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Abstract: This paper deals with some computational aspects in the Bayesian analysis

of statistical models with intractable normalizing constants. In the presence of intractable

normalizing constants in the likelihood function, traditional MCMC methods cannot be

applied. We propose an approach to sample from such posterior distributions. The method

can be thought as a Bayesian version of the MCMC-MLE approach of [8]. To the best of our

knowledge, this is the first general and asymptotically consistent Monte Carlo method for

such problems. We illustrate the method with examples from image segmentation and social

network modeling. We study as well the asymptotic behavior of the algorithm and obtain a

strong law of large numbers for empirical averages.
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Keywords and phrases: Monte Carlo methods, Adaptive MCMC, Bayesian inference,

Ising model, Image segmentation, Social network modeling.

1. Introduction

Statistical inference for models with intractable normalizing constants poses a major computa-

tional challenge. This problem occurs in the statistical modeling of many scientific problems.

Examples include the analysis of spatial point processes ([13]), image analysis ([10]), protein de-

sign ([11]) and many others. The problem can be described as follows. Suppose we have a dataset

x0 ∈ (X ,B) generated from a statistical model eE(x,θ)λ(dx)/Z(θ) with parameter θ ∈ (Θ,Ξ),

where the normalizing constant Z(θ) =
∫

X eE(x,θ)λ(dx) depends on θ and is not available in

closed form. Let µ be the prior density of the parameter θ ∈ (Θ,Ξ). The posterior distribution of
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/Bayesian computation for intractable normalizing constants 2

θ given x0 is then given by

π(θ) ∝
1

Z(θ)
eE(x0,θ)µ(θ). (1)

When Z(θ) cannot be easily evaluated, Monte Carlo simulation from this posterior distribution

is problematic even using Markov Chain Monte Carlo (MCMC). [14] uses the term doubly in-

tractable distribution to refer to posterior distributions of the form (1). Current Monte Carlo

sampling methods do not allow one to deal with such models in a Bayesian framework. For ex-

ample, a Metropolis-Hastings algorithm with proposal kernel Q and target distribution π, would

have acceptance ratio min

(

1, eE(x0,θ′)

eE(x0,θ)

Z(θ)
Z(θ′)

Q(θ′,θ)
Q(θ,θ′)

)

which cannot be computed as it involves the

intractable normalizing constant Z evaluated at θ and θ′.

An early attempt to deal with this problem is the pseudo-likelihood approximation of Besag

([4]) which approximates the model eE(x,θ) by a more tractable model. Pseudo-likelihood inference

provides a first approximation but typically performs poorly (see e.g. [5]). Maximum likelihood

inference is possible. MCMC-MLE, a maximum likelihood approach using MCMC has been de-

veloped in the 90’s ([7, 8]). Another related approach to find MLE estimates is Younes’ algorithm

([18]) based on stochastic approximation. An interesting simulation study comparing these three

methods is presented in [10].

Comparatively little work has been done to develop asymptotically exact methods for the

Bayesian approach to this problem. But various approximate algorithms exist in the literature,

often based on path sampling ([6]). Recently, [12] have shown that if exact sampling of X from

eE(x,θ)/Z(θ) (as a density in (X ,B)) is possible then a valid MCMC algorithm to sample from

(1) can be developed. See also [14] for some improvements. Their approach uses a clever auxiliary

variable algorithm. But intractable normalizing constants often occur in models for which exact

sampling of X is not possible or is very expensive. Another recent development to the problem is

the approximate Bayesian computation schemes of Plagnol-Tavaré ([15]) but which sample only

approximately from the posterior distribution.

