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Network science provides powerful analytical, statistical and 
computational methods to describe the behaviour of com-
plex systems1. Complex systems are typically composed of 

a large number of components. Each component interacts directly 
with only relatively few others, while influencing more components 
indirectly via chains of direct interactions. Since both direct and 
indirect interactions determine the behaviour and function of a sys-
tem, network models of complex systems capture both — generally 
in two steps.

First, components are represented as nodes xi. Direct interac-
tions between them are represented with possibly weighted and 
directed pairwise links ⎯ →⎯⎯⎯⎯⎯

x xi j , which are captured in adjacency matri-
ces or associated to random walk and Laplacian matrices. Second, 
non-adjacent nodes are transitively connected by matrix algebraic 
methods; in applications such as eigenvector centrality or spectral 
clustering, for example, these would be given by products of matri-
ces or eigenvalue decompositions. The application of these methods 
assumes that, given adjacent pairwise links ⎯ →⎯⎯⎯⎯⎯

x xi j  and ⎯ →⎯⎯⎯⎯⎯
x xj k , a node xi 

can indirectly influence another node xk through a transitive path 
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯
x x xi j k  with two independent steps. This assumption is ubiquitous 
in network science. It is at the root of node-ranking and community 
detection algorithms2–5, of scalable techniques to calculate shortest 
paths, optimal flows and cuts6, as well as of visualization methods7.

The success of network models across the sciences rests on their 
ability to connect the structure, dynamics and function of arbitrary 
systems on the basis of abundant data on pairwise interactions 
between their components. Compared with mean-field approaches, 
where the interactions between all elements are summarized 
through a single averaged field, network models often have greater 
explanatory power because they account for the sparse and non-
random topologies of social, biological and technological systems1. 
However, new forms of high-dimensional and time-resolved data 
have now also shed light on the limitations of these models.

Rich data indicate who interacts with whom, but also what differ-
ent types of interactions exist, when and in which order they occur, 
and whether interactions involve pairs or larger sets of nodes. These 
seemingly disparate types of data have something in common: they 
provide us with information on higher-order dependencies between 
the components of a system, which lay beyond the reach of mod-
els that exclusively capture pairwise links. This has profound con-
sequences for network models of relational data — a cornerstone 
in the interdisciplinary study of complex systems. For example, 
higher-order dependencies have been shown to either speed up or 

slow down dynamical processes8–10, change node rankings11–13 and 
alter community structures12,14–18.

An active community of researchers is developing higher-order 
network models that account for different types of higher-order 
dependencies in data on complex systems. Such models better cap-
ture how the components of complex systems directly and indirectly 
influence each other, promising improved explanatory power at 
the expense of increased model complexity. Further progress will 
require integrative approaches that combine novel network-ana-
lytic methods for rich data with scalable statistical inference and 
machine-learning techniques. These will help address open ques-
tions, such as finding models that optimally balance under- and 
overfitting in dependence of available data, or establishing the exis-
tence and scalability of a single framework that can capture different 
types of higher-order dependencies. Finding good answers can in 
turn further improve our understanding of the structure, dynamics 
and function of complex systems.

In this Perspective, after a brief overview of different classes of 
higher-order network models, we focus on the consideration of non-
Markovian paths in time-stamped interaction data. We illustrate how 
that affects fundamental network science methods applied across disci-
plines, namely community detection, node ranking and the modelling 
of dynamical processes. Finally, we discuss challenges in develop-
ing optimal higher-order models that take advantage of rich data on 
higher-order dependencies while avoiding the risk of overfitting.

