
The integration of Mendelian genetics into evolutionary 
biology in the early twentieth century allowed a better 
understanding of a broad range of biological phenom-
ena and unified several previously isolated fields. Despite 
the enormous success of the modern synthesis, certain 
key issues have remained unanswered. Most notably, 
although evolutionary biology successfully interprets 
molecular and cellular phenotypes as a result of diverse 
evolutionary forces that acted in the past, it rarely builds 
an explicit theoretical framework to predict potential 
routes of evolution1,2. Why is this issue important? First, 
it could help to establish the degree to which evolution 
is repeatable. Although long-term microbial evolution-
ary experiments have provided numerous examples of 
parallel phenotypic and genetic evolution3, it is unclear 
how predictable evolution is at the level of genomes and 
molecular networks. Second, such a framework has the 
potential to permit informed decisions in medicine4, 
biotechnology5 and environmental issues6. For exam-
ple, although in vitro methods have been developed to 
forecast the evolution of antibiotic resistance to newly 
developed drugs at the protein level7, no such general 
tool exists for larger subsystems or whole organisms.

In this Review, we demonstrate that it is possible to 
predict, rather than simply interpret, past evolution by 
synthesizing evolutionary theory, systems biology and 
molecular data. Even under constant selection, predict-
ing evolutionary change is challenging for two main 
reasons. First, evolution is a complex mixture of deter-
ministic and chance events: the occurrence, order and 
fixation of mutations in populations are all partially sto-
chastic. Second, predicting evolution requires a detailed 
knowledge of the range of available mutations and their 

fitness effects, an issue that could be best addressed by 
combining organism-specific mechanistic models and 
large-scale mutational analyses. There are three layers of 
prediction that we consider in this Review (TABLE 1): pre-
dicting the distribution of mutational effects and epista-
sis (that is, parameters that influence many central issues 
in evolutionary genomics); explaining the driving forces 
of sequence and expression evolution on a genomic 
scale; and understanding why particular evolutionary 
trajectories are realized, whereas others are not.

The recent availability of systematic gene-deletion 
studies8,9, genome-scale epistatic interaction maps10 and 
detailed mutation analyses of individual proteins11 pro-
vides valuable insights into these problems. However, 
most established experimental approaches are limited, 
either because they focus on individual genes instead of 
large gene networks, or because they study a restricted set 
of environments and mutation types (TABLE 1). Systems 
biology can help to resolve these issues by allowing  
the analysis of large cellular subsystems and provid-
ing molecular explanations with clear links to changes 
in environmental conditions. The Review focuses on 
genome-scale models of microbial metabolic networks12 
owing to their large-scale, predictive power coupled with 
mechanistic insights and wide usage.

The Review starts with a brief summary of meta-
bolic network modelling; we emphasize the data used 
for model reconstructions, the model-building steps 
and the reliability and limitations of these models. We 
then discuss how these models can be used to study 
the three layers of prediction described above (TABLE 1). 
Last, we demonstrate how computational and experi-
mental approaches can be more tightly integrated by 
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Epistatic interaction
Non-independent effect of 
mutations on a phenotype. 
Epistasis is negative when a 
genotype with two mutations 
has a lower phenotype value or 
positive when it has a higher 
value than would be expected 
from the product of the single 
mutant values.
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Abstract | Is evolution predictable at the molecular level? The ambitious goal to answer 
this question requires an understanding of the mutational effects that govern the 
complex relationship between genotype and phenotype. In practice, it involves 
integrating systems-biology modelling, microbial laboratory evolution experiments and 
large-scale mutational analyses — a feat that is made possible by the recent availability  
of the necessary computational tools and experimental techniques. This Review 
investigates recent progresses in mapping evolutionary trajectories and discusses the 
degree to which these predictions are realistic.
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Graph-theoretical 
approaches
The study of graphs. A graph 
provides an abstract 
representation of a biological 
or physical system in which 
components are represented 
by nodes that are connected to 
each other by edges (links).

considering new technological advances in the fields 
of experimental evolution, genome engineering and 
automated model reconstruction.

Genome-scale metabolic models
Properties and advantages. The three layers of predic-
tions listed above require biologically detailed compu-
tational models that estimate the impact of mutations 
and environmental changes on fitness. Models that are 
most suited for evolutionary studies are based on sound 
biochemical principles: they should capture the func-
tional states of the cell and compute phenotypes (for 
example, growth rate) that serve as fitness correlates. 
These models include detailed kinetic models of specific 
metabolic pathways13 or regulatory circuits (for example, 
the cell cycle14), logical models of signalling networks15 
and constraint-based models of genome-scale metabolic 
networks16 (TABLE 2). Organism-specific kinetic models 
are generally highly accurate and realistic but require 
detailed experimental data, which are rarely available for 
large systems. However, constraint-based models allow 
integration of high-throughput post-genomic data but 
generally offer no information about metabolite concen-
trations or about the temporal dynamics of the system 
(but see REFS 17–19).

Genome-scale metabolic models have been useful, 
as they rely on high-quality metabolic network recon-
structions12. These reconstructions are primarily based 
on a sequenced genome and are generally built manually 
using information from metabolic databases — such as 
KEGG20 and BRENDA21 — and the primary literature. 
Next, the network reconstruction is converted into a 
mathematical model that can be analysed using con-
straint-based approaches (BOX 1). By mimicking nutrient 
conditions used in prior experimental studies, the model 
is validated against high-throughput data, and existing 
discrepancies are resolved by new sets of experiments.

Genome-scale metabolic models therefore have at 
least two conceptual advantages over other approaches 
(TABLE  2). First, whereas most other modelling 
approaches focus on small-scale biochemical systems 

(that is, individual pathways), constraint-based models 
aim to calculate the metabolic behaviour of moderately 
large systems (that is, 600–1,300 genes). Thus, these 
models allow comparisons to be made with the results 
of high-throughput genomic data. Second, in contrast 
to most statistical or graph-theoretical approaches22, these 
models are far more detailed and realistic, as they infer 
the functional states of the network as a function of 
nutrient availability in the environment.

