
Received: 2 October 2020 Revised: 10 March 2021 Accepted: 12 March 2021

DOI: 10.1002/cpe.6321

R E S E A R C H A R T I C L E

A performance study of meta-heuristic approaches for
quadratic assignment problem

Thimershen Achary1 Shivani Pillay1 Sarah M. Pillai1 Malusi Mqadi1

Emma Genders1 Absalom E. Ezugwu2

1School of Mathematics, Statistics, and

Computer Science, University of

KwaZulu-Natal, Private Bag X54001, Durban,

South Africa 4000,

2School of Mathematics, Statistics, and

Computer Science, University of

KwaZulu-Natal, King Edward Road,

Pietermaritzburg, KwaZulu-Natal, 3201, South

Africa

Correspondence

Absalom E. Ezugwu, School of Mathematics,

Statistics, and Computer Science, University of

KwaZulu-Natal, Pietermaritzburg 3201, South

Africa.

Email: ezugwua@ukzn.ac.za

Abstract

The quadratic assignment problem (QAP) is a well-known challenging combinato-

rial optimization problem that has received many researchers’ attention with varied

real-world and industrial applications areas. It is noteworthy to mention that a plethora

of nature-inspired optimization algorithms have successfully been used to solve vari-

ous optimization problems, including several variants of the QAPs. In this article, a com-

prehensive literature review is presented to show the most relevant nature-inspired

algorithms that have been used in solving the QAP. More so, extensive experiments are

conducted and analyzed to show the performance of the well-known state-of-the-art

nature-inspired meta-heuristic optimization algorithms in solving the QAP, including

the ant colony optimization (ACO), bat algorithm, genetic algorithm (GA), particle

swarm optimization (PSO), and tabu search algorithm. Besides, a modified variant of

the discrete PSO algorithm is implemented and compared with existing approaches.

The six selected algorithms’ performances, including the modified PSO, are validated

on eight commonly used QAP instances of varying complexity and size, considering the

quality of solutions achieved and computational time consumed by the representative

algorithms. The numerical results revealed that the most competitive algorithm was

ACO, while the GA appeared to be the worst performed algorithm among the six com-

pared meta-heuristic algorithms. However, based on the extensive analysis conducted

on the tested algorithms, further improvements are suggested, including implement-

ing new modified versions of the tested algorithms to tackle the QAP and its variant

instances.

K E Y W O R D S

genetic algorithm, Meta-heuristic, particle swarm optimization, quadratic assignment problem

1 INTRODUCTION

The quadratic assignment problem (QAP) was first introduced in Reference 1 based on the study presented by Koopmans and Beckmann in 1957.

The QAP can be interpreted as the problem of assigning n facilities to n locations. Suppose the distances between locations and the flows between

facilities are known. In that case, the goal is to find the best assignment of facilities to locations such that the sum of the product of the resultant

distances and the flows is minimized. Intuitively, this interpretation encourages facilities with high flows between them to be placed at locations that

are separated by a small distance. A formal representation of the QAP can be explained as follows: Given n facilities {F1, F2, … , Fn} and n locations

Concurrency Computat Pract Exper. 2021;33:e6321. wileyonlinelibrary.com/journal/cpe © 2021 John Wiley & Sons, Ltd. 1 of 29
https://doi.org/10.1002/cpe.6321

https://orcid.org/0000-0002-3721-3400
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.6321&domain=pdf&date_stamp=2021-04-28

2 of 29 ACHARY ET AL.

{L1, L2, … , Ln}, distance matrix Dnn and the flow matrix Fnn, where dij is the distance between location i and location j and fij is the flow between facility

i and facility j, the QAP can be defined as follows:

min
𝜙𝜖P(n)

Z𝜙 =
n∑

i=1

n∑
j=1

fijd𝜙(i)𝜙(j). (1)

Here, P(n) is the set of all permutations (corresponding to the assignment solutions) of the set of integers {1, 2, … n} and𝜙 is the current solution.

The term fijd𝜙(i)𝜙(j) describes the cost of assigning facility Fi to location 𝜙(i) and Fj to location 𝜙(j). A feasible solution is one where one facility is

assigned to only one location, and one location is assigned to only one facility. Similarly, the QAP can also be formulated as a quadratic integer

program. This formulation involves the use of a permutation matrix, X = xij where

xij =
⎧⎪⎨⎪⎩

1 if 𝜙(i) = j

0 otherwise,
(2)

X can be interpreted as an assignment relation from F to L. X must meet the following assignment constraints:

xij ∈ {0,1}, i = 1,2, … , n; j = 1,2, … , n, (3)

n∑
i=1

xij = 1, j = 1,2, … , n, (4)

n∑
j=1

xij = 1, i = 1,2, … , n. (5)

The QAP can then be defined as:

min
n∑

i=1

n∑
j=1

n∑
r=1

n∑
r=1

fijdrsxirxjs. (6)

The term fijdrsxirxjs describes the cost of the assignment implied by X. An example of a QAP problem and solution is given as follows. The nug5

dataset is given by the distance and flow matrix. This is a QAP instance for n=5. Therefore, there are five facilities and five locations:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 3

1 0 2 1 2

1 2 0 1 2

2 1 1 0 1

3 2 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 5 2 4 1

5 0 3 0 2

2 3 0 0 0

4 0 0 0 5

1 2 0 5 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The distances between any two locations are given in matrix L, and the flows between any two facilities are given in matrix F. The optimal solution

for this QAP instance is 𝜙 = {4,5,1,2,2}. This assignment means that the fourth facility is assigned to the first location, fifth facility is assigned to

the second location, and so forth. The cost of this solution is 50.

There are many classical combinatorial problems such as: facility layout problems, the travelling salesman problem, the bin packing problem,

the graph partitioning problem, and the maximum clique problem, which can be expressed as a QAP.2 The QAP can also be used to model a vari-

ety of problems with “real-world” applications such as backboard wiring in electrical circuits, analysis of chemical reactions, layout planning of

keyboard, hospitals, campuses, and so forth.2,3 The QAP has been proven to be NP-hard.2 Due to its complexity and its diverse applications, a vari-

ety of approaches to the QAP have been researched. These approaches include exact, meta-heuristic, and hybrid approaches. The exact algorithm

approaches include dynamic programming,4 branch and bound,5,6 and cutting planes.7 The only algorithm guaranteed to find the optimal solution is

ACHARY ET AL. 3 of 29

the branch and bound algorithms. However, these algorithms are generally unable to solve QAP instances where the number of facilities is greater

than 20.2 Therefore, because of this very limitation of the exact methods, researchers have often shifted their attention to using the approximate

or meta-heuristic algorithms in finding near-optimal solutions for the QAP and its variants.

The several meta-heuristic approaches that have been applied to the QAP include tabu search (TS),8,9 evolutionary strategy,10 genetic algorithm

(GA),11-14 ant colony optimization (ACO),15-18 particle swarm optimization (PSO),19-22 symbiotic organisms search algorithm.23 Local search tech-

niques are also effective for the QAP, and so many hybrid approaches which combine meta-heuristics with local search have been developed.24-26

In this article, we compare and contrast a variety of meta-heuristics covering both the population-based and single solution-based approaches to

solve the QAP. The tested representative meta-heuristic algorithms include the ACO, bat algorithm (BA), GA, PSO, modified PSO, and the TS.

The motive of this article is to conduct a comprehensive analysis test on different nature-inspired optimization algorithms capable of finding

good quality solutions for the QAP. Another aspect is to investigate which of the tested algorithms are able to conveniently alleviate the high com-

putational cost associated with finding the best solutions for the QAP. Note that high computational cost is the main drawback of the exact methods

when tackling the same problem. Although meta-heuristic algorithms cannot guarantee finding optimal solutions like the exact methods, they are

able to obtain acceptable results within a reasonable time frame.27 As such, the comparative study of this nature demonstrated in this article can

serve as a practical indicator for interested domain experts in selecting more appropriate implementation methods for tackling difficult and complex

QAP and its variants instances.

The comparative analysis study presented in this article is different from similar existing studies available in the literature. The six algo-

rithms discussed here comprise of the two main classifications of meta-heuristic approaches, namely, population-based and single solution-based

techniques.28,29 Note that unlike the analysis presented in Reference 30, only two algorithms, namely, ant and bees algorithms’ performance, were

evaluated compared with the six algorithms tested in the current work. Similarly, the comparative analysis discussed in Reference 31 for which only

the TS and simulated annealing algorithms’ performance were compared differs significantly from our implemented study. Furthermore, in Refer-

ence 32, the performance of different variants of the ACO algorithms on QAP was done. However, this differs from the current study, which presents

a broader range of comparative performance analysis. Moreover, the empirical validation of the obtained numerical results for the current work is

performed on a highly diverse set of QAP instances.

The rest of this article is organized as follows: Section 2 provides an overview of the related work for comparison between different

meta-heuristic algorithms for solving the QAP. A brief description of the representative algorithms for solving the QAP is given in Section 3. The six

meta-heuristic algorithms modeling and design are described in Section 4. This section is further subdivided into five subsections, namely, ACO, BA,

GA, PSO, and TS with details on the algorithmic design concepts of the selected algorithms. In Section 5, the experimentation, dataset description,

results and discussion are presented. The concluding remarks and future research directions are given in Section 6.

2 LITERATURE REVIEW

Li et al.33 investigated the various lower bounds used for the QAP and proposed two new lower bounds through optimal reduction schemes. The

paper discussed three categories of lower bounds; namely, Gilmore–Lawler bound (GLB), eigenvalue-based bounds, and other lower bounds, most

of which solves the linear assignment problem. The new bounds presented better results than the GLB on the random problems and competitively

on Nugent problems. The reduction schemes become the GLB when used on smaller matrices. Therefore, improvements can be made to allow them

to be used with smaller matrices.

In Reference 34, Maniezzo and Colorini introduced the first ant system (AS) applied to the QAP. Inspired by the behavior of real ants, they

proposed a new heuristic for the QAP to improve the global search by updating a global memory structure together with local search and lower

bounds. The algorithm uses m artificial ants to construct solutions and simultaneously find better solutions. The paper utilizes the GLBs for its

ratio of effectiveness and computational cost. The proposed AS was compared with another meta-heuristic GRASP. The algorithm found optimal

solutions for the majority of the instances tested and achieved an average percentage error of 0.27. In addition, it performed better than the average

percentage error of the GRASP, which was 0.66. The results of the work have shown that ants do not converge to just one possible solution but on

multiple solutions to improve the search.

