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Abstract. A Java parallel streams implementation of the K-nearest neighbor descent al-
gorithm is presented using a natural statistical termination criterion. Input data consist of a
set S of n objects of type V, and a Function<V, Comparator<V>>, which enables any x ∈ S
to decide which of y, z ∈ S \{x} is more similar to x. Experiments with the Kullback-Leibler
divergence Comparator support the prediction that the number of rounds of K-nearest neigh-
bor updates need not exceed twice the diameter of the undirected version of a random regular
out-degree K digraph on n vertices. Overall complexity was O(nK2 logK(n)) in the class
of examples studied. When objects are sampled uniformly from a d-dimensional simplex,
accuracy of the K-nearest neighbor approximation is high up to d = 20, but declines in
higher dimensions, as theory would predict.
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1. Introduction

1.1. Context. Baron and Darling [3] provided a theoretical analysis of the K-nearest
neighbor descent (K-NN Descent) algorithm for K-nearest neighbor approximation pro-
posed and implemented by Dong, Charikar, and Li [7].

This sequel reports on a generic Java parallel streams implementation of K-NN Descent,
which was written to support a forthcoming implementation of the partitioned nearest neigh-
bors local depth algorithm [4]. While testing this implementation, we acquired statistical data
which shed light on the performance of K-NN Descent, under a new termination criterion.
This brief report does not attempt comparison of K-NN Descent with other algorithms, as
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2 COMPARATOR-BASED NN DESCENT

Table 1. Comparison among four K-NN Descent implementations.

Authors Language Asymmetric? Parallelization? Termination
Dong et al [7] C++ no OpenMP & map-reduce δ-proportion update
McInnes [14] Python no none no possible update
Kluser et al [12] C no none no possible update
This paper Java yes fork-join pool statistical criterion

is reported in [7]. Nor shall we outline the different approaches to K-nearest neighbor ap-
proximation, briefly surveyed by Aumüller, Bernhardsson and, Faithfull [1]. We mention the
recent competition [13] to surpass the industry leader FAISS [11], in the case of a billion
dense vectors in dimension 96 to 256, under the `2 norm.

1.2. Previous implementations. A high level summary of previous K-NN Descent imple-
mentations is shown in Table 1, along with our own in the final row.

1.2.1. Original implementation for metrics. A sophisticated OpenMP and map-reduce im-
plementation of K-NN Descent is described by Dong et al [7]. These authors employ op-
timizations applicable to symmetric similarity functions, and employ two stopping criteria,
both of which are different to ours. The authors describe in detail the application to five
well-studied data sets of sizes between 28,755 and 857,820 using several symmetric similar-
ity measures, and compare K-NN Descent with Recursive Lanczos Bisection and Locality
Sensitive Hashing.

1.2.2. Python implementation. McInnes created the widely-used pynndescent Python ver-
sion [14], which is used in UMAP [15]. It assumes that similarity is obtained from a metric,
of which 22 examples are available in the code. This is one of 19 single-threaded approximate
K-NN Python algorithms among benchmarks at [5].

1.2.3. Single-threaded C Implementation. Kluser et al [12] describe a runtime-optimized C
implementation for the `2-distance metric, and report performance improvements over the
two versions above. Their approach increases locality by improving the otherwise irregular
memory access pattern.

1.3. Novelty of our implementation. Here are some more details, beyond Table 1, of
what distinguishes our implementation from the others.

(a) Non-metric: Input data consist of a set S of n objects of type V, and a Function<V,

Comparator<V>>, which enables any x ∈ S to decide which of y, z ∈ S \ {x} is
more similar to x. This “triplet comparison” has more general application than
similarity induced by a symmetric distance function, as we discuss in [4], but disallows
optimizations based on symmetric numerical similarity functions, used in the works
cited above.

(b) Stopping criterion: Termination depends on a statistical criterion, presented in
Section 3.3, applied to a sampled quantity called the friend clustering rate. By con-
trast, other implementations continue until no further updates are possible, except
for a variant by [7] which stops when no more than a proportion δ of points allow
updates.
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(c) Parallelism: By casting the algorithm into a functional programming framework,
we enable the Java Virtual Machine to distribute tasks among threads via a fork join
pool, invisible to the programmer. Speedup due to parallelism is reported below.