Modelling higher-order dependencies in complex systems
Recent work on higher-order network models can be divided into 
three different yet related lines of research. The first line challenges 
the assumption that the influence between a system’s components 
can be decomposed into links of a single type, introducing instead 
multilayer higher-order models with multiple link types8,19. The 
second line questions the assumption that the influence between 
components in a complex system can be decomposed into pairwise 
links, developing models that generalize pairwise links to arbitrary 
node sets, which we refer to as combinatorial higher-order mod-
els14,20–22. The third line challenges the idea that the indirect influ-
ence between the components of a system can be understood based 
on transitive paths formed by independent links. Leveraging infor-
mation on real paths inferred from time-series data, this research 
has introduced non-Markovian higher-order network models. They 
account for correlations in the sequence of nodes traversed by paths 
that cannot be captured by first-order Markov models10,12.
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Multilayer models account for the fact that many real complex 
systems exhibit multiple types of interactions. Examples include 
multi-modal transportation systems23, interdependent layers of 
power and communication infrastructures24, multilayer financial 
networks25 or multi-faceted relationships between individuals 
in social systems26. Multilayer generalizations of networks seek 
to account for these features in, for example, the modelling of 
spreading processes8, the detection of modular structures27 and 
the ranking of nodes28,29.

Combinatorial models reproduce many-body interactions, 
which appear in many systems and necessitate higher-order models 
that capture information beyond pairwise interactions. Examples 
include triangles, which are known to be fundamental build-
ing blocks of social networks30, cliques in scientific co-authorship 
networks31, feed-forward loop network motifs in biochemical 
transcription networks32 and temporal social networks33, spatial 
coexistence relations between species in an ecosystem34 and trigenic 
interactions in gene regulatory networks35. Research on combina-
torial models has introduced high-dimensional generalizations of 
graphs from topological data analysis. These include hypergraphs, 
in which links can join any set of nodes36, and more recently simpli-
cial complexes, in which simplices can join any set of nodes and all 
subsets of those nodes37,38.

The need for non-Markovian models has been highlighted by 
a number of studies, which have used high-resolution time-series 
data to reveal complex higher-order patterns in paths that are not 
captured by standard network models. Examples include flight itin-
eraries of passengers, patients moving between hospital wards39, 
time-stamped interactions in social networks40–42, scholarly citation 
networks12, temporal patterns in trade relations43,44, human mobil-
ity10,12,45, navigation paths of humans in information networks17,46, 
patient pathways in hospital networks47 and traces of dynami-
cal processes in networked systems15. By leveraging applications 
of higher-order Markov chains in time-series analysis48, sequence 
mining49–51, behavioural modelling52,53 and natural language pro-
cessing54,55, recent research on non-Markovian higher-order models 
has generalized networks to higher-dimensional representations 
that account for higher-order dependencies in paths.

Despite differences in motivation and mathematical underpin-
ning, these approaches share a motivation: that standard network 
models are too simple to explain the complex paths of influence in 
high-dimensional and time-resolved data on biological, technical,  
economic and social systems, and thereby cannot adequately con-
nect their structure, dynamics and function. In practice, this is 
achieved by modelling higher-order dependencies in complex sys-
tems and further constraining paths beyond what is expected from 
the network topology.

As an illustration, consider an ego network with five nodes in 
which ego communicates by different means with two friends and two 
colleagues, but rarely passes on information between them (Fig. 1).  
A standard network model would wash out this kind of higher-
order node dependencies, whereas a random walk as an informa-
tion flow model would form paths across independent pairwise 
links (Fig. 1a). In contrast, all higher-order network models better 
capture the constraints on the information paths so that they tend 
to stay among friends or colleagues. This is achieved by consider-
ing node dependencies in the underlying data in different ways: a 
non-Markovian model records the temporal order of messages so 
that paths continue depending on where they come from (Fig. 1b), a 
multilayer model differentiates communication means so that paths 
mainly stay within associated layers (Fig. 1c), and a combinatorial 
model combines group and multiple pairwise communication in 
a simplicial complex and considers paths that move between links 
that share a triangle (Fig. 1d). In this way, higher-order network 
models further constrain the indirect paths by which different parts 
of a system influence each other.

In the following, we review how modelling of higher-order 
dependencies between nodes with proper constraints on paths can 
provide a better understanding of complex systems. We focus on 
non-Markovian higher-order network models, which explicitly 
question the assumption that indirect influence between distant 
nodes happens through transitive paths — common in standard 
network models.