In Reference 35, Mouhoub and Wang employed two improved local search algorithms to enhance the application of the AS for the QAP. The first

is the 2-opt local search, and the second is the TS. In both searches, they improved the search algorithms by using a random walk for neighborhood

search to prevent getting trapped in local optima and considering more solutions in the neighborhood when stuck in local optima. This they did

instead of stopping the local search like the original search methods. The improvements made on the local search methods were found to perform

better than the original algorithms and were implemented with the MaxMin ant system (MMAS).

Stützlee and Dorigo15 reviewed the different improvements of the AS for the QAP. The article presented the computational results of the orig-

inal AS, MMAS, the ANTS algorithm applied to QAP, fast Ant (FANT), the HAS-QAP, robust tabu search, and a genetic hybrid (GH). These variants

differ in the concepts and ideas of how the ACO works. Although GH performed well on the random graphs, MMAS however performed much bet-

ter in real-life instances. A comparison of local search algorithms best suited for ACO algorithms was done, and the result showed that the local

4 of 29 ACHARY ET AL.

search implemented should be considered based on the instances. It also showed that simple local searches would be adequate to high-quality

solutions.

The original BA, introduced in Reference 36, was built to obtain optimal or near-optimal solutions to continuous optimization problems. To

use the BA to get optimal or near-optimal solutions for the QAP (combinatorial problem), a technique to discretize position vectors is required,

more specifically discretization that results in a permutation of integers. Summaries of various discretization techniques for swarm intelligence (SI)

algorithms are provided in Reference 37. Similarly, the usage of the smallest position vector for a modified BA was done in Reference 38. Moti-

vated by the fact that Random key and Smallest position vector achieved the same goal, this study uses similar implementation as presented in

Reference 38 to compare with other selected meta-heuristic algorithms.

The paper that was modeled for the GA used in this experiment is Reference 39. The researchers chose a GA design with a two-point crossover

operation, used a mutation probability of 0.2 and a roulette wheel selection. They tested their implementation using the eight instances from the

QAPLIB dataset, namely, nug12, nug17, nug20, nug24, nug28, chr12a.dat, chr12b.dat, and chr15a.dat. Their experiments yielded good result with

the worse Gap percentage being 1%. However, since their implementation was not tested on large instances, it is hard to accept their findings as a

true reflection of how the algorithm would perform given any random instance from the QAPLIB dataset.

A number of discrete forms of PSO exist that includes a binary version of PSO,40 a rank-based approach to PSO,41 and a set-based approach.42-44

In addition, a number of these discrete approaches have been developed specifically for the QAP.19-22 A fuzzy approach to discretizing PSO was

introduced in Reference 20. The position and velocity of each particle are represented as matrices as opposed to being represented as vectors as in

the original PSO representation. The position and velocity update rules are defined in terms of matrix operations. This approach was successfully

applied to a number of instances of the QAP. However, this approach was not used in this work as it was decided that representing each particle by

two matrices and performing matrix operations on these matrices at each iteration was inefficient.

Hafiz et al.21 proposed a probability-based approach for the learning in PSO. In this approach, the position of each particle is a valid permutation

in the solution space. The velocity of each particle is given by a matrix of probabilities. Cognitive and social learning sets are introduced and used to

make the velocity and position updates. The addition of these sets, and the method for position and velocity updating, made this approach lose the

simplicity of the original PSO algorithm and so this approach was not used in this work.

Pradeepmon et al.22 proposed another discretized PSO for the QAP. In this attempt, the position is given by a permutation in the solution space.

Instead of using a velocity to update the position vector, a new position update strategy is proposed. This strategy borrows from the mutation and

crossover operations defined for GA. The simplicity of the original PSO algorithm is not maintained due to the introduction of the crossover and

mutation operators. Another disadvantage of this algorithm is that, at each iteration, the particle can only learn from either its current position, its

own best position, the global best position or the local best position. This approach results in the lost of some learning capability.

Mamaghani et al.19 introduced a modified version of PSO as a discretized PSO for the QAP. In this approach, many of the elements such as the

definition of a position vector and a velocity vector from the original PSO are retained. A sequence, which is a permutation of numbers representing

feasible solutions to the QAP instance, is introduced. The sequence is decoded from the position vector using a heuristic rule, known as the smallest

position value rule, so that the fitness of the solution may be evaluated. This approach was chosen since it retained the simplicity and learning ability

characteristic of the original continuous PSO algorithm.

The TS algorithms can differ in respects to the tabu list and aspiration criterion. The TS can be formed as deterministic (such as a fixed tabu) or

stochastic (such as the robust TS). The advantage of using a TS is that it has the ability to start with a simple implementation, then further enhanced

by adding more specialized components, thereby improving the diversification and intensification to the search. Several authors have adapted the

TS to the QAP, yielding promising results.8,45,46

Skorin-Kapov8 proposed a fixed TS applied to the QAP. The implemented algorithm used a predetermined tabu size list that could be updated.

This is conditioned to where elements in the tabu list were forbidden unless it yielded an objective function better than the current best-known solu-

tion. The solutions selected were added to the tabu list in a FIFO order. This implementation was seen as very effective for the QAP. This technique

was used for the proposed TS used in this article.

Taillard45 introduced a modified robust TS approach for the QAP. Instead of having a fixed tabu, the size of the tabu list was assigned randomly.

The aspiration criteria were further modified, allowing solutions to be introduced if it had not been chosen within a fairly large number of itera-

tions. Despite having its presence in the tabu list or a lower objective function value, another highly interesting attribute that Taillard’s algorithm

introduced is that the neighborhood was explored in O(n2) instead of O(n3).

Misevicius46 proposed a new version of the TS for the QAP. Applying mutations to the best solution achieved in the search led to more diver-

sification when tested on instance in the QAPLIB. It achieved highly promising results, yielding the best-known solution for many of the instances.

Thus, showing the effectiveness of the TS as a heuristic that can be applied for the QAP. However, this mutation technique was not used in this article

and it was implemented in the generic algorithm.

A comparative study of GA, TS, and SA for solving QAP problems from QAPLIB was done in Reference 47. The performance of the algorithms

was compared in terms of relative difference/percentage deviation of the best cost obtained from the known best cost of the QAP instance used;

this is a metric that we have adopted in our study. In the conclusion of Reference 47, it is stated that future research lies in the comparison of more

different algorithms, which is what we have done in this study.

ACHARY ET AL. 5 of 29

In-keeping with the future research mentioned in the conclusion of Reference 47, we selected the BA, PSO and its modified ACO and two of the

algorithms tested in Reference 47, namely, TS and GA. More so, after reviewing several heuristic techniques, their advantages and implementation

to the QAP, the following motivations discussed subsequently are the reasons we’ve chosen the aforementioned meta-heuristic techniques. For

example, the ACO has a parallel construction process since ants build solutions independently and simultaneously,48 premature convergence is

eluded by distributed computation. The ACO has a guaranteed convergence and highly adaptable.

The BA can be easily implemented. BA use of hill climbing for further intensification was done in the implementation in Reference 38. The BA is

a computationally efficient algorithm that has shown promising results in tests done in Reference 38. It will be interesting to see how this algorithm

would compete against other meta-heuristic algorithms as it was only tested against PSO in Reference 38.

TA B L E 1 An overview of the studied meta-heuristic algorithms for the QAP

S/N Name Algorithm Proposed method Dataset Author Year

1 EGATS GA and TS algorithms A hybrid algorithm that combines an elite

GA and TS

QAPLIB Zhang et al.49 2020

2 EOFPA Flower pollination

algorithm

A hybrid elite opposition-based learning and

flower pollination algorithm

QAPLIB Abdel-Baset

et al.50

2017

3 ABC-QAP and

PABC-QAP

ABC and parallel ABC Hybrid artificial bee colony optimization

algorithm and tabu search

QAPLIB Dokeroglu

et al.51

2019

4 WAITS Whale optimization

algorithm and tabu

search

A memetic algorithm using the whale

optimization algorithm integrated with a

tabu search

QAPLIB Abdel-Basset

et al.52

2018

5 BMA Memetic algorithm

and BLS

Integrates breakout local search (BLS)

within the population-based evolutionary

computing framework

QAPLIB Benlic and

Hao53

2015

6 HBRKGA GA A hybrid approximate approach for the QAP

based upon the framework of the biased

random key GA

QAPLIB Lalla-Ruiz

et al.54

2016

7 TLBO-RTS and

Parallel TLBO-RTS

TLBO and TS Hybrid teaching-learning-based

optimization (TLBO) with robust tabu

search (RTS) algorithm

QAPLIB Dokeroglu55 2015

8 QIEA Quantum-inspired

evolutionary

algorithm

Application of the quantum-inspired

evolutionary algorithm (QIEA) for

determining minimal costs of the

assignment in the QAP

QAPLIB Chmiel and

Kwiecień56

2018

9 ANT-QAP and

BA-QAP

Ant algorithm and

bees algorithm

A comparison of nature inspired algorithms

for the QAP

QAPLIB Chmiel et al.30 2017

10 TALO Antlion optimizer

(ALO)

Tournament selection based ALO algorithm

with classic ALO for solving QAP

QAPLIB K𝚤l𝚤ç and

Yüzgeç57

2019

11 ACO Ant colony

optimization

Worst-case bound on a simple ACO

algorithm called (1+1) Max–min ant

algorithm ((1+1) MMAA) for the QAP

problem

QAPLIB Xia and

Zhou32

2018

12 C-FA Firefly algorithm (FA) An improved firefly algorithm based on

chaos mapping strategy

QAPLIB Guo et al.58 2020

13 TS-GQAP Construction

algorithms and a

simple tabu search

heuristic

TS heuristic is developed for generalized

quadratic assignment problem (GQAP)

Continuous

facility layout

problem (FLP)

McKendall

and Li59

2017

14 Discretized PSO PSO A probabilistic representation for the PSO

particle’s velocity for solving the QAP

QAPLIB Hafiz and

Abdennour21

2016

15 RKCS Cuckoo search (CS)

algorithm

adaptation of the random-key Cuckoo

search (RKCS) algorithm for the QAP

QAPLIB Ouaarab

et al.31

2017

6 of 29 ACHARY ET AL.

The GA can work well with discrete optimization problems. The algorithm uses probabilistic selection rules based on the candidate solution’s

fitness value. It is easier to model a candidate solution using a chromosome. The GA has received wide attention from optimization enthusiastic

from different research domains, thereby recording several real-world and industrial based application experiences.