2. K-nearest neighbors based on Comparators

2.1. Setting. Input data consist of a set S of n objects of type V, and what we call a
ranking system [3], which attaches to each x ∈ S a total order1 ≺x on S \ {x}; here y ≺x z
is interpreted to mean that y is more similar to x than z is. In data science, this is called
triplet comparison. The computer science equivalent is a Function<V, Comparator<V>>.
Here we map each x ∈ S to a specific Comparator [10], whose compare method depends on
x. Formally compare(x; y, z) < 0 means y ≺x z, and compare(x; y, z) > 0 means z ≺x y, for
distinct x, y, z ∈ S.

Such a family of Comparators gives an orientation2 of the line graph3 L(Kn), called the
ranking digraph. The relation y ≺x z is interpreted as an arc xy → xz. See Figure 1 for an
example. No comparison between xy and zw is provided if {x, y, z, w} is a set of size four.

Most authors study the special case of a metric ρ on S, where y ≺x z means ρ(x, y) <
ρ(x, z). Thus a metric (without ties) gives a total order (by distance) on points of the line
graph L(Kn).

Theorem: (Baron and Darling [3, Lemma 5.5]) The ranking digraph is acyclic if and only
if the Comparators arise from some metric.

2.2. Example of non-metrizable Comparator. For points x, y, z in the interior of the
d-dimensional simplex (here d ≥ 3), choose this Comparator: y is closer to x than z is when

D(x‖y) < D(x‖z),

where D(x‖y) :=
∑d

1 xi log (xi/yi) is Kullback-Leibler (KL) divergence. KL divergence is
asymmetric in the pair (x, y), and does not satisfy the triangle inequality. This example was
chosen to dispel the notion that a metric is needed. An example of a ranking digraph from
six randomly generated points is shown in Figure 1. The existence of a 3-cycle shows that
these Comparators are not metrizable. Further examples and properties of ranking digraphs
are described in [4].

2.3. K-NN graph. The K-NN graph is the directed graph with an arc from each x ∈ S
to the K elements of S \ {x} most similar to x. Naive computation would take n calls to
a Comparator-based sorting operation on n− 1 objects, which would be O(n2 log n) work –
or in the special case of a metric,

(
n
2

)
distance evaluations followed by an O(n2 log n) sort.

An ideal outcome would be to approximate the K-NN graph using O(n logK n) calls to a
Comparator-based sort of O(K2) objects.

Before we describe how K-NN Descent works, we mention that [4] lists half a dozen data
science algorithms besides K-NN Descent that accept triplet comparisons as input, including
another nearest neighbor search algorithm [9].

1By definition, this relation is anti-symmetric and transitive for all x.
2An orientation of a graph G is a digraph obtained by replacing each edge {a, b} by one of the arcs a→ b

or b→ a. The textbook [2] explains graph-theoretic terms.
3Undirected edges of the complete graph Kn on S form the points of the line graph L(Kn), in which

xy ∼ xz for distinct x, y, z. Here xy is an abbreviation for the edge {x, y} of Kn.
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Figure 1. Ranking digraph on
(
6
2

)
vertices, forming the unordered pairs from a

set {xi}1≤i≤6, with each xi drawn uniformly at random from a 14-simplex. Ver-
tex label {1, 6} (bottom right) refers to the unordered pair {x1, x6}. Its neighbors
are {1, 2}, {1, 3}, {1, 4}, {1, 5} together with {2, 6}, {3, 6}, {4, 6}, {5, 6}. Orien-
tation of an arc such as {1, 2} → {1, 4} means that Kullback-Leibler divergences
satisfy D(x1‖x2) < D(x1‖x4). Proof by counterexample that this ranking sys-
tem is not metrizable: vertices marked in black form a cycle

({1, 2} → {1, 4}, {1, 4} → {2, 4}, {2, 4} → {1, 2}).

3. K-NN descent algorithm with a statistical stopping rule

3.1. Friend-of-a-Friend Principle. Dong, Charikar, and Li [7] base K-NN Descent on the
Friend-of-a-Friend Principle, which states that a friend of a friend may be suitable as a
friend. The algorithm consists of a sequence of rounds. At each round, we have a digraph
on S, with regular out-degree K. Such a graph is called a K-out graph [8, Ch. 16]. If
x → y, call y a friend of x, and x a co-friend of y. If there is a ranking system on S, one
K-out graph may be replaced by another K-out graph using a procedure we call friend set
update.

Friend set update is like a cocktail party, attended by all members of S.

Meet: Each x “meets” all friends of friends, and friends of co-friends, which become new
acquaintances.

Update: The new friend set of x consists of the closest K out of all new acquaintances and
former friends.
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Table 2. Ingredients of the Java functional implementation of NND. For
example, the Java object rankingSystem is an instance of the Java type
Function〈〈V , Comparator〈V 〉〉.