In this paper, we propose an adaptive Monte Carlo approach to sample from (1). Our algorithm

generates a stochastic process (not Markov in general) {(Xn, θn), n ≥ 0} in X × Θ such that as

n → ∞, the marginal distribution of θn converges to (1). It is clear that any method to sample

from (1) will have to deal with the intractable normalizing constant Z(θ). In the auxiliary variable

method of [12], computing Z(θ) is replaced in a sense by perfect sampling from eE(x,θ)/Z(θ). This

imsart ver. 2005/05/19 file: ALR08.tex date: April 22, 2008



/Bayesian computation for intractable normalizing constants 3

strategy works well so long as perfect sampling is feasible and inexpensive. In the present work,

we take another approach building on the idea of estimating the entire function Z from a single

Monte Carlo sampler. The starting point of the method is importance sampling. Suppose that for

some θ(0) ∈ Θ, we can sample (perhaps by MCMC) from the density eE(x,θ(0))/Z(θ(0)) in (X ,B).

Using this sample, we can certainly estimate Z(θ)/Z(θ(0)) for any θ ∈ Θ. This is the same idea

behind the MCMC-MLE algorithm of [8]. But it is well known that these estimates are typically

very poor as θ gets far from θ(0). Now, suppose that instead of a single point θ(0), we generate

a population {θ(i), i = 1, . . . , d} in Θ and that we can sample from Λ∗(x, i) ∝ eE(x,θ(i))/Z(θ(i))

on X × {1, . . . , d}. Then we show that in principle, efficient estimation for Z(θ) is possible for

any θ ∈ Θ. Building on [3] and the ideas sketched above, we propose an algorithm that generates

a random process {(Xn, θn), n ≥ 0} such that the marginal distribution of Xn converges to Λ∗

and the marginal distribution of θn converges to (1). This random process is not a Markov chain

in general but we show (from first principle) that {θn} has limiting distribution π and satisfies a

strong law of large numbers.

The paper is organized as follows. A full description of the method including practical im-

plementation details is given in Section 2. We illustrate the algorithm with three examples. The

Ising model, a Bayesian image segmentation example and a Bayesian modeling of social networks.

The examples are presented in Section 4. Some theoretical aspects of the method are discussed

in Section 3 with the proofs postponed to 6.

2. Sampling from posterior distributions with intractable normalizing constants

Throughout, we fix the sample space (X ,B, λ) and the parameter space (Θ,Ξ). The problem of

interest is to sample from the posterior distribution (1) with

Z(θ) =

∫

X
eE(x,θ)λ(dx). (2)

Let {θ(i), i = 1, . . . , d} be a sequence of d points in Θ. Let Λ∗ be the probability measure on

X × {1, . . . , d} given by:

Λ∗(x, i) =
eE(x,θ(i))

dZ(θ(i))
, x ∈ X , i ∈ {1, . . . , d}. (3)
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Let κ(θ, θ′) be a similarity kernel on Θ×Θ such that
∑d

i=1 κ(θ, θ(i)) = 1 for all θ ∈ Θ. The starting

point of the algorithm is the following decomposition of the partition function:

Z(θ) =

∫

X
eE(x,θ)λ(dx)

=
d
∑

i=1

κ(θ, θ(i))

∫

X
eE(x,θ)−E(x,θ(i))eE(x,θ(i))λ(dx)

= d
d
∑

i=1

κ(θ, θ(i))Z(θ(i))

∫

X
eE(x,θ)−E(x,θ(i)) e

E(x,θ(i))

dZ(θ(i))
λ(dx)

=
d
∑

i=1

∫

X
Λ∗(x, i)hθ(x, i)λ(dx), (4)

where

hθ(x, i) = dκ(θ, θ(i))Z(θ(i))eE(x,θ)−E(x,θ(i)). (5)

The interest of the decomposition (4) is that {Z(θ(i))} and Λ∗ do not depend on θ. Therefore,

using samples from Λ∗, this decomposition gives an approach to estimate Z(θ) for all θ ∈ Θ.

This estimate should be reliable provided θ is close to at least one particle θ(i). The problem of

sampling from probability measures such as Λ∗ has been recently considered by [3] building on

the Wang-Landau algorithm of [17]. We follow and improve that approach here. The resulting

estimate of Z(θ) can then continuously be fed to a second Monte Carlo sampler that carries the

simulation with respect to π. This suggests an adaptive Monte Carlo sampler to sample from (1)

which we develop next.