Genome-scale metabolic models have already 
proven to be successful in several applications: distin-
guishing between essential and non-essential genes 
across environmental conditions23; identifying epistatic 
interactions24; predicting growth properties25; guiding 
metabolic engineering16; and charting the functional 
dependence (coupling) between genes26. However, sev-
eral important problems remain to be addressed (BOX 1), 
not least because these models generally do not incor-
porate enzyme kinetic information and cannot cap-
ture the nonlinear relationship between enzyme level  
and metabolic flux (but see REFS 18,19,27,28). These 
are the major reasons why predicting minor mutational 
effects on enzyme activity or predicting metabolite  
concentrations remains challenging.

Model applications. Despite these current limitations, 
evolutionary biologists have recognized the potential of 
these models and have used them to reach three goals. 
First, they have been used to estimate the overall patterns 
of epistasis29–31 and distribution of mutational effects32,33, 
and second, the models can infer interspecies differences 
in metabolic gene content and hence can explain general 
trends of genome evolution34,35. But perhaps the most 
inspiring aspect of this framework is its capacity to make 
specific and reliable predictions on the outcome of meta-
bolic evolution, both in short-term laboratory evolution 
and on macroevolutionary time scales.

Distribution of mutational effects and epistasis
Recent large-scale gene deletion analyses demon-
strated that mutations with weak phenotypic effects are 

Table 1 | Three major issues in evolutionary systems biology

Layer of 
prediction

Importance Current state of 
knowledge

Difficulty New tools and knowledge needed 
for integration

Distribution 
of mutational 
effects and 
epistatic 
interactions

General architecture of 
adaptation. Robustness 
against mutations 

Wealth of systematic 
gene deletion studies and 
epistasis maps

Existing fitness landscape models 
are not biologically detailed. 
High-throughput experiments are 
restricted to a few environmental 
conditions, or they only consider null 
mutations

Realistic systems-biology models offer 
new predictions on mutational effects 
and mechanistic insights. New types 
of experimental data (for example, 
fitness profiling of point mutations or 
gene overexpression studies)

General 
patterns 
of genome 
evolution

Evolutionary forces 
driving protein and 
expression divergence, 
gene loss, horizontal 
gene transfer and gene 
duplicability

Impact of post-genomic 
features (for example, gene 
expression or network 
position) 

No clear relationship between 
fitness and the post-genomic gene 
features studied

Predictions and measuring most 
relevant physiological data (for 
example, range of neutrality, optimal 
gene activity or physiological 
coupling between genes)

Specific 
evolutionary 
trajectories

Relative importance of 
chance and necessity 
in evolution. Predictive 
tools for applications

Map of adaptive landscape 
for single proteins. Insight 
from experimental 
evolutionary studies 

Difficult to map adaptive landscapes 
for large cellular subsystems 
empirically. Interpretations 
dominate over predictions

Modelling the outcome of adaptive 
evolution at the molecular level. New 
experimental technologies to map 
adaptive landscapes

R E V I E W S

592 | SEPTEMBER 2011 | VOLUME 12	  www.nature.com/reviews/genetics

© 2011 Macmillan Publishers Limited. All rights reserved

http://www.genome.jp/kegg/
http://www.brenda-enzymes.info/


Robustness
Mutational robustness 
describes the resilience  
of phenotypes to genetic 
perturbations.

Gene dispensability
A measure that is inversely 
related to the overall 
importance of a gene. It is 
usually approximated by the 
fitness of the corresponding 
gene-knockout strain under 
laboratory conditions.

Metabolic fluxes
Turnover rate of substrates 
through metabolic reactions  
or pathways.

common8,36, and epistasis between mutations is wide-
spread10. It has been intensely debated why mutations 
with overt phenotypes are so rare, and it remains largely 
unexplored to what extent the distribution of epistatic 
interactions changes across loci and environmental con-
ditions (TABLE 1). These issues are expected to influence 
several problems in evolutionary genomics, starting 
from the architecture of adaptation37, the accumulation 
of deleterious mutations38, the evolution of sexual repro-
duction39 and the extent of robustness against harmful 
mutations40. We focus on a specific aspect of the last prob-
lem, referred to as the ‘gene knockout paradox’, and then 
briefly discuss recent progress in understanding epista-
sis networks (FIG. 1). Attempts to resolve this paradox 
demonstrate the power and challenges of evolutionary  
systems biology.

Causes of gene dispensability. One of the most surpris-
ing discoveries of the post-genomic era has been the 
extent to which organisms can tolerate inactivation of 
their genes (FIG. 1A). Large-scale single-gene deletion 
screens suggest that nearly 80% of protein-coding genes 
in Saccharomyces cerevisiae are not essential for viability 
under standard laboratory conditions8 — an observation 
that tallies with results from similar analyses performed 
in other organisms36. These findings raise questions 
about the mechanistic basis of gene dispensability and 
about whether this tolerance to inactivation is the result 
of an evolved capacity of genetic networks to compen-
sate for mutations. There are at least three mutually 
non-exclusive explanations for the knockout paradox. 
First, gene dispensability may be more apparent than 
real: these genes are important under other natural 
environmental settings that are not yet investigated in 

the laboratory. Second, gene deletions may be compen-
sated for by a gene duplicate with a redundant function41. 
Third, reorganization of metabolic fluxes across alterna-
tive pathways42 may buffer gene loss. Although clear 
examples exist for all three scenarios, it is difficult to 
establish which of these mechanisms explains the major-
ity of dispensable genes. As genome-scale metabolic 
models correctly predict knockout viability in 80–90% 
of the genes studied33 and make inferences about reac-
tion activities, they also hold the promise to test different 
scenarios to resolve this problem.