Java Type Instance Object

List〈V 〉 points
Function〈〈V , Comparator〈V 〉〉 rankingSystem

Map〈V , Set〈V 〉〉 friends, coFriends
Function〈V , Set〈V 〉〉 proposeNewFriendSet

3.2. Initialization of K-NN Descent.

• Each x selects K elements of S \ {x} uniformly at random as its initial friend set.
This digraph is called random K-out (Frieze & Karonski [8, Ch. 16]).
• Random K-out is an expander graph, whose undirected version has diameter ≤
dlogK−1 ne with high probability [3, Appendix].
• Plausible heuristic: 2dlogK−1 ne rounds of cocktail parties (friend updates) should

suffice for “everyone to get to know each other”. Twice the diameter allows a “mes-
sage” to travel from any vertex to its antipode, and back.

3.3. Sampling Method for Termination for K-NN Descent.

(i) Sample uniformly a point x ∈ S, and two friends y, z ∈ S of x.
(ii) The friend clustering rate is the sample relative frequency that y is a friend or co-

friend of z.
(iii) The friend clustering rate is close to zero at the outset, and increases during the

algorithm towards a plateau.
(iv) Stop at the first round at which the friend clustering rate does not increase, compared

to the previous round.

4. A Java implementation of K-NN descent

4.1. Java parallel streams. The tools of modern Java [10], including generic types, pure
functions, and parallel streams, enable a concise and performant distributed implementation
of NND. Four main Java types are listed in the left column of Table 2 in monospaced font,
and instances of these types used in NND are listed in the right column in boldface font.

Elements of S have a generic type V, supplied by the invoking class (e.g. strings, vectors,
trajectories). A ranking system is a Function from V to a Comparator of objects of type V.
Given three elements x, y, z of S, the assertion that y ≺x z is equivalent in Java to:

rankingSystem.apply(x).compare(y, z) < 0.

The Comparator for object x is visible as an x.getComparator() method of the class V.

4.2. Distribution of tasks to processors. Initialize the friends Map so that the value
associated with the key x is a Set〈V 〉 object containing K elements of S \ {x} selected
uniformly at random. The coFriends Map is derived from the friends Map.

Given x, the function proposeNewFriendSet (bottom of Table 2) compares all the
cofriends, friends of friends, and friends of cofriends, with the current friend set of x, and
proposes the best K of all these as a new friend set. It is crucial that the friends of x are
not updated at the time the function is called. The friends and coFriends Maps remain
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Table 3. Scaling observed in parallel streaming NND (dual Intel X5660, 12
cores total, JRE 11). Processing times decrease in successive rounds, because
duplicate candidates are proposed by different friends. Time to execute a single
round of NND scaled linearly with n. When K was doubled, time to execute
a round increased by a factor less than four. The FCC column shows the final
value of the friend clustering coefficient, which appears to decrease with n. The
proportion of the true K nearest neighbors found, among a uniform sample of
six points, was typically 95% or better; see Table 4. Results are consistent with
the heuristic that 2dlogK ne rounds of NND suffice.

n K rounds 2dlogK ne 1st round last round FCC

2× 104 16 5 8 1.9 sec 0.35 sec 0.271
32 6 6 2.6 sec 0.9 sec 0.264

2× 105 16 7 10 9.1 sec 5.3 sec 0.210
32 5 8 26 sec 13 sec 0.231

2× 106 16 8 12 88 sec 56 sec 0.205
32 7 10 295 sec 153 sec 0.210
64 6 8 1059 sec 401 sec 0.215

effectively immutable while all these proposals are constructed in a parallel stream. This is
part of the contract of java.util.stream, and makes it possible to execute a round of NND
in a single line of code, by invoking the collect() method of Stream [10]:

points.parallelStream().collect(Collectors.toMap(x→ x, x→ proposeNewFriendSet.apply(x))).

The Map〈V , Set〈V 〉〉 produced by this command becomes the friends Map for the next round,
and coFriends is updated accordingly.

The value type of the friends Map is NavigableSet〈V 〉, with respect to the Comparator.
Initial friends are ordered on insertion. During a friend set update at x, each new candidate
is compared to the last member of the NavigableSet at x, and replaces it if appropriate.

The Java Virtual Machine allocates proposeNewFriendSet tasks among the processors
and threads at run time. For example, experiments on a 12-core workstation with JRE 11
gave an eightfold speedup4, per round, compared to the same code where a single stream was
used instead of a parallel stream. With n points and p processors, the speedup should be
monotonically increasing in n

p
for fixed K, assuming that the limitation is thread contention

for access to the friends and coFriends maps.

