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Abstract

We describe a general strategy for sampling configurations from a given distribution,not based on the standard Metropolis
(Markov chain) strategy. It uses the fact that nontrivial problems in statistical physics are high dimensional and often close to
Markovian. Therefore, configurations are built up in many, usually biased, steps. Due to the bias, each configuration carries its
weight which changes at every step. If the bias is close to optimal, all weights are similar and importance sampling is perfect.
If not, “population control” is applied by cloning/killing partial configurations with too high/low weight. This is done such
that the final (weighted) distribution is unbiased. We apply this method (which is also closely related to diffusion type quantum
Monte Carlo) to several problems of polymer statistics, reaction-diffusion models, sequence alignment, and percolation. 2002
Elsevier Science B.V. All rights reserved.

PACS:05.10.Ln; 36.20.Ey; 64.60.Ak

Keywords:Sequential Monte Carlo simulations with resampling; Pruned-enriched Rosenbluth method; Polymers; Percolation;
Reaction-diffusion systems; Lattice animals; Sequence alignment

1. Introduction

Although Markov chain (Metropolis-type) Monte
Carlo (MC) simulations dominate in statistical physics
today, simulations not based on this strategy have
been used from early times on. Well-known examples
are evolutionary (in particular genetic) algorithms
[1], diffusion type quantum MC [2], and several
algorithms devised for the simulation of long chain
molecules [3–7].

As these methods were developed independently in
different communities, it was not generally recognized
—or rather forgotten—that most of them are realiza-
tions of a common strategy, as pointed out by Aldous
and Vazirani [8] who also coined the name “go with
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the winners”. But essentially the same basic strategy
was already discussed as a general purpose sampling
method by Herman Kahn in 1956 [9] who called it
“Russian Roulette and Splitting”, and attributed it to
unpublished work by von Neumann and Ulam. For fur-
ther applications of this strategy see [10–12]. The last
two references also discuss applications in lattice spin
systems and Bayesian inference, fields which will not
be treated in the present review.

2. The basic strategy

2.1. Sequential importance sampling

As in any MC method, we draw configurationsx
from some distributionp(x). Writing the partition sum
as
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Z =
∑

x

e−βH(x) ≈ M−1
M∑

α=1

e−βE(xα)/p(xα), (1)

we can interpret this as each configuration having
its weightW(x) = e−βE(x)/p(x). In importance sam-
pling we try to choosep(x) ∝ e−βE(x), so that all
weights become equal.

We now assume that we can break up the construc-
tion of a configuration intoN single stepsxn, n = 1,
2, . . . ,N . For a polymer, thenth step would, e.g., be
the placement of thenth monomer. Then the weight
W is obtained recursively asW = WN , W0 = 1,

Wn = Wn−1
e−β(E(x1,...xn)−E(x1,...xn−1))

pn(xn|x1 . . . xn−1)
. (2)

In statistics this is called sequential importance sam-
pling (SIS) [12].

In some cases, ‘natural’ values for thepn(xn)

are easy to guess. In theRosenbluthmethod [3]
for simulating a self-avoiding walk (SAW), e.g., one
chooses uniformly among the free neighbors. But
this is not optimal, a better choice is provided by
Markovian anticipation[13]. In general, for choosing
pn(xn|x1 . . . xn−1) one has to depend on heuristics, ex-
cept in the case of diffusion quantum MC where per-
fect importance sampling (WN ≡ 1) is possible if the
ground state wave function is known [2,14]. Specific
choices will be discussed together with applications.

2.2. Population control

The main drawback of SIS is that the distribution
of weights can become extremely wide. If long range
correlations are weak (as, e.g., for SAWs), logWN is
roughly a sum of independent terms. This suggests the
following strategy:

If at any stepn the weightWn is above a suitably
chosen thresholdW+

n , we make an additional copy
of the configurationx1, . . . , xn, and give both copies
the weightWn/2. Both are then grown independently
(with eventual later copyings) up to full length.1 In this
way high weights are suppressed and precious ‘good’
configurations are less likely to be lost entirely by bad

1 In some cases (e.g., at low temperatures, where Boltzmann
factors are huge), it might be necessary to make several copies and
to distribute the weight evenly among them.

subsequent moves. In [4] a similar strategy (but not
based on weights) was called ‘enrichment’.

On the other hand, ifWn falls below another
thresholdW−

n , we draw a random numberr ∈ [0,1]. If
r < 1/2 we kill the configuration and start a new one.
If r > 1/2 we keep it and double its weight.

Obviously, for any choice of the thresholds, neither
the cloning nor the pruning introduce any additional
bias. Thus we can, in principle, use any choice for
W+

n and W−
n , and we can change them ad libitum

during the simulation. Bad choices will, however, lead
to inefficiency, just as do bad choices forpn(x).

