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Abstract

The fundamental problem in modeling complex phenomena such as human perception using 

probabilistic methods is that of deducing a stochastic model of interactions between the 

constituents of a system from observed configurations. Even in this era of big data, the complexity 

of the systems being modeled implies that inference methods must be effective in the difficult 

regimes of small sample sizes and large coupling variability. Thus, model inference by means of 

minimization of a cost function requires additional assumptions such as sparsity of interactions to 

avoid overfitting. In this paper, we completely divorce iterative model updates from the value of a 

cost function quantifying goodness of fit. This separation enables the use of goodness of fit as a 

natural rationale for terminating model updates, thereby avoiding overfitting. We do this within the 

mathematical formalism of statistical physics by defining a formal free energy of observations 

from a partition function with an energy function chosen precisely to enable an iterative model 

update. Minimizing this free energy, we demonstrate coupling strength inference in 

nonequilibrium kinetic Ising models, and show that our method outperforms other existing 

methods in the regimes of interest. Our method has no tunable learning rate, scales to large system 

sizes, and has a systematic expansion to obtain higher-order interactions. As applications, we infer 

a functional connectivity network in the salamander retina and a currency exchange rate network 

from time-series data of neuronal spiking and currency exchange rates, respectively. Accurate 

small sample size inference is critical for devising a profitable currency hedging strategy.
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I. INTRODUCTION

An explosion in data availability in recent years has ushered in a new era of data-driven 

research for natural and social sciences. Identifying systems dynamics from observed data, 

e.g., biochemical reactions [1], gene expression measurements [2], neuronal or brain region 

activities [3–6], and population dynamics [7], is of fundamental interest in science [8–12]. 

For complex phenomena, such as human perception, modeling system dynamics in a 

probabilistic framework became possible with the advent of inexpensive computational 

resources, and has led to great progress in the last 25 years. Regardless of whether 

stochasticity is inherent in the system or only apparent due to partial observability [13], 

many stochastic processes have been analyzed by autoregressive-moving-average models 

[14] or probabilistic directed acyclic graphical models, often termed Bayesian networks 

[15].

The structure of such dynamic processes is often unknown and, in the social sciences in 

particular, there may be no underlying fundamental theory to delineate possible models. 

Thus, a data-driven approach has merit for the inference of models from time-series data 

[16]. Machine learning using recurrent neuronal networks is such an approach [17], but it 

usually requires a large amount of training data and is computationally intensive. Given time 

series of N variables, network inference rapidly becomes computationally demanding with 

increasing N. Even restricting to pair-wise interactions requires determining N2 parameters 

and demands L ⩾ N2 samples. Including higher-order interactions leads to an exponential 

increase in the number of model parameters, and a concomitant increase in required sample 

size. In scientific contexts, however, we often encounter the case that data generated from 

experiments are not big enough to reconstruct the interaction network for a given system. 

Theorists contend with the computational difficulties of inferring large systems by positing 

properties such as sparsity of interactions or specifying distributions of couplings, usually 

with scant experimental support.

Statistical physics is often used for model inference [18,19], but, in fact, for small sample 

sizes, the observed configurations of the system may bear no semblance to random sampling 

or a thermodynamic limit. We develop here an iterative parameter-free model estimator 

using only the mathematical formalism of statistical physics to define a free energy of data, 

and show that minimizing this free energy enables a systematic nonparametric model 

inference.

Over-fitting is a major problem in the analysis of underdetermined systems. Cross validation 

splits the observation into a training set and a testing set, e.g., in a (k − 1)-to-1 proportion, 

namely, k-fold cross validation, for model training and validating, respectively [20]. 

However, for small sample sizes, it is imperative to avoid further reductions in the data 

available for training. Approaches such as LASSO [21] and Ridge regression [22,23] add a 

penalty for nonzero coupling strengths. Regularization terms have been widely applied for 

inference of sparse networks [24,25]. Here, by decoupling an iterative multiplicative model 

update step from any cost function minimization, we are free to use the likelihood or any 

other measure of discrepancy between observation and model expectation as a stopping 

criterion, so that we can use the entire data set for model inference.
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In Sec. I, we explain the theory underlying our approach. We demonstrate that our free 

energy minimization (FEM) approach infers coupling strengths in nonequilibrium kinetic 

Ising models, outperforming previous approaches particularly in the large coupling 

variability and small sample size regimes in Sec. III. Real data are always a stringent test of 

model inference, so we demonstrate applications of FEM to infer biological and financial 

networks from neuronal activities and currency fluctuations. Finally, we summarize the 

computational merits of FEM in Sec. IV. Some mathematical details are explained in the 

Supplemental Material [26]. We provide complete source code and documentation on 

GITHUB [27].

