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1. Introduction

Constraint satisfaction problems (CSPs) play a crucial role in theoretical and applied
computer science. Their wide range of applicability arises from their very general nature:
given a set of N discrete variables subject to M constraints, a CSP consists in deciding
whether there exists an assignment of variables which satisfies simultaneously all the
constraints. When such an assignment exists we call it a solution and aim at finding it.
One of the most important questions about a CSP is how hard it is to find a solution
or prove that there is none. Many of the CSPs belong to the class of NP-complete
problems [1, 2]. This basically means that, if P �= NP, there is no algorithm able to solve
the worst case instances of the problem in a polynomial time. Next to the question of
the worst case computational complexity arises the less explored question of typical case
complexity. A pivotal step in understanding the typical case complexity is the study of
random CSPs where each constraint involves a finite number of variables. Pioneering
work on this subject [3, 4] discovered that many problems are empirically harder close
to the so-called satisfiability phase transition. This is a phase transition appearing at a
critical constraint density αs such that for M/N = α < αs almost every large instance of
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the problem has at least one solution, and for α > αs almost all large instances have no
solution.

Studies of phase transitions such as the one occurring in the satisfiability problem
are natural for statistical physicists. Indeed, the methods developed to study frustrated
disordered systems like glasses and spin glasses [5] have turned out to be very fruitful in
the study of several CSPs. In particular they allow some structural studies which aim at
understanding how the difficulty of a problem is related to the geometrical organization
of its solutions. Several other phase transitions were described in this context. The most
important one is probably the clustering transition [6, 7], known as the dynamical glass
transition in the mean-field theory of glasses. It was computed that in the region where the
density of constraints is below the satisfiability threshold there exists a phase where the
space of solutions splits into ergodically separated groups—clusters. Another important
property of the clusters concerns the freezing of the variables. A variable is frozen in a
cluster if it takes the same value in all the solutions of this cluster. It has been conjectured
that the clustering [8] and the freezing of variables [9] are two ingredients which contribute
to make a random CSP hard. But the predictions for the easy/hard transition in a general
random CSP are still not fully quantitative. The present work provides further insight
into this subject.

In this paper we present a detailed study of the locked CSPs, introduced recently
in [10]. The special property of the locked problems is that clusters are point-like: every
cluster contains only one solution. Therefore, as soon as the system is in a clustered
phase, all the variables are frozen in each cluster. The clustering and the freezing phase
transitions occur simultaneously. Consequently the organization of the space of solutions
is much simpler than in the commonly studied K-satisfiability or graph coloring [6, 9],
[11]–[13]. But at the same time, and unlike in the K-satisfiability or graph coloring
problems, the whole clustered phase is extremely hard for all existing algorithms and
the clustering/freezing threshold seems to coincide very precisely with the onset of this
hardness.

The interest in the locked problems is thus twofold.

(a) Locked problems are very simple: as the clusters of solutions are point-like many of
the quantities of interest can be computed using simpler tools than in the canonical K-
satisfiability problem. This is in particular interesting from the mathematical point of
view, because several of their properties become accessible to rigorous proofs. From
a broader point of view the locked problems should be useful as simple models of
glass-forming liquids because their phase diagram can be studied without any need
to introduce the complicated scheme of ‘replica symmetry breaking’ [5].

(b) Locked problems are very hard: from the algorithmic point of view the whole clustered
phase of the locked problems is extremely hard; none of the known algorithms is able
to find solutions efficiently. This suggests using locked CSPs as hard benchmarks. At
the same time one may hope that the performance of some algorithms will be simpler
to analyze when they are applied to the locked problems, compared to the general
case.

This paper is organized as follows: in section 2 we define the random occupation
problems and the random locked occupation problems (LOPs) on which we will illustrate
our main findings. In section 3 we write the equations needed to describe the phase
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diagram of the occupation problems, using well-known tools from statistical physics and
probability theory. In section 4 we summarize the basic properties of the phase diagram
in general random CSPs and then discuss in detail the situation in the locked problems.
We also discuss the class of so-called balanced LOPs which are even simpler from the
mathematical point of view. Finally section 5 shows our findings about algorithmic
performance in the occupation problems: empirical data using the best-known random
CSP solver— belief propagation reinforcement—indicates that the clustering threshold is
close to the boundary between the easy and hard regions. We analyze also the non-locked
occupation problems for comparison. A short summary of the results and perspectives
conclude the paper in section 6.

2. Definitions

2.1. Locked occupation problems

We shall study a broad class of problems called ‘occupation problems’. An occupation
problem involves N binary variables si ∈ {0, 1} (si = 0 is referred to as ‘site i is empty’
and si = 1 is ‘occupied’) and M constraints, indexed by b ∈ {1, . . . ,M}. Each constraint
b involves Kb distinct variables and is defined by a ‘constraint word’ Ab with Kb + 1 bits,
which we write as Ab = Ab

0A
b
1 . . . A

b
Kb

, where Ab
i ∈ {0, 1}. We denote by ∂b the indices of

all variables involved in the constraint b. The constraint b is satisfied if and only if the sum
r =

∑
i∈∂b si of all its variables is such that Ab

r = 1. In other words, in order for constraint
b to be satisfied, one needs that the number of occupied sites, r, in its neighborhood must
be such that Ab

r = 1 (this unified notation for the occupation problems was introduced
in [14]).

Definition. An occupation problem is locked if and only if:

(a) For every constraint b ∈ {1, . . . ,M}, the vector Ab is such that, for all i = 0, . . . , K−1:
Ab

iA
b
i+1 = 0.

(b) Every variable appears in at least two different constraints.

In this paper, we shall study only ‘constraint-regular’ problems in which all of
the constraints are described by the same constraint word: for all b ∈ {1, . . . ,M},
Kb = K and Ab = A. Furthermore, in order to focus on difficult cases, we shall only
consider the occupation problems where neither the totally empty nor the totally occupied
configurations are a solution, i.e. we keep to the cases where A0 = AK = 0. It is convenient
to use the factor graph description of a problem [15, 16], where sites and constraints are
vertices, and an edge connects a constraint a to a site i whenever i appears in constraint a
(see figure 1). An instance of a constraint-regular occupation model is fully described by
its factor graph (where all constraint vertices have degree K) and the K + 1 component
vector A. The locked problems are thus characterized by the facts that (i) there are no
consecutive ‘1s’ in the word A = A0A1 . . . AK and (ii) their factor graph has no leaves.

Well-studied examples of occupation problems include:

• Ising antiferromagnet: A = 010.

• Odd parity checks (antiferromagnetic K-spin model, with K even): A =
01010 · · ·1010.

doi:10.1088/1742-5468/2008/12/P12004 4
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Figure 1. A factor graph representation of an instance of the 1-or-3-in-5
SAT (A = 010100). The squares are the constraints. Full/empty circles
are occupied/empty sites. The two parts show two examples of satisfying
assignments—‘solutions’—of this instance. As there are no leaves (each variable
belongs to at least two constraints) and A satisfies AiAi+1 = 0 for all i = 0, . . . , 4,
this instance is locked.

• Positive 1-in-K SAT (exact cover): A = 0100 . . . 00 [17].

• Perfect matching in K-regular graphs: each variable belongs to two constraints and
A = 01000 · · ·00 [18].

• Bicoloring (positive NAE-SAT): A = 0111 · · ·110 [19]–[21].

• Circuits going through all the points: A = 001000 · · ·00 [22].

All these examples, except the bicoloring, are locked on graphs without leaves.
For the occupation problems which have not been studied previously, we will use

names derived in the following way: A = 010100 is the 1-or-3-in-5 SAT, A = 010010 is
the 1-or-4-in-5 SAT, etc.

From the computational complexity point of view, Schaefer’s theorem [23] implies
that most of the occupation problems are NP-complete. The exceptions are the parity
checks, which amount to linear systems of equations on GF (2), and some of the cases
where the variables have degree 2, such as, for instance, the perfect matching.