Except at very low temperatures where special care
is needed [15,16] we found the following strategy to
be sufficient:

– For the first configuration(s) we do not clone at all
and kill only if the weight is exactly zero.

– If we have alreadym previous configurations
which had reached size� n, we estimate from
them the partition sum

Zn ≈ Ẑn ≡ m−1
m∑

α=1

Wn(xα).

We then setW±
n = C±Ẑn with C+ ≈ 1/C− ≈

O(1)–O(10).

2.3. Depth first versus breadth first

As described above, the algorithm is most effi-
ciently implemented in adepth first fashion, and as
such was called PERM (pruned-enriched Rosenbluth
method) in [7]. In a depth first approach [17], we fol-
low one copy until its end before we take up the other
copy. In breadth firstsearch, on the other hand, we
treat all copies in parallel and handle thenth steps of
all copies before we go ton+ 1.

Evolutionary algorithms [1] are usually imple-
mented breadth first. One puts up a population ofM

replicas which are evolved simultaneously, and popu-
lation control is exercised such thatM stays constant
during the evolution. The same is true for most imple-
mentations of the “go with the winners” strategy. This
has several advantages:

– Breadth first approaches are well adapted for
massively parallel computers. One simply puts
one configuration on each processor.
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– One has no problem with keeping the number of
replicas constant.

– One can use more general population control
strategies [12].

But the last two points seem minor in most applica-
tions we have studied. On the other hand, the main ad-
vantage of depth first is the elegance and efficiency of
the codes. The easiest implementation is by means of
recursion (for a pseudocode see [7]). Copies (or rather
instructions to make copies) are then put on a stack
which is maintained automatically if recursive func-
tion calls are used. Storage use is minimized (as only
a single copy and its history is kept in memory), and
communications are also less than in breadth first.

3. Multiple spanning percolation clusters

Let us consider percolation on a large but finite
rectangular lattice in 2� d < 6. We single out one
direction as ‘spanning’. In this direction boundaries
are open, while periodic b.c. are used in the other
direction(s). For a long time it was believed that there
is at most one spanning cluster (which touches both
open boundaries) in the limit of large lattices, keeping
the aspect ratio fixed (Li = xiL, L → ∞, i = 1,
. . . , d).

Since there is no spanning cluster for subcritical
percolation and exactly one in supercritical, the only
relevant case is critical percolation. There it is now
known that the probabilitiesPk to have exactlyk
spanning clusters are all non-zero in the limitL →
∞. In d = 2 they are known exactly from conformal
invariance, but ford � 3 no exact results are known.
But there is a conjecture by Aizenman [18], stating
that for a lattice of sizeL × · · · ×L × (rL) (rL is the
length in the spanning direction)Pk ∼ e−αr with

α ∝ kd/(d−1) for k � 1. (3)

For d = 2 one hasα ∼ k2, in agreement with
Eq. (3). A generalization ind = 2 consists in demand-
ing that clusters are separated by at leastq paths on the
dual lattice [19]. In that case, and for periodic trans-
verse b.c.,

α = 2π

12

[
((q + 1)k)2 − 1

]
k � 2, d = 2. (4)

In order to test Eqs. (3), (4) for a wide range of
values ofk and r, one has to simulate events with

Fig. 1. Configuration of 5 spanning site percolation clusters on a
lattice of size 500× 900. Any two clusters keep a distance of at
least 2 lattice units. Lateral boundary conditions are periodic. The
probability to find 5 such spanning clusters in a random disorder
configuration is≈ 10−92.

tiny probabilities, lnPk ∼ −102 to −103. It is thus
not surprising that previous numerical studies have
verified Eq. (4) only for small values ofk, and have
been unable to verify or disprove Eq. (3) [20,21].

To demonstrate that such rare events can be sim-
ulated with PERM, we show in Fig. 1 a lattice
of size 500× 900 with 5 spanning clusters which
keep distances� 2. Eq. (4) predicts for itPk =
exp(−336π/5) ≈ 10−92. This configuration was ob-
tained by letting 5 clusters grow simultaneously, using
a standard cluster growth algorithm [22], from the left
border. Precautions were taken that they grew with the
same speed towards the right, i.e. if one of them lagged
behind, the growth of the others was stopped until the
lagging cluster had caught up. If one of them died, or if
two came closer than two lattice units, the entire con-
figuration was discarded. If not, it was cloned if the
weightWn exceeded 3̂Zn. Note that here the growth
was made without bias, and therefore no pruning was
necessary.

In this way we could check Eq. (4) with high
precision, proving the correctness of our algorithm.

More interesting is the test of Eq. (3) ford = 3.
Simulating up to 16 parallel clusters on lattices of sizes
up to 128× 128× 2000 (leading to probabilities as
small as 10−300!) gave perfect agreement with Eq. (3)
[23].