For any c = (c(1), . . . , c(d)) ∈ R
d, we define the following density function on X × {1, . . . , d}:

Λc(x, i) ∝ eE(x,θ(i))−c(i). (6)

With c = log(Z), Λc = Λ∗. The reader should think of c as an estimate of z, with z(i) :=

log Z(θ(i)). The algorithm will adaptively adjust c such that the marginal distribution on {1, . . . , d}

is approximately uniform. In which case, we should have c(i) = log Z(i). Let {γn} be a sequence

of (possibly random) positive numbers. We propose a non-Markovian adaptive sampler that lives

in X ×{1, . . . , d}×R
d×Θ. We start from an initial state (X0, I0, c0, θ0) ∈ X ×{1, . . . , d}×R

d×Θ,

where c0 ∈ R
d is the initial estimate of z. For example, c0 ≡ 0. At time n, given (Xn, In, cn, θn) we

first generate Xn+1 from PIn(Xn, ·), where Pi is a transition kernel on (X ,B) with invariant distri-

bution eE(x,θ(i))/Z(θ(i)). Next, we generate In+1 from the distribution on {1, . . . , d} proportional
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/Bayesian computation for intractable normalizing constants 5

to eE(Xn+1,θ(i))−cn(i). Then we update the current estimate of log(Z) to cn+1 given by:

cn+1(i) = cn(i) + γn
eE(Xn+1,θ(i))−cn(i)

∑d
j=1 eE(Xn+1,θ(j))−cn(j)

, i = 1, . . . , d. (7)

In view of (4), we can estimate Z(θ) by:

Zn+1(θ) =
d
∑

i=1

κ(θ, θ(i))ecn+1(i)

[

∑n+1
k=1 eE(Xk ,θ)−E(Xk,θ(i))1i(Ik)

∑n+1
k=1 1i(Ik)

]

, (8)

with the convention that 0/0 = 0. Finally, for any positive function ζ : Θ → (0,∞), let Qζ be a

transition kernel on (Θ,Ξ) with invariant distribution

πζ(θ) ∝
1

ζ(θ)
eE(x0,θ)µ(θ). (9)

Given (Xn+1, In+1, cn+1, Zn+1, θn), we generate θn+1 from QZn+1(θn, ·), where Zn+1 is the function

defined by (8).

The algorithm can be summarized as follows.

Algorithm 2.1. . Let (X0, I0, c0, θ0) ∈ X×{1, . . . , d}×R
d×Θ be the initial state of the algorithm.

Let {γn} be (a possibly random) sequence of positive numbers. At time n, given (Xn, In, cn, θn):

1. Generate Xn+1 from PIn(Xn, ·) where Pi is any ergodic kernel on (X ,B) with invariant dis-

tribution eE(x,θ(i))/Z(i).

2. Generate In+1 by sampling from the distribution on {1, . . . , d} proportional to eE(Xn+1,θ(i))−cn(i).

3. Compute cn+1, the new estimate of g using (7).

4. Using the function Zn+1 defined by (8), generate θn+1 from QZn+1(θn, ·).

Remark 2.1. 1. The algorithm can be seen as an MCMC-MCMC analog to the MCMC-MLE

of [8]. Indeed, with d = 1, the decomposition (4) becomes

Z(θ)/Z(θ(1)) = E

[

eE(θ,X)−E(X,θ(1))
]

,

where the expectation is taken with respect to the density eE(x,θ(1))/Z(θ(1)). But as discussed

in the introduction, when E(θ,X) − E(X, θ(1)) has a large variance, the resulting estimate

is terribly poor.

2. We introduce κ to serve as a smoothing factor so that the particles θ(i)’s close to θ contribute

more to the estimation of Z(θ). We expect this smoothing step to reduce the variance of
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the overall estimate of Z(θ). In the simulations we choose

κ(θ, θ(i)) =
e−

1
2h2 ‖θ−θ(i)‖

2

∑d
j=1 e−

1
2h2 ‖θ−θ(j)‖

2 .