II. THEORY

The kinetic Ising model is commonly used as an illustrative example in stochastic model 

inference. In this model, the N-spin state σ = (σ1,…,σN) at time t + 1 is stochastically 

determined from the current state σ(t) at time t with the following conditional probability:

P σi(t + 1) |σ (t) = exp σi(t + 1)Hi(σ(t))
exp Hi(σ(t)) + exp −Hi(σ(t)) , (1)

for i = 1,…,N. The local field Hi(σ(t)) represents the influence of the present state σ(t) on 

the future state σi(t + 1). Here, for ease of explanation, we focus on the simplest case 

Hi(σ(t)) = ∑jW ijσj(t), with the aim to determine the weight matrix Wij. Of course, Hi(σ(t)) 

could include higher-order interactions of σ(t) in general, and we show later that the 

formalism extends to this case with no change. The state σi(t + 1) tends to align with the 

local field Hi(σ(t)), so the model expectation defined by

σi(t + 1) Hi(σ(t)) ≡ ∑
ρ = ± 1

ρ P σi(t + 1) = ρ |σ(t) (2)

is just σi(t + 1) Hi(σ(t)) = tanh Hi(σ(t)) . Our goal is to infer the coupling strength Wij 

between variables σi(t + 1) and σj(t) from time series data of σ(t) t = 1
L .

Notice that

σi(t + 1) Hi(σ(t))
σi(t + 1) = |tanh Hi(σ(t)) | ⩽ 1, (3)

so, if we define an improved Hi
new(σ(t)) by

Hi
new(σ(t)) σi(t + 1)

σi(t + 1) Hi(σ(t))
Hi(σ(t)), (4)

then

σi(t + 1) Hinew (σ(t)) ⩾ σi(t + 1) Hi(σ(t)) , (5)
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because |Hi
new (σ(t))| ⩾ Hi(σ(t))  and, therefore, tanh Hi

new(σ(t)) ⩾ tanh Hi(σ(t)) . Then, Eq. 

(5) means that the model prediction for σi(t + 1) is closer to ±1, and is therefore better. In 

fact, if the model prediction has the wrong sign, Eq. (4) will even correct the sign of 

Hi
new (σ(t)). An important point to note is that the suggested update, Eq. (4), appears to be 

multiplicative, rather than an incremental additive correction based on error gradients. In 

actual fact, the update is multiplicative for nonvanishing Hi(σ(t)) but because x/tanh x → 1 

for x → 0, the update becomes a shift if the local field vanishes, Hi(σ(t)) = 0, with 

Hi
new (σ(t)) σi(t + 1). In other words, the multiplicative update includes an inhomogeneous 

update which prevents the iteration from being trapped in an Hi = 0 state if it is inconsistent 

with σi(t + 1) ≠ 0. This obviously could not happen with a naive multiplicative update.

However, we are considering each t independently of any other if we update using Eq. (4), 

but the aim is to find the best functional form of Hi(σ(t)) that will determine the system for 

all t. For the linear example, Hi(σ) = ∑jW ijσj, it is not difficult to find the best W ij
new 

directly from Hi
new(σ(t)) = ∑jW ij

new σj(t) averaged in a principled way over all t:

∑
t

Hi
new (σ(t))δσk(t) = ∑

t
∑

j
W ij

new σj(t)δσk(t), (6)

∑
t

δHi
new (σ(t))δσk(t) = ∑

t
∑

j
W ij

new δσj(t)δσk(t), (7)

δHi
newδσk = ∑

j
W ij

new δσjδσk , (8)

where we multiplied fluctuations of microstates δσk(t) ≡ σk(t) − 〈σk〉 on both sides. Note 

that the sample average is defined as f ≡ 1/L∑t = 1
L f(t) and the sample average of 

fluctuations always vanishes with 〈δf〉 = 0. Therefore, one can obtain

W ij
new  = ∑

k
δHi

new δσk [C−1]kj, (9)

by inverting the connected correlation matrix Cjk ≡ 〈δσjδσk〉 on the right-hand side of Eq. 