4. Polymers

One of the main applications of the go-with-the-
winners strategy is configurational statistics of long
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polymer chains. For a breadth first algorithm which
otherwise is very similar to PERM see [6].

4.1. Θ-polymers

PERM is particularly efficient near the so-called
‘theta-’ or coil-globule transition. According to the
generally accepted scenario, the theta-point is tricrit-
ical with upper critical dimensiondc = 3 [24].

At Tθ , bias correction and Boltzmann factors nearly
cancel ind = 3. Therefore, polymers have essentially
random walk configurations with small (logarithmic)
corrections. Therefore, a non-reversing random walk
(U-turns are forbidden) for SIS is already sufficient
to give good statistics with very few pruning and
enrichment events. In [7] chains made of up to
1,000,000 steps could be sampled with high statistics
within modest CPU time [7]. They were done in
finite volumes (“dense limit”) and verified that theΘ-
point indeed is a second order transition. The most
precise verification of logarithmic corrections came
from chains withN = 10,000 in infinite volume. The
deviations from random walk behaviour turned out
to be much stronger than the leading-log corrections
predicted from the renormalization group [25], but
agreement improves substantially when higher order
corrections are included in the latter [26].

4.2. Critical unmixing

A related problem is the unmixing of semidilute
polymer solutions. For any finite chain lengthN this
is in the Ising universality class. But in addition to
the Ising scaling laws, there are further universal
scaling laws for parameters and amplitudes which,
from the Ising point of view, would be non-universal.
In particular, the critical temperature should approach
Tθ whenN → ∞, Tc − Tθ ∼ N−1/2, and the critical
monomer concentration should tend to zero,

φc ∼ N−1/2. (5)

The exponents here are mean field, appropriate for
d = 3. Indeed one should also expect logarithmic
corrections [25]. Previous experiments had suggested
an exponent 0.38 ± 0.01 in Eq. (5). This would
be very hard to understand and has stirred a lot
of theoretical activity (for a review see [27,29]).
Simulations using PERM [27] showed that this is

wrong: The deviations from Eq. (5) can be understood
most easily as logarithmic corrections.

4.3. DNA melting

DNA in physiological conditions forms a double
helix. Changing the pH value or increasingT can
break the hydrogen bonds between the base pairs, and
a phase transition to an open coil occurs. Experiments
suggest it to be first order [35]. While a second
order transition would be easy to explain [36,37], no
previous model had been able to give a first order
transition.

The model studied in [28] lives on a simple cubic
lattice. A double strand of DNA with lengthN is
described by a diblock copolymer of length 2N , made
of N monomers of typeA andN monomers of type
B. All monomers have excluded volume interactions,
i.e. two monomers cannot occupy the same lattice site,
with one exception: Thekth A-monomer and thekth
B-monomer, withk being counted from the center
where both strands are joined together, can occupy the
same site. If they do so, then they even gain an energy
−ε. This models the binding of complementary bases.

The surprising result of simulations of chains with
N up to 4000 is that the transition is first order,
but shows finite scaling behaviour as expected for
a second order transition with cross-over exponent
φ = 1. To demonstrate this, we show in Fig. 2 energy
histograms for different chain lengths. One sees two
maxima, one atn = 0 and the other atn ≈ N/2, whose

Fig. 2. Histograms of the number of contacts, for single strand
length N = 500, . . . ,3000, atε = εc. On the horizontal axis is
plottedn/N as is appropriate for a first order transition.
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distance scales proportionally toN . But in contrast to
usual first order transitions the minimum in between
does not deepen with increasingN . This is due to
the absence of any analogon to a surface tension. The
same conclusion is obtained from specific heat data
and from end-to-end distances [28].

In [28] we also studied similar models with (par-
tially) switched off excluded volume effects. They
show that excluded volume is the main force making
the transition first order, as also confirmed by subse-
quent analytic calculations [38].

4.4. Native configurations of toy proteins

Predicting the native (≈ ground) states of proteins
is one of the most challenging problems in mathemat-
ical biology [39]. It is difficult because of the many
local energy minima.

In view of this, there exists a large literature
on finding ground states of artificially constructed
heteropolymers. Most of these models are formulated
on a (square or simple cubic) lattice and use only few
monomer types. The best known example is the HP
model of Dill [40] which has two types of amino acids:
hyrophobic (H) and hyrophilic (polar, P) ones. With
most algorithms, one can find ground states typically
for random chains of lengths up to∼ 50.

In [16] we used PERM to study several sequences,
of the HP model and of similar models, which had
been discussed previously by other authors. In all
cases we found the known lowest energy states, but
in several cases we found new ones. A particularly
impressive example is a chain of length 80 with two
types of monomers, constructed such that it should
fold into a bundle of four ‘helices’ with an energy
−94 [41]. Even with a specially designed algorithm,
the authors of [41] were not able to recover this state.
With PERM we not only found it easily, we also found
several lower states, the lowest one having energy−98
and a completely different structure.