The value of the smoothing parameter h is set by trials and errors for each example.

3. The implementation of the algorithm requires keeping track of all the samples Xk that are

generated (Equation (8)). X can be a very high-dimensional space and we are aware of the

fact that in practice, this bookkeeping can significantly slow down the algorithm. But in

many cases, the function E takes the form E(x, θ) =
∑K

l=1 Sl(x)θl for some real-valued func-

tions Sl. In these cases, we only need to keep track of the statistics {(S1(Xn), . . . , SK(Xn)) , n ≥

0}. All the examples discussed in the paper fall in this latter category.

4. As mentioned earlier, the update of (Xn, In, cn) is essentially the Wang-Landau algorithm

of [3] with the following important difference. [3] propose to update cn one component per

iteration:

cn+1(i) = cn(i) + γn1{i}(In+1).

We improve on this scheme in (7) by Rao-Blackwellization where we integrate out In+1.

5. As mentioned above, and we stress this again, this algorithm is not Markovian in any way.

The process {(Xn, In, cn)} is not a Markov chain but a nonhomogeneous Markov chain if

we let {γn} be a deterministic sequence. {θn}, the main random process of interest is not a

Markov chain either. Nevertheless, the marginal distribution of θn will typically converge to

π. This is because, QZn , the conditional distribution of θn+1 given Fn converges to QZ as

n → ∞ and QZ is a kernel with invariant distribution π. We make this precise by showing

that a strong law of large numbers holds for additive functionals of {θn}.

We now discuss the choice of the parameters of the algorithm.

2.1. Choosing d and the particles {θ(i)}

We do not have any general approach in choosing d and {θ(i)} but we give some guidelines. The

general idea is that the particles {θ(i)} need to cover reasonably well the range of the density π

and be such that for any θ ∈ Θ, the density eE(x,θ)/Z(θ) in X can be well approximated by at

least one of the densities eE(x,θ(i))/Z(i). One possibility is to sample θ(i) independently from the

imsart ver. 2005/05/19 file: ALR08.tex date: April 22, 2008



/Bayesian computation for intractable normalizing constants 7

prior distribution µ, some tempered version of it or some other similar distribution. We follow

this approach in the examples below. Another possibility is to use a grid of points in Θ. The

value of d, the number of particles, should depend on the size of Θ. We need to choose d such

that the distributions eE(x,θ(i))/Z(i) (in X ) overlap. Otherwise, estimating the constants {Z(i)}

can be difficult. This implies that d should not be too small. In the simulation examples be! low

we choose d between 100 and 500.

2.2. Choosing the step-size {γn}

It is shown in [3] that the recursion (7) can also be written as a stochastic approximation algorithm

with step-size {γn}, so that in theory, any positive sequence {γn} such that
∑

γn = ∞ and
∑

γ2
n < ∞ can be used. But the convergence of cn to log Z is very sensitive to the choice {γn}.

If the γn’s are overly small, the recursive equation in (7) will make very small steps. But if these

numbers are overly large, the algorithm will have a large variance. In both cases, the convergence

to the solution will be slow. Overall, choosing the right step-size for a stochastic approximation

algorithm is a difficult problem. Here we follow [3] which has elaborated on a heuristic approach

to this problem originally proposed by [17].

The main idea of the method is that typically, the larger γn, the easier it is for the algorithm

to move around the state space. Therefore, at the beginning γ0 is set at a relatively large value.

This value is kept until {In} has visited equally well all the points of {1, . . . , d}. Let τ1 be the

first time where the occupation measure of {1, . . . , d} by {In} is approximately uniform. Then we

set γτ1+1 to some smaller value (for example γτ1+1 = γτ1/2) and the process is iterated until γn

become sufficiently small. As which point we can choose to switch to a deterministic sequence of

the form γn = n−1/2−ε. Combining this idea with Algorithm 2.1, we get the following.