A computational analysis of S. cerevisiae metabolism 
showed that a large fraction of non-essential enzyme-
encoding genes catalyse reactions that are inactive 
under the tested condition (that is, they carry zero flux). 
Furthermore, by simulating gene deletions under sev-
eral different nutrient conditions, the model claimed that 
many functionally inactive genes would become essen-
tial under some other conditions32. The model indicates 
that most of the apparently dispensable genes (37–68%) 
belong to this category, whereas redundant gene dupli-
cates (15–28%) and alternative pathways (4–17%) can 
only explain a few cases. These computational predic-
tions also gained strong support from comparative and 
experimental studies. First, as might be expected, these 
condition-specific genes have limited phylogenetic 
distribution32. Second, experimental measurements 
of reaction fluxes in the same species showed remark-
able agreement with general predictions of the model43. 
Approximately 50% of reactions are estimated to be 
inactive under laboratory conditions, whereas redun-
dancy through duplicate genes was the major (37.5%) 
molecular mechanism behind gene dispensability, and 
alternative pathways constituted the minor mechanisms 

Table 2 | Modelling approaches to study genotype–phenotype relationships

Modelling 
approach

Examples Scale Data requirement Phenotypes 
predicted

Advantages Disadvantages Refs

Digital organisms 
(that is, self- 
replicating 
computer 
programs)

Avida platform Potentially 
large

No biological data 
required

Replication rate; 
performance of 
mathematical 
operations 

Infers general 
principles of 
evolution

No direct connection 
to specific biological 
systems

82,83

Graph- 
theoretical 
models

Wide range 
of cellular 
interaction 
networks

Large Large-scale 
molecular 
interaction data

Network 
properties, such 
as diameter and 
centrality

Low data 
requirement; insights 
into similarities of 
network architecture 
across species

Unclear how network 
architecture relates 
to cellular physiology 
and fitness

22

Kinetic 
biochemical 
models

Metabolic 
pathways, gene 
regulation and 
cell cycle

Small Detailed: molecular 
interactions and 
kinetic information

Reaction fluxes; 
component 
concentrations

Conceptual 
understanding; 
realistic; quantitative; 
captures dynamics

Only available for 
small-scale systems

13,14, 
84

Logical models Cell cycle, 
signalling and 
metabolism

From 
medium to 
large 

Qualitative 
knowledge 
of molecular 
interactions

Activity states; 
viability; 
dynamic 
behaviour

Low data 
requirement; 
captures dynamics  
to some extent

Difficult to capture 
continuous 
molecular response 
in a discrete model 

15,85, 
86

Constraint-based 
models

Flux balance 
analysis of 
genome-scale 
metabolic 
networks

From 
medium to 
large

Network 
reconstruction 
based on omics data; 
biochemical and 
physiological studies

Growth 
properties; 
reaction 
fluxes across 
conditions

No enzyme kinetic 
information required; 
testable predictions 
on a genomic scale

Basic models 
lack dynamics in 
time; metabolite 
concentrations are 
not captured

12
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Box 1 | Genome-scale metabolic network models and their limitations

Genome-scale metabolic networks are studied within the framework of constraint-based modelling: that is, by identifying 
and applying constraints to define ranges of allowable phenotypes without the need for enzyme kinetic information12. 
The approach relies on a mathematical representation of the network and its interaction with the environment and uses 
physicochemical constraints to describe the potential behaviour of the network. At least two constraints are applied:  
a mass balance constraint and a capacity constraint. Assuming that the system will reach a steady state, the mass  
balance constraint specifies that each internal metabolite is consumed and produced at the same rate, whereas the 
capacity constraints set maximum and minimum bounds on fluxes (step 1 in the figure). The nutrient environment is 
specified by allowing certain metabolites to enter the network via transport processes. Imposing constraints defines the 
space of allowable metabolic flux states (solution space), making it possible to query where the physiological solution lies.

Flux balance analysis (FBA) is commonly used to predict a physiologically meaningful steady state and is based on the 
idea that organisms adapt towards maximal growth efficiency. Importantly, in FBA, growth is explicitly represented as a 
reaction in which all biomass compounds that are necessary for growth are drained from the system. FBA then uses 
optimization techniques to identify a flux distribution that maximizes growth (step 2 in the figure).

Despite its predictive power, the basic FBA suffers from several limitations. For example, it cannot predict metabolite 
concentrations, and it is restricted to studying steady states. Thus, certain types of evolutionary predictions — for 
instance, those requiring metabolic dynamics — cannot be made. Furthermore, in its simplest form, it does not account 
for regulatory mechanisms. Given the complexity of the metabolic network and the small amount of information used to 
make predictions, it is not surprising that FBA performs better at predicting growth efficiency (a proxy for fitness) than 
the underlying intracellular flux distribution and that it can best capture major genetic changes (that is, addition or 
removal of genes). There are at least three major complementary areas of development aimed at overcoming these 
limitations. First, basic models are being extended to incorporate other cellular subsystems, such as gene regulatory60,61 
and signalling networks17. Second, dynamic FBA models17,18,87 have been developed with the intention of investigating 
temporal changes in metabolic behaviour. Third, in vivo, high-throughput data (metabolomics, fluxomics, proteomics and 
transcriptomics) can be integrated to increase the predictive value of the model19,27,88,89.

Flux balance analysis
(FBA). A mathematical 
approach for analysing the 
behaviour of large-scale 
metabolic networks. It does  
not require knowledge of 
metabolite concentration  
or enzyme kinetic details.

Synthetic lethal interaction
A form of epistasis between 
two genes in which the double 
mutant shows a no-growth 
phenotype that is not exhibited 
by either single mutant.

Trimodal
Trimodality is a statistical  
term for a distribution that  
has three modes.