PSO can easily be implemented with few parameters to be fine-tuned. The algorithm has a fast convergence speed and can be computationally

efficient depending on the graph size of the problem being solved. The PSO has been employed to solve several complex optimization problems with

a good track record of finding near-optimal solutions. More so, several variants of the algorithms also exist. Interestingly, only a few variants of the

PSO applications exist for the problem being considered in this article, that is, the QAP.

The TS can be used as both local and global search method by introducing prohibiting technique. The algorithm has been shown to be very effec-

tive and produced good quality solutions for combinatorial optimization problems. The TS utilizes intensification mechanism that accelerates the

search process by exploiting patterns in good solutions spaces. The algorithm is easily implemented and can be hybridized with other global search

methods to serve as an update local search process. A summary overview of some recently reported meta-heuristic algorithms implementation for

the QAP is given in Table 1.

3 META-HEURISTICS PRELIMINARIES

In this section, we give a brief overview and explanation of the representative meta-heuristic algorithms, namely, the ACO, BA, PSO, GA, and TS that

were implemented in this article and applied to solve the QAP. However, the algorithmic design structures for these set of tested meta-heuristic

approaches are reserved for and discussed in Section 4.

In the early 1990s, Dorigo first introduced the ACO as his PhD thesis, which based the technique on the behavior of real ant colonies.60 This

heuristic was initially created to solve the travelling salesman problem, after which it is used to solve other complex optimization problems. In 1999,

Vittorio Maniezzo and Albert Colorini proposed the first application of the AS to the QAP.15 After which, several enhancements of the AS were

made, including MAX–MIN Ant system, FANT, and HAS-QAP. ASs are also commonly paired with local search algorithms such as 2-opt local search

and TS.35 The ACO is considered to be one of the best-performing algorithms, especially for structured, real-life instances,15 and produces the best

solutions for combinatorial problems.35

The original BA, introduced by Yang36 in 2010, is based on the echolocation behavior of bats. This meta-heuristic algorithm was built to provide

optimal or near-optimal solutions to continuous optimization problems and performed remarkably well when compared with PSO and GA as used

in Reference 36. Besides, it is interesting to note that the BA has some similarities to PSO with a slight modification, that is, using loudness and pulse

rate to do exploration and exploitation efficiently.36

For combinatorial problems, the original BA would not function well in the same problem domain. A technique of converting continu-

ous position vectors to a discrete solution would be required. The BA variant called binary bat algorithm was introduced in Reference 61.

This BA variant binarizes a given position vector using the sigmoid function. The application of this BA variant led to classification. If we

go a step further in the combinatorial problem domain and say we want each solution to be a permutation, this is where the BA variant

proposed in Reference 38 succeeds. It is a BA variant built specifically for the QAP. It uses the smallest position vector rule to not only dis-

cretize the solution but to create a permutation. The BA proposed in Reference 38 can be regarded as highly efficient in the sense that

you would never have an invalid solution that would have to undergo punishment or reprocessing for a problem that requires a permuta-

tion in the general sense. A discrete BA was developed in Reference 26 for the QAP. To create this particular discrete BA, some modifica-

tions to the calculation of velocity and position were done to ensure discreteness. The discrete BA for QAP proposed in Reference 26 has

been extensively tested with QAPLIB instances. Hence we choose the BA variant proposed in Reference 38 to test and compare in this

study as we wish to see how it might fair in the QAP domain when compared with other meta-heuristic algorithms as it was only tested

against PSO.

The GA is a meta-heuristic inspired by the natural process of natural selection.62 Researchers have used GA to solve optimization problems

using biologically inspired functions such as selection, crossover and mutation.63 The GA can work well with discrete optimization problems.64

More so, the GA and its variants are consistently used to solve and generate useful solutions for many practical optimizations problems. The

GA belongs to the class of evolutionary algorithms, which generate their solutions using techniques inspired by natural evolution such as chro-

mosomes, genotypes, and natural selection process. For example, in GA, a population of strings or chromosomes, which encode candidate

solutions for an optimization problem, evolves toward better solutions.39 The solution encoding representation for the GA, is often repre-

sented as strings of binary numbers, using 0s and 1s. The evolution usually starts from a population of randomly generated individuals over

a number of generations. The fitness of every candidate individual in the population is iteratively evaluated, while multiple individuals are

stochastically selected from the current population based on their fitness values. Those individuals with better fitness are consistently modi-

fied to form a new population, and after which the new population is then used in the next generation of the algorithm iterative phase. The

algorithm terminates when either a maximum number of generations has been reached, or a satisfactory fitness level has been reached for

the population.

ACHARY ET AL. 7 of 29

A meta-heuristic approach for solving the QAP that has not received much attention is PSO which was introduced by Kennedy and Eberhart

in 1995. It is a SI algorithm inspired by the social behavior patterns of animals that live and interact in large groups such as birds, fish, bees, and

so forth. In PSO, the search space is explored using a swarm of particles. Each particle represents a candidate solution, and each particle is able

to learn from their personal best position and other best positions of the swarm. The PSO was developed as a method for optimizing continuous

nonlinear functions and so a discrete form of PSO is needed in order to apply it to the QAP. The discrete form used in this work was introduced by

Mamaghani and Meybodi.19 In order to improve the results obtained by this algorithm, an addition to the algorithm is made to promote diversity and

prevent premature convergence. Furthermore, the discrete form is used to implement a modified version of the PSO algorithm, inspired by both the

unified particle swarm optimization (UPSO), introduced in Reference 65, and the multiswarm particle swarm optimization (MS-PSO), introduced in

Reference 66.

The TS algorithms have been widely applied to numerous combinatorial optimization problems, finding solutions within a comparatively

short running time.67 The TS was originally inspired by Fred Glover.68 It falls under local search-based procedures. However, despite being a local

meta-heuristic it is designed to explore the search space beyond the local optimum. This is achieved by imposing constraints, restricting the search

to explore certain forbidden regions. The general implementation is based on a neighborhood, allowing moves to ascend to neighboring solutions. It

uses a memory structure called the tabu list, which restricts moves to solutions that have already been recently visited. Thus, this approach prevents

cycling and further drives the search into new unexplored regions. However, often the tabu can prohibit promising moves, which can lead to stag-

nation. To combat this, an aspiration criteria can be defined where it overrides the tabu thereby allowing moves to solutions with a cost value that

is better than the current best-known solution. For a comprehensive background review study on optimization meta-heuristics, interested readers

are referred to the work presented by Boussaïd et al.69

4 META-HEURISTIC ALGORITHM DESIGN

4.1 Ant colony optimization

The ACO uses graphs to solve computational problems probabilistically. It stimulates the behavior of real ants and how they direct each other from

their colonies to food sources. They do this by first finding a good food source and leaves a trail of pheromones on the path used. The more a path is

used, the more pheromones are left on that path, and the colony follows the trail with the most pheromones. The shortest path would contain the

most pheromones since ants can move faster on the shorter path. The algorithm used in this article is inspired by the AS for the QAP in Reference 34.

Limitations of the ACO:

• Even though convergence is guaranteed, the time to converge is unknown48

• The probability distribution changes with iteration48

4.1.1 Implementation to solve the QAP

For each instance, an artificial ant k assigns facility i to a location j and leaves a trace 𝜏ij on the coupling (i, j). The choice of assigning a facility i to a

location j is calculated with a probability, which is a function of the quality of the coupling (i, j) and quantity of the trace of the coupling (i, j). Given by

the equation:

Pk
ij(t) =

⎧⎪⎨⎪⎩

𝛼⋅𝜏ij(t)+(1−𝛼)⋅𝜂ij∑
(𝛼⋅𝜏ij(t)+(1−𝛼)⋅𝜂ij)

if j𝜖 tabuk

0 otherwise,
(7)

where 0 ≤ 𝛼 ≤ 1, and 𝜂ij is the desirability of assigning facility i to location j. When a facility is assigned to a location, it will be added to a tabu list

tabuk . After all ants construct their solutions, the trace matrix is updated with the equation:

𝜏ij(t + 1) = 𝜌𝜏ij(t) + Δ𝜏ij (8)

and Δ𝜏ij is,

Δ𝜏ij =
m∑

k=1

Δ𝜏k
ij (9)

8 of 29 ACHARY ET AL.

and Δ𝜏k
ij

the quantity of the trace left from the kth ant. In order to generate the cost matrix and possible permutations, we implemented the

best-known lower bound, the GLB. Denoted by:

zGL = min z =
n∑

i,j=1

(min
n∑

h,k=1

dihfjkxhk)xij. (10)

This corresponds to solving the linear assignment using the Hungarian method (or Munkres method). A greedy algorithm is implemented to aid

in the local search. Following the algorithm design presented in Reference 34, the pseudocode for the AS or ACO implemented in this article to solve

the QAP is shown in algorithm listing 1.

Algorithm 1. Ant colony optimization for QAP

Calculate upper bound by multiplying the sorted distance and facility matrices;

Initialize the trace matrix;

m - number of ants;

n - number of iterations;

Initialize tabulist;

Put m ants on node 1;

for (i in n) {
for (j in m) {

while tabulist is not full do
Calculate the probability of assigning facility i to location j using Equation (1);

Add assigned facility to tabuList;

end

Use the solutions to compute the trace quantity of coupling(i,j);

Update best permutation;

for (each coupling (i, j)) {
calculate Δ𝜏ij;

Update the trace matrix;

}

}
Clear tabulist;

}
Print the best permutation;

4.2 Bat algorithm

4.2.1 Standard BA

The BA36 is a meta-heuristic algorithm whose creation was inspired by the echolocation behavior of bats, that is, how bats use echolocation to find

prey and is built for finding optimal or near-optimal solutions to continuous optimization problems. The BA, presented in Reference 36, depends on

six hyperparameters, namely: population-size, frequency bounds, loudness bounds, loudness decay rate (alpha), gamma (used in the calculation of

emission rate at every iteration) and initial emission rate. The natural motion of bats (individuals) in the BA is based on the following equations:

fi = fmin + (fmax − fmin)𝛽,where 𝛽 is a random number between 0 and 1, (11)

vt
i = vt−1

i + (xt−1
i − x∗)fi, (12)

xt
i = xt−1

i + vt
i . (13)

ACHARY ET AL. 9 of 29

Random walk (an exploration technique) is done using the following update formula:

xnew = xold + 𝝐At, (14)

where At is the average loudness of all bats at iteration t and 𝝐 is a random vector and 𝝐 ∈ [−1,1]. It is mentioned in Reference 36 and is also backed

up by depicted results that the BA is more powerful than the GA and PSO.