A useful example to illustrate this concept is the reconstruction 
of paths from time-series data (Fig. 2a). The temporal information 
available in this data helps either directly infer the paths or cascades 
through which information propagates in a system, or indirectly cap-
ture time-stamped links that define the concept of causal, or time-
respecting, paths9. Considering pairwise interactions, a standard 
network model would portray the link topology of the underlying 
system as shown in Fig. 2b. This representation discards informa-
tion on the links’ contribution to paths, implicitly suggesting that 
nodes can indirectly influence each other via transitive paths that 
traverse nodes in a memoryless, Markovian fashion. In our exam-
ple, nodes A and B can both indirectly influence D and E via four  
transitive, Markovian paths: 

→
ACD, 

→
ACE, 

→
BCD and 

→
BCE (Fig. 2c).  

However, a closer look at the interaction order in the time-series 
data (Fig. 2a) reveals that only two of these four possible paths exist 
in the sequence (Fig. 2d). Network analytic methods that assume 
transitive, Markovian paths, are therefore not valid. This shortcom-
ing can be overcome by a path-centric view that generalizes net-
works to higher-order models of paths10–12,15,17,56. Figure 2e illustrates 
this idea with a second-order model that accounts for the topology 
of paths of length two. In the spirit of higher-order Markov chain 
models, this model can be represented with a memory network12, 
where state nodes represent states in a second-order state space and 
links encode possible transitions between states. Depending on the 
topology of paths, each of the five physical nodes A, B, C, D and 
E, which typically are the objects of interest in the real world, has 
one or more state nodes (Fig. 2e). These state nodes enable effi-
cient higher-order network models of paths. A path described by a 
Markovian model on the state nodes, directed from one state node 
to the next with a probability that does not depend on previously 
visited state nodes, appears non-Markovian on the physical nodes 
(Fig. 2f). This modelling approach can be generalized to arbitrary 
order m by adding one state node for each prefix of m – 1 nodes that 
precedes the current physical node on a path. In this way, we can 
construct network models that capture higher-order effects in paths 
for any given order m.

Non-Markovian paths and community detection
Community detection57 is an umbrella term for a large number 
of algorithms that group nodes into distinct modules to simplify 
and highlight essential structures in the network topology. As 
higher-order network models can capture more complex forms 
of interactions, generalized community-detection algorithms 
can capture more complex forms of relational regularities. An 
example is citation flows between journals and scientific com-
munities with long flow persistence times. A standard network 
model where journals are connected by weighted directed links 
that are built by aggregating citations between their articles fails 
to capture the complex citation flows through multidisciplinary 
journals such as Nature (Fig. 3a,c)12.

Citation flows from different fields mix and move in a non-
realistic way across fields, as the output citation flow from the 
multidisciplinary journal depends only on the total number of 
citations directed to another journal, irrespective of where the cita-
tions are coming from. For example, Fig. 3c illustrates that, within 
a standard first-order Markov model, most citation flows from two 
microbiology journals would continue to two plant science jour-
nals. As a result, all these journals would be best assigned to the 
same field. This showcases how community detection based on a 
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standard network model can wash out boundaries between mod-
ules and fail to assign nodes to multiple overlapping modules.

In contrast, a second-order Markov representation of citation 
flows, which takes into account where citations come from, cap-
tures the fact that most citation flows coming to Nature from one 
field return to the same field (Fig. 3b,d). For example, when going 
from a first- to a second-order Markov representation, the rela-
tive amount of citation flows that return to the same journal after 
two steps, averaged over all journals, increases from 11% to 22% 
(ref. 12). Moreover, the non-returning citation flows behave in a 
more realistic way: Fig. 3b,d illustrates how citation flows from the 
Journal of Microbiology and the Journal of Bacteriology in microbi-
ology mostly return to either journal and, similarly, how citation 
flows from Plant Cell and Plant Physiology in plant science mostly 
return to those journals. As a consequence, citation flows stay 
within their respective fields, highlighting the multidisciplinary 

character of the journal Nature. Averaged over all journals, the 
flow persistence within fields, the probability that citation flows 
stay within the same field in the next step, increases by 38%  
(ref. 58). A higher-order representation of non-Markovian citation 
paths is critical for capturing overlapping research fields in multi-
disciplinary journals.