(12.5%). More generally, a recent large-scale chemical 
genomic assay in yeast demonstrated that 97% of the 
single-gene deletions exhibited a measurable growth 
phenotype in at least one of the hundreds of tested 
conditions9.

Thus, these studies indicate that environmental 
specificity is the dominant explanation for apparent dis-
pensability. However, it is important to emphasize that 
theories on gene dispensability are not mutually exclu-
sive, as the capacity to compensate for null mutations 
may vary substantially between different nutritional 
environments. One theory suggests that availability of  
nutrients across conditions determines the number  
of parallel metabolic pathways that can produce a spe-
cific key cellular metabolite24. A unique prediction of 
the theory is that the phenotypic effect of single- and 
double-gene deletions should vary across conditions. In 
agreement with expectation, computational models cou-
pled with experimental studies demonstrated that most 
synthetic lethal interactions between loci are restricted to 
certain environments owing to lack of compensation 
under some nutrient conditions24. These results indicate 
that robustness against null mutations is unlikely to be a 
directly selected trait but that it is a side effect of adaptation  
to survive in changing conditions44.

Epistatic interactions. Despite its influence on a number 
of evolutionary processes, the consequences of epistasis 
have been mainly examined using simplified and unre-
alistic assumptions about the distribution of interactions 
between mutations45. For example, most population 
genetics studies assumed that all genes interact in a uni-
form way. Genome-scale metabolic models offer realistic 
insights into the architecture of epistatic interactions on a 
global scale, and recent studies in yeast and bacteria have 
started to explore several of the properties of epistatic 
interaction networks. Although the methods used are far 
from perfect, these studies (along with complementary 
high-throughput experimental studies10,31) clearly indi-
cate that more realistic theoretical models should be used 
to explore the evolutionary consequences of epistasis. 
These works have reached four important conclusions:
•	 First, the distribution of epistatic interactions across 

pairs of loci is clearly non-uniform and probably  
trimodal29. Trimodality means that, after controlling 
for average mutational effects, pairs of loci show 
either very strong negative or positive interactions 
or no interactions at all. This pattern demands a re-
evaluation of the influence of epistasis on evolutionary 
processes, such as the rate of accumulation of deleteri-
ous mutations and the evolution of recombination45.
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Pleiotropy
The phenomenon of  
one mutation affecting  
multiple traits.

•	 Second, epistatic interactions are generally plastic 
across environmental conditions24,46; that is, they are 
present in some, but not all, environments. Thus, 
evolutionary theories that rely on a constant adap-
tive landscape (for example, theories on the origins 
of robustness against mutations or the impact of 
compensatory mutations on evolution) are far too 
simplistic.

•	Third, a few genes (‘hubs’) exhibit an especially large 
number of epistatic interactions, whereas the major-
ity of genes display few interactions31. Systems mod-
elling illuminated that there is a strong link between 
the degree of epistatic interaction and the extent of 
pleiotropy (FIG. 1B): hub genes contribute to multiple 
biological processes, and, as such, the phenotypic 
effect that occurs on their deletion can potentially be 
modulated by a large number of other genes, result-
ing in numerous epistatic links31. Because hub genes 
are likely to influence the phenotypic effects of muta-
tions in many other genes, one might speculate that 
their loss may markedly alter which mutational paths 
are available for adaptation.

•	 Fourth, epistatic interactions are frequent between 
biochemical pathways or modules31. In the context 
of evolutionary biology, a module should be tightly 
integrated by strong pleiotropic effects and should 
be largely independent from other such modules 
(that is, pleiotropic effects of genes within a module 
are mostly restricted to phenotypic traits that are 
associated with that module)47. Thus, it is unclear 
how far biochemical modules fulfil these criteria, 
and the claim that modularity facilitates evolution 
by minimizing pleiotropic constraints48 needs to be 
re-evaluated.

Most of the above conclusions are based on study-
ing null mutations only. Future work should reveal 
how far they hold when the range of mutations is 
extended to include point mutations and minor regula-
tory changes, as well as interactions between beneficial  
mutations49.

Understanding general patterns of evolution
Until recently, studies of evolution have concentrated 
on estimating relevant parameters and understanding 
the cellular mechanisms behind them. With recent 
advances in systems-biology modelling coupled to com-
parative genomics, it has become possible to move a step 
forward and study genome evolution. More specifically, 
these models can explain broad patterns of gene conser-
vation, gene duplicability and sequence and expression 
evolution on a genomic scale. For example, systematic 
surveys showed that the extent of protein sequence con-
servation is governed by global biochemical and cellular 
features, including expression pattern, centrality in bio-
logical networks and genomic position50. Nevertheless, 
it has remained difficult to draw mechanistic conclu-
sions from these patterns because these features have 
no clear links to cellular physiology and hence to fitness. 
This problem can be overcome by investigating func-
tionally more relevant features that can be computed 

by systems modelling. In the case of metabolic genes, 
these features include: the impact of gene deletion on 
the performance of the network51 (which is a proxy 
for essentiality); the extent and direction of functional 
dependencies between enzymes52 (that is, identifying 
functional modules); optimal flux distribution53; and 
the range of optimal flux levels54.

Although these features are expected to have a 
large impact on the evolution of protein-coding genes 
in metabolic networks, measuring them experimen-
tally on a reasonably large scale is an enormous chal-
lenge. Moreover, as these gene features depend on the 
functional state of the cell, they cannot be inferred by 
studying single proteins or short metabolic pathways 
in isolation. Instead, genome-scale metabolic models 
can be used to derive computational estimates of these 
features for each gene in the network (TABLE 3) across a 
wide range of nutrient conditions. These estimates can 
then be correlated to different aspects of genomic evo-
lution using standard tools of comparative genomics.