4.2.2 Modified BA

A simple modification to the standard BA was done in Reference 38, main additions are the usage of smallest position value rule to discretize position

vector (to convert to a solution), and hill-climbing to further increase the quality of intensification. Natural motion rules are based on the same rules

as the original BA, except for Equation (2), which is as follows:

vt
i = vt−1

i + (x∗ − xt−1
i)fi. (15)

This equation moves the BA towards the best-known solution rather than away from it (which is what occurs in Equations (1)–(3), that is,

exploitation is done rather than exploration. There is a restructuring of the BA done in Reference 38, which makes flow look a bit different from that

of the original BA; this is probably done due to the slight changes in exploration and exploitation techniques used in Reference 38. This modified BA

was compared with PSO in Reference 38, results looked of the modified BA looked promising. Hence the need to include it in this study. Similar to

the algorithm design presented in Reference 38, the pseudocode for the modified BA that is implemented for the problem at hand is shown in the

Algorithm listing 2.

4.3 Genetic algorithm

The GA is initialized with a population of random individuals called chromosomes. Each chromosome represents a solution candidate to a given

problem. The goal of the GA is to determine the fittest pair of chromosomes in the population using a fitness function. The fittest pair is used to

create new solutions called the next generation or offspring. The fitter the solution candidates the most likely they are to reproduce. The algorithm

loops for a predetermined set of iterations, at the end, the fittest individual in the population is presented as the most optimal solution the algorithm

can generate. The main concepts for the GA are the chromosome encoding, fitness function, selection, recombination and the evolution scheme.

Chromosome The chromosome is a string representation for a candidate solution. For the QAP, the indexes represent the locations and the

values at an index represent a facility assigned to that location.

Figure 1 gives an example of a Chromosome encoding for the QAP.

The indexes in the above example represent the locations, and the elements represent the facilities. The first entry is the allocation of facility 2

to location 1.

Fitness function The fitness function assigns a score for each chromosome. For our implementation, the objective function for the QAP was

used as the fitness function.

Crossover The two-point crossover was used in the implementation of the algorithm. With this type of crossover, two points from two-parent

chromosomes are fixed. The genetic material between those two points becomes the fixed component for the child chromosome, the rest of the

genetic material is inherited from the second parent.

Parent 1: 3 5 |2 4| 1

Parent 2: 2 1 |4 5| 3

Offspring 1: 1 5 |2 4| 3

Offspring 2: 3 2 |4 5| 1

Mutation The mutation is the process that may alter the characteristics a child inherits from its parents. For the QAP chromosome, two facilities

are selected at random, and their locations are swapped.

F I G U R E 1 Example of a chromosome

10 of 29 ACHARY ET AL.

Algorithm 2. The modified bat algorithm for the QAP

x = vector of position vectors;

m = number of bats;

n = number of dimensions;

v = vector of bat velocities;

f = vector of bat frequencies;

r = vector of bat emission rates;

fitness = vector of bat fitnesses;

globalBest = best solution found throughout runtime;

globalFitness = fitness of global bets;

𝛼 = loudness decay rate;

r0 = initial emission rate;

for (i ∶= 1 to m) {
for (j ∶= 1 to n) {

x[i][j] ∶= Random[0,4];

v[i][j] ∶= Random[-4,4];

}
A[i] ∶= Random[1,2];

f[i] ∶= Random[0,1];

r[i] ∶= Random[0,1];

fitness[i]:= Fitness(SPV(x[i]));

}
globaBest:= x[argmax(fitnesses)].copy();

globalBestFitness:= max(fitnesses);

for (t:=1 to T) {
for (i:=1 to m) {

QAPsolution:= SPV(x[i]);

new_fitness:= Fitness(QAPsolution);

rand:= Random[0,1];
˘
If rand < A[i] and new_fitness < fitnesses[i]fitnesses[i]:= new_fitness;

A[i]:= 𝛼A[i];

r[i]:= r0(1 − e𝜆 t);

}
}
indexOfBestFitness ∶= argmax(fitness);
globalBestFitness:= fitnesses[indexOfBestFitness];

globalBest:= x[indexOfBestFitness].copy();

return SPV(globalBest);

return globalBestFitness;

hillClimbingFunc(x[indexOfBestFitness]);

for (k:= 1 to m) {
rand:= Random[0,1];

if rand > r[k] then
x[k] ∶= x[k] + 𝜖Average(A), where 𝜖 is a random vector;

end

if rand< A[i] and fitnesses[k] > globalBestFitness then
𝛽 ∶= Random[0,1]f[k]:= fmin + (fmax − fmax) ∗ 𝛽;

v[k]:= v[k] + (globalBest -x[k]) * f[k];

end

}

ACHARY ET AL. 11 of 29

Selection In the selection process, we determine the number of offspring needed from the crossover process to complete the next generation.

For this experiment, roulette wheel selection is used. Candidate solutions are given a probability of being selected for a mating that is proportional

to their fitness value. The GA algorithm implementation pseudocode is shown in algorithm listing 3.

Algorithm 3. The genetic algorithm

n: is the population size;

x: is the crossover rate;

𝜂: is the mutation rate;

Initialize generation 0;

k:=0;

Pk:= a population of n randomly selected individuals;

Evaluate Pk:

Compute the fitness(i) for each i ∈ Pk

while k less than ti do
Create generation k + 1

Copy:

Select (1 − x)xn members of Pk and insert into Pk+1

Mutate:

Select 𝜂 × n members from Pk+1; pair them up; produce offspring; insert offspring into Pk+1

Evaluate Pk+1:

Compute the fitness(i) for each i ∈ Pk

Increment:

k ∶= k + 1
end

return the fittest individual from Pk = 0

4.4 Particle swarm optimization

4.4.1 Standard particle swarm optimization

In this section, a formal description of the PSO algorithm used in this work is given. This algorithm is inspired by the algorithm introduced in

Reference 19.

The PSO is a population-based search method where the population is termed “the swarm” and it consists of a number of particles. The particles

move iteratively through the search space. For a QAP instance of size n, each particle i has a position, given by a continuous position vector x⃗i =
{xi1, xi2, … , xin} and a velocity, given by a continuous velocity vector v⃗i = {vi1, vi2, … , vin}.

The position vector of each particle i can be decoded into a sequence 𝜙i which is a permutation of numbers {𝜙i1, 𝜙i2, … 𝜙in} which represents a

feasible solution to the QAP problem instance. The sequence associated with the position vector or particle i can be interpreted as follows: 𝜙ij = k

means that facility k has been assigned to location j in the current solution. The cost of the solution can also be obtained from this sequence. To

obtain the sequence from the continuous position vector, the smallest position value rule is applied: the index of the smallest number in the position

vector is assigned the first position in the sequence, the index of the second smallest number in the position vector is assigned the second position

in the sequence and so forth.

Each particle must remember its best position so far and the best position among the swarm ⃗gbest = {gbest1, gbest2, … , gbestn}. The personal and

global best are defined as follows:

⃗pbest i = arg min(f(⃗pbest i(t − 1)), f(⃗pbest i(t))), (16)

⃗gbest = arg minm
i=1(f(⃗gbest(t − 1)), f(x⃗1(t)), f(x⃗2(t)) … f(x⃗m(t))). (17)

Particles move through the search space according to the following velocity and position update vectors below:

v⃗i(t) = wv⃗i(t − 1) + c1r1(⃗pbest i(t − 1) − x⃗i(t − 1)) + c2r2(⃗gbest(t − 1) − x⃗i(t − 1)), (18)

x⃗i(t) = x⃗i(t − 1) + v⃗i(t), (19)

12 of 29 ACHARY ET AL.

where t is the iteration number, r1 and r2 are random numbers between 0 and 1, c1 and c2 are positive constants. c1 is known as the coefficient of the

self-recognition component and determines how much the particle’s best position thus far influences its movement through the search space and c2

is known as the coefficient of the social component and determines how much the swarm’s best position thus far influences the particle’s movement

through the search space. w is known as the inertia factor and is usually set to vary linearly between 0 and 1 throughout the iterative process.

A scheme to increase the diversity in the latter stages of the search process in other to prevent premature convergence is also included in the

algorithm. This scheme involves reinitializing the position of all the particles once stagnation is detected, while leaving the velocity of the particles

unchanged.70 This reinvigorates the particles’ exploration capabilities while retaining the “experience” of the particles. This is achieved through the

use of a “Refresh Gap” and the use of the “Refresh Gap” is shown in the algorithm. The pseudocode for the PSO algorithm is given below in the

algorithm listing 4.

Algorithm 4. The particle swarm optimization algorithm

Initialize the size of the swarm, m Initialize the coefficient of the self-recognition component, c1, and the coefficient of the social component, c2

Initialize the all positions of the swarm randomly and set all the velocities to 0⃗ Set the value of the refresh gap, RG and let count = 0 Set the maximum

number of iterations, MaximumIterations

while t ≤ MaximumIterations do
t = t + 1 Find the sequence represented by the position of each particle Calculate the cost f for each particle Update the global best in the swarm,

if necessary if the global best cost improves then
count = 0

else
count+ = 1

end

if count == RG then
count = 0 Reset the position of each particle

for (each particle) {
Update the personal best of the particle, if necessary Update the position and velocity of the particle

}

end

4.4.2 Modified particle swarm optimization

This section introduces a modified version of PSO that was used to solve QAP instances. This modified version is inspired by UPSO and MS-PSO

and builds on the standard PSO algorithm described in algorithm listing 4. To modify the PSO algorithm and produce this modified version of the

algorithm, the following changes to the above algorithm are made: At the start of the algorithm, the swarm is divided into k subswarms. This is also

a step in MS-PSO. Each subswarm, i, has a best particle defined by:

⃗groupbest i(t) = argmin(f(⃗groupbest i(t − 1)), f(x⃗1(t)), f(x⃗2(t)) … f(x⃗d(t))), (20)

where x⃗1, x⃗2 … x⃗d are all in subswarm i.

A factor, u∈ [0, 1], is introduced. The position update rule remains the same while the velocity update rule becomes:

v⃗i(t) = wuv⃗i(t − 1) + R1(⃗pbesti(t − 1) − x⃗i(t − 1)) + R2(⃗gbest(t − 1) − x⃗i(t − 1)) + R3(⃗groupbest i(t − 1) − x⃗i(t − 1)), (21)

where,

wu = wrnu + w(1 − u), (22)

R1 = c1r1r3u + c1r1(1 − u), (23)

R2 = c2r2rnu, (24)

R3 = (1 − u)c2r2 (25)

and rn is a random number between 0 and 1.