The crucial property of the locked occupation problems is that, in order to go from
one solution to another, one must flip at least a closed loop of variables. This property can
be used to generalize the definition of a locked problem to a much wider class of constraint
satisfaction problems than the occupation problems, and in particular the variables do not
need to be binary. Some examples of locked problems which are not occupation problems
are the XOR-SAT (p-spin) problem on factor graphs without leaves [24] or all the uniquely
extensible models [25].

2.2. Ensembles of random occupation problems

We shall study some random ensembles of locked occupation problems, in which the
factor graph is chosen from some ensemble of random bipartite graphs. We consider
constraint-regular occupation problems where each constraint involves K variables and is
characterized by the constraint word A. An ensemble is characterized via a probability
distribution Q(l). To create an instance of the random occupation problem with N
variables, we draw N independent random numbers li from the distribution Q(l), with

the additional constraint that
∑N

i=1 li/K = M is an integer. The factor graph that
characterizes an instance is then chosen uniformly at random from all the possible graphs

doi:10.1088/1742-5468/2008/12/P12004 5
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with N variables, and M constraints, such that, for all i = 1 . . . N , the variable i is
connected to li constraints.

In this paper we will consider mainly two degree distributions:

• Regular: Q(l) = δl,L, in which all the variables take part in L clauses.

• Truncated Poissonian:

Q(0) = Q(1) = 0, Q(l) =
1

1− (1 + c) e−c

e−ccl

l!
, for l ≥ 2, (1)

where c ≥ 0. The average ‘connectivity’ (variable degree) is then

l = c
1− e−c

1− (1 + c)e−c
. (2)

In the cavity method one also needs the excess degree distribution q(l), defined as
the distribution of the number of neighbors on one side of an edge chosen uniformly
at random:

q(0) = 0, q(l) =
1

ec − 1

ck

k!
. (3)

We shall be interested in the properties of large instance, i.e. in the ‘thermodynamic
limit’ where one sends N →∞ and M →∞, keeping K and Q(l) fixed; this results in a
fixed density of constraints M/N = l/K. Our main results are easily generalizable to any
degree distribution Q(l) which has a finite second moment. For every such distribution, a
typical factor graph is locally tree-like: the shortest loop going through a typical variable
has a length which scales as logN . The crucial property of the locked occupation problems
is that, in order to go from one solution of the problem to another solution, one must flip
at least one closed loop of variables. On the random locally tree-like factor graphs this
means that at least logN variables need to be changed.

3. The solution of random occupation problems

The cavity method [26] is nowadays the standard tool to compute the phase diagram of
random locally tree-like constraint satisfaction problems. Depending on the structure of
the space of solutions of the problem, different versions (levels of the replica symmetry
breaking) of the method are needed. In this section we state the cavity equations for the
occupation problems. For a detailed derivation and discussion of the method see [16, 26].

We index the variables by i, j, k, . . . going from 1 to N and the constraints by a, b, c, . . .
going from 1 to M . The energy of the occupation problems then is

H({s}) =
M∑

a=1

δA∑
j∈∂a sj

,0. (4)

In this paper we shall study only the instances where solutions (ground states of zero
energy) exist, and we shall focus on the uniform measure over all solutions.

doi:10.1088/1742-5468/2008/12/P12004 6
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Figure 2. Part of the factor graph to illustrate the meaning of indices in the
belief propagation equations (5a)–(5b).

3.1. The replica symmetric solution

The replica symmetric version of the cavity method is also known under the name
‘belief propagation’ [15, 16, 27]. It exploits the local tree-like property of the factor
graph, assuming that correlations decay fast enough. The basic quantities used in this
approach are messages. We define ψa→i

si
as the probability that the constraint a is satisfied,

conditioned to the fact that the value of variable i is si. Similarly, χj→a
sj

is the probability
that the variable j takes a value sj conditioned to the fact that the constraint a has
been removed from the graph. The messages then satisfy the belief propagation (BP)
equations:

ψa→i
si

=
1

Za→i

∑

{sj}
δAsi+

∑
j sj

,1

∏

j∈∂a−i

χj→a
sj

, (5a)

χj→a
sj

=
1

Zj→a

∏

b∈∂j−a

ψb→j
sj

, (5b)

where Za→i and Zj→a are normalization constants. Figure 2 shows the corresponding part
of the factor graph. The marginal probabilities (‘beliefs’) are then expressed as

χi
si

=
1

Z i

∏

a∈∂i

ψa→i
si

. (6)

The replica symmetric entropy (logarithm of the number of solutions, divided by the
system size) then is

s =
1

N

∑

a

log (Za)− 1

N

∑

i

(li − 1) log (Z i), (7)

where

Za =
∑

{si}
δA∑

i si
,1

∏

i∈∂a

(
∏

b∈∂i−a

ψb→i
si

)

, (8a)

Z i =
∏

a∈∂i

ψa→i
0 +

∏

a∈∂i

ψa→i
1 (8b)

doi:10.1088/1742-5468/2008/12/P12004 7
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are the exponentials of the entropy shifts when the node a and its neighbors (resp. the
node i) are added.

When one considers an ensemble of random graphs, the probability distribution of
the messages can be found via the population dynamics technique [26]. Moreover, on the
regular graph ensemble or for some of the balanced problems (see section 4.3) the solution
is factorized. In the factorized solution the messages χi→a, ψa→i are independent of the
edge (ia) and the replica symmetric solution can thus be found analytically.

For instance, in the regular graph ensemble where each variable is present in L
constraints the factorized solution is

ψ0 =
1

Zreg

K−1∑

r=0

δAr ,1

(
K − 1

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (9a)

ψ1 =
1

Zreg

K−1∑

r=0

δAr+1,1

(
K − 1

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−1−r)
0 , (9b)

where the normalization Zreg is fixed by the condition ψ0 + ψ1 = 1. Given the solution
ψ0, ψ1 of (9a)–(9b), the entropy is

sreg =
L

K
log

[
K∑

r=0

δAr,1

(
K

r

)

ψ
(L−1)r
1 ψ

(L−1)(K−r)
0

]

− (L− 1) log [ψL
0 + ψL

1 ]. (10)

3.2. Reconstruction on trees

Treating the locally tree-like random graph as a tree fails if long range correlations are
present in the system. More precisely [12, 28] the replica symmetric assumption is correct
if and only if the so-called point-to-set correlations do decay to zero. The decay of these
correlations is closely related [28] to the problem of reconstruction on trees [29] which we
explain and analyze in this section.

The reconstruction on trees is defined as follows: first construct a tree of d generations
having the same connectivity properties as a finite neighborhood of a random variable
in the random factor graph. Assign the root a random value, further assign values
iteratively on the descendants uniformly at random but in such a way that the constraints
are satisfied. Subsequently forget the assignment everywhere but on the leaves of the
tree. The reconstruction on the tree is possible if and only if the information left in
the values of the leaves about the value of the root does not go to zero as the size of
the tree grows, d → ∞. The replica symmetric assumption is correct if and only if the
reconstruction is not possible, in other words, if there is no correlation between the root
(point) and the leaves (set). Typically, when the average connectivity of variables is small
the reconstruction is not possible and when the connectivity is large the reconstruction
is possible. The threshold connectivity is called the reconstructibility threshold, or the
clustering transition. The clustering is then defined as a minimal decomposition of the
space of solutions such that within the components (clusters) the point-to-set correlations
do decay to zero [12].