4.3. How many rounds of NND are needed? How many rounds of friend updates do
we expect before the termination criterion of Section 3.3, is satisfied? Baron and Darling [3],
and other citations therein, justify dlogK ne as an estimate for the diameter of the undirected
graph on S whose edges are the pairs {x, y}, where y is an initial friend of x. In our
experiments, the number of rounds never exceeded, but was close to, 2dlogK ne; see Table 3.

4.4. Scaling of execution time with n and K: The type V that we chose for our timing
experiments was a point on the interior of the 9-dimensional standard simplex in R10, repre-
senting a probability measure on a set of size ten. The ranking system was defined by taking

4Here n = 2× 106, K = 16. The speedup was much less for smaller n.
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Table 4. Here n = 2×105 points were sampled from the (d−1)-dimensional
simplex in Rd, for four different values of d, and K-NN descent was performed
for K = 16 and K = 64. All runs finished within 2dlogK ne (8 or 6) rounds.
The FCC row shows the final value of the friend clustering coefficient. The
accuracy row shows proportion of the true K nearest neighbors found, among
a sample of six points. Note the gradual decline of accuracy with dimension,
especially when the dimension d− 1 exceeds the number K of neighbors.

K feature d = 10 d = 20 d = 40 d = 60

64 FCC 0.24 0.13 0.08 0.06
accuracy 1.0 1.0 0.90 0.84

16 FCC 0.21 0.13 0.09 0.08
accuracy 0.95 0.52 0.43 0.36

y ≺x z whenever
D(x‖y) < D(x‖z)

where D(x‖y) denotes Kullback-Leibler divergence of y from x.The points themselves were
sampled from a 10-dimensional Dirichlet distribution. Results are shown in Table 3 and
discussed in the caption. The practical implications are:

(1) A single call to proposeNewFriendSet costs O(K2 logK) work on average5. Each
round needs n calls to proposeNewFriendSet.

(2) Run time for a single round of NND scales linearly with n, for fixed K.
(3) The number of rounds of NND is not observed to exceed 2dlogK ne, suggesting an

overall O((n log n)K2) run time, on cancelling two logK factors.
(4) For points on a 9-dimensional simplex, the accuracy (or recall) is 95% or better using

our chosen stopping criterion, where accuracy means proportion of the true K nearest
neighbors found, among a uniform sample of six6 points.

(5) On p processors, parallel streams yield a speedup slightly less than p, presumably
because of thread contention. We observed at best an 8 times speedup on 12 cores.

4.5. Effect of dimension. The experiments in Table 3 were performed on points from a
9-dimensional simplex, taking K = 16, 32, 64. We also performed experiments where the
points were drawn from (d − 1)-dimensional simplices, for d = 10, 20, 40, 60, comparing the
cases K = 16 and K = 64. Table 4 shows a decline both in the friend clustering coefficient,
and in the accuracy of the K-NN approximation as dimension increases, for fixed K. Similar
results are reported by Dong et al [7, Section 4.5], who interpret them as a consequence of the
fact that, when sampling many points at random in high dimensions, the nearest neighbor
and farthest neighbor of any point are at roughly the same distance [6].

5. Conclusions and future work

In the benign setting of probability measures sampled uniformly at random from a simplex
in Euclidean space, with a comparator based on Kullback-Leibler divergence, performance of
K-nearest neighbor descent conforms to the predictions based loosely on expander graphs.

5On average K + 2K2 items or fewer are proposed for insertion into a sorted set of size K.
6We did not choose a larger sample size than six, because the random initialization already causes random

variation in the outcome when NND is applied repeatedly to the same data set.
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In particular, our statistical stopping criterion is satisfied within 2dlogK ne rounds on a set
of n points, giving a run time proportional to

(1) K2n log n

in contrast to the O(n1.14) run time (for fixed K) reported by Dong et al [7]. The accuracy of
NND in (intrinsic) dimension up to 20 is entirely satisfactory in examples studied, and does
not require that the similarity measure be symmetric or derived from a metric.

Performance of NND can be much worse in other settings, such as a collection of long
multi-character strings under a metric based on the longest common substring [3, Section
4.4]. More theory and new experiments will be needed to delineate the contexts in which
K-nearest neighbor descent works well.

Acknowledgment: The authors thank James Maissen for his comments and suggestions
on the manuscript.
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