Non-Markovian paths and node centralities
Algorithms that identify important nodes are among the success 
stories of network science. They help us locate critical elements in 
networked infrastructures, identify influential actors in social sys-
tems or find relevant pages in the World Wide Web. At the heart of 
these applications are measures for the centrality of nodes — based 
on, for example, their occurrence on the shortest paths between 
other nodes, their role in flow processes or their influence on the 
steady state of stochastic dynamics1,59,60.

a b c d CombinatorialMultilayerMarkovian

Standard network model Higher-order network models

Non-Markovian

Fig. 1 | Different approaches to model an ego network with higher-order dependencies between nodes. a–d, Ego (central node) communicates by 
different means with two friends (left nodes) and two colleagues (right nodes). Green and purple arrows highlight paths from one friend (purple) and one 
colleague (green) through ego. To which nodes these paths can continue depends on the constraints set by a standard network model with Markovian 
dynamics (a), a non-Markovian network model (b), a multilayer network with Markovian dynamics within layers (c) and a simplicial complex where the 
paths move between links that share a triangle (d). The thickness of the arrows indicates the volume of flows between nodes.
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Fig. 2 | Non-Markovian higher-order models can better capture the topology of paths in complex systems. a, A rich source of path information is 
time-series data that capture interaction sequences between the components of a system. b,c, Focusing on pairwise interactions, network models 
abstract a system’s topology with nodes and links (b) while assuming that paths are transitive and Markovian (c). d, Due to the chronological ordering 
of interactions, the actual paths of indirect influence in time-series data can deviate from this assumption. e,f, Focusing on paths rather than pairwise 
interactions, higher-order network models with, for example, state nodes (e) can capture the actual topology of indirect influence (f).
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As these methods assume that node centrality can be character-
ized on the basis of the topology of pairwise interactions, they can be 
improved by accounting for the complex structure of paths in high-
dimensional, time-resolved data. An example is shown in Fig. 4,  
which is based on time-stamped social interactions between soft-
ware developers in a major open-source project. The network model 
of these interactions (Fig. 4a) allows us to estimate the importance 
of nodes, for example, using betweenness centrality, a measure that 
assigns high centrality to a node v if many shortest paths between 
pairs of other nodes pass through v (ref. 61). The resulting node cen-
tralities are represented by node sizes in Fig. 4a, indicating that node 
B is the most important node in the system.

But is this a good estimate for the relative importance of differ-
ent developers? We can answer this question by inferring causal 
paths in the underlying time-series data. That is, we consider which 
paths exist based on the chronological ordering and timing of time-
stamped interactions. In a nutshell, for two interactions 

→
AB and 

→
BC,  

a causal path 
→
ABC can only exist if 

→
AB occurs before 

→
BC. Hence, 

time-stamped network data allow us to calculate causal path sta-
tistics that may or may not be consistent with the assumptions in 
transitive, Markovian paths of standard network models17. In the 
example shown in Fig. 4, a calculation of betweenness centrali-
ties based on actual shortest causal paths11 considerably shifts the 
relative importance of different developers. The alluvial diagrams 
in Fig. 4c,d visualize these differences, revealing that the shortest 
causal paths passing through node B are considerably more con-
strained than expected. This is due to temporal patterns in human 
communication behaviour that are not captured by a standard 

network model. As a result, node B is less central than we would 
assume based on the network topology. In contrast, node A, which 
ranks among the least central nodes from a topology perspective, 
turns out to be the most important node in terms of causal paths in 
the interaction sequence.