It was shown in [28] that the analysis of the reconstruction on trees is equivalent to
the solution of the one-step replica symmetry breaking (1RSB) equations at the value of
the Parisi parameter m = 1 [26].

doi:10.1088/1742-5468/2008/12/P12004 8
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Instead of the general form of the 1RSB equations at m = 1 (see, e.g., [30]), we shall
only discuss here a simpler form called the naive reconstruction in [31]. In general the
naive reconstruction gives only an upper bound on the reconstructibility threshold, but in
the locked problems it gives in fact the full information. The naive reconstruction consists
in computing the probability that the value of the root is uniquely implied by the leaves
(boundary conditions). Here we give the equations only for regular graph ensembles with
variables of connectivity L, where the factorized replica symmetric solution (9) holds.
Define μ1 (resp. μ0) as the probability that a variable which in the broadcasting had a
value 1 (resp. 0) is uniquely determined by the boundary conditions. One has

μ1 =
1

ψ1Zreg

k∑

r=0

δAr+1,1δAr,0 gk(r)

s1∑

s=0

(
r

s

)

[1− (1− μ0)
l]k−r[1− (1− μ1)

l]r−s

× (1− μ1)
ls, (11a)

μ0 =
1

ψ0Zreg

k∑

r=0

δAr+1,0δAr,1 gk(r)

s0∑

s=0

(
k − r
s

)

[1− (1− μ1)
l]r[1− (1− μ0)

l]k−r−s

× (1− μ0)
ls, (11b)

where l = L−1, k = K−1 and gk(r) =
(

k
r

)
(ψ1)

lr(ψ0)
l(k−r). The indices s1, s0 in the second

sum of both equations are the largest possible but such that s1 ≤ r, s0 ≤ K − 1− r, and∑s1

s=0Ar−s = 0,
∑s0

s=0Ar+1+s = 0. The values ψ0, ψ1 are the fixed points of equations (9a)–
(9b) and Zreg is the corresponding normalization.

These lengthy equations have, in fact, a simple meaning. The first sum is over the
possible numbers r of occupied variables on the descendants in the broadcasting. The sum
over s is over the number of variables which were not implied by at least one constraint
but the configuration of implied variables nevertheless implies the outcoming value. The
term 1−(1−μ)l is the probability that at least one constraint implies the variable (1−μ)l

is the probability that none of the constraints implies the variable.

3.3. Survey propagation

Survey propagation is a special form of the 1RSB equations corresponding to the value of
the Parisi parameter m = 0 [8]. The main assumption of the 1RSB approach is that the
space of solutions splits into clusters (pure states). To each cluster corresponds one fixed
point of BP equations. Survey propagation are then iterative equations for the following
probabilities (surveys):

Prob(χi→a
1 = 1, χi→a

0 = 0) = pi→a
1 , Prob(ψa→i

1 = 1, ψa→i
0 = 0) = qa→i

1 , (12a)

Prob(χi→a
1 = 0, χi→a

0 = 1) = pi→a
0 , Prob(ψa→i

1 = 0, ψa→i
0 = 1) = qa→i

0 , (12b)

pi→a
∗ = 1− pi→a

1 − pi→a
0 , qa→i

∗ = 1− qa→i
1 − qa→i

0 , (12c)

where qa→i
1/0 is the probability over clusters that clause a is satisfied only if variable i takes

value 1/0, qa→i
∗ is then the probability that clause a can be satisfied by both values 1 and

0, similarly pi→a
1/0 is the probability that variable i has to take a value 1/0 if the clause a is

not present, while pi→a
∗ is the probability that the variable i can take both values 1 and 0
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when clause a is not present. The survey propagation equations are then written in two
steps: first the update of p’s knowing q’s:

pj→a
1 =

1

N j→a

[
∏

b∈∂j−a

(qb→j
1 + qb→j

∗ )−
∏

b∈∂j−a

qb→j
∗

]

, (13a)

pj→a
0 =

1

N j→a

[
∏

b∈∂j−a

(qb→j
0 + qb→j

∗ )−
∏

b∈∂j−a

qb→j
∗

]

, (13b)

pj→a
∗ =

1

N j→a

∏

b∈∂j−a

qb→j
∗ , (13c)

and second the update of q’s knowing p’s:

qa→i
s =

1

N a→i

⎡

⎣
∑

{rj}
Cs({rj})

∏

j∈∂a−i

pj→a
rj

⎤

⎦ . (14)

Here N j→a and N a→i are normalization constants and the indices s and rj are in {1, 0, ∗}.
The function C1/C0 (resp. C∗) takes value 1 if and only if the incoming set of {rj} forces
the variable i to be occupied/empty (resp. let the variable i free): in all other cases the
C’s are zero. More specifically, let us call n1, n0, n∗ the number of indices 1, 0, ∗ in the set
{rj} then

• C1 = 1 if and only if An1+n∗+1 = 1 and An1+n = 0 for all n = 0 . . . n∗;
• C0 = 1 if and only if An1 = 1 and An1+1+n = 0 for all n = 0 . . . n∗;
• C∗ = 1 if and only if there exists m,n ∈ {0 . . . n∗} such that An1+n = An1+m+1 = 1.

3.4. The first and second moment

In this section we give the formulae for the first and second moment method in general
occupation problems. This allows for a direct probabilistic study of the balanced locked
occupation problems introduced below in section 4.3.

For a given instance (or factor graph), G, define as NG the number of solutions. The
first moment is the average of NG over the graph ensemble, which can also be written as

〈NG〉 =
∑

{σ}
Prob({σ} is SAT). (15)

The ‘annealed entropy’ is then defined as sann ≡ log 〈NG〉/N . It is an upper bound on the
quenched entropy, 〈logNG〉/N . In order to compute the first moment we divide variables
into groups according to their connectivity and in each group we choose a fraction of
occupied variables. The number of ways in which this can be done is then multiplied by
the probability that such a configuration satisfies simultaneously all the constraints. After
some algebra [30] we obtain the entropy of solutions with a fraction 0 ≤ t ≤ 1 of occupied
variables:

sann(t) =
∑

l

Q(l) log [1 + u(t)l] +
l

K
log

[
K∑

r=0

δAr ,1

(
K

r

)(
t

u(t)

)r

(1− t)K−r

]

, (16)
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where u(t) is the inverse of

t =
1

l

∑

l

l Q(l)
ul

1 + ul
. (17)

The annealed entropy is then sann = maxt sann(t).
The second moment of the number of solutions is defined as

〈N 2
G〉 =

∑

{σ1},{σ2}
Prob({σ1} and {σ2} are both SAT). (18)

The second moment entropy is then defined as s2nd ≡ log 〈N 2
G〉/N . The Chebyshev

inequality gives then a lower bound on the satisfiability threshold via

Prob(NG > 0) ≥ 〈NG〉2
〈N 2

G〉
. (19)

The second moment is computed in a similar manner as in [19, 32]. First we fix that in
a fraction tx of nodes the variable is occupied in both the solutions σ1, σ2 in (18). In
a fraction ty the variable is occupied in σ1 and empty in σ2 and the other way round
for tz. We sum over all possible realizations of 0 ≤ tx, ty, tz such that

∑
w=x,y,z tw ≤ 1.

This is multiplied by the probability that the two configurations σ1, σ2 both satisfy all the
constraints. After some algebra we obtain [30]

s2nd(tx, ty, tz) =
l

K
log pA(tx, ty, tz) +

∑

l

Q(l) log

⎧
⎨

⎩
1 +

∑

w∈{x,y,z}
[uw(tx, ty, tz)]

l

⎫
⎬

⎭
, (20)

where uw(tx, ty, tz), w ∈ {x, y, z}, are obtained by inverting the three equations:

tw =
1

l

∑

l

l Q(l)
ul

w

1 + ul
x + ul

y + ul
z

, w = x, y, z, (21)

and the function pA(tx, ty, tz) is defined as

pA(tx, ty, tz) =
K∑

r1,r2=0

δAr1Ar2 ,1

min (r1,r2)∑

s=max (0,r1+r2−K)

(
K

(r1 − s)(r2 − s) s
)(

tx
ux(tx, ty, tz)

)s

×
(

ty
uy(tx, ty, tz)

)(r1−s)(
tz

uz(tx, ty, tz)

)(r2−s)

(1− tx − ty − tz)(K−r1−r2+s).