(8). The challenge now is to find the appropriate theoretical principles and framework for 

this kind of update that apply not just to this simple linear form of the local field Hi but also 

to all functional forms of Hi including higher-order terms.

For this, we turn to Schwinger’s famous idea to use generating functions to provide a natural 

connection between expectation values m = 〈σ〉 of microstates σ and expectation values 

Hi
new

m of any observable Hi
new conditioned on m [28], which therefore gives the 

expectation value, Hi
new

m, as a function of m. This is the foundation of modern approaches 

to field theory as described in textbooks, for example, [29]. We start by defining a moment 

generating function,
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Zi(J , β) = ∑
t

exp J ⋅ σ(t) − βHi
new(σ(t)) , (10)

which is a function of a vector parameter J, a scalar parameter β, and an observable 

Hi
new(σ(t)) of data σ(t). A convex free energy Fi ≡ ln Zi can be used to obtain expectation 

values of spin activities and observables by differentiation,

∂Fi
∂Jj

=
∑tσj(t)exp J ⋅ σ(t) − βHi

new(σ(t))
∑t exp J ⋅ σ(t) − βHi

new(σ(t))
= σj J ≡ mj(J), (11)

∂Fi
∂β = −

∑tHi
new (σ(t))exp J ⋅ σ(t) − βHi

new (σ(t))
∑texp J ⋅ σ(t) − βHi

new (σ(t))
= − Hi

new 
J . (12)

As usual, a convex dual free energy Gi can be defined to make the expected activity vector m 
the independent variable, and J(m) the dependent vector, by using the convexity preserving 

Legendre transform Fi(J) + Gi(m) = J · m. By defining a normalized probability, 

P (σ(t)) ≡ exp[J ⋅ σ(t) − βHi
new (σ(t)) − Fi  in Eq. (10), we can show that Gi can be indeed 

interpreted as a thermodynamic free energy,

Gi = β Hi
new

J − Si (13)

with the expectation value of Hi
new taking the place of internal energy and the Shannon 

entropy of data, Si = − ∑tP (σ(t)) lnP (σ(t)). At β = 0, minimizing the free energy Gi is 

exactly maximizing the entropy Si.

The duality between the free energies Fi and Gi through their Legendre transform leads to

∂Gi
∂mj

= Jj, (14)

∂Gi
∂β = − ∂Fi

∂β = Hi
new 

m, (15)

where we identify Hi
new 

J(m) ≡ Hi
new 

m. Therefore, once we know the free energy Gi, it is 

straightforward to obtain Hi
new

m, the expectation value of observable Hi
new conditioned on 

the expectation value m = 〈σ〉 of microstates σ. For our purposes, however, it will not be 

necessary to obtain Gi(m) for all possible values of m, as it will suffice to know its 

derivatives at its minimum for β = 0. The free energy Gi is minimized when J(m*) = 

∂mG(m*) = 0 from Eq. (15), which happens at the data expectation:
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m* ≡ σ J = 0 = 1
L ∑

t = 1

L
σ(t) . (16)

Therefore, this is the value of m about which we expand in a Taylor series, hence this 

method is termed free energy minimization. The Taylor expansion of Gi(m) up to second-

order terms at m = m* is

Gi(m) = Gi m* + 1
2 ∑

j, k

∂2Gi
∂mj∂mk

*
mj − mj* mk − mk* , (17)

where the derivatives [·]* are taken at m = m*. Differentiating the expanded Gi(m) with 

respect to β leads to

∂Gi(m)
∂β = ∂Gi m*

∂β − ∑
j, k

∂mk*
∂β

∂2Gi
∂mj∂mk

*
mj − mj* . (18)

Here, each derivative in Eq. (18) is calculated as follows:

− ∂mk
∂β = ∂

∂β
∑tσk(t)exp J ⋅ σ(t) − βHi

new (σ(t))
∑texp J ⋅ σ(t) − βHi

new (σ(t))
= δHi

new δσk , (19)

and

∂2Gi
∂mj∂mk

= ∂Jk
∂mj

= [C−1]jk, (20)

where

Cjk = ∂mj
∂Jk

= ∂
∂Jk

∑tσj(t)exp J ⋅ σ(t) − βHi
new (σ(t))

∑texp J ⋅ σ(t) − βHi
new (σ(t))

= δσjδσk m . (21)

Here, we have used standard abbreviated notation: 〈f〉* ≡ 〈f〉J=0, and 〈δf〉m ≡ 〈f〉m − 〈f〉*. 