ACHARY ET AL. 13 of 29

The velocity update rule is the same velocity update rule from UPSO except that instead of using the local best of the neighborhood of a particle

to update its velocity, the best of the particles subswarm is used. The factor u controls the influence of the best particle in a particle’s subswarm on

its movement. For u=1, the particle moves only in the direction of the global best particle. For u=0, the particle moves only in the direction of the

best particle in its subswarm. The pseudocode for the modified PSO algorithm is given below in algorithm listing 5.

Algorithm 5. The modified particle swarm optimization algorithm

Initialize the size of the swarm, m and the number of subswarms, k Initialize the coefficient of the self-recognition component, c1, and the coefficient

of the social component, c2 and the factor u Initialize the all positions of the swarm randomly and set all the velocities to 0⃗ Set the value of the

refresh gap, RG and let count = 0 Set the maximum number of iterations, MaximumIterations while t ≤ MaximumIterations do
t = t + 1 Find the sequence represented by the position of each particle Calculate the cost f for each particle Update the global best particle, if

necessary for (each subswarm) {
Update the group best in that subswarm, if necessary

}
if the global best cost improves then

count = 0

else
count+ = 1

end

if count == RG then
count = 0 Reset the position of each particle

for (each particle) {
Update the personal best for that particle, if necessary Update the position and velocity of the particle

}

end

4.5 Tabu search

In this section, a formal description of the TS algorithm used in this work is given. This TS algorithm was a simplified version of the algorithm inspired

by Taillard.45

The TS is a local search-based method. For the QAP the search space can be defined as S= s|s= (s(1), s(2), … , s(n)), where n is the size of the

solution. In the TS that was implemented the first permutation was generated randomly, forming s0. To generate the neighborhood, given s from S,

a 2-exchange neighborhood function was used. The neighborhood can be defined as N2(s)= s′|s′ S, d(s, s′)=2, where d(s, s′) is the distance between

solutions s and s′ in this case 2. A move from the current permutation solution, s, to the neighboring permutation solution, s′ is calculated as follows,

pij ∶ ⊓ → ⊓(i, j = 1,2, … , n), (26)

where the ith and the jth elements in the current solution, s, are exchanged to form the neighboring solution s′. The following process was then

repeated; for the current solution search through its neighborhood. If it finds a candidate solution that is not in the tabu list or the following aspi-

ration criteria holds, the candidate solution has a better objective cost than the current solution. The move is performed, and the current solution

is replaced by its neighbor solution. The current solution then is used as a starting point for the next trial. The tabu list is updated by adding the

current solution to it. The current solution is then compared with the best-known solution. If it has a better objective cost, it then becomes the

best-known solution. The best solution is then returned after a predetermined number of iterations have been performed. The TS uses short term

memory, where recently visited solutions are stored in a tabu List. If the tabu list is full the first element is removed, that is, elements expire based

on first in first out. Similar to the implementation algorithm presented in Reference 45, the pseudocode for the modified TS algorithm used in this

study is given below in algorithm listing 6.

Where the size of the tabu list was set to n (the solution size) and the neighborhood size was set to n(n−1)
2

. The process was repeated until a

termination criteria was met, which was the iteration number that was set to 5n.

5 EXPERIMENTATION, PARAMETER SETTINGS, AND DATASET

Each algorithm discussed was implemented in Python on Google Colab (a cloud-based notebook), with two CPU, 2.2 GHz processing speed, and

13 GB Ram. Ten trials were performed for each instance by each meta-heuristic algorithm proposed. Thus, the average results achieved over the

14 of 29 ACHARY ET AL.

Algorithm 6. The tabu search algorithm

Initialize parameters of the tabu search;

Randomly generate an initial state s0;

currentsolution ← s0;

bestsolution ← currentsolution;

Tabu ← [];

repeat
Neighborhood ← getNeighbors(currentsolution);

currentsolution ← Neighborhood[0];

for (Candidate in Neighborhood) {
˘
If (Candidate not in Tabu) and (z(Candidate) < z(currentsolution))

currentsolution ← Candidate;

}
˘
If z(currentsolution) < z(bestsolution)bestsolution ← currentsolution;

Tabu.push(currentsolution);
˘
If Tabu.size < tabuSizeTabu.removeFirst();

until t ≤ MaximumIterations;

return bestsolution;

10 runs were used to get the average percentage deviations to the instances best-known solution. These results were then used to compare the

performance of the different meta-heuristic algorithms, which is further discussed in the results section.

5.1 Parameter settings

In this article, we have considered six meta-heuristic algorithms, which are investigated further on the basis of the individual algorithm capability to

find good quality solutions and computational time complexity involved for the algorithms to obtain those solutions. In this section, we present all

the parameter configurations for each of the six algorithms implemented to tackle the QAP. The parameter settings are shown in Tables 2–7 below.

It is very important to highlight here that because the choice of parameter settings can significantly affect the quality of solutions generated by the

individual algorithms, several experiments were performed in order to find the best combination of the selected parameters values that would give

the desired competitive results. Therefore, following the concepts of the parameter fine-tuning presented in Reference 52, only one test problem

is selected from each instance to ensure the efficient selection of the parameters values. In addition, note that in order to ensure fair and unbiased

comparisons, the same parameter values for population size and maximum number of iteration were used for the common algorithms such as the

PSO and its modified variant. Moreover, the final adopted number of population size and iteration are obtained after extensive experimental trials

with different values. We observed that all algorithms show their best performance using the set of parameters values presented in Tables 2–7.

5.2 Dataset description

The dataset instances used in this study came from the QAP library, QAPLIB.3 A range of different types of problem instances were used, each having

different complexity levels and solution lengths. This was done in order to test and compare how well each of the meta-heuristic algorithms, namely,

Parameter name Parameter value

Number of ants used, m 5

Alpha(pheromone factor) 0.5

Coefficient that represents the trace persistence, p 0.9

Iteration number 5n/nug28 =120

TA B L E 2 Parameter settings for ANT system (or ACO)

ACHARY ET AL. 15 of 29

TA B L E 3 Parameter settings for bat algorithm
Parameter name Parameter value

Dimension bounds [0,4]

Frequency bounds [0,1]

Velocity [1,2]

Population size 40

Initial emission rate 1.0

Alpha 0.97

Gamma 0.05

Iteration number 20,000

TA B L E 4 Parameter settings for genetic algorithm
Parameter name Parameter value

Population size 100

Mutation rate 0.1

Iteration number 1000

TA B L E 5 Parameter settings for particle swarm optimization
Parameter name Parameter value

Swarm size 120

Iteration number 600

Self-recognition coefficient c1 2

Social coefficient c2 2

Inertia weight w 1

Alpha 0.975

r1, r2 0.5

Refresh gap 10

TA B L E 6 Parameter settings for modified particle swarm optimization
Parameter name Parameter value

Swarm size 120

Number of subswarms 3

Iteration number 600

Self-recognition coefficient c1 2

Social coefficient c2 2

Inertia weight w 1

Alpha 0.975

r1, r2, r3 0.5

Refresh gap 10

16 of 29 ACHARY ET AL.

Parameter name Parameter value

Neighborhood size n(n−1)
2

Tabu width n

Iteration number 5n

TA B L E 7 Parameter settings for tabu search

Instance n (solution size) Best known solution

nug8a 8 214

nug12 12 578

nug28 28 5166

tai12a 12 224,416

tai20a 20 703,482

tai30a 30 1,818,146

esc16a 16 68

esc32e 32 2

TA B L E 8 Instances used from the QAPLIB

ACO, BA, GA, PSO, modified PSO, and TS performed on each different instance. The types of QAP instances used are described as follows. Nugent’s

instance (nug8a, nug12, nug28) which are commonly used instances where the distance matrix is a Manhattan distance matrix. Taillard’s instances

(tai12a, tai20a, tai30a) were randomly generated. Eschermann’s instances (esc16a, esc32e) are based on sequential circuits. The instances used are

given in Table 8 below with their relative solution size and best-known solution.

5.3 Results and discussion

In this section, comprehensive experiments are conducted to show the performance of the well-known nature-inspired optimization algorithms in

solving the QAPs. All the tested algorithms were executed using the parameter settings described in Tables 2–7. The performance of each algorithm

on the selected eight QAP problem instances taken from the QAPLIB is discussed. For each algorithm, the best and worst performance curves

of the algorithm on the QAP instance are presented. It is important to highlight here that the problem instance in which each algorithm per-

formed the best one is the instance for which the algorithm achieved the lowest percentage deviation of the average cost from the best-known

minimum. Similarly, the instance that the algorithm performed the worst one is the instance for which the algorithm achieved the highest per-

centage deviation of the average cost from the known minimum. Note that the raw simulation result data from the experiments can be found in

Appendix A. The following subsections present the detailed experimental results discussion for each of the tested algorithms, starting with the

ACO algorithm.

5.3.1 ACO (or ANT system)

Figure 2 shows the results obtained for the ACO algorithm on the eight instances. From the results obtained, the ACO performs exceptionally well

for instances with the number of dimensions less than 20, that is, nug8a, nug12, tai12a, esc16a. This algorithm obtains optimal solutions on average

according to the results of our experiment.

For instances with the number of dimensions greater than or equal to 20, ACO obtained the optimal solution for esc32e only. This could be

because the complexity of the distance and flow matrices for esc32e is low, although the number of dimensions is large; and also because many

values in the distance and flow matrix are 0. For nug28, tai20a, and tai30a, the algorithm performed well in terms of the solution produced as the

percentage deviation of the average best cost obtained from the best-known minimum is quite low (<0.3% for nug28, <0.4% for tai20a, and <2.5%

for tai30a).

The ACO had the best performance on esc32e (shown in Figure 3(A)). The first ant in the first few iterations obtains the optimal solution for all

runs. The reason for this is probably that this specific QAP instance has a lower complexity. ACO performs the worst for the tai30a instance (shown

in Figure 3(B)), possibly due to a combination of the high complexity of the instance and its high number of dimensions.