(22)

The second moment entropy is the global maximum: s2nd = maxtx,ty,tz s2nd(tx, ty, tz).
For the regular graphs Q(l) = δl,L the expressions for both the first and second

moment simplify considerably. For the first moment, the inverse of (17) is explicit
u = [t/(1− t)]1/L and thus

sann reg(t) =
L

K
log

{
K∑

r=0

δAr ,1

(
K

r

)

[tr(1− t)K−r]L−1/L

}

. (23)
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For the second moment the function (21) is also explicitly reversible and the second
moment entropy for regular graphs is

s2nd,reg(tx, ty, tz) =
L

K
log

⎧
⎨

⎩

K∑

r1,r2=0

min (r1,r2)∑

s=max (0,r1+r2−K)

K!δAr1 ,1δAr2 ,1

(r1 − s)!(r2 − s)! s!(K − r1 − r2 + s)!

×
[

tsxt
(r1−s)
y t(r2−s)

z (1−
∑

w

tw)(K−r1−r2+s)

]L−1/L
⎫
⎬

⎭
. (24)

4. The phase diagram

4.1. Non-locked occupation problems

The phase diagram of the non-locked occupation problems that we have explored is
qualitatively similar to the one of K-satisfiability and graph coloring studied recently
in detail in [6, 8, 9, 12, 13]. We thus only briefly summarize the main findings in
order to be able to appreciate the difference between the locked and the non-locked
problems.

As one adds constraints to a typical non-locked problem the space of solutions
undergoes several phase transitions. When the density of constraints is very small
the replica symmetric solution is correct and most of the solutions lie in one cluster.
As the density of constraints is increased, the point-to-set correlations, defined via the
reconstruction on trees, no longer decay to zero. This is the clustering transition: at this
point the space of solutions splits into exponentially many well-separated (energetically
or entropically) clusters. But as long as an exponential number of such clusters is needed
to cover almost all the solution the observables like entropy, magnetizations, two-point
correlations, etc, behave as if the replica symmetric solution was still correct. This phase
is called the dynamical 1RSB. When the constraint density is further increased the space
of solutions undergoes the so-called condensation transition. In the condensed phase only
a finite number of clusters is needed to cover an arbitrarily large fraction of solutions.
Increasing again the density of constraints, one crosses the satisfiability transition where
all the solutions disappear.

We remind ourselves at this point that, in the non-locked occupation problems,
where the sizes of clusters fluctuate, the survey propagation equations are not equivalent
to the reconstruction on trees. More technically said, the 1RSB solutions at m = 0
and at m = 1 are different, for example a non-trivial solution appears at different
connectivities.

A second class of important phase transitions in the space of solutions of the non-
locked problems concerns the so-called frozen variables, which might be responsible for
the onset of algorithmic hardness [9]. A variable is frozen in a cluster if in all the solutions
belonging to that cluster it takes the same value. A cluster is frozen if a finite fraction of
variables are frozen in that cluster. A solution is frozen if it belongs to a frozen cluster. As
the number of constraints is increased the clusters tend to freeze. We define two transition
points. The first one, called the rigidity transition [9], is defined as the point where almost
all solutions become frozen. The second one, the freezing transition, is defined as the
point where strictly all solutions become frozen.
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In the cavity method every cluster is associated with a solution of the BP equations.
A frozen variable i is described by a marginal probability (6) which is either equal
to (χi

0, χ
i
1) = (1, 0) or to (χi

0, χ
i
1) = (0, 1). The rigidity transition is then computed

as the connectivity at which such ‘frozen beliefs’ χ appear in the dominating clusters.
If this transition happens before the condensation transition then it is given by
the onset of a non-trivial solution to the naive reconstruction, equation (11). The
rigidity transition was computed for the graph coloring in [9, 31], in the bicoloring
of hyper-graphs [21] or the K-SAT in [13, 31]. The freezing transition was studied
with probabilistic methods in K-SAT with large K in [33] and numerically in 3-SAT
in [34].

4.2. Locked occupation problems

Point-like clusters. The main property which makes the locked problems special is that
every cluster consists of a single configuration and has thus zero internal entropy. One way
to show this is realizing that in the locked problems if {si} is a satisfying configuration
then

ψa→i
si

= 1, ψa→i
¬si

= 0, (25a)

χi→a
si

= 1, χi→a
¬si

= 0 (25b)

is a fixed point of BP equations (5a)–(5b). The corresponding entropy is then zero,
as Z i = Za = 1 for all i, a. In the derivation of [16] the fixed points of the belief
propagation equations correspond to clusters. Thus in the locked problems every solution
may be thought of as a cluster. Such a situation was previously encountered in a few
problems [35]–[37] and called the frozen 1RSB because all the variables, clusters and
solutions are frozen in such a case.

The clustering transition. In terms of the reconstruction on trees the situation in the locked
problems is trivial because the boundary conditions on leaves always imply uniquely all
the variables in the body of the tree and also the root. However, one may ask what
happens if the assignment of a small fraction of the variable on leaves is also forgotten—
we call this the small noise reconstruction on trees4. In the non-locked problems nothing
changes. In the locked problems the small noise reconstruction is not equivalent to the
reconstruction. At sufficiently small connectivities the small noise reconstruction is not
possible; that is, if we introduce a small noise in the leaves all the information about the
root is lost. In the same spirit, we showed that every solution corresponds to a fixed point
of the belief propagation of the type (25), but we did not ask if such a fixed point is stable
under small perturbations. If an infinitesimal fraction of messages in (25) is changed,
will the iterations (5a)–(5b) converge back to the unperturbed fixed point or not? Again
for sufficiently small connectivity it will not. This leads us back to a definition of the
clustering transition which needs to be refined for the locked problems.

We thus define the clustering transition as the threshold for the small noise
reconstruction. As all the clusters are frozen the reconstruction problem is equivalent

4 The related, but different, concept of robust reconstruction was studied in [56]. Whereas in the small noise
reconstruction one investigates the effect of an infinitesimal noise-rate in the robust reconstruction one studies
the effect of a noise-rate arbitrarily close to 1.
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to the naive reconstruction which deals only with the frozen variables. So, for example,
on the ensemble of random regular graphs it is sufficient to investigate the stability of
the solution μ0 = μ1 = 1 of equations (11a)–(11b) under iteration. It is immediate to see
that if L ≥ 3 then the solution μ1 = μ0 = 1 of (11a)–(11b) is always iteratively stable.
When L = 2 we observed empirically that the solution μ1 = μ0 = 1 is not stable and the
only other solutions is μ1 = μ0 = 0. Thus in the regular graphs ensemble of the locked
problems the clustering transition is at L = 3.

For a general graph ensemble it is simpler to realize that, as the internal entropy of
clusters is zero, the 1RSB solution does not depend on the value of the Parisi parameter
m. Thus in particular the small noise reconstruction is equivalent to the iterative stability
of the BP-like fixed point of the survey propagation equations.

We have found that, in the locked occupation problems, the SP equations (13)–(14),
when initialized randomly, have two possible iterative fixed points.

• The trivial one: qa→i
∗ = pi→a

∗ = 1, qa→i
1 = pi→a

1 = qa→i
0 = pi→a

0 = 0 for all edges (ai).

• The BP-like one: qa→i
∗ = pi→a

∗ = 0, qa→i = ψa→i, pi→a = χi→a for all edges (ai), where
ψ and χ is the solution of the BP equations (5a)–(5b) found with high probability by
iterating the equations from a uniformly random initial condition.

The small noise reconstruction is then investigated, using the population dynamics,
from the stability of the BP-like fixed point under iteration. If it is stable then the small
noise reconstruction is possible and the phase is clustered. If it is not stable then we are in
the liquid phase. From a geometric point of view, we conjecture that in the liquid phase
the Hamming distance separation between solutions grows only proportionally to logN ;
in contrast, when small noise reconstruction is possible we expect this Hamming distance
to be extensive (proportional to N).