Plugging in Eqs. (15), (19), and (20), we obtain

δHi
new

m = ∑
j, k

δHi
newδσk * C−1

kj
* δσj m, (22)

which is valid for any choice of observable Hi
new.

Now, if we take our observable Hi
new to be the right-hand side of Eq. (4), then an improved 

estimate of Wij for the linear term in Hi is

W ij
new  ∑

k
δHi

new δσk *[C−1]kj* , (23)
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exactly as suggested by Eq. (9). Moreover, higher-order contributions of σj to Hi are 

obtained simply by expanding to higher orders in the Taylor series in Eq. (17). For instance, 

when the interactions between variables contain not only linear terms but also quadratic 

terms, Hi(σ(t)) = ∑jW ijσj(t) + 1
2 ∑j, kQijkσj(t)σk(t), the formalism gives

Qijk
new ∑

μ, v
δHi

newδσμσv *[C−1]jμ* [C−1]kv*

− ∑
l

∑
λ, μ, ν

δHi
new δσl * δσλδσμσν * × [C−1]jλ* [C−1]kμ* [C−1]lv* ,

(24)

and

W ij
new  ∑

k
δHi

new δσk *[C−1]kj* − Qijk
new  σk * (25)

(see Supplemental Material, Text I [26]). Therefore, with our choice of observables, Hi
new, 

the Schwinger formalism estimates improved W ij
new  and higher-order terms like Qijk

new  from 

previous estimates.

Note that we have not made any use of a cost function in our update rule, which was based 

on the simple observation in Eq. (4). However, overfitting is a major problem for small 

sample size inference, so we now turn to the crucial issue of a stopping criterion for the 

update iteration in Eq. (23). We consider the overall discrepancy between the observed σi(t + 

1) and the model prediction σi(t + 1) Hi(σ(t)):

Di ≡ ∑
t

σi(t + 1) − σi(t + 1) Hi(σ(t))
2 . (26)

Clearly, the parameter update of Wij,Qijk,… through Eqs. (22), (24), and (25) is completely 

independent of the computation of Di. As Di can be rewritten as

Di ≡ ∑
t

1 −
σi(t + 1) Hi(σ(t))

σi(t + 1)
2
, (27)

we see that each term in Di would be individually reduced by virtue of Eq. (5), consistent 

with Eq. (4), but clearly the common functional form of Hi(σ) means that these are not all 

independent. Therefore, we stop the iteration when Di starts to increase. This crucial 

decoupling between the stopping criterion and our multiplicative update is only possible 

because the update is completely independent of Di.

To summarize the inference algorithm with FEM:

i. Compute Hi(σ(t)) = ∑jW ijσj(t) (initialize with a random Wij).

ii. Compute Hi
new (σ(t)) as the right-hand side of Eq. (4).

iii. Update W ij = W ij
new ∑k δHi

newδσk *[C−1]kj* .
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iv. Repeat (i)–(iii) until Di starts to increase.

v. Compute (i)–(iv) in parallel for every index i ∈ {1,2,·⋯ ,N}.

The algorithm is similarly applied to the model containing both linear terms Wij and 

quadratic terms Qijk with Eqs. (25) and (24).

III. RESULTS

A. Kinetic Ising model

We first tested FEM on the inference of connection weights Wij (≠ Wji) in the kinetic Ising 

model, which is often used as a benchmark for stochastic causality inference. The 

Sherrington-Kirkpatrick (SK) model assumes Wij are normally distributed with zero mean 

and variance equal to g2/N [30]. In the limit of large sample size (large L/N2), our iterative 

method decreases the mean-square error, MSE = N−2∑i, j = 1
N W ij − W ij

true  2
, as the number 

of iterations increases [Fig. 1(a)]. We obtain good agreement between true and predicted 

weights [Fig. 1(b)]. In real world problems, W ij
true  is inaccessible so MSE cannot be defined. 

However, Di in Eq. (26) is an alternative measure of the discrepancy between observation 

σi(t + 1) and model expectation. The discrepancy measures Di are independent for each spin 

i. We checked that MSE and D = N−1∑i = 1
N Di change similarly during iterations. More 

importantly, for small sample sizes (small L/N2), MSE and D decrease with iterations 

initially, but start to increase after some number of iterations [Fig. 1(c)]. For the kinetic Ising 

model, Di = 4∑t 1 − P σi(t + 1) |σ(t) 2 with the transition probability, P(σi(t + 1)|σ(t)) in Eq. 