Higher-order models open new ways to address these limitations 
of existing centrality measures. We can, for instance, generalize net-
works to higher-order network models that resemble high-dimen-
sional de Bruijn graphs10,17,62. Each node in such an m-dimensional 
model represents a path of length m – 1. Relative frequencies of 
paths of length m in time-series data are represented by weighted 
links, connecting nodes that overlap by m – 1 nodes. This simple 
construction generalizes standard network models to higher-order 
generative models of paths, each model of order m being a line 
graph of the model with order m – 1 (Fig. 5). Similar to memory 
networks, we can use such models to define higher-order general-
izations of path-based centrality measures such as betweenness or 
closeness11. Moreover, spectral measures such as PageRank or eigen-
vector centrality can be redefined based on eigenvectors of linear 
operators derived from de Bruijn graphs or memory networks12,15,17. 
These novel measures help us better quantify the importance of ele-
ments in a complex system, considering a system’s topology as well 
as temporal patterns in non-Markovian paths. Besides statistical 
methods that can be used to detect correlations that warrant higher-
order models, cross-validation analyses show that the predictions 
generated by such models indeed outperform those of standard net-
work models17, which confirms that higher-order models can better 
generalize to unseen data.
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Fig. 3 | community detection of paths can capture overlapping communities. The underlying data from Thomson Reuters Web of Science65 are 
chains of citing articles aggregated in journals, like in Fig. 2a with nodes interpreted as articles in journals A–E. a, A standard first-order Markov 
representation of citation flows from four specialized journals through multidisciplinary Nature. b, A second-order representation with one state  
node for each citing journal. c, The standard network representation mixes flows and washes out the boundary between fields. d, A second-order 
Markov model captures the fact that citation flows through a multidisciplinary journal depends on where they come from and highlights overlapping 
fields in Nature.
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Non-Markovian paths and dynamical processes
Along with giving us the ability to reason about topological features 
including community structures or node centralities, network sci-
ence enables us to understand how the topology of a system influ-
ences dynamical processes, and thus its function. Much of this 
research is based on the analytical study of linear dynamical systems 
in which Laplacian, adjacency or transition matrices encode direct 
pairwise interactions between a system’s elements. The eigenvalues 
and eigenvectors of these matrix operators capture how the topology 
of a system influences the efficiency of diffusion and propagation 

processes, whether it enforces or mitigates the stability of dynamical 
systems, or if it hinders or fosters collective dynamics.

Although such algebraic methods help relate the structure and 
dynamics of complex systems, they also come with the assumption 
of transitive, Markovian paths, which is not justified in many real 
systems. Figure 6a illustrates an example of such a system — the 
London Tube system modelled as a network, where nodes represent 
train stations and links capture direct train connections. To under-
stand how the topology of this transportation network influences 
its efficiency and robustness, it is common to study its influence 
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Fig. 4 | Non-Markovian paths change the centrality of nodes in time-stamped social network data. a,b, Betweenness centralities calculated based on 
shortest paths in a network model of time-stamped interactions (a) do not capture the true importance of nodes calculated based on causal paths that 
respect causality in the underlying time-series data (b). c,d, The alluvial diagrams highlight the fact that the chronological order of interactions alters  
the shortest causal paths passing through nodes A and B (d), compared with what we would expect based on the topology of direct interactions  
(c), thus considerably changing the betweenness centrality of nodes.
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on dynamical processes. As a simple example, consider a discrete-
time model for the diffusion of passengers who start their journey 
at a single station at time t = 0 and travel one station per discrete 

time step. We further adjust each passenger’s probability to continue 
across a given link based on data on average passenger volumes 
between London Tube stations, making the passenger more likely to 
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Fig. 6 | Non-Markovian paths in networked systems influence the evolution of diffusion processes. a, Network model of the London Tube system, where 
links capture direct train connections between stations. b,c, The flow diagrams show the first five steps of a discrete-time diffusion process starting in node 
highlighted in red in a. The widths of flows capture the number of passengers moving on paths between particular nodes in the process. While b shows the 
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continue through links with high passenger volume. The flow dia-
gram in Fig. 6b shows the first five steps in this process. Assuming 
transitive, Markovian paths, it highlights how the system’s topol-
ogy shapes diffusion dynamics. Alternatively, using available data 
on actual passenger itineraries, we can study this diffusion process 
based on real paths (Fig. 6c). This study reveals that the topology of 
the system is not sufficient to explain the complex non-Markovian 
paths and flows in the system10. Specifically, Fig. 6c reveals a strong 
directional preference — which would be better captured by a non-
backtracking random walk — rooted in the non-Markovian char-
acteristics of paths and the underlying geography. These patterns 
considerably influence the process and limit what the topology 
alone can tell us about the robustness and efficiency of real trans-
portation networks.