ACHARY ET AL. 17 of 29

F I G U R E 2 Bar graph showing the
percentage deviation of minimum,
maximum, and average cost value from
known minimum cost value, found by ANT

system (or ACO) for several QAP
instances. ACO, ant colony optimization;
QAP, quadratic assignment problem

F I G U R E 3 Ant colony optimization (ACO) performance curves

5.3.2 Particle swarm optimization and modified particle swarm optimization

Figure 4 shows the results obtained by PSO on the eight problem instances. Figure 5 shows the results obtained by modified PSO on the

eight problem instances. For some instances of the QAP with n<20, such as nug8, nug12, and esc16e, both PSO and modified PSO was able

to obtain the optimal solutions. Furthermore, the percentage deviation of the average of best values obtained by PSO and modified PSO for

each of these instances was relatively low (<1% for nug8, <5% for nug12, and <7% for esc16e). This shows that PSO and modified PSO per-

formed well with these instances of the QAP. However, for other instances of the QAP with n<20, such as tai12a, both PSO and modified PSO

were unable to obtain optimal solutions. The percentage deviation of the minimum cost obtained by PSO for tai12a was approximately 6.91%.

The percentage deviation of the minimum cost obtained by modified PSO for tai12a was approximately 4.06%. The percentage deviations for

maximum cost and average cost obtained by modified PSO were also lower than those obtained by PSO. This shows that modified PSO per-

formed better than PSO for this problem instance and that modified PSO may be better than PSO for solving more complex QAP instances

for n<20.

For n>=20, the only QAP instance that both PSO and modified PSO obtained the optimal solution for is esc32e. In addition, for this problem

instance, both PSO and modified PSO achieved a 0% percentage deviation of the average cost values. This makes esc32e the instance that both PSO

and modified PSO performed the best on. However, for other QAP instances with n>=20, both PSO and modified PSO performed poorly. Neither

PSO nor modified PSO was able to obtain the optimal solution for tai20a, nug28, or tai30a. However, it should be noted that modified PSO performed

better than PSO for these problem instances. The minimum cost values obtained by modified PSO for tai20a, nug28, and tai30a were lower than

18 of 29 ACHARY ET AL.

F I G U R E 4 Triple bar graph showing
percentage deviation of minimum,
maximum, and average cost value from
known minimum cost value, found by PSO

for QAP for several QAP instances. PSO,
particle swarm optimization; QAP,
quadratic assignment problem

F I G U R E 5 Triple bar graph showing
percentage deviation of minimum,
maximum, and average cost value from
known minimum cost value, found by
modified PSO for QAP for several QAP

instances. PSO, particle swarm
optimization; QAP, quadratic assignment
problem

the minimum cost values obtained by PSO for these problem instances. This is best demonstrated by the tai20a QAP instance where PSO obtained

a percentage deviation for the minimum cost value of 11.33% while PSO obtained a percentage deviation of the minimum cost value of 6.82%.

Furthermore, the percentage deviations for maximum cost values and average cost values obtained by modified PSO were also lower than those

obtained by PSO for tai20a, nug28, and tai30a.

For the instance that PSO performed the best on (esc32e, shown in Figure 6(A)), PSO was able to find the optimal solution very quickly in the

iteration process. This could be a result of the low complexity of this problem instance.

For the instance that PSO performed the worst on (nug28, shown in Figure 6(B)), PSO was, on average, not able to find the optimal solution.

PSO was prone to get stuck in local optima. From the stagnation of the average best cost in the late iterations, it can be deduced that not enough

better solutions were discovered at these iterations. This is a disadvantage of the PSO algorithm and is likely because of a lack of diversity in the

population at these iterations. This means that the “Refresh Gap” strategy used did not adequately address the issue of the lack of diversity in

the population at late iterations. It is possible that, even though the positions of the particles were reset, the velocity maintained the trajectory to

the local optima.

For the instance that modified PSO performed the best on (esc32e, shown in Figure 7(A) above), modified PSO was able to find

the global optimal solution relatively quickly in the iteration process. This could be a result of the low complexity of this problem

instance.

For the instance that modified PSO performed the worst on nug28 (shown in Figure 7(B)), it was, on average, not able to discover the global

optimal solution. Modified PSO, like PSO, was prone to get stuck in local optima. However, unlike PSO, modified PSO does not suffer from the stag-

nation of the average best cost in the late iterations. Better solutions were discovered at late iterations. This could be because the velocity of the

particles leads the particles to promising local best solutions and not only the one promising global best solution. Leading the particles to promis-

ing local best solutions could be what allows diversity in the population at late iterations, and this diversity could be what enables the discovery of

better solutions.

ACHARY ET AL. 19 of 29

F I G U R E 6 Particle swarm optimization (PSO) performance curves

F I G U R E 7 Modified particle swarm optimization (PSO) performance curves

5.3.3 Modified BA

Figure 8 shows the results obtained by the modified BA on the eight problem instances. For QAP instances, with the number of dimensions less

than 20, tested on the performance of the modified BA on nug8a was very good as it obtained a percentage deviation on the average of the best

value of 0% from the known minimum for nug8a. Performance on nug12 and esc16a were relatively good based on the same metric used to judge

performance on nug8a; they were in the range of 2.5%–5%. Performance on tail12a was poor as compared with the rest of the instances with the

number of dimensions less than 20, as the algorithm obtained a percentage deviation on the average best value of 9% from the known minimum

from of tai12a.

For QAP instances, with the number of dimensions greater than or equal to 20, tested on the performance of the modified BA on esc32e was

excellent as it obtained a percentage deviation on the average of the best value of 0% from the known minimum for esc32e, even though this instance

used 32 dimensions. Performances on tai20a and tai30a were relatively poor on the same metric used to judge performance on esc32e (they were in

the range of 11.5%–12.5%). This could be due to a combination of high complexity and number of dimensions of tai20a and tai30a. Performance on

nug28 was extremely poor as compared with the rest of the instances with the number of dimensions greater than or equal to 20, as the algorithm

obtained a percentage deviation on the average best value of around 16% from known minimum from of nug28.

20 of 29 ACHARY ET AL.

F I G U R E 8 Triple bar graph showing
percentage deviation of minimum,
maximum, and average cost value from
known minimum cost value, found by

modified BA for QAP for several QAP
instances. BA, bat algorithm; QAP,
quadratic assignment problem

F I G U R E 9 Modified bat algorithm (BA) performance curves

The modified BA performed the best on the esc32e instance as the average best cost line obtained merged with the best-known minimum line

quickly (shown in Figure 9(A)). esc32e appears to be a simple QAP instance, hence the results. We see somewhat of the same results with the other

algorithms tested.

By looking at Figure 9(B), the average best cost obtained versus iteration number starts to decrease early (favorable), but then reached a plateau

a significantly great distance away from the best-known minimum line. There was no further improvement after the plateau was reached. This could

be due to the high complexity of nug28.

5.3.4 Tabu search

Figure 10 shows the results obtained by TS on the eight problem instances.

For the QAP instances nug8, tai12, esc16e, esc32e, TS was able to obtain the optimal solutions. With relatively low average percentage devia-

tions (<3% for nug8,<6% for nug12,<2% for esc16e, and 0% for esc32e). TS performed the best on esc32. Furthermore, the instance TS performed

the worst on nug12 and tai12 with the highest average deviation of 6% and 7.63%, respectively. Other instances where the number of dimensions

was greater than or equal to 20, that is (nug28, tai20a, tai30a) although the optimal solution was not found they still had relatively low average per-

centage deviation, even smaller than that of instances where the number of dimensions is less than 20 (4% for nug28, 5% for tai20a, and 5% for

tai30a). Thus, showing that TS performed reasonably well for these QAP instances.

TS performed the best on the esc32e instance (performance is shown in Figure 11(A) above) and was able to find the optimal solution very

quickly in the iteration process. This could be as a result of the low complexity of this problem instance. This shows that TS has the potential to obtain

promising results despite the dimension of the problem, so long as the dimension of the instance is low.

For the instance that the TS performed the worst on (nug12 and tai12a, see performance of TS on nug12 in Figure 11(B)), this could be a result

of the higher complexity of the problems instances. It can be seen on the graph that it was not able to find the optimal solution and was prone to get

ACHARY ET AL. 21 of 29

F I G U R E 10 Triple bar graph showing
percentage deviation of minimum,
maximum, and average cost value from
known minimum cost value, found by TS

for several QAP instances. QAP, quadratic
assignment problem; TS, tabu search

F I G U R E 11 Tabu search performance curves

stuck in local optima. From the stagnation of the average best cost in the later iterations, showing that not enough better solutions were discovered

or explored at these iterations. Thus, it can be seen that more diversification methods are needed. Thereby allowing the search to explore other

parts of the solution search space (to try find a global optimum). This could be done using a frequency-based memory, applying penalties to solutions

that are not improving also by adding other diversification techniques such as mutations presented in Reference 46 to enhance the search leading

to more optimal results.

5.3.5 Genetic algorithm

Figure 12 shows the results obtained by the GA on the eight problem instances. It should be noted that the percentage deviation of the maximum

value obtained by the GA for esc32e is shown to be 100% when the actual percentage deviation is 31.10%. This is done to maintain the legibility of

the graph. The GA performed best for the nug8a dataset, obtaining an average percentage deviation of 0.42%. The algorithm struggled with larger

instances tai20a, tai30a, and esc32e, obtaining an average standard deviation percentage of 13.30%, 13.22%, and 17.5%, respectively. It never found

the best solution for tai20a and tai30a. The algorithm was, on average able to obtain the best solution for esc32e.

The GA performed the best on the nug8a QAP instance (performance is shown in Figure 13(A)). The slope of the average cost line obtained was

very steep over the first few iterations and began to even move out towards the end, merging with the best-known minimum line. The GA performed

the worst on the tai20a QAP instance (performance is shown in Figure 13(B)). The slope of the average cost obtained line was very steep over the

22 of 29 ACHARY ET AL.

F I G U R E 12 Triple bar graph showing
percentage deviation of minimum,
maximum, and average cost value from
known minimum cost value, found by GA

for several QAP instances. GA, genetic
algorithm; QAP, quadratic assignment
problem

F I G U R E 13 Genetic algorithm (GA) performance curves

first few iterations and began to even move out towards the end, however the distance between the average cost line obtained and the best-known

minimum line is very great towards the end of the iterations.

5.3.6 Ranking of the algorithms

Based on the results displayed in Figure 14, it can be seen that for the problem instances with n<20, all the algorithms perform relatively well. The

highest percentage deviation of the average value from the known minimum for an instance with n<20 is obtained by the GA for tai12a: (11.11%).