(1). Therefore, decreasing Di can only result from P(σi(t + 1)|σ(t)) saturating the causal 

relation between observations, σ(t) and σi(t + 1), through W. Distinct spins indexed by i 
often require different numbers of iterations. Stopping the iteration for spin i when Di 

saturates leads to accurate inference with minimal computation. For limited data (e.g., L/N2 

= 0.2), these stopping criteria lead to accurate inference [Fig. 1(d)] without overfitting.

Now we compare the inference performance of our method with other representative 

methods [31–33]: naïve mean field (nMF), Thouless-Anderson-Palmer mean field (TAP), 

exact mean field (eMF), and maximum likelihood estimation (MLE). MLE requires 

maximizing the data likelihood, P = ∏t = 1
L − 1 ∏i = 1

N P σi(t + 1) |σ(t) , and uses gradient ascent 

to update Wij incrementally through W ij
new  = W ij + α/(L − 1)∂ lnP/ ∂W ij [31,33], where the 

learning rate α is an undetermined parameter controlling the updating speed. In contrast, the 

maximizing condition (∂ ln P/ ∂W ij = 0) and mean-field approximations provide matrix 

equations, W = A−1BC−1, where matrices Bij = 〈δσi(t + 1)δσj(t)〉 and Cij = 〈δσi(t)δσj(t)〉 
represent time-delayed and equal-time correlations in data, and A are diagonal matrices, 

which are different for nMF, TAP, and eMF (see Supplemental Material, Text 2 for brief 

reviews of these mean-field methods [26]).

As shown in our Jupyter notebook [27], our stopping criterion can also help eMF and MLE 

avoid unnecessary iterations and improve the performance of these methods. Therefore, as a 

concrete illustration, in the following, we consider the case of eMF and MLE with our 

stopping criterion. For weak coupling (g = 1), TAP, eMF, MLE, and FEM have similar 
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inference accuracy that increases with sample size [Fig. 1(e)]. nMF showed poor accuracy 

independent of data size, since the zeroth-order mean-field approximation works only for 

very weak coupling strengths [31]. As we further increase coupling strength, the other two 

mean-field methods, TAP and eMF, also start to give less accurate results than MLE and 

FEM [Fig. 1(f)–1(h)]. The errors at the large coupling strength originate from the 

approximation of weak coupling expansions in nMF and TAP and the assumption of a 

Gaussian distribution of ∑j = 1
N W ijσj in eMF, developed in the thermodynamic limit (N → 

∞). However, our iterative method, FEM, and the standard MLE do not make assumptions 

on the coupling strength. For large sample size (L/N2 > 1), FEM works as well as MLE, but 

for small sample size, FEM provides better accuracy than MLE. For example, the inference 

error (MSE) of FEM is approximately 4 times lower than that of MLE for L/N2 = 0.2 and g 
= 4. As noted above, the separation between model updates and goodness of fit cost, Di, in 

FEM is critical for stopping model updates for small sample size.

In addition to inference accuracy, FEM has two advantages in computation. First, the FEM 

update is multiplicative and not incremental, while MLE updates (using conjugate gradient 

ascent or some other numerical maximization) have an undetermined parameter, the learning 

rate α, which needs to be tuned. A very large rate (α = 3) leads to loss of convergence, 

whereas a very small rate (α = 0.5) leads to many iterations with infinitesimal updates. We 

set α = 1. Second, FEM requires 20 times fewer updates than MLE [Fig. 2(a)], which 

reduces computation time 100-fold [Fig. 2(b)]. Note that the matrix inversion of Cij*  is 

performed only once at the beginning and is not a computational efficiency consideration in 

either FEM or any of the MLE based methods. There are no other matrix inversions in FEM.

To further demonstrate the effectiveness of FEM, we show two examples of inferred 

networks when Wij has more general coupling distributions than the SK model, as real 

systems often deviate strongly from normally distributed coupling strengths. In the first 

example, the spins have alternating bands of positive and negative couplings modulated by 

distance as |Wij| = W0/ln(Rij), where Rij represents the radius of the circle [Fig. 3(a)]. The 

couplings are non-normally distributed [Fig. 3(b)]. The spin raster scan exhibits nontrivial 

structure [Fig. 3(c)], reminiscent of binocular rivalry [34]. As the number of observed 

configurations increases, the predicted coupling strengths [Fig. 3(d)] approach their true 

values [Fig. 3(a)]. In the second, the photograph of the 2018 Gerber baby, Lucas Warren, 

was used as the heat map of the coupling matrix [Fig. 3(e)]. These couplings are also non-

normally distributed [Fig. 3(f)] with periodic bursting in the simulated spin raster scan [Fig. 

