 
the literature has focused on the problem of exact recovery, 
providing algorithms and conditions on the gap between Pn 

and qn that guarantee exact recovery of the vertex labels 
(up to a sign flip), with phase transitions recently discovered 
[13], [14], [15]. On the other hand, recent works have also 
studied the detection problem, i.e., recovering a positively 
correlated community structure. This was highlighted by [16], 
who conjectured the following intriguing phase transition 
phenomenon: the detection problem is solvable if and only 
if (a - b)2 > 2(a + b) where Pn = aln and qn = bin. 
The two parts of the conjecture were settled in [l7] and [18], 
[19] respectively. ResuIts for detection with more than two 
communities were also obtained in [20], [21], [15], [22]. 

In asense, the present paper bridges detection and exact 
recovery, by characterizing the minimum estimation error 
when this is non-zero, but -for A > 1- smaller than for random 
guessing. Note that [23] introduced an information-theoretic 
view of the SBM, showing that I (X; G) In admits a limit 
as n -+ 00, when Pn = aln ::.; qn = bin. The key argument 
establishes a certain sub-additivity property for the conditional 
entropy H (X; G). While these techniques might extend to a 
broad family of planted models, the sub-additivity property 
does not establish the limiting value itself. 

In terms of proof techniques, our arguments are closest 
to [24], [25]. We use the weIl-known Lindeberg strategy to 
reduce computation of mutual information in the SBM to 
mutual information of the Gaussian observation model. We 
then compute the latter mutual information by developing 
sharp algorithmic upper bounds, which are then shown to be 
asymptoticaIly tight via an area theorem. The Lindeberg strat
egy builds from [24], [26] while the area theorem argument 
also appeared in [27]. 

Lesieur, Krzakala and Zdeborova [28] studied estimation of 
low-rank matrices observed through noisy memoryless chan
nels. They conjectured that the resulting minimal estimation 
error is universal across a variety of channel models. Our 
proof establishes universality across two such models: the 
Gaussian and the binary output channels. We expect that 
similar techniques can be useful to prove universality for other 
models as weIl. 

Finally, we expect that the result obtained in this paper are 
Iikely to extend to more general models, such as censored or 
labelIed models [23], [29], [30], [31], [21]. 

111. CONSEQUENCES FOR ESTIMATION 

Theorem I.2 establishes that a phase transition takes place 
at A = 1 for the matrix minimum mean square error 
MMSEn(An) defined in Eq. (11). Throughout this section, we 
will omit the subscript n to denote the n -+ 00 limit (for 
instance, we write MMSE(A) == limn--+ oo MMSEn(An)). 
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Fig. 1: Illustration of the fixed point equation Eq. (8). The 'ef
fective signal-to-noise ratio' I*(A) is given by the intersection 
of the curve 1 -+ Ob) = 1 - mmseb), and the line 1I A. 
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Fig. 2: Left frame: Asymptotic mutual information per vertex 
of the two-groups stochastic block model, as a function 
of the signal-to-noise ratio A. The dashed lines are simple 
upper bounds (see [10]): limn--+ oo I(X; G)ln ::.; AI4 and 
I (X; G) In ::.; log 2. Right frame: Asymptotic estimation error 
under different metrics. Note the phase transition at A = 1 in 
both frames. 
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Figure 2 reports the asymptotic prediction for MMSE(A) 
stated in Theorem 1.2, and evaluated as discussed above. The 
error decreases rapidly to 0 for A > 1. 

In this section we discuss two other estimation metrics. In 
both cases we define these metrics by optimizing a suitable 
risk over a class of estimators: it is understood that randomized 
estimators are admitted as weIl. 

• The first metric is the vector minimum mean square error: 

vmmsen(An) = .!.. ~ inf n lE{ min IIX - s x(G) II~}· 
n x:Qn-+1R sE{±l} 

(16) 

Note the minimization over the sign s: this is necessary 
because the vertex labels can be estimated only up to an 
overall flip. Of course vmmsen(An) E [0,1], since it is 
always possible to achieve vector mean square error equal 
to one by returning x( G) = O. 

• The second metric is the overlap: 

OverlaPn(An) = .!.. sup lE{I(X, s(G))I}. (l7) 
n s:Qn-+{±l}n 

Again OverlaPn(An) E [0,1] (but now large overlap 
corresponds to good estimation). Indeed by returning 
Xi (G) E {+ 1, -I} uniformly at random, we obtain 
lE{I(X,s(G))I}/n = O(n- 1/ 2 ) --+ O. 
Note that the main difference between overlap and vector 
minimum mean square error is that in the latter case we 
consider estimators x : On --+ lFtn taking arbitrary real 
values, while in the former we assurne estimators s : 
On --+ {+1, _l}n taking binary values. 