The satisfiability threshold. The BP equations (5a)–(5b) have many fixed points. However,
when we solve them iteratively starting from a random initial condition we always find
the same fixed point which does not correspond to a satisfying assignment (25). We call
this fixed point and its corresponding entropy the replica symmetric solution. It should
actually be thought of as a fixed point of the survey propagation equations as explained
in the previous paragraph. The important fact is that it gives the correct entropy (7),
and also the correct marginal probabilities.

The satisfiable threshold in the locked problems is then computed as the average
connectivity ls at which the replica symmetric entropy (7) decreases to zero [35], s(ls) = 0.
This is the first of many quantities in the locked problems which can be computed with
much smaller effort then in the non-locked problems. The condensed phase, where the
space of solutions is dominated by a finite number of clusters, does not exist in the locked
problems and the condensation transition coincides with the satisfiability threshold.

Summary of the phase diagram. In contrast to the zoo of phase transitions in non-locked
problems, in the locked problems we find only three phases, sketched in figure 3, whose
critical connectivity values are given in table 1.

• The liquid phase, for connectivities l < ld: in this phase the small noise reconstruction
is not possible. Equivalently the BP-like iterative fixed point of the survey propagation
equations is not stable. If one considers the problem at a very small temperature,
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Figure 3. Sketch of the phase diagram in the locked problems. At low constraint
density l < ld the solutions are separated by logarithmical distance but if any
sort of noise is introduced this separation disappears. In the clustered phase
ld ≤ l < ls the space of solutions is made of well-separated single solutions.
Eventually the satisfiability transition ls comes beyond which solutions do not
exist.

the 1RSB equations have only the trivial solution: such a situation was observed
previously in the perfect matching problem [18, 38]. We expect that the Hamming
distance separation between solutions in this phase is only logarithmic.

• The clustered phase, for ld < l < ls: in this phase the small noise reconstruction
is possible. The BP-like iterative fixed point of the survey propagation equations
is stable. The 1RSB equations have a non-trivial solution even at an infinitesimal
temperature. We expect that the solutions are separated by an extensive Hamming
distance: in other words, there is a gap in the weight enumerator function, just like
in the XOR-SAT [39]. This property is crucial in low density parity check codes [40].

• The unsatisfiable phase, for l > ls: no more solutions exist.

All the other phase transitions we described for the non-locked problems have become
very simple: the clustering transition coincides with the rigidity and freezing. And the
satisfiability transition coincides with the condensation one.

Finally we would like to mention the stability of the frozen 1RSB solution towards
more levels of replica symmetry breaking. In more geometrical terms, one should check
whether the solutions do not tend to aggregate into clusters. This is called stability of
type I in the literature [41]–[43]. In the locked problems it is equivalent to the finiteness
of the spin glass susceptibility. In all the locked occupation problems we have studied,
including all those in table 1, we have seen that the frozen 1RSB solution is always stable
in the satisfiable phase and sometimes becomes unstable at a point in the unsatisfiable
phase. This means that our description of the satisfiable phase, and the determination of
the thresholds ld and ls, should be exact.

4.3. The balanced LOPs

We have seen that the phase diagram in the locked problems is much simpler than in the
more studied constraint satisfaction problems as the K-SAT or coloring. In this section
we describe a subclass of the locked problems—the so-called balanced locked problems—
where the situation is even simpler. In particular, the clustering and the satisfiability
threshold can be determined easily and the second moment method can be used to prove
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Table 1. The locked cases of the occupation CSPs for K ≤ 6. In the regular
graphs ensemble the space of solutions is clustered for L ≥ Ld = 3 and the
problem is unsatisfiable for L ≥ Ls. The values cd and cs are the critical
parameters of the truncated Poissonian ensemble (1), while the corresponding
average connectivities ld and ls are given via equation (2). In all these problems
the replica symmetric solution is stable at least up to the satisfiability threshold.
The balanced cases are marked as ∗, their dynamical threshold follows from (29)
and their satisfiability threshold can be computed from the second moment
method.
A Name Ls cd cs ld ls

0100 1-in-3 SAT 3 0.685(3) 0.946(4) 2.256(3) 2.368(4)
01000 1-in-4 SAT 3 1.108(3) 1.541(4) 2.442(3) 2.657(4)
00100∗ 2-in-4 SAT 3 1.256 1.853 2.513 2.827
01010∗ 4-odd-PC 5 1.904 3.594 2.856 4
010000 1-in-5 SAT 3 1.419(3) 1.982(6) 2.594(3) 2.901(6)
001000 2-in-5 SAT 4 1.604(3) 2.439(6) 2.690(3) 3.180(6)
010100 1-or-3-in-5 SAT 5 2.261(3) 4.482(6) 3.068(3) 4.724(6)
010010 1-or-4-in-5 SAT 4 1.035(3) 2.399(6) 2.408(3) 3.155(6)
0100000 1-in-6 SAT 3 1.666(3) 2.332(4) 2.723(3) 3.113(4)
0101000 1-or-3-in-6 SAT 6 2.519(3) 5.123(6) 3.232(3) 5.285(6)
0100100 1-or-4-in-6 SAT 4 1.646(3) 3.366(6) 2.712(3) 3.827(6)
0100010 1-or-5-in-6 SAT 4 1.594(3) 2.404(6) 2.685(3) 3.158(6)
0010000 2-in-6 SAT 4 1.868(3) 2.885(4) 2.835(3) 3.479(4)
0010100∗ 2-or-4-in-6 SAT 6 2.561 5.349 3.260 5.489
0001000∗ 3-in-6 SAT 4 1.904 3.023 2.856 3.576
0101010∗ 6-odd-PC 7 2.660 5.903 3.325 6

rigorously the validity of this determination of the satisfiability threshold. This makes the
balanced locked problems very interesting from the mathematical point of view.

The balanced occupation problems are defined via the property that two random
solutions are almost surely at Hamming distance N/2 + o(N). This property may, of
course, depend on the connectivity distribution Q(l). A necessary condition for the
problem to be balanced is that the vector A be palindromic, meaning that Ar = AK−r.
But not all the palindromic problems are balanced: the simplest such example is the
1-or-4-in-5 SAT, A = 010010, where the symmetry is spontaneously broken in the same
way as in a ferromagnetic Ising model.

As we argued in section 4.2 in the locked problems the replica symmetric approach
(BP) gives the exact marginal probabilities and total entropy. Therefore a problem is
balanced if and only if the iterative fixed point of the BP equations (5a)–(5b) is such that
all the beliefs are equal to 1/2.

We do not know of any simpler general rule to decide if a problem is balanced. For
K ≤ 12, there is no exception to the following empirical rule: all the problems which can
be obtained from a Fibonacci-like recursion

0AK0 = AK+2, 01AK10 = AK+4, (26)

from A2 = 010 or A4 = 01010 are balanced in their satisfiable phase. There are, however,
other balanced locked problems which cannot be obtained this way: the simplest example
is A = 0001001000.
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Clustering threshold in the balanced LOPs. The clustering threshold is given by the small
noise reconstruction, i.e. by the stability of the naive reconstruction procedure as explained
in section 4.2. In balanced LOPs, the messages are symmetric, ψ0 = ψ1 = 1/2, and thus
also the probability for the root variable to be uniquely determined by the leaves is
independent of the value which has been broadcast: μ0 = μ1 = μ. For a graph ensemble
with excess degree distribution q(l), one can write explicitly the self-consistency condition
on μ:

μ =
2

gA

k∑

r=0

δAr+1,1δAr ,0

(
k

r

) s1∑

s=0

(
r

s

)[

1−
∞∑

l=0

q(l)(1− μ)l

]k−s [ ∞∑

l=0

q(l)(1− μ)l

]s

, (27)

where k = K − 1, and gA =
∑k

r=0 δAr+1,1

(
k
r

)
+
∑k

r=0 δAr ,1

(
k
r

)
. For the ensemble of graphs

with truncated Poissonian degree distribution of coefficient c we derive from (3)

μ =
2

gA

k∑

r=0

δAr+1,1δAr,0

(
k

r

) s1∑

s=0

(
r

s

)(
1− e−cμ

1− e−c

)k−s(
e−cμ − e−c

1− e−c

)s

. (28)

The clustering threshold is defined as the value of c where the fixed point μ = 1 becomes
unstable. One gets

ecd − 1

cd
= K − 1−

∑K−2
r=0 δAr+1,1 δAr−1,0 δAr ,0

(
K−1

r

)

∑K−2
r=0 δAr+1,1

(
K−1

r

) . (29)

These values are summarized in table 1, where the balanced locked problems are marked
by a ∗.
Satisfiability threshold in the balanced LOPs. For the balanced locked problems the replica
symmetric entropy is given by

ssym(l) = log 2 +
l

K
log

[

2−K

K∑

r=0

δAr,1

(
K

r

)]

, (30)

where l is the average degree of variables. Notice the simple form of this entropy: in the
balanced locked problems each added constraint destroys a fraction of solutions exactly
equal to the fraction of configurations that satisfy a single constraint. The satisfiability
threshold is then given by the point ls where this entropy is zero.

Second moment method in the balanced LOPs. In all the balanced LOPs that we have
considered we found numerically that the second moment entropy (20), is exactly twice
the annealed entropy, (16), 2sann = s2nd. A hint that this may happen comes from the
following observations:

• The annealed entropy (16) has a stationary point at t = 1/2 (u = 1, x = 1). At this
stationary point the entropy evaluates to (30).

• The second moment entropy (20) has a stationary point at tx = ty = tz = 1/4
(ux = uy = uz = 1, x = y = z = 1). At this stationary point the second
moment entropy evaluates to twice the annealed entropy (30). This can be seen
using Vandermonde’s combinatorial identity:

(
K

r2

)

=

r1∑

s=0

(
r1
s

)(
K − r1
r2 − s

)

. (31)
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We checked numerically that in the balanced LOPs the global maxima of sann and
s2nd is always given by these stationary points (the second moment entropy has another
stationary point at tx = 1/2, ty = tz = 0 or tx = 0, ty = tz = 1/2, but at this point
it is equal to the first moment entropy at t = 1/2). In contrast, in the non-locked or
non-balanced problems we always found another competing maximum.

If one accepted the result 2sann = s2nd, and made the reasonable assumption that
the satisfiability threshold is sharp, then Chebyshev’s inequality (19) would prove the
correctness of the satisfiability threshold computed from (30). Therefore the full class
of balanced LOPs is a candidate for a rigorous mathematical determination of the
satisfiability threshold. This would be quite interesting, as it would noticeably enlarge the
list of problems where the threshold is known rigorously (so far only a handful of sparse
NP-complete CSPs are in this category: the 1-in-K SAT [17, 44], the 2 + p-SAT [45, 46]
and the (3, 4)-UE-CSP [25]).

Let us summarize qualitatively what are the main features of the balanced locked
occupation problems that make the fluctuations of the number of solutions so small that
the second moment method presumably gives the exact satisfiability threshold.

• Balancing—it is well known that the second moment method works better if most of
the weight is on the most numerous configurations (that is, the half-filling ones). In
the K-SAT problem several reweighting schemes were introduced in order to improve
the second moment lower bounds [19, 32]. This is also the reason why the second
moment bound is much sharper in the balanced NAE-SAT (bicoloring) than in the
K-SAT [19].

• Reducing fluctuations in the connectivity—naturally, reducing the fluctuations of the
variables connectivity reduces the fluctuation of the number of solutions. Our work
shows that the necessary step is not to have leaves. Fluctuating higher degrees do
not really pose a problem.

• Locked nature of the problem—finally the key point is the locked structure of the
problem. It was remarked in [34] that the cluster-related quantities fluctuate much less
than the solution-related ones. Thus the fact that clusters do not have a fluctuating
size, but size 1, is the crucial property needed to make the second moment method
sharp. This is exactly what happens in the XOR-SAT problem, where the second
moment becomes exact when it is restricted to the ‘core’ of the graph [24, 45].

5. Numerical studies

We shall show in this section that the LOPs, in their whole clustered phase, seem to be very
hard from the algorithmic point of view. We shall illustrate this by testing and analyzing
the performance of some of the best algorithms developed for random 3-satisfiability, the
canonical hard constraint satisfaction problem.

Our first study uses a complete algorithm and shows that, like in other problems
such as satisfiability and coloring, the hardest instances are found in the neighborhood of
the satisfiability transition. We then turn to incomplete algorithms, which are aimed at
finding a SAT configuration when it exists.

The best performance for incomplete algorithms is nowadays attributed to the
survey propagation inspired decimation [8, 47] and the survey propagation inspired
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reinforcement [48]. In the random 3-SAT problem both of these algorithms were reported
to work in linear time (or at most log-linear time) up to a constraint density about
α = 4.252, to be compared with the satisfiability threshold αs = 4.267 and the clustering
transition αd = 3.86.

As we saw in section 4.2, in the LOPs, the survey propagation algorithm has no
advantage over the belief propagation algorithm. We thus study the performance of
the BP inspired decimation and reinforcement. The conclusions are as follows: the BP
decimation fails in the LOPs even at very low connectivities; the BP reinforcement works
in linear time in the non-clustered phase but fails in the clustered phase.

5.1. Exhaustive search results

One way to solve an LOP is to transform it into a conjunctive normal form (CNF) and use
some of the open source complete solvers of the satisfiability problem. We have done such
a study for the 1-or-3-in-5 SAT problem. We have generated random instances of this
problem from a truncated Poisson ensemble, with M constraints. Each instance has been
transformed into a satisfiability formula by mapping every constraint into

∑K
r=0 δAr ,0

(
K
r

)

CNF clauses: for every constraint of K variables, one creates as many CNF clauses,
out of the 2K possible clauses, as there are forbidden configurations. We have applied
a branch-and-bound based open source SAT solver called MiniSat 1.14 [49] to test the
satisfiability and to compute the running time needed by this algorithm to decide the
satisfiability.

Figure 4, left, shows the probability that an instance is satisfiable plotted versus
the average degree. It displays the typical behavior of a phase transition rounded by
finite size effects. Figure 4, right, shows the median value of the CPU time which was
used to solve an instance of the decision problem on a 2 GHz MacBook laptop (note
the logarithmic scale) plotted versus the average degree. The hardest instances appear
around the satisfiability threshold ls, and the time needed by the algorithm in this region
clearly grows exponentially with size. Hard satisfiable instances start to appear around
l � ld, although it is difficult to assert from this data where the exponential behavior
really starts. For larger system sizes it seems that the exponential behavior starts way
below the dynamical threshold ld.

The data shows the same qualitative behavior as has been found in similar studies of
satisfiability, with the difference that the relative width, (ls− ld)/ls, of the clustered phase
is larger in this case than it is in the K = 3 or 4 satisfiability problems. The existence of
LOPs with such a broad clustered phase is an appealing feature for numerical studies. In
the following sections of this paper we argue that in the locked problems the easy–hard
algorithmic threshold for the best-known incomplete solvers coincides with the clustering
transition ld.