Evolution of gene content. Such an integrated approach 
has recently been applied to develop an understanding 
of the evolutionary forces driving the expansion and 
shrinkage of metabolic networks34. It has been demon-
strated that most recent changes to bacterial metabolic 
networks are due to horizontal gene transfer rather 
than gene duplication events (see also REF. 55). The 
acquired genes are generally integrated at the periphery 
of the network, leaving the central part of the network 
intact for millions of years of evolution. Remarkably, 
computational modelling showed that these changes 
are driven by adaptation to new environmental condi-
tions rather than optimization of performance under 
routine growth conditions34.

Are genes added or lost from metabolic networks 
one at a time, or does evolution proceed through simul-
taneous gain and loss of whole sets of genes? Metabolic 
models offer unbiased and systematic calculations of 
various physiological dependencies between reactions 
and enzymes26, ultimately leading to a reconstruction 
of functional modules. The simplest situation is when 
two proteins mutually depend on each other for their 
function. In the case of metabolism, this happens when 
fluxes through two or more reactions are fully corre-
lated, such as seen in the case of unbranched linear met-
abolic pathways. As expected, the encoding genes are 
often transferred together through horizontal transfer,  
frequently in operons34.

A more complex situation arises when functional 
relationships between proteins are asymmetric. For 
instance, when multiple metabolic pathways (for exam-
ple, 1 and 2) converge into one central pathway (for 
example, 3), fluxes through pathways 1 and 2 depend 
on functioning of the central pathway 3 but not vice 
versa (FIG.  1Ca). As most functional relationships 
between metabolic genes are asymmetric35, they can 
potentially have important implications for genomic 
evolution. Indeed, evolutionary analysis of functionally 
asymmetric gene pairs revealed that genes in pathways 
1 or 2 can be easily lost in the presence of pathway 3, 
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Figure 1 | Model and data: mutational effects, epistasis and gene 
content evolution. A | Distribution of experimentally measured (a) and 
computationally predicted (b) single-gene-knockout fitness values in 
Saccharomyces cerevisiae metabolism. Empirical fitness data were taken 
from REF. 97 and refer to competitive fitness in a rich medium (YPD). 
Although the histogram is restricted to metabolic genes, the same trend 
is observed when all S. cerevisiae genes are considered. In silico fitness 
values, which closely match the empirical distribution, were computed 
using a genome-scale metabolic model of yeast98. B | Degree of epistasis 
of a gene (that is, its number of epistatic interactions with other genes, 
whether positive or negative) correlates inversely with its single mutant 
fitness both experimentally (a) and computationally (b). C | Panel a shows 
a schematic representation of a simplified metabolic network in which 
the 1–3 reaction pair (and the 2–3 reaction pair) is asymmetrically 
dependent, whereas the 3–4 reaction pair is symmetrically dependent in 

functional states of the network. Because reactions 3 and 4 are in the 
same linear pathway, their activities are completely correlated, hence 
their symmetric relationship. By contrast, the activities of 1 and 2 depend 
on 3, but 3 does not exclusively depend on either 1 or 2, therefore their 
relationships are asymmetric. Panel b shows that the predicted 
asymmetric functional relationships between enzyme-encoding genes 
(1 and 3) are reflected in their evolutionary trajectories, as inferred from 
comparative genomic analyses35. In asymmetric loss, 1 is more frequently 
lost in situations where only one gene is lost. In asymmetric gain, 3 is 
more frequently gained in situations where only one gene is gained. In 
contingent gain, 1 is more frequently gained if 3 is already present in the 
ancestor. Panel Ba is modified, with permission, from REF. 10 © (2010) 
American Association for the Advancement of Science. Panel Bb is 
modified, with permission, from REF. 31 © (2011) Macmillan Publishers 
Ltd. All rights reserved.
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Table 3 | Patterns of genome evolution explained by metabolic modelling

Patterns of 
genome evolution 
to be explained

Evolutionary scenario Prediction Variable predicted by the 
systems-biology model

Phylogenetic 
distribution  
of genes

Gene loss is governed by changing  
environmental conditions

Condition-specific genes should be 
more frequently lost

Conditional essentiality —  
that is, the number of conditions  
in which the gene is required  
for growth

Correlated loss and 
gain of genes

Coevolution at the genomic level reflects the 
extent and direction of functional coupling 
between genes

Loss or gain of a gene in a specific 
metabolic pathway or modules should 
alter the evolutionary trajectories of 
other functionally related genes

Flux coupling — that is, 
physiological dependence 
between enzymes

Gene duplicability Evolutionary maintenance of gene duplicates 
with redundant functions is governed by selection 
favouring enhanced dosage of the same protein

Optimal enzymatic flux should be 
especially high for reactions catalysed 
by gene duplicates 

Optimal enzymatic flux

Rate of protein 
evolution

Enzymes carrying high fluxes tend to have  
more central roles. Therefore, mutational 
reduction of enzymatic activity should be 
especially detrimental

Enzymes with high enzymatic fluxes 
should evolve slowly

Optimal enzymatic flux 

Gene expression 
divergence

Rate of expression divergence is largely governed 
by neutral evolution. Genes for which expression 
can differ widely without major phenotypic effects 
should diverge more rapidly across species

Range of neutral expression variation 
should correlate with expression 
divergence

Range of neutral variation 
(estimated by optimal flux range)

(Nearly) neutral mutations
A neutral mutation is one that 
has no fitness effect. A mutation 
is ‘nearly’ neutral when its 
fitness effect is too small to be 
governed by selection, and 
hence its fate is determined 
largely by genetic drift.

but the reverse is not true35 (FIG. 1Cb). Moreover, genes 
involved in pathways 1 or 2 only tend to be gained 
across evolutionary lineages when pathway 3 is pre-
sent in the genome (contingent evolution). Thus, this 
framework can explain the order of gene-gain and 
gene-loss events in evolution.