The next lemma clarifies the relationship between matrix, 
vector minimum mean square error and the overlap. 

Lemma 111.1. With the above definitions, we have 

vmmsen(A) :;0. 1- V1- (1- n-1)MMSEn(A), 

vmmsen(A) ~ MMSEn(A) , 

OverlaPn(A) ~ VI - MMSEn(A), 

OverlaPn(A) :;0. 1 - MMSEn(A). 

(18) 

(19) 

(20) 

(21) 

As an immediate corollary of these lemmas (together with 
Theorem 1.2), we obtain that A = 1 is the critical point for 
other estimation metrics as weIl. 

Corollary 111.2. The vector minimum mean square error and 
the overlap exhibit a phase transition at A = 1. Namely, under 
the assumptions of Theorem 1.1 (in particular, An --+ A and 
nPn(1 - Pn) --+ (0), we have 

• 1f A ~ 1, then estimation cannot be performed asymptot
ically better than without any iriformation: 

lim vmmsen(An) = 1, 
n-+oo 

(22) 

(23) 

• 1f A > 1, then estimation can be performed better than 
without any information, even in the limit n --+ 00: 

liminfvmmsen(An) :;0. 1 - r*~A) > 0, 
n-----1-CX) /\ 

(24) 

. r*(A)2 
hmsupvmmsen(An) ~ 1 - --2- < 1, 

n-+oo A 
(25) 

1· . fO I (\) r*(Aj2 1mm ver aPn An :;0. --2-· 
n-+oo A 

(26) 

IV. PROOF STRATEGY: 

In this section we describe the main elements used in the 
proof of Theorems 1.1 and 1.2. As an intermediate step, we 
introduce the Gaussian observation model: 

y= fEXXT +z, V; (27) 

where Z is a symmetric matrix with independent Gaussian 
entries Zij rv N(O, 1 + bij) (bij is the Kronecker delta). Note 
that this model matches the first two moments of the SBM. 
More precisely, if GijS == (G ij - Pn)/ VPn(1- Pn)' then 
lE{GijSIX} = lE{Y'ijIX} and Var(GijSIX) = Var(Y'ijIX) + 
O(n- 1/ 2 ). 

Our strategy consists of two main steps: 

1) Show that the mutual information in the SBM and 
the Gaussian observation model (i.e. I(X; G) and 
I(X; Y)) coincide to leading order. 

2) Prove an asymptotic characterization of the mutual in
formation I (X; Y) via an appropriately defined approx
imate message passing (AMP) algorithm. 

The first step is established in the following proposition that 
also gives explicit error bounds on the ditlerence between the 
two mutual information terms. 

Proposition IV.1. Assume that, as n --+ 00, (i) An --+ A and 
(ii) nPn (I-Pn) --+ 00. Then there is a constant C independent 
of n such that 

1 CA3 / 2 -I I (X; G) - I (X; Y) I ~ + C I An - AI· 
n Vnpn(1 - Pn) 

(28) 

The proof of this propoSltlon relies on the celebrated 
Lindeberg method, whereby we replace the non-Gaus si an 
random variables G ij with Gaussian counterparts Y'ij and 
control the error incurred. Similar arguments have been used to 
establish universality of various macroscopic properties across 
microscopic details of the underlying probabilistic models (see 
[24], [26] for applications to compressed sensing, information 
theory and spin glass theory). 

The second step of characterizing the Gaussian model of 
Eq.(27) involves developing algorithmic upper bounds via 
an appropriately defined Approximate Message Passing al
gorithm. This algorithm yields estimates of XX T, and a 
corresponding mean squared error MSEAMP(A) incurred by 
these estimates. This mean squared error is shown to be sharp, 
via an area theorem argument and the I-MMSE identity. Such 
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an area theorem argument has been used in coding theory 
[32], multiuser detection [27] and sparse PCA [25]. Finally 
we state the characterization of the Gaussian model, since it 
is of independent interest. 

Theorem IV.2. For any ,\ > 0, let ,*(,\) be the largest non
negative solution of the equation: 

,= ,\ (1 - mmse({)) . (29) 

Further, define W({,'\) by: 

,\ ,2 , 
W ({, ,\) = "4 + 4,\ - "2 + I (() . (30) 

Then, we have 

. 1 
11m -I(X; Y) = W(!*(,\),'\) . 

n-+oo n 
(31 ) 
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