Algorithm 2.2. . Let γ > ε1 > 0, ε2 > 0 be constants and let (X0, I0, c0, θ0) be some arbitrary

initial state of the algorithm. Set v = 0 ∈ R
d and n = 0. While γ > ε1 and given Fn =

σ{(Xk, Ik, ck, θk), k ≤ n},

1. Generate (Xn+1, In+1, cn+1, θn+1) as in Algorithm 2.1.

2. For i = 1, . . . , d: set v(i) = v(i) + 1i(In+1).

3. If maxi

∣

∣

∣v(i) − 1
d

∣

∣

∣ ≤ ε2
d , then set γ = γ/2 and set v = 0 ∈ R

d.
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Remark 2.2. We use this algorithm in the examples below with the following specifications. We

set the initial γ to 1, ε2 = 0.2. We run {(Xn, In, cn)} until γ ≤ ε1 = 0.001 before starting {θn}

and switching to a deterministic sequence γn = ε1/n
0.7.

3. Convergence analysis

In this section, we derive a law of large numbers under some verifiable conditions. The process

of interest here is {θn}. Let (Ω,F ,Pr) be the reference probability triplet. We equip (Ω,F ,Pr)

with the filtration {Fn}, where Fn = σ{(Xk+1, Ik+1, ck+1, θk), k ≤ n}. Note that Fn includes

(Xn+1, In+1, cn+1) since these random variables are used in generating θn+1. From the definition

of the algorithm, we have:

Pr (θn+1 ∈ A|Fn) = QZn+1(θn, A), Pr−a.s.. (10)

We see from (10) that {θn,Fn} is an adaptive Monte Carlo algorithm with varying target distri-

bution. In analyzing {θn,Fn} here, we do not strive for the most general result but restrict ourself

to conditions that can be easily checked in the examples considered in the paper. We assume that

Θ is a compact subset of R
q, the q-dimensional Euclidean space equipped with its Borel σ-algebra

and the Lebesgue measure. Firstly, we assume that the function E is bounded:

(A1): There exist m,M ∈ R such that:

m ≤ E(x, θ) ≤ M, x ∈ X , θ ∈ Θ. (11)

In many applications, and this is the case for the examples discussed below, X is a finite set

(typically very large) and Θ is a compact set. In these cases, (A1) is easily checked. In order to

proceed any further, we need some notations. A transition kernel on (X ,B) operates on measurable

real-valued functions f as Pf(x) =
∫

P (x, dy)f(y), and the product of two transition kernels P1

and P2 is the transition kernel defined as P1P2(x,A) =
∫

P1(x, dy)P2(y,A). We can then define

recursively Pn = PPn−1, n ≥ 1, P 0(x,A) = 1A(x). For two probability measures µ, ν, the total

variation distance between µ and ν is defined as ‖µ − ν‖TV := supA |µ(A) − ν(A)|. We say that

a transition kernel P is geometrically ergodic if P is φ-irreducible, aperiodic and has an invariant

distribution π such that:

‖Pn(x, ·) − π‖TV ≤ M(x)ρn, n ≥ 0
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/Bayesian computation for intractable normalizing constants 9

for some ρ ∈ (0, 1) and some function M : X → (0,∞].

Our next assumption involves the transition kernel Qζ .

(A2): For ζ : Θ → (0,∞), Qζ is a Metropolis kernel with invariant distribution πζ and proposal

kernel density p. There exist ε > 0 and an integer n0 ≥ 1 such that for all θ, θ′ ∈ Θ:

pn0(θ, θ′) ≥ ε. (12)

Remark 3.1. 1. The condition (12) clearly holds for most symmetric proposal kernels p(θ, θ′),

provided that p(θ, θ′) remains bounded away from 0 on some ball centered at θ.

2. (12) often implies that Qζ is uniformly ergodic:

Qζ(θ,A) ≥
∫

A
min

(

1, eE(x0,θ′)−E(x0,θ) ζ(θ′)

ζ(θ)

)

p(θ, θ′)dθ′

≥ em−M inf
θ,θ′∈Θ

(

ζ(θ)

ζ(θ′)

)
∫

A
p(θ, θ′)dθ′.