5.2. Decimation fails in LOPs

In BP inspired decimation one uses the knowledge of the marginal probabilities estimated
from BP in order to identify the most biased variable, fix it to its most probable value
and reduce the problem. Such an algorithm usually works well even in the clustered
region (for performance in K-SAT and coloring, see [9, 12]). In the locked occupation
problems the BP decimation fails badly. For example, in the 1-or-3-in-5 SAT problem,
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Figure 4. Left: probability that a random instance of the 1-or-2-in-5 SAT is
satisfiable versus the average degree. The probability is computed from 500
instances generated from the truncated Poisson ensemble. The vertical line
shows the analytical prediction of the value of the satisfiability transition. Right:
median over the same 500 instances of the CPU running time of the complete
algorithm MiniSat 1.14 (we have subtracted 0.0012 s from the CPU time, as this
is approximately where it extrapolates for small average degree and zero system
size). Alternatively one could plot the number of backtracking steps, which has
a qualitatively identical behavior.

on the truncated Poisson graphs with M = 2× 104 constraints, the probability of success
is about 25% at l = 2 and less than 5% at l = 2.3, way below the clustering threshold
ld � 3.07. Interestingly, the precursors of the failure of the BP decimation algorithm
observed, for instance, in graph coloring are not present in the locked problems. In
particular, the BP equations converge during all the processes and the normalizations in
the BP equations (5a)–(5b) stay finite.

Although we do not know how to analyze directly the BP decimation process, the
mechanisms explaining the failure of the decimation strategy can be understood using
the approach of [50]. The idea is to analyze an idealized decimation process, where the
variable to be fixed is chosen uniformly at random and its value is chosen according to
its exact marginal probability. If its value is chosen according to the BP marginal we
speak about the uniform BP decimation. If BP would give a fair approximation to the
exact marginal throughout the decimation process, the uniform BP decimation should be
equivalent to the ideal decimation. In the ideal decimation, the reduced problem obtained
after θN steps is statistically equivalent to the reduced problem created by choosing a
solution uniformly at random and revealing a fraction θ of its variables, which we now
analyze, following the lines of [50].

Given an instance of the CSP, consider a solution taken uniformly at random and
reveal the value of each variable with probability θ. Denote Φ the fraction of variables
which either have been revealed or are directly implied by the revealed ones. We can
compute Φ(θ) using the replica symmetric cavity method (which is correct in the satisfiable
phase of locked problems) as follows.
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Denote by φi→b
s the probability that a variable i is implied conditioned on the value

s of the variable i and on the absence of the edge (ib); denote by qa→i
s the probability

that constraint a implies variable i to be s conditioned on: (1) variable i takes the value
s in the solution we chose, (2) variable i was not revealed directly and (3) the edge (ai)
is absent. Then φi→b

s is given by

φi→b
s = θ + (1− θ)

[

1−
∏

a∈∂i−b

(1− qa→i
s )

]

, (32)

meaning that the variable i was either revealed or not, and if not it is implied if at least
one of the incoming constraints implies it. We shall write the expression for qa→i

s only for
occupation problems on random regular graphs where the replica symmetric equation is
factorized. Then qa→i

s and φi→b
s are independent of a, b, i: qa→i

s = qs and φi→b
s = φs. The

conditional probability qs is the ratio of the probability that variable i takes the value s
and is implied by the constraint a on the one hand, and the probability that variable i
takes the value s on the other hand:

q1 =
1

ψ1Zreg

k∑

r=0

δAr ,0δAr+1,1

(
k

r

)

(ψ1)
lr(ψ0)

l(k−r)
s1∑

s=0

(
r

s

)

φk−r
0 φr−s

1 (1− φ1)
s, (33a)

q0 =
1

ψ0Zreg

k∑

r=0

δAr ,1δAr+1,0

(
k

r

)

(ψ1)
lr(ψ0)

l(k−r)

s0∑

s=0

(
k − r
s

)

φr
1φ

k−r−s
0 (1− φ0)

s, (33b)

where l = L − 1, k = K − 1. The sum over r goes over all the possible numbers
of 1’s being assigned on the incoming variables, and the numbers ψ0, ψ1 are the cavity
probabilities, solutions of the BP equations (9a)–(9b). The indices s1, s0 in the second
sum of both equations are the largest possible but such that s1 ≤ r, s0 ≤ K − 1− r, and∑s1

s=0Ar−s = 0,
∑s0

s=0Ar+1+s = 0. The terms φk−r
0 φr−s

1 (1 − φ1)
s and φr

1φ
k−r−s
0 (1 − φ0)

s

are the probabilities that a sufficient number of incoming variables was revealed such that
the outcoming variable is implied (not conditioned on its value). Zreg is the normalization
in (9a)–(9b).

Iterations of equations (32)–(33) with the initial condition φ = θ give us the fixed
point for q0, q1. The total probability that a variable is fixed is then computed as

Φ(θ) = θ + (1− θ){μ1[1− (1− q1)L] + μ0[1− (1− q0)L]
}
, (34)

where μ0, μ1 are the total BP marginals, μs = ψL
s /(ψ

L
0 +ψL

1 ). Notice the analogy between
equations (33b)–(33a) and the equations for the naive reconstruction (11b)–(11a).

In figure 5 we compare the function Φ(θ) obtained from the analytical study of ideal
decimation (34) with the experimental performance of the uniform BP decimation. Before
the failure of the decimation algorithm (when a contradiction is encountered) the two
curves are in very good agreement. This study shows two different reasons for the failure
of the algorithm.

• Avalanche of direct implications—in some cases the function Φ(θ) has a discontinuity
at a certain spinodal point θs (e.g. θs ≈ 0.46 at L = 3 for the 1-or-3-in-5 SAT problem).
For θ < θs, fixing one variable generates a finite number of direct implications. As
the loops are of order logN these implications never lead to a contradiction. At the
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Figure 5. Analytical and numerical study of the BP inspired uniform decimation.
The number of variables which are directly implied, Φ(θ), is plotted against the
number of fixed variables θ in two of the LOPs on the regular graph ensemble
with connectivity L.

spinodal point θs, fixing one more variable generates an extensive avalanche of direct
implications. Small (order 1/N) errors in the previously used BP marginals may thus
lead to a contradiction. This indeed happens in almost all the runs we have done.
For more detailed discussion see [50].

• No more free variables—the second reason for the failure is specific to the locked
problems, more precisely to the problems where φ0 = φ1 = 1 is a solution of
equations (32)–(33). In these cases it may happen that the function Φ(θ) → 1 at
some θ1 < 1 (e.g. θ1 ≈ 0.73 at L = 4 for the 1-or-3-in-5 SAT problem). In other
words, if we reveal a fraction θ > θ1 of variables from a random solution, the reduced
problem will be compatible with only that given solution. Again, if there has been
a little error in the previously fixed variables, the BP uniform decimation ends up in
a contradiction. If, in contrast, the function Φ(θ) reaches the value 1 only for θ = 1
then the residual entropy is positive and there might be at each step some space to
correct previous small errors, demonstrated on a non-locked problem in figure 6.

These two reasons for failure of the BP uniform decimation seem to be of quite
different nature. But they have one property in common. As the point of failure is
approached we observe that almost all the variables which are being fixed were already
implied. The same sign of failure can be observed also in the maximal BP decimation. In
figure 6 we compare the two procedures. On the x axes we plot the number of variables
which could have taken both the values just before they were fixed. On the y axes we plot
the number of variables which could take only one value before they were fixed plus the
number of implied variables. The failure of both versions of the BP decimation algorithms
is then related to the divergence of the derivative of the function y(x).

5.3. The BP reinforcement algorithm

BP reinforcement is currently the most efficient way of using the BP equations in a solver.
It was originally introduced in [48] and has also been used in [21, 51]. The main idea is
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Figure 6. Left: for comparison, the BP uniform decimation works well on the non-
locked problems, the example is for bicoloring. Right: comparison of the uniform
BP decimation with the maximal BP decimation. The number of variables which
are directly implied or were directly implied before being fixed is plotted against
the number of variables which were free just before being fixed. The behavior of
the two decimation strategies is similar. The divergence of the derivative of this
function marks the point of failure.

to add an ‘external bias’ μi
si

which biases the variable i in the direction of the marginal
probability computed from the BP messages. This modifies BP equation (5b) to

ψa→i
si

=
1

Za→i

∑

{sj}
δAsi+

∑
j sj

,1

∏

j∈∂a−i

χj→a
sj

, (35a)

χi→a
si

=
1

Z i→a
μi

si

∏

b∈∂i−a

ψb→i
si

. (35b)

We remind ourselves that the belief on variable i (the BP estimate of its marginal) χi
si
,

without taking into account the bias μ, is given by equation (6).