3(g)], but the couplings are still predicted well [Fig. 3(h)].

Our formulation, based on the differential geometry of the data free energy, automatically 

includes higher-order regression equations for the local field Hi(σ) in Eq. (24). For example, 

we checked higher-order inference with FEM by using a generalized kinetic Ising model 

with linear and quadratic couplings, Hi(σ(t)) = ∑jW ijσj(t) + ∑j, kQijkσj(t)σk(t)/2, where Wij 

and Qijk are normally distributed. The quadratic couplings are symmetric (Qijk = Qik j) and 

have no self-interactions (Qij j = 0) since σj2 = 1. The number of Qijk parameters is N2(N − 

1)/2. The recovery of both linear and quadratic couplings is evident (Fig. 4).
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B. Neuronal network

We applied our method to infer a neuronal network from temporal neuronal activities in the 

tiger salamander (Ambystoma tigrinum) retina [35]. The multichannel experiment recorded 

stochastic firing patterns of 160 neurons when the salamander retina was stimulated by a 

film clip of fish swimming. As in Ref. [36], we considered only the 100 most active neurons. 

After processing the data [see Supplemental Material, Text 3 [26]; Fig. 5(a)], we inferred the 

neuronal network governing the local field, Hi(σ(t)) = Hi
ext + ∑jW ijσj(t). Here we included 

a constant bias external field Hi
ext for neuron i to consider the persistent silence of neurons. 

We inferred the neuronal network weights Wij [Fig. 5(b)], and the external local fields for 

each neuron by using Hi
ext = Hi − ∑jW ij σj . The external local fields are mostly 

negative, which implies that neuronal activities are biased to be silent [Fig. 5(c)].

The true couplings are unknown for this system. As a validation, with the Hi
ext and Wij that 

we had determined, we simulated neuronal activities. We found agreement between the 

covariances of neuronal activities Cij = 〈δσi(t + 1)δσj(t)〉 of the observed and simulated data 

[Fig. 5(d)]. For a more stringent validation, we reconstructed the full neuronal activities 

from specific “pinned” neuron activities, representing inputs. Fixing the time sequences σj(t) 
of specific chosen input neurons j ∈ I, we reconstructed the activities σi(t + 1) of the 

remaining neurons i ∉ I.

As a control, we selected the input neurons at random and compared them with input 

neurons selected on the basis of the coupling strength |Wij| as the input set I. As more input 

neurons are considered, the reconstruction predicts σi(t + 1) more accurately [Figs. 5(e) and 

S2 [26]]. Pinning the activities of only |I| = 10 strongly coupled neurons gave predicted 

activities of the remaining 90 neurons that were very close to the observed activities [Fig. 

5(f)], in contrast to predicted activities obtained by pinning randomly selected sets of 10 

input neurons [Fig. 5(g)].

C. Currency network

Finally, we apply our method to another difficult and representative stochastic problem, 

currency exchange rate fluctuations. We obtained time series of currency exchange rates 

from January 2000 to December 2017 [37], and examined exchange rates denominated in 

Euro (EUR) of 11 actively traded currencies [Fig. 6(a)]. First, we concentrate on the daily 

fluctuations of the exchange rates, since most financial analyses center on price increments 

rather than absolute prices [38]. We binarize the real-valued rates to concentrate on the sign 

of their daily fluctuations [Fig. 6(b)]. We defined the binarized rate σi(t) = 1 for a day-to-day 

increase of exchange rate i at time t[ri(t) > ri(t − 1)], and σi(t) = −1 for the decrease. If there 

was no change [ri(t) = ri(t − 1)], we set σi(t) = σi(t − 1). Second, we divide the data for 

different periods to investigate the time dependence of the couplings between exchange 

rates. Using the Fourier transform of the binarized time series, we identified a characteristic 

period, 550 business days (~2 years), of the fluctuations [Fig. 6(c)]. We inferred the currency 

network weights Wij separately in two-year periods, shown here [Figs. 6(d)–6(f), upper] for 

the three periods 2012–2013, 2014–2015, and 2016–2017. We found agreement between the 

covariance Cij 〈δσi(t + 1)δσj(t)〉 of the observed currency data and that of the simulated 
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currency data using Hi(σ(t)) = Hi
ext + ∑jW ijσj(t) [Figs. 6(d)–6(f), lower]. In contrast, when 

we estimated the currency network using the data for the entire period 2000–2017, the 

network had weaker connections and smaller covariances Cij compared to the time-

dependent analysis [Fig. 6(g)].