Gene duplicability. In sharp contrast to bacteria, in 
which most major changes are due to horizontal gene 
transfer, in eukaryotic metabolic networks, evolu-
tionary novelties are mainly due to gene duplicates34. 
The foremost difficulty for the evolution of metabolic 
diversity by duplicates is preservation of both copies 
prior to functional divergence. Surprisingly, eukaryotic 
metabolic networks contain several reactions that are 
catalysed by gene duplicates with highly overlapping 
functions. These duplicates may be retained to provide a 
shield against harmful mutations56. Alternatively, selec-
tion may favour enhanced dosage of the same protein 
to provide high enzymatic flux. A genome-scale model 
of yeast metabolism suggests that the second explana-
tion is closer to the truth: gene duplicates that catalyse 
the same enzymatic reactions are not especially com-
mon for essential reactions but rather for reactions that 
require high fluxes32.

Sequence and expression evolution. Metabolic net-
works evolve not only by gene-gain and gene-loss 
events but also by minor changes in enzyme kinetics 
and gene dosage through point mutations. According 
to standard theories of molecular evolution, the rate 
of protein and gene expression evolution should first 
and foremost depend on the availability of (nearly)  
neutral mutations. Systems modelling offers insight into 
the evolutionary driving forces by calculating both the 
level of optimal flux53 and the range of its neutral vari-
ation54 across genes. A study conducted in yeast showed 

that enzymes with high predicted metabolic fluxes not 
only tend to undergo gene duplication events but also 
evolve more slowly57. One possible interpretation of 
this finding is that most mutations are detrimental58, 
so they tend to reduce enzymatic activity and hence 
flux. Under the assumption that enzymes carrying high 
fluxes are more important, mutations in such enzymes 
should be especially detrimental, leading them to 
undergo few amino acid changes during evolution. In 
a similar vein, genes with narrow neutral flux ranges 
are also more conserved in sequence and display low 
variation in expression among different yeast strains59. 
Taken together, these results support the notion that 
the extent of sequence and expression conservation 
is not only influenced by the molecular properties of 
the gene but also by its activity and position in the 
metabolic network.

Based on the above considerations, one can claim 
that, by calculating gene features with more direct links 
to cellular physiology and hence fitness, systems mod-
elling allows the testing of important issues in evolu-
tionary genomics. Nevertheless, the scope of problems 
studied so far is still limited, not least because existing 
approaches consider functional variation in enzyme-
encoding genes only. We anticipate that metabolic 
models incorporating regulatory details60,61 (including 
non-coding RNAs) will allow a better understanding of 
the evolutionary forces shaping regulatory and signalling  
networks.

Inferring evolutionary trajectories
The above sections demonstrate that systems approaches 
successfully capture mutational effects and epistatic 
interactions and also contribute to our understanding 
of genomic evolution. Based on these initial successes, 
one might wonder whether these models could be even 
more specific and predict which genes are likely to be 
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Figure 2 | Systems-biology approaches to studying evolutionary trajectories.  
a | Schematic representation of an integrated study62 in which genome-scale 
metabolic modelling and in vivo laboratory experiments were combined to 
understand the adaptation of Escherichia coli towards utilizing glycerol.  
The starting E. coli strain (top) grows poorly on glycerol despite the presence of a 
complete metabolic pathway for glycerol utilization. A genome-scale metabolic 
model (left) was used to predict optimal attainable growth in this medium, hence 
the possible outcome of evolutionary adaptation. Predictions reveal not only that 
growth can be increased given the structure of the network but also which 
pathways should be up- or downregulated (red and grey lines, respectively) to 
achieve this goal. To evaluate predictions, laboratory evolution experiments (right) 
were performed to adapt E. coli to a glycerol minimal medium by using serial 
transfer of batch cultures. Evolutionary changes were characterized by growth 
measurement, transcriptomics, proteomics and genome sequencing of the starting 
and evolved cell cultures66. b | A systems-biology approach to understand genome 
reduction in endosymbiontic bacteria, such as Buchnera aphidicola (top panel).  
A computational study used the genome-scale metabolic model of E. coli as a proxy 
for the free-living ancestor of B. aphidicola and mimicked the lifestyle of the 
endosymbiont to predict the fitness effect of gene removal in the Buchnera lineage64 
(middle panel). In silico, minimal metabolic networks were derived by repeatedly 
simulating gene-loss events (marked by a red cross) until no further genes could be 
deleted without compromising growth. Simulated minimal networks (lowest panel) 
showed high overlap with the metabolic gene complements of the sequenced 
Buchnera genomes. The graph in panel a is modified, with permission, from REF. 62 © 
(2002) Macmillan Publishers Ltd. All rights reserved.

Adaptive landscapes
Visualizations of the 
relationship between genotype 
and fitness. The plane of the 
landscape contains all possible 
genotypes in such a way  
that similar genotypes are 
located close to each other on  
the plane and the height of the 
landscape reflects the fitness 
of the corresponding genotype.

Trade-off
Two traits are in a trade-off 
relationship when an increase 
in fitness owing to a change in 
one trait is opposed by a 
decrease in fitness owing  
to a concomitant change  
in the second trait.

lost, to mutate or to change regulatory interactions over 
the course of evolution. Indeed, the ultimate goal of evo-
lutionary systems biology is to develop a global under-
standing of why particular evolutionary trajectories are 
realized, whereas others are not (TABLE 1). Although only 
a handful of systems-biology studies have investigated 
this issue in detail, they have been successful: models 
can predict the short-term outcome of adaptive62 and 
compensatory63 evolution in the laboratory and replay 
200 million years of genomic evolution64 (TABLE 3).