Non-Markovian higher-order models help us to overcome these 
issues. We can, for instance, generalize Laplacian and transition 
matrices to high-dimensional de Bruijn graph models10 that cap-
ture the causal topology shaped by non-Markovian paths. Such 
higher-order representations enable the generalization of meth-
ods for dynamical systems, such as eigendecompositions, spectral 
analysis or stability theory, to systems with non-Markovian paths. 
They make it possible to analytically study the complex interplay 
between time and topology in networked systems, and explain why 
non-Markovian characteristics of paths can both decelerate and 
accelerate dynamical processes and collective dynamics10,63.

Perspectives
To explain the behaviour of complex systems, we must understand 
how its components influence each other. Network science provides 
powerful tools to address this challenge. Network abstractions of 
direct, pairwise interactions help us explain emergent phenomena 
that arise from essential features of a system’s topology, rather than 
from the details of a particular system. Moreover, by combining 
graph-theoretic methods with ensemble-based techniques, network 
science provides a solid foundation for statistical analysis, infer-
ence and machine learning in relational data. However, the limits of 
what network models can teach us about real systems are becoming 
increasingly evident as a result of rich, recently available data on 
social, technical and biological systems. Capturing complex paths 
in these data requires advanced modelling techniques, which comes 
with new challenges but also exciting opportunities for interdisci-
plinary exchanges between physics, computer science and statistics.

Model selection is an epistemological challenge. Given rich, 
high-dimensional and time-stamped data on complex systems, how 
do we know that our selected model explains how a system’s com-
ponents influence each other? Referring to Ockham’s razor, a good 
model should be maximally parsimonious: it should make minimal 
assumptions to enable generalizable statements that go beyond the 
specific system under study. However, a good model must also be 
sufficiently sophisticated to explain paths observed in real systems, 
which is where standard network models often fall short. In other 
words, much like network science has exposed patterns in the link 
topology, we need higher-order models that best compress infor-
mation by modelling higher-order dependencies in complex sys-
tems. Effectively, finding such optimal models based on rich data 
becomes a machine-learning problem, where standard networks are 
merely one of many possible outcomes.

Scalability is a computational challenge. The size of non-Mar-
kovian models often grows exponentially with their order so that 
an analysis becomes quickly infeasible. Moreover, statistically reli-
able inference of such models typically requires vast volumes of 
data, which may not be available. Finally, fixed higher-order mod-
els can simultaneously under- and overfit paths in real systems. 
These issues highlight the need for computational and statistical 
methods that use variable-order15,58 or multi-order models17 and 
model-order-reduction techniques16 to generate computationally 

tractable models that neither under- nor overfit the data (see Box 1).  
While model selection and statistical learning can be used to fit 
non-Markovian higher-order models in time-series data17, little is 
known about how we can address this challenge for other classes of 
higher-order models and data.

A unified, higher-order modelling framework is an inter-
disciplinary challenge. While multilayer, combinatorial and 
non-Markovian higher-order models enrich network science in 
different ways, a unified framework can potentially combine their 
strengths. For example, generalized links and paths in combina-
torial models, which define them between arbitrary node sets, 
as well as multilayer models, which include heuristic interlayer 
links, can benefit from the path-centric view of non-Markovian 
models with generalized links from data on paths. Similarly, the 
non-Markovian perspective can benefit from advances made by 
the other approaches. For example, these other approaches offer 
generalizations of generative models64 that help us to detect struc-
tural patterns and identify the simple mechanisms by which they 
emerge. Since little is known about the mechanisms by which 
similar non-Markovian patterns emerge across different systems, 
a new class of higher-order generative network models would 
provide a step forward. Finally, a unified mathematical language 
can enable universal methods to select optimal models across  
different modelling approaches.

Addressing these challenges, higher-order modelling techniques 
will be able to leverage existing network methods and extend them 
towards optimal models that better explain the inner workings and 
behaviour of complex systems.
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