The raw exchange rate data are continuous. Is our binarized inference of any practical value? 

To address this, we simulated a currency trade strategy, and checked if the strategy was 

profitable. Using only data within a time window of a period T, {σ(t − T + 1), σ(t − T + 2),

…,σ(t)}, we predicted the currency fluctuations σ(t + 1) on the next day. For the trade 

simulation, we considered a hedging trader who buys one currency with 1 EUR and sells one 

currency with 1 EUR. To earn profits, the trader is supposed to sell or buy a currency that 

has the highest probability of increase or decrease in exchange rate: the currency sell = arg 

maxi P(σi(t + 1) = +1|σ(t)) and the currency buy = arg maxi P(σi(t + 1) = −1|σ(t)). Then, a 

daily profit can be defined as profit(t) = rsell(t + 1)/rsell(t) − rbuy(t + 1)/rbuy(t). We calculated 

cumulative profits of the trade simulation from 2004 to 2017 with various time window sizes 

that we considered as past information [Fig. 6(h) for T = 500 days]. Hedging strategies profit 

from market volatility and, indeed, our trade simulation showed large profits when the 

exchange rates had large fluctuations [Fig. 6(a)]. The window size T had an optimal period 

of 500–750 business days [Fig. 6(i)]. For a more refined strategy, we considered the quality 

or accuracy of our inference by probing the discrepancy Di in Eq. (26). Instead of trading 

every day, we traded only on the days when the discrepancy at that day, 

D(t) ≡ ∑i [σi(t) − σi(t) Hi(σ(t − 1))]2 , was lower than the average T −1∑t = 1
T D(t) for a fixed 

window size T. This strategy doubled the profits per transaction [Figs. 6(h) and 6(i)], 

showing that the discrepancy Di is a useful measure of model accuracy.

IV. DISCUSSION

We demonstrated that underdetermined stochastic systems can be inferred in a conceptually 

simple and computationally efficient manner using the mathematical framework of statistical 

physics. Since network inference is an important subject, many different approaches have 

been developed. Equilibrium approaches assume symmetric interactions (Wij = Wji) 

between node i and node j, and estimate the pair-wise interaction strengths that can 

maximally explain the observed static patterns of network activity in brains [36,39,40], 

proteins [41,42], and stock markets [43]. In contrast, nonequilibrium approaches do not 

assume symmetry, and infer asymmetric causal relations between nodes that can better 

explain dynamic patterns of network activity [33]. Network inference for nonequilibrium 

models (e.g., using recurrent neuronal networks) is computationally expensive. Although 

mean-field methods have been introduced to circumvent this practical problem [31,44,45], 

these approximation methods only work for weak-interaction regimes with large sample 

size. All small sample size inference must contend with overfitting so the key feature of our 

approach was to consistently decouple the model update step and a discrepancy measure that 

is similar to expectation maximization. This decoupling allows us to iterate with a 

multiplicative model update, and to stop when the discrepancy measure quantifies that the 

multiplicative update has saturated. We derived this within a standard statistical physics 

formulation [28,29], so no ad hoc averaging or approximation steps were involved. We 
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demonstrated that our method outperforms others in inferring the asymmetric interactions of 

the kinetic Ising model, especially in strong-interaction regimes, and particularly when 

available data are limited. Another aspect of small sample size inference is that longer time-

scale modulation of couplings can be uncovered. This is of considerable practical import as 

we demonstrated with the currency exchange rate network.

FEM has several computational merits. Besides having no incremental learning rate that 

requires tuning, the method is parallelizable and scalable: We computed results for the 

kinetic Ising model with up to N = 5000 interacting spins, determining 2.5 × 107 parameters 

(Fig. S3 [26]). We also demonstrated that the method can infer not only linear interactions 

but also higher-order interactions. Moreover, FEM is generalizable to systems with any 

number of discrete states, although we focused on binary stochastic systems here.