It should be noted that all the algorithms performed better on esc16a than tai12a and this shows that the complexity of the problem instance may

influence the performance of the algorithm more than the size of the problem instance. For n>=20, it should be noted that most of the algorithms

performed worse than they did for n<20. However, all the algorithms performed very well for esc32e as all algorithms achieved a percentage devi-

ation of the average value from the known minimum of 0%. This could again be attributed to the low complexity of the problem instance. Only GA

did not perform well on this instance and actually achieved one of the highest percentage deviations of the average value from the known minimum.

Furthermore, based on these results, it can be seen that the ACO outperforms all the other algorithms across all instances. In the same manner, the

GA mostly yields the worst results.

The algorithms are ranked according to the following procedure: We constructed the following Tables 9 and 10 showing QAP instances tested,

the selected algorithms for this study, and the percentage deviation of the average value of best solution found, produced by algorithms, from the

known minimum of QAP instance.

ACHARY ET AL. 23 of 29

F I G U R E 14 Bar chart showing the
percentage deviation of the average of
best cost value found from known
minimum cost value for each of the

algorithms tested

TA B L E 9 The percentage deviation of the
average value of best solution found from the

known minimum of various QAP instances for
the tested algorithms

Instance ACO BA GA PSO Modified PSO TS

nug8a 0.00 0.00 0.42 0.19 0.84 3.00

nug12 0.00 4.95 7.44 3.98 4.22 5.96

tai12a 0.00 9.07 11.11 10.86 9.49 7.63

esc16a 0.00 2.65 6.76 6.47 2.94 2.94

tai20a 1.02 11.90 13.36 13.00 10.58 5.07

nug28 0.74 16.10 18.11 16.21 13.16 4.26

tai30a 2.22 12.24 13.22 12.21 10.91 5.27

esc32e 0.00 0.00 17.50 0.00 0.00 0.00

Abbreviations: ACO, ant colony optimization; BA, bat algorithm; GA, genetic algorithm; PSO, particle

swarm optimization; QAP, quadratic assignment problem; TS, tabu search.

TA B L E 10 Illustration of the percentage deviation of

average values of best solution found from the known minimum
of various QAP instances

Abbreviations: ACO, ant colony optimization; BA, bat algorithm; GA, genetic

algorithm; PSO, particle swarm optimization; QAP, quadratic assignment

problem; TS, tabu search.

One may assume that a higher number of dimensions of the QAP problem may result in worse performance for the algorithms, but this is not

the case. For example, TS performs better in esc32e (32-dimensions) than in nug8a (eight-dimensions). Thus, given the afore-mentioned statement,

we assign a uniform weighting to the QAP instances used for scoring the algorithms to rank them.

We move row by row, assigning scores to each algorithm per row based on how well they performed on a QAP instance of a specific row relative

to the other algorithms. Essentially, we are obtaining an overall rank of the algorithms tested by aggregating their ranks for each QAP instance used.

Green is a score of 6, blue is a score of 5, yellow is a score of 4, purple is a score of 3, orange is a score of 2, and red is a score of 1. Table 10 illustrates

24 of 29 ACHARY ET AL.

F I G U R E 15 Total score obtained for
each algorithm based on ranking from
Table 10

F I G U R E 16 Average CPU time
consumed by the individual algorithm on
each quadratic assignment problem

instance

the percentage deviation of the average value of best solutions found by the algorithms from the known minimum of various QAP instances, as well

as colored cells indicating the algorithms performance rank position relative to the executed QAP instances.

In Figure 15, the total score obtained by each algorithm from Table 10 is plotted; this makes ranking the algorithms easier.

The ranks of the algorithms are as follows:

1. ACO

2. TS

3. Modified PSO

4. BA

5. PSO

6. GA

The algorithms are ranked in descending order as shown from the list above, that is, from 1 to 6 (in that precedence, 1 is ranked above 2 and 2

above 3, and 6 being the least value). Therefore, from the ranks, we can conclude that ACO performed the best, however GA performed the worst.

Figure 16 shows the average CPU time taken by each algorithm on each instance. Note that in this chart, the CPU Time taken for ACO on nug28

is shown as 5000 s but the actual value is 6494.5 s. The CPU time taken for ACO on esc32e is shown to be 5000 s, but the actual CPU time taken is

21,704.75. The actual values have not been represented to maintain the legibility of the graph.

We see that for BA, GA, PSO, modified PSO, and TS, the average CPU time required scales with the number of dimensions of the QAP instance.

However, ANT systems differs from this trend, being that it is scaling not only with the number of dimensions but with the complexity of the instance

as well. For example, ANT systems had its best performance on esc32e and its worst performance on tai30a, yet CPU time required for esc32e is

4186.64 s whilst CPU time required for tai30a is 21,704.75 s. A full comparison of CPU time between the meta-heuristic algorithms tested could

not be done as their number of iterations differed.

6 CONCLUSION

Presented in this article is a comparative study of six meta-heuristic algorithms for solving the QAP. Each of the implemented algorithm was

tested on eight QAP benchmark instances taken from the QAPLIB. These instances have varying dimensions and complexity. The six meta-heuristic

ACHARY ET AL. 25 of 29

algorithms studied in this article include the modified BA for QAP from Reference 38, GA from Reference 63, ACO from Reference 34, TS from

Reference 8, PSO for QAP,19 and modified PSO for QAP. Among all the results obtained, we deemed the following fit for comparative uses: percent-

age deviation of the average value of the best solution from the known minimum of QAP instance and average CPU time consumed by the algorithms

in finding the best solutions. From the results obtained, we concluded that the ACO was the best performed algorithm, and that the GA was the

worst-performed algorithm. It should be noted that even though the ACO algorithm does in some cases require significantly higher CPU times than

the other algorithms, other algorithms reach Plateaus from which they do not escape local optima during their runtimes. Although ACO took longer

CPU time, however with less than 120 iterations, it was able to get close to the known minimum of the QAP instances tested on. This reinforces that

the ACO is the best performed algorithm when compared with the other algorithms tested.

With regards to CPU time, all algorithms tested, apart from ACO, followed the trend of requiring more CPU time as the dimensions of the QAP

instance increases. The efficiency of the ACO algorithm seems to depend on both the number of dimensions and complexity of the QAP instance,

but more so on the complexity of the QAP instance, as huge jumps in CPU time required by the ACO were recorded for the QAP instances that were

estimated with some degree of confidence to be very complex. For real-world usage, an algorithm that performs well and that is time-efficient would

be required. Thus, we conclude that even though ACO is best performing theoretically, the TS (second-best theoretically) is the best for real-world

usage as it gets good results and scales with the number of dimensions of the QAP instance only.

Future research lies in running experiments with various hybrids, adaptive, and parallel versions of the tested and new meta-heuristic

algorithms.71 Similarly, one can also run the experiments using complex datasets with large graph size to explore if the performance of the ACO

with respect to the other algorithms remains consistent. Furthermore, it would be interesting to investigate the performance of the six tested algo-

rithms in other related assignment problems. Therefore, in this regard, it is necessary also to study how different parameter configurations impact

the performance of the algorithms, respectively.

DECLARATION OF COMPETING INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work

reported in this article.

ORCID

Absalom E. Ezugwu https://orcid.org/0000-0002-3721-3400

REFERENCES

1. Koopmans TC, Beckmann M. Assignment problems and the location of economic activities. Econometr J Econometr Soc. 1957;53–76.

2. Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T. A survey for the quadratic assignment problem. Eur J Oper Res.

2007;176(2):657-690.

3. Burkard RE, Karisch SE, Rendl F. Qaplib–a quadratic assignment problem library. J Glob Optim. 1997;10(4):391-403.

4. Christofides N, Benavent E. An exact algorithm for the quadratic assignment problem on a tree. Oper Res. 1989;37(5):760-768.

5. Lawler EL. The quadratic assignment problem. Manag Sci. 1963;9(4):586-599.

6. Pardalos PM, Crouse JV. A parallel algorithm for the quadratic assignment problem. Paper presented at: Proceedings of the 1989 ACM/IEEE Conference

on Supercomputing Supercomputing’89, New York; 1989:351-360; IEEE.

7. Bazaraa MS, Sherali HD. Benders’ partitioning scheme applied to a new formulation of the quadratic assignment problem. Naval Res Logist Quart.

1980;27(1):29-41.

8. Skorin-Kapov J. Tabu search applied to the quadratic assignment problem. ORSA J Comput. 1990;2(1):33-45.

9. Skorin-Kapov J. Extensions of a tabu search adaptation to the quadratic assignment problem. Comput Oper Res. 1994;21(8):855-865.

10. Nissen V. Solving the quadratic assignment problem with clues from nature. IEEE Trans Neural Netw. 1994;5(1):66-72.

11. Bui TN, Moon BR. A genetic algorithm for a special class of the quadratic assignment problem. DIMACS Ser Discr Math Theoret Comput Sci. 1994;16:99-116.

12. Ahmed ZH. A genetic algorithm for a special class of the quadratic assignment problem. Opsearch. 2015;52(4):714-732.

13. Ahuja RK, Orlin JB, Tiwari A. A greedy genetic algorithm for the quadratic assignment problem. Comput Operat Res. 2000;27(10):917-934.

14. Drezner Z. A new genetic algorithm for the quadratic assignment problem. INFORMS J Comput. 2003;15(3):320-330.

15. Stützle T, Dorigo M. ACO algorithms for the quadratic assignment problem. New Ideas Optim. McGraw-Hill Ltd., UK; 1999;(C50).

16. Ariyasingha IDID, Fernando TGI. A new multi-objective ant colony optimisation algorithm for solving the quadratic assignment problem. Vidyodaya J Sci.
2019;22(1):1–11.

17. Oliveira S, Hussin MS, Roli A, Dorigo M, Stützle T. Analysis of the population-based ant colony optimization algorithm for the TSP and the QAP. Paper

presented at: Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain; 2017:1734-1741; IEEE.

18. Peras M, Ivkovic N. Channel assignment with ant colony optimization. Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing. New

York, NY: Springer; 2019:31-42.

19. Mamaghani AS, Meybodi MR. Solving the quadratic assignment problem with the modified hybrid PSO algorithm. Paper presented at: Proceedings of

the 2012 6th International Conference on Application of Information and Communication Technologies (AICT), Tbilisi, Georgia; 2012:1-6; IEEE.

20. Liu H, Abraham A, Zhang J. A particle swarm approach to quadratic assignment problems. Soft Computing in Industrial Applications. New York, NY: Springer;

2007:213-222.

21. Hafiz F, Abdennour A. Particle swarm algorithm variants for the quadratic assignment problems-a probabilistic learning approach. Expert Syst Appl.
2016;44:413-431.

https://orcid.org/0000-0002-3721-3400
https://orcid.org/0000-0002-3721-3400

26 of 29 ACHARY ET AL.