4.5. Miscellaneous

Applications of PERM to other polymer problems
are treated in [13,15,30–34]. For problems with open
coils, a bias strategy calledMarkovian anticipation
in [13] worked very well. Integrating over the disorder,
we recently could also map a biased random walker

in the presence of random traps onto a stretched
collapsed polymer [42]. Without bias, the transition
from the finite timeRosenstockto the asymptotic
Donsker–Varadhanbehaviour is in 3D akin to a cross-
over in a first order phase transition. With bias, the
delocalization (globule-stretch) transition is first order
in d � 2 [42].

5. Lattice animals (randomly branched polymers)

Consider the set of all connected clusters ofn

sites on a regular lattice, with the origin being one
of these sites, and with a weight defined on each
cluster. Lattice animals are defined by giving the
same weight to each cluster. This distinguishes them
from percolation clusters where the weight depends
on the ‘wetting’ probabilityp. In the limit p → 0 this
difference disappears, and the two statistics coincide.
It is believed that lattice animals are a good model
for randomly branched polymers [43]. While there
existed no efficient algorithm for estimating the animal
partition sum there exist very simple and efficient
Leath-type [22] algorithms for percolation clusters.

Our PERM strategy [14,44] consists in starting
off to generate subcritical percolation clusters by a
(breadth first) Leath method, re-weighing them as
animals while they are still growing, and in making
clones of ‘good’ ones. Since we work atp < pc, we

Fig. 3. A typical lattice animal with 8000 sites on the square lattice.
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do not need pruning. The thresholdW+ for cloning is
chosen such that it depends both on the present animal
weight and on the anticipated success for further
growth.

In this way we obtained good statistics for animals
of several thousand sites, independent of the dimen-
sion of the lattice. A typical 2D animal with 8000 sites
is shown in Fig. 3. We also simulated animal collapse
(when each nearest neighbor pair contributes−ε to the
energy), and animals near an adsorbing surface [44].

6. Error estimates and reliability tests

Statistical errors can be estimated as usual by di-
viding a long run into several bunches, computing av-
erages over each bunch, and studying the fluctuations
between them. For PERM the situation is indeed rather
easy, since eachtour (set of all configurations gener-
ated by cloning from one common ancester) is inde-
pendent of any other.

To check for excessive fluctuations in weightsW

of entire tours, we make a histogram on a logarithmic
scale,P(log(W)), and compare it with the weighted
histogramWP(log(W)). If the latter has its maximum
for values of log(W) where the former is already
large (i.e. where the sampling is already sufficient),
we are presumably on the safe side. However, if
WP(log(W)) has its maximum at or near the upper
end of the sampled range, we should be skeptical.

In Fig. 4 we illustrate this with two figures taken
from [32]. While the left panel gave rise to correct
results, the right one did not.

7. Conclusion

We have seen that MC simulationsnot following
the Metropolis scheme can be very efficient. We have
illustrated this with a wide range of problems. Con-
spicuously, the Ising model was not among them. It
simply would be very hard to beat, say, the Swendsen–
Wang algorithm. In principle, the go-with-the-winners
strategy has as wide a range of applications as the
Metropolis scheme. Its only requirement is that in-
stances (configurations, histories,. . .) are built up in
small steps, and that the growth of their weights during
the early steps of this build-up is not too misleading.

The method is not new. It has its roots in algorithms
which have been regularly used for several decades.
Some of them, like genetic algorithms, are familiar
to most scientists, but it is in general not well appre-
ciated that they can be made into a general purpose
tool. And it seems even less appreciated how closely
related are methods developed for quantum MC sim-
ulations, polymer simulations, and optimization meth-
ods. I firmly believe that this close relationship can be
made use of in many more applications to come.

Among these are significance tests for sequence
alignment, where one needs large samples of random
pairs of sequences in order to check whether an
observed alignment is significant. Instead of really
drawing random pairs, one can use PERM to draw
biased pairs which are more similar than random ones,
enhancing thereby the interesting high-score region
[45].

Another application is to epidemic models where
one can follow the fate of epidemics which have a

Fig. 4. Full lines are histograms of logarithms of tour weights, normalized as tours per bin. Broken lines show the corresponding weighted
distributions, normalized so as to have the same maximal heights. WeightsW are only fixed up to aβ-dependent multiplicative constant. While
the left panel suggests a reliable simulation, the right one was indeed wrong (from Ref. [32]).
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very low chance of survival since, e.g., they started
in a very hostile environment which they first have
to adopt to their needs. Here simulations with PERM
[46] allowed to verify with very high statistics the
claim of [47] that no power laws result, in contrast
to previous suggestions. A final application to a toy
‘population’ model [48] is discussed in [14].
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