Therefore, provided infθ,θ′∈Θ

(

ζ(θ)
ζ(θ′)

)

> 0, if (12) hold then Qn0
ζ (θ,A) ≥ ε′µLeb(A) for some

ε′ > 0.

(A3): {γn} is a random sequence, adapted to {Fn} such that γn > 0,
∑

γn = ∞ and
∑

γ2
n < ∞

Pr-a.s.

Theorem 3.1. Assume (A1)-(A3). Assume also that each kernel Pi on (X ,B) is geometrically

ergodic. Let h : (Θ,Σ) → R such that |h| ≤ 1. Then:

1

n

n
∑

k=1

h(θk) → π(h), Pr−a.s. (13)

Proof. See Section 6.

4. Examples

4.1. Ising model

We test the algorithm with the Ising model on a rectangular lattice. This is a simulated example.

The model is given by eθE(x)/Z(θ) where

E(x) =
m
∑

i=1

n−1
∑

j=1

xijxi,j+1 +
m−1
∑

i=1

n
∑

j=1

xijxi+1,j, (14)
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and xi ∈ {1,−1}. We use m = n = 64. We generate the data x0 from eθE(x)/Z(θ) with θ = 0.40

by perfect sampling using the Propp-Wilson algorithm. Using x0 and postulating the model

eθE(x)/Z(θ), we would like to infer on θ. We use the prior µ(θ) = 1(0,1)(θ). We set d = 100

and generate the points {θ(i)} independently and uniformly in (0, 1). As described in Section

2.2, we use the flat histogram approach in selecting {γn} with an initial value γ0 = 1, until γn

becomes smaller than 0.001. Then we start feeding the adaptive chain {θn} which is run for 10, 000

iterations. In updating θn, we use a Random Walk Metropolis sampler with proposal distribution

U(θn − b, θn + b) (with reflexion at the boundaries) for some b > 0. We adaptively update b so as

to reach an acceptance rate of 30% (see e.g. [2]). We d! iscard th! e first 1, 999 points as a burn-in

period. The results are plotted on Figure 1. As we can see from these plots, the sampler appears

to have converged to the posterior distribution π. The mixing rate of the algorithm as inferred

from the autocorrelation function seems fairly good. In addition, the algorithm yields an estimate

of the partition function log Z(θ) which can be re-used in other sampling problems.
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Figure 1: Output for the Ising model θ = 0.40, m = n = 64. (a): estimation of log Z(θ) up to an

additive constant; (b)-(d): Trace plot, histogram and autocorrelation function of the adaptive

sampler {θn}.
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4.2. An application to image segmentation

We use the Ising model above to illustrate an application of the methodology to image segmen-

tation. In image segmentation, the goal is the reconstruction of images from noisy observations

(see e.g. [9, 10]). We represent the image by a vector x = {xi, i ∈ S} where S is a m × n lattice

and xi ∈ {1, . . . ,K}. Each i ∈ S represents a pixel, and xi is the color of the pixel i. K is the

number of colors. Here we assume that K = 2 and xi ∈ {−1, 1} is either black or white. In the

image segmentation problem, we do not observe x but a noisy approximation y. We assume that:

yi|x, σ2 ind
∼ N (xi, σ

2), (15)

for some unknown parameter σ2. Even though (15) is a continuous model, it has been shown

to provide a relatively good framework for image segmentation problems with multiple additive

sources of noise ([10]).

We assume that the true image x is generated from an Ising model (see Section 4.1) with

interaction parameter θ. We assume that θ follows a uniform prior distribution on (0, 1) and

that σ2 has a prior distribution that is proportional to 1/σ21(0,∞)(σ
2). The posterior distribution

(θ, σ2, x) is then given by:

π
(

θ, σ2, x|y
)

∝

(

1

σ2

)

|S|
2

+1 eθE(x)

Z(θ)
e−

1
2σ2

∑

s∈S
(y(s)−x(s))21(0,1)(θ)1(0,∞)(σ

2), (16)

where E is as in (14).