22. Pradeepmon T, Sridharan R, Panicker V. Development of modified discrete particle swarm optimization algorithm for quadratic assignment problems.

Int J Ind Eng Comput. 2018;9(4):491-508.

23. Abdel-Basset M, Rashad H, Zhou Y. Solving quadratic assignment problem by symbiotic organisms search algorithm. Int J Intell Enterprise.

2019;6(1):77-91.

24. Stützle T. Iterated local search for the quadratic assignment problem. Eur J Oper Res. 2006;174(3):1519-1539.

25. Aksan Y, Dokeroglu T, Cosar A. A stagnation-aware cooperative parallel breakout local search algorithm for the quadratic assignment problem. Comput
Ind Eng. 2017;103:105-115.

26. Riffi ME, Saji Y, Barkatou M. Incorporating a modified uniform crossover and 2-exchange neighborhood mechanism in a discrete bat algorithm to solve

the quadratic assignment problem. Egypt Inform J. 2017;18(3):221-232.

27. Munien C, Mahabeer S, Dzitiro E, Singh S, Zungu S, Ezugwu AE. Metaheuristic approaches for one-dimensional bin packing problem: a comparative

performance study. IEEE Access. 2020;8:227438–227465.

28. Dokeroglu T, Sevinc E, Kucukyilmaz T, Cosar A. A survey on new generation metaheuristic algorithms. Comput Ind Eng. 2019;137:106040.

29. Ezugwu A.E, Shukla A.K, Nath R. et al. Metaheuristics: a comprehensive overview and classification along with bibliometric analysis. Artif Intell Rev.

2021;1-56. https://doi.org/10.1007/s10462-020-09952-0.

30. Ezugwu AE, Shukla AK, Nath R, Akinyelu AA, Agushaka JO, Chiroma H, Muhuri PK. Metaheuristics: a comprehensive overview and classification along

with bibliometric analysis. Artif Intell Rev. 2021. https://doi.org/10.1007/s10462-020-09952-0.

31. Aktel A, Yagmahan B, Özcan T, Yenisey MM, Sansarc𝚤 E. The comparison of the metaheuristic algorithms performances on airport gate assignment

problem. Transp Res Proc. 2017;22:469-478.

32. Xia X, Zhou Y. Performance analysis of aco on the quadratic assignment problem. Chin J Electron. 2018;27(1):26-34.

33. Li Y, Pardalos PM, Ramakrishnan KG, Resende MGC. Lower bounds for the quadratic assignment problem. Ann Oper Res. 1994;50(1):387-410.

34. Maniezzo V, Colorni A. The ant system applied to the quadratic assignment problem. IEEE Trans Knowl Data Eng. 1999;11(5):769-778.

35. Mouhoub M, Wang Z. Improving the ant colony optimization algorithm for the quadratic assignment problem. Paper presented at: Proceedings of the

2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong; 2008:250-257; IEEE.

36. Yang X-S. A New Metaheuristic Bat-Inspired Algorithm. Vol 284. Berlin/Heidelberg, Germany: Springer; 2010:65-74.

37. Krause J, Cordeiro J, Parpinelli RS, Lopes HS. A survey of swarm algorithms applied to discrete optimization problems. Swarm Intelligence and Bio-Inspired
Computation. Elsevier; 2013:169-191. https://doi.org/10.1016/C2012-0-02754-8.

38. Shukla A. A modified bat algorithm for the quadratic assignment problem. Paper presented at: Proceedings of the 2015 IEEE Congress on Evolutionary

Computation (CEC), Sendai, Japan; May 2015:486-490; IEEE.

39. Azarbonyad H, Babazadeh R. A genetic algorithm for solving quadratic assignment problem (qap); 2014. arXiv preprint arXiv:1405.5050.

40. Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. Paper presented at: Proceedings of the 1997 IEEE International

Conference on Systems, Man, and cybernetics. Computational Cybernetics and Simulation, Orlando, FL; vol 5, 1997:4104-4108; IEEE.

41. Liu B, Wang L, Jin Y-H. An effective PSO-based memetic algorithm for flow shop scheduling. IEEE Trans Syst Man Cybern B (Cybern). 2007;37(1):18-27.

42. Clerc M. Discrete particle swarm optimization, illustrated by the traveling salesman problem. New Optimization Techniques in Engineering. New York, NY:

Springer; 2004:219-239.

43. Neethling M, Engelbrecht AP. Determining RNA secondary structure using set-based particle swarm optimization. Paper presented at: Proceedings of

the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada; 2006:1670-1677; IEEE.

44. Chen W-N, Zhang J, Chung HSH, Zhong W-L, Wu W-G, Shi Y-H. A novel set-based particle swarm optimization method for discrete optimization

problems. IEEE Trans Evolut Comput. 2009;14(2):278-300.

45. Taillard É. Robust taboo search for the quadratic assignment problem. Parallel Comput. 1991;17(4-5):443-455.

46. Misevicius A. A tabu search algorithm for the quadratic assignment problem. Comput Optim Appl. 2005;30(1):95-111.

47. Abd G, Abeer M, El-Sayed M. A comparative study of meta-heuristic algorithms for solving quadratic assignment problem. Int J Adv Comput Sci Appl.
2014;5(1):1–6.

48. Ezugwu AE, Adeleke OJ, Akinyelu AA, Viriri S. A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems. Neural
Comput Appl. 2020;32(10):6207-6251.

49. Zhang H, Liu F, Zhou Y, Zhang Z. A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem. Inf Sci.
2020;539:347-374.

50. Abdel-Baset M, Wu H, Zhou Y, Abdel-Fatah L. Elite opposition-flower pollination algorithm for quadratic assignment problem. J Intell Fuzzy Syst.

2017;33(2):901-911.

51. Dokeroglu T, Sevinc E, Cosar A. Artificial bee colony optimization for the quadratic assignment problem. Appl Soft Comput. 2019;76:595-606.

52. Abdel-Basset M, Manogaran G, El-Shahat D, Mirjalili S. Integrating the whale algorithm with tabu search for quadratic assignment problem: a new

approach for locating hospital departments. Appl Soft Comput. 2018;73:530-546.

53. Benlic U, Hao J-K. Memetic search for the quadratic assignment problem. Expert Syst Appl. 2015;42(1):584-595.

54. Lalla-Ruiz E, Exposito-Izquierdo C, Melián-Batista B, Moreno-Vega JM. A hybrid biased random key genetic algorithm for the quadratic assignment

problem. Inf Process Lett. 2016;116(8):513-520.

55. Dokeroglu T. Hybrid teaching–learning-based optimization algorithms for the quadratic assignment problem. Comput Ind Eng. 2015;85:86-101.

56. Chmiel W, Kwiecień J. Quantum-inspired evolutionary approach for the quadratic assignment problem. Entropy. 2018;20(10):781.

57. K𝚤l𝚤ç H, Yüzgeç U. Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Eng Sci Technol Int J.

2019;22(2):673-691.

58. Guo M-W, Wang J-S, Xue Y. An chaotic firefly algorithm to solve quadratic assignment problem. Eng Lett. 2020;28(2):337-342.

59. McKendall A, Li C. A tabu search heuristic for a generalized quadratic assignment problem. J Ind Product Eng. 2017;34(3):221-231.

60. Gambardella LM, Taillard ÉD, Dorigo M. Ant colonies for the quadratic assignment problem. J Operat Res Soc. 1999;50(2):167-176.

61. Nakamura RYM, Pereira LAM, Costa KA, Rodrigues D, Papa JP, Yang XS. Bba: a binary bat algorithm for feature selection. Paper presented at: Proceedings

of the 2012 25th SIBGRAPI conference on graphics, Patterns and Images, Ouro Preto, Brazil; 2012:291-297; IEEE.

62. Owens AD. Charles Darwin and the theory of natural selection. Sci Scope. 2015;39(2):89.

63. Melanie Mitchell. An Introduction to Genetic Algorithms, Complex Adaptive Series, Elsevier; 1996.

https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1016/C2012-0-02754-8

ACHARY ET AL. 27 of 29

64. Z Wu and A Simpson. An Efficient Genetic Algorithm Paradigm for Discrete Optimisation of Pipeline Networks. 1997.

65. Parsopoulos KE, Vrahatis MN. Unified particle swarm optimization for solving constrained engineering optimization problems. Paper presented at:

Proceedings of the International Conference on Natural Computation; 2005:582-591; Springer, New York, NY.

66. Blackwell T, Branke J. Multi-swarm optimization in dynamic environments. Paper presented at: Proceedings of the Workshops on Applications of

Evolutionary Computation; 2004:489-500; Springer, New York, NY.

67. Pirim H, Bayraktar E, Eksioglu B. Tabu search: a comparative study; 2008.

68. Glover F. Tabu search—Part I. ORSA J Comput. 1989;1(3):190-206.

69. Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Inf Sci. 2013;237:82-117.

70. James T, Rego C, Glover F. Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans Syst Man Cybern A Syst
Humans. 2009;39(3):579-596.

71. Tosun U, Dokeroglu T, Cosar A. A robust island parallel genetic algorithm for the quadratic assignment problem. Int J Prod Res. 2013;51(14):4117-4133.

How to cite this article: Achary T, Pillay S, Pillai SM, Mqadi M, Genders E, Ezugwu AE. A performance study of meta-heuristic

approaches for quadratic assignment problem. Concurrency Computat Pract Exper. 2021;33:e6321. https://doi.org/10.1002/cpe.6321

APPENDIX A

This Appendix shows the raw simulation result data obtained from the experiments (Figures A1–A7).

F I G U R E A1 Table showing the results obtained by the ANT system

F I G U R E A2 Table showing the results obtained by the bat system

https://doi.org/10.1002/cpe.6321
https://doi.org/10.1002/cpe.6321
https://doi.org/10.1002/cpe.6321
https://doi.org/10.1002/cpe.6321
https://doi.org/10.1002/cpe.6321

28 of 29 ACHARY ET AL.

F I G U R E A3 Table showing the results obtained by the genetic algorithm

F I G U R E A4 Table showing the results obtained by particle swarm optimization

F I G U R E A5 Table showing the results obtained by the modified particle swarm optimization

F I G U R E A6 Table showing the results obtained by tabu search

ACHARY ET AL. 29 of 29

F I G U R E A7 Table showing average CPU time (in seconds) taken by each algorithm for each instance