We have addressed the inference of networks but without addressing the predictive 
capabilities of the networks inferred directly. While our profitable trade demonstration 

shows that the inferred model is generalizing well, we emphasize that just because we have 

found a good stopping criterion for our iterative update does not imply that the predictions 

from the inferred model are as accurate as the stopping criterion value would indicate. 

Finding a stopping criterion that would include predictive accuracy is an area that we are 

investigating. The usual approach is to perform a training-testing split to evaluate predictive 

performance, but this may not be optimal for small datasets. Finally, uncovering hidden 

nodes for stochastic network inference [46] is an exciting avenue for future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Network inference for the kinetic Ising model. Inference mean-square error (MSE, black) 

and discrepancy (D, gray) are shown as functions of the number of iterations for large 

observed configurations, L/N2 = 1 (a) and few observed configurations, L/N2 = 0.2 (c). 

Predicted couplings vs actual couplings for L/N2 = 1 (b) and L/N2 = 0.2 (d). The inference 

errors are obtained for naïve mean-field (nMF), Thouless-Anderson-Palmer (TAP), exact 

mean-field (eMF), maximum likelihood estimation (MLE), and free energy minimization 

(FEM), for various numbers of observed configurations, L/N2 from 0.2 to 1 in the limit of 

weak coupling, g = 1 (e), and in the limit of stronger coupling, g = 2 (f), g = 3 (g), and g = 4 

(h). A system size N = 100 is used. A learning rate α = 1 is used for MLE.
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FIG. 2. 
Efficiency of inference. Number of iterations per spin (a) and real computational time (b) by 

using MLE vs FEM for various coupling strengths g from 1 to 4 and number of observed 

configurations L/N2 from 0.2 to 1. A system size N = 100 is used. A learning rate α = 1 is 

used for MLE.
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FIG. 3. 
Effectiveness of FEM in inferring network with specific structures. Given true coupling 

weights of N = 40 (a) and 350 (e) spin variables with non-Gaussian distributions, typical 

time series of their activities are generated, (c) and (g). Predicted coupling weights are 

obtained for different data lengths L/N2 = 0.5, 1, and 4 from left to right, (d) and (h). The 

image is converted from the photograph of the 2018 Gerber baby, Lucas Warren (with 

permission from Gerber).
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FIG. 4. 
Accurate inference of higher-order coupling strengths. Linear (a) and quadratic (b) coupling 

strengths in the nonlinear kinetic Ising model are predicted from FEM. Here the true 

coupling strengths are normally distributed with a system size N = 40. Three different data 

lengths, L = 1.6 × 104 (gray), 6.4 × 104 (blue), and 2.56 × 105 (red), are examined.
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FIG. 5. 
Inference of coupling strengths between neurons, external local fields, and neuronal 

activities. From activities of 100 neurons (a), the neuronal network (b) and external local 

field Hi
ext (c) are predicted. The red and blue edges represent positive and negative 

couplings, respectively. Edge direction is clock-wise. Inferred correlation covariances Cij are 

compared with actual correlation covariances Cij
true  (d). Inference accuracy of remaining 

neuronal activities vs number of input neurons selected based on large |Wij| (filled black 

circles), and randomly selected (empty blue circles). Error bars represent the standard 

deviation from 50 random trials (e). Neuronal activities are reconstructed with 10 input 

neurons, selected based on large |Wij| (f), and randomly selected (g).
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FIG. 6. 
Inference of coupling strengths between currency exchange rates. Normalized exchange 

rates relative to EUR of 11 currencies are plotted with different colors representing distinct 

currencies (a). A raster representation of binarized exchange rate fluctuations is plotted with 

black dots representing increase, white dots decrease. Average power spectrum obtained 

from a Fourier transform of exchange rate fluctuations vs time-window size in which error 

bar represents standard deviation from different currencies (c). The currency networks are 

predicted for different periods, e.g., from the years of 2012 to 2013 (d), 2014 to 2015 (e), 

and 2016 to 2017 (f). The network for the whole data, from 2000 to 2017, is also predicted 

(g). The red and blue edges represent positive and negative couplings, respectively. Edge 

direction is clock-wise. Predicted covariances are shown to compare with observed 

covariances Cij
true  [(d)–(g), lower]. Cumulative profit vs time period with trading every day 

(without D, black) and trading only on days specified by lower model discrepancy (with D, 

red) strategies (h). Profit per transaction using our strategy is plotted as a function of time-

window size (i).
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