Evolution in the laboratory. Predicting evolution at 
the molecular level requires a detailed map of adaptive  
landscapes — that is, a clear understanding of how mul-
tiple mutations affect fitness. Recent experimental muta-
tional studies have provided insight into the properties 
of adaptive landscapes at the level of individual pro-
teins11. However, exhaustive experimental exploration 
of mutations for larger cellular subsystems is unfeasible. 
Investigating different evolutionary routes requires a 
combination of three tools: laboratory evolution experi-
ments, metabolic modelling and post-genomic analyses 
(FIG. 2a). In a series of pioneering studies, Palsson and 
colleagues integrated these techniques to study the 
adaptive evolution of Escherichia coli K12 with glycerol 
as its sole carbon source62,65,66. Despite the presence of 
a complete metabolic pathway for glycerol utilization, 
starting bacterial populations only grew suboptimally 
on this medium. After 700 generations of evolution in 
the laboratory, the evolved lines reproducibly showed 
a massive increment in fitness. Remarkably, the corre-
sponding changes in growth rates and nutrient uptake 
during laboratory evolution showed good agreement 
with predictions of the genome-scale metabolic model. 
Thus, strains have evolved towards the computationally 
predicted optimal metabolic state62.

What are the underlying molecular mechanisms of 
glycerol adaptation? Initial slow growth in this medium 
may be due to a suboptimal genomic transcriptional 
program or allosteric inhibition of key enzymatic steps 
in the glycerol utilization pathway. Genomic compari-
son of ancestral lines with five evolved lines has found 
several recurring patterns, and they support both sce-
narios65. Identified mutations fell into two major cat-
egories: those affecting specific rate-limiting enzymatic 
steps (for example, glycerol kinase) and those affecting 
global transcription patterns. Quantitative proteomic 
and transcriptomic data obtained from ancestral and 
laboratory-evolved strains revealed that hundreds of 
genes and proteins became differentially expressed66. 
Importantly, the metabolic model not only success-
fully explains the observed trends of gene expression 
evolution but also provides a mechanistic explanation 
for why down- or upregulation of certain enzymes and 
pathways is advantageous66. The optimal enzyme usage 
predicted by the model shows excellent agreement with 
genome-scale expression data obtained from the evolved 
lines. Furthermore, both models and experiments indi-
cate that regulatory adaptation has two complementary 
aspects. First, bottlenecks from dosage limitations in 
genes that are essential for growth (or needed for opti-
mal glycerol utilization) were overcome by upregulation 
of these genes. Second, non-functional pathways were 
shut down for optimal growth in order to reduce costs of 
producing unnecessary proteins and metabolites.

In summary, evolved strains upregulate genes within 
pathways needed for optimal growth and downregu-
late genes outside the optimal growth solutions. Some 
of these laboratory-evolved lines also showed partial 
fitness loss in rich media, hinting at an evolutionary  
trade-off65. It remains to be seen how far metabolic 
network models can capture such trade-offs and their 
underlying molecular mechanisms.

Evolution of genome minimization. The above studies 
show that it is becoming increasingly possible to predict 
the outcome of laboratory evolution. Can models also 
replay evolution at the molecular level on a macroevo-
lutionary timescale? This would be an important first 
step towards predicting genomic evolution rather than 
simply interpreting it in retrospect. This is an ambitious 
goal, as it requires knowledge of relevant selection pres-
sures, population size, growth conditions and the range 
of possible mutations. In sharp contrast to laboratory 
evolution, where these parameters can be monitored 
(or even controlled) throughout the experiment, these 
parameters cannot generally be inferred from the cur-
rent lifestyle of the organism and genomic data, let alone 
from fossil records.

Despite the above obvious difficulties, it has been 
shown that certain aspects of genome evolution (and 
the corresponding intermediate steps) can be predicted 
with knowledge of distant ancestors and estimates of 
relevant selection pressures64,67 (FIG. 2b). These studies 
concentrated on understanding the process of genome 
reduction in endosymbiotic bacteria such as Buchnera 
and Wigglesworthia species. These species are relatives of 
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Historical contingency
This term describes the 
situation in which future 
evolutionary alternatives of  
a population depend on its 
prior history.

E. coli and have evolved from free-living ancestors since 
the two lineages split approximately 200 million years 
ago and lost 75% of their protein-coding genes68. Despite 
reaching a nearly minimal set of genes needed to sustain 
life, even closely related Buchnera aphidicola strains con-
tain substantial variation in their gene contents. Three 
processes may underlie this apparent genomic diversity: 
differences in initial genetic makeup, variation in life-
style and chance deletion of alternative genetic pathways. 
To examine how lifestyle variation and chance deletion 
shape the evolution of metabolic gene contents, one 
study64 combined evolutionary simulations and meta-
bolic modelling (FIG. 2b). The study used a genome-scale 
model of E. coli metabolism and mimicked the lifestyle 
of the endosymbiont. The authors repeatedly simulated 
successive gene-loss events computationally, until no 
further genes could be deleted without compromising 
in silico growth. Comparison of the gene content of sim-
ulated minimal networks with the B. aphidicola genome 
revealed that the model has reached an overall 80% pre-
diction success. Furthermore, by integrating metabolic 
modelling and phylogenetic reconstruction of interme-
diate evolutionary steps, a recent study showed that the 
order and timing of loss events are also predictable67.

However, these studies also recognized a theoretical 
limit on predictability. Although independently simulated 

minimal networks preserved a core metabolism (also 
over-represented in strict intracellular bacteria), they 
were variable in both gene content and number. Thus, 
evolutionary paths are contingent on the order of gene 
deletion events owing to the presence of parallel meta-
bolic pathways in the ancestral genomes. These results 
suggest the hypothesis that some of the differences in gene 
content between intracellular bacteria may reflect alterna-
tive solutions to reach similar goals rather than organism- 
specific adaptations. We anticipate that the role of historical 
contingency will be especially important when networks  
evolve in more complex environments or when horizontal  
gene transfer has a large role in adaptation.