We tried several implementations of how the external bias μi
si

is updated and found
the best performance for the following one:

μi
1 = π, μi

0 = 1− π, if χi
0 > χi

1, (36a)

μi
1 = 1− π, μi

0 = π, if χi
0 ≤ χi

1, (36b)

where 0 ≤ π ≤ 1/2 is a parameter which needs to be optimized. In the iterative update
of the BP reinforcement, the external bias is not updated at every BP iteration, but only
with probability

p(t) = 1− (1 + t)−γ, (37)
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where t is the time step and γ is a parameter to be optimized. The pseudocode of the
algorithm is then as follows:

BP-Reinforcement(T, γ, π)
1 Initialize μi

si
and ψa→i

si
randomly;

2 t← 0;
3 Compute the current configuration ri = argmaxsi

μi
si

;
4 repeat Make one sweep of the BP iterations (35a)–(35b);
5 update every bias μi

si
with probability p(T ) according to (36a)–(36b);

6 Update ri = argmaxsi
μi

si
;

7 t← t+ 1;
8 until {r} is a solution or t > T ;

This algorithm depends on two empirical parameters, γ and μ. We generally use
γ = 0.1. The optimization of the bias strength π is crucial. Empirically we observed three
different regimes:

• πBP−like < π < 0.5: when the bias is weak, BP-Reinforcement converges very
fast to a BP-like fixed point, the values of the local fields do not point towards any
solution. In contrast many constraints are violated by the final configuration {ri}.
• πconv < π < πBP−like: BP-Reinforcement converges to a solution {ri}.
• 0 < π < πconv: when the bias is too strong, BP-Reinforcement does not converge.

Many constraints are violated by the configuration {ri} which is reached after Tmax

steps.

When the constraint density in the CSP is large regime (b) disappears and πconv =
πBP−like. Clearly, the goal is to find πconv < π < πBP−like. The point πBP−like is very easy
to find, because for larger π the convergence of BP-Reinforcement to a BP-like fixed
point takes place in just a few sweeps. Thus in all the runs we chose π to be just below
πBP−like. The value of π chosen in this way does not seem to depend on the size of the
system, but it depends slightly on the constraint density.

We tested the BP-Reinforcement algorithm on the locked occupation CSPs and
the results are shown in figure 7. The fraction of successful runs on different system sizes
and for different maximal running times is plotted as a function of the mean variable
connectivity. Our data suggest that the algorithm is successful only in the liquid phase,
and fails in the clustered (that is, also frozen) region. Similar results can be obtained with
other algorithms; for instance, the performance of stochastic local search was reported
in [10].

The clustered phase is thus extremely hard and instances of the locked problems can
serve as benchmarks for new solvers. In fact, some of the hardest benchmarks of the K-
satisfiability problem are based on a well-known LOP, XOR-SAT (with some additional
nonlinear function nodes which rule out the Gaussian elimination solvers) [52, 53].

In the non-locked problems the very same implementation of the BP reinforcement is
able to find solutions inside the clustered region, figure 8, left, shows the performance
for A = 011010. This is in qualitative agreement with results for the K-SAT [48],
coloring [9, 12] or bicoloring problems [21].
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Figure 7. Performance of the BP reinforcement on two of the locked occupation
problems. Probability of success versus average connectivity. Left: A = 010100,
the optimal parameters: γ = 0.1, π = 0.28 for 2.79 ≤ l ≤ 2.95, π = 0.30 for
2.97 ≤ l ≤ 3.13, π = 0.31 for c = 3.15. Right: A = 010010 with γ = 0.1,
π = 0.34. The different curves are for two different system sizes and two different
maximal running times. The algorithm performs well only up to a connectivity
close to the clustering transition (ld = 3.07 resp. ld = 2.41 to be compared with
the satisfiability threshold ls = 4.72 resp. ls = 3.16). Qualitatively similar results
were observed for all the other locked occupation problems we studied.

Figure 8. Left: performance of the BP reinforcement on one of the non-locked
problems, A = 010110. Parameters: γ = 0.1; π = 0.40 for 7.0 ≤ l ≤ 7.8, π = 0.42
for 7.9 ≤ l ≤ 8.0, π = 0.44 for 8.1 ≤ l ≤ 8.4. The implementation of the algorithm
is the same as for the locked problems in figure 7. Here solutions are found up
to about half of the clustered region, ld = 7.40. The condensation lc = 8.78 and
the satisfiability ls = 8.86 transition are also marked. Right: the A = 0110100 at
regular graphs of L = 8 is in the rigid phase, that is, almost all solutions belong
to frozen clusters. Yet the BP reinforcement (γ = 0.1, π = 0.36) finds a solution
almost surely (after 3 restarts)—the red curve. The blue curve gives a fraction
of how many of the solutions found belonged to a frozen cluster. We see that
asymptotically we never find the frozen solutions.
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It is not known how one can characterize from a geometrical point of view the
connectivity threshold where BP reinforcement algorithms stop to be efficient in the non-
locked problems. It has been found in [21] that even the rigid phase where almost all
solutions are frozen may be algorithmically easy. Figure 8 confirms this statement for the
problem A = 0110100 on the regular ensemble with L = 8. The ratio of success of the BP
reinforcement (with 3 restarts) is close to one, and basically independent of system size,
while it can be seen from (11) that this problem is in the rigid phase. On the other hand,
the fraction of found solutions which are frozen (have a non-trivial whitening core [34, 54])
goes to zero as the system size is growing, in agreement with the results of [21]. Thus the
question of where is the easy/hard threshold in the non-locked problems remains open.

6. Conclusion

We studied the class of occupation CSPs on which we illustrated the difference between
locked and non-locked CSPs. The point-like nature of clusters in LOPs is responsible for all
of these differences. Our finding may be summarized as: ‘locked problems are extremely
simple and extremely hard’. The simplicity comes at the level of the phase diagram,
which can be computed by the cavity method much more easily that in the general CSP.
In certain cases some non-trivial quantities are probably amenable to a rigorous study
along the lines that we sketched—such as, for example, the satisfiability threshold in
the balanced locked problems. The hardness is algorithmic, some algorithms—as the
BP decimation—fail completely and even the best-known algorithms are not able to find
solutions in the clustered phase of the locked problems. Their simple description and
algorithmic hardness makes the locked problems challenging for developments of new
algorithms as well as for better theoretical understanding on the origin of hardness.

There are several clear directions in which this work should be extended. The planted
ensembles of LOPs should be studied in order to provide hard benchmarks where the
existence of a solution would be guaranteed. On the mathematical side the rigorous proof
of the second moment method giving the satisfiability threshold in the balanced locked
problems should be worked out. One may investigate if the location of the clustering
threshold can be proven rigorously using the small noise reconstruction along the lines
of [55], or bounding the weight enumerator function along the lines of [39]. Also it will
be interesting to study (at least numerically) the dynamics at finite temperature, as it
might provide further insight into the connection between the dynamics of algorithms and
structure of solutions. Finally the distance properties between solutions in locked CSPs
make them interesting candidates for the development of nonlinear error correcting codes
or compression schemes.
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[16] Mézard M and Montanari A, 2008 Information, Physics, Computation: Probabilistic approaches

(Cambridge: Cambridge University Press) in preparation www.lptms.u-psud.fr/membres/mezard/

[17] Raymond J, Sportiello A and Zdeborová L, 2007 Phys. Rev. E 76 011101
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