Outlook and future directions
The emerging field of evolutionary systems biology rein-
vestigates central issues in evolutionary biology by using 
realistic and organism-specific models of cellular sub-
systems. The goal of the corresponding computational 
analyses is at least threefold. First, they calculate evolu-
tionarily relevant variables that are difficult to estimate 
experimentally on a large-scale or across environmental 
conditions. Second, they provide mechanistic insights 
into complex evolutionary phenomena from the causes 
of gene dispensability and the adaptation of global tran-
scriptional programs to the evolution of minimized 
genomes. Third, these models also hold the promise 
to transform evolutionary biology into a more predic-
tive discipline. We wish to emphasize that conclusions 
derived from these analyses should be fully compatible 
with established population genetics mechanisms and 
molecular knowledge69. This goal can be best achieved 
by applying hybrid models, in which dynamic, system-
level analysis is integrated into an explicit evolutionary 
framework (see REF. 44 for an example of this hybrid 
approach). More generally, systems biology and popu-
lation genetics should calculate the mutational effects 
and fixation rate of mutations, respectively.

We see at least two major directions for progress, 
which are discussed in turn. First, new modelling 
frameworks are required, and existing ones should be 
improved (BOX 1). The functional analysis of genome-
scale metabolic networks currently has no counterpart in 
any other large cellular subsystem, but this limitation is 
expected to change in the near future. Existing genome-
scale metabolic models also frequently fail to capture 
minor mutational effects and interactions between them. 
We anticipate that solving this difficult problem requires 
integration of SNP data on enzyme property variations70 
and more complex models that incorporate some details 
on enzyme kinetics as well18.

Moreover, reliable genome-scale metabolic models 
are currently only available for a handful of microbial 
species16, and even existing ones have several limitations. 
However, there has recently been enormous progress 
towards the automated, high-throughput generation, 
optimization and analysis of genome-scale metabolic 
models71. Thus, there is a real possibility that the devel-
opment of new models will soon keep pace with genome 
sequencing of new microbial species, a much awaited 
step towards ‘comparative systems biology’ (REFS 72,73). 

Box 2 | Key issues in network evolution

Integrating targeted genome engineering with laboratory evolution and 
computational modelling could considerably increase our understanding of the 
following open issues in network evolution.

Impact of network rewiring on metabolic functioning
What is the adaptive value of introducing new enzymatic reactions or rewiring 
regulatory links in particular environments? Systematic network modifications by 
means of genome engineering90 will allow researchers to map the fitness landscape 
of metabolic networks and also explore the space of plausible alternative  
molecular circuits.

Neutral evolution and emergence of key innovations
How does the neutral evolution of metabolic networks influence the emergence of 
evolutionary innovations91? A computational study showed that the presence  
of alternative metabolic circuits with the same phenotype is a key facilitator of 
evolutionary novelty (that is, the ability to utilize new nutrients)92. In principle, this 
prediction can be tested experimentally by measuring the fitness of alternative 
network circuits under various environmental conditions.

Role of promiscuous enzyme activities in network evolution
Promiscuous functions — weak activities for which the enzyme is not directly selected 
— have been suggested to have important roles as raw materials for future adaptive 
evolution93,94. Generating large pools of mutations in numerous targeted promiscuous 
enzymes and exposing the mutant strains to repeated rounds of selection will shed 
light on how novel promiscuous pathways evolve.

Importance of regulatory versus structural mutations in adaptive evolution
Phenotypic changes could arise through mutations in cis-regulatory sequences or 
coding regions, but their relative importance remains intensely debated95. This issue 
could be addressed by directed evolution in vitro81 by modifying the targets of 
available genetic variation.

Convergent evolution of network structure and function
How frequent is convergent evolution at the network level96? Replaying adaptive 
network evolution in the laboratory would allow the prevalence of convergence  
to be estimated and computational predictions on the availability of alternative 
evolutionary trajectories to be tested.
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Cross-feeding
This describes the situation in 
which one species or strain 
degrades a primary resource 
and secretes a chemical 
compound that is used as a 
substrate by another species 
or strain.

Multiplex automated 
genome engineering
An automated and efficient 
experimental technique to 
simultaneously modify many 
targeted genomic locations.

Such advances would be important for the following rea-
sons. For the first time, it would be possible to investigate 
the evolution of system-level properties of metabolic 
networks — such as growth properties or epistatic inter-
actions — across related microbial species and how these 
properties depend on changes in genome architecture 
and ecological conditions73,74. Along with comparative 
genomics approaches, it will pave the way for network 
archaeology: that is, the reconstruction and analysis of 
the functional properties of ancestral cellular networks75. 
It will allow systematic predictions of ecological interac-
tions (for example, mutualism) between species and will 
shed new light on topics such as the evolution of cross-
feeding and cooperative behaviour76,77. In a similar vein, 
it could lay a rigorous foundation for ‘reverse ecology’. 
Reverse ecology aims to gain insight into the habitats in 
which organisms have evolved based on comparison of 
networks across a wide range of species78,79. More practi-
cally, comparative systems-biology models could provide 

enormous help in the identification of new drug targets 
shared by numerous related pathogenic bacteria80.

Second, there is an urgent need for new experimental 
technologies to investigate mutational effects and evo-
lution in a high-throughput manner. Given the limited 
timescale of microbial laboratory evolution experiments, 
only a few mutations are fixed in most laboratory-
evolved populations. Moreover, studying the evolution 
of a particular cellular subsystem (for example, metabo-
lism) is hindered by the fact that beneficial mutations can 
occur outside the subsystem under investigation. Novel 
genome-engineering techniques may provide the key to 
solving these problems: it has recently become possible 
to generate huge diversity at specific loci in the genome 
(through multiplex automated genome engineering81). We 
anticipate that these novel experimental techniques, 
along with computational models of specific cellu-
lar subsystems, will allow researchers to reinvestigate  
key issues in network evolution (BOX 2).
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