We sample from this posterior distribution using the adaptive chain {(yn, in, cn, θn, σ2
n, xn)}.

The chain {(yn, in, cn)} is updated following Steps (1)-(3) of Algorithm 2.1. It is used to form

the adaptive estimate of Z(θ) as given by (8) (with {yn, in} replacing {Xn, In}). These estimates

are used to update (θn, σ2
n, xn) using a Metropolis-within-Gibbs scheme. More specifically, given

σ2
n, xn, we sample θn+1 with a Random Walk Metropolis with proposal U(θn − b, θn + b) (with

reflexion at the boundaries) and target proportional to eθE(xn)

Zn(θ) . Given θn+1, xn, we generate σ2
n+1

by sampling from the Inverse-Gamma distribution with parameters ( |S|2 , 1
2

∑

s∈S (y(s) − x(s))2).

And given (θn+1, σn+1), we sample each xn+1(s) from its conditional distribution given {x(u), u 6=

s}. This conditional distribution is given by

p(x (s) = a|x(u), u 6= s) ∝ exp

(

θa
∑

u∼s

x(u) −
1

2σ2
(y(s) − a)2

)

, a ∈ {−1, 1}.

imsart ver. 2005/05/19 file: ALR08.tex date: April 22, 2008



/Bayesian computation for intractable normalizing constants 12

Here u ∼ v means that pixels u and v are neighbors.

To test this algorithm, we generate a simulated dataset y according to model (15) with x

generated from eθE(x)/Z(θ) by perfect sampling. We use m = n = 64, θ = 0.40 and σ = 0.5. For

the implementation details of the algorithm, we make exactly the same choices as in Example

4.1 above. In particular we choose d = 100 and generate {θ(i)} uniformly in (0, 1). The results

are given in Figure 2. Once again, the sample path obtained from {θn} clearly suggests that the

distribution of θn has converged to π with a good mixing rate, as inferred from the autocorrelation

plots.
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Figure 2: Output for the image segmentation model. (a)-(c): plots of {θn}; (d)-(f): plots of {σn}.

4.3. Social network modeling

We now give an application of the method to a Bayesian analysis of social networks. Statistical

modeling of social network is a growing subject in social science (See e.g. [16] and the references

therein for more details). The set up is the following. We have n actors I = {1, . . . , n}. For each

pair (i, j) ∈ I × I, define yij = 1 if actor i has ties with actor j and yij = 0 otherwise. In the

example below, we only consider the case of a symmetric relationship where yij = yji for all

i, j. The ties referred to here can be of various natures. For example, we might be interested in
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modeling how friendships build up between co-workers or how research collaboration takes place

between colleagues. Another interesting example from political science is modeling co-sponsorship

ties (for a given piece of legislation) between members of a house of representatives or parliment.

In this example we study the Medici business network dataset taken from [16] which describes

the business ties between 16 Florentine families. Numbering arbitrarily the family from 1 to 16,

we plot the observed social network in Figure 3. The dataset contains relatively few ties between

families and even fewer transitive ties.

1
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7

3

5

4

11

15

8

16

13

14

10 12

Figure 3: Business Relationships between 16 Florentine families.

One of the most popular models for social networks is the class of exponential random graph

models. In these models, we assume that {yij} is a sample generated from the distribution

p (y|θ1, . . . , θK) ∝ exp

(

K
∑

i=1

θiSi(y)

)

, (17)

for some parameters θ1, . . . , θK ; where Si(y) is a statistic used to capture some aspect of the

network. For this example, and following [16], we consider a 4-dimensional model with statistics

S1(y) =
∑

i<j

yij, the total number of ties,

S2(y) =
∑

i<j<k

yikyjk, the number of two-stars,

S3(y) =
∑

i<j<k<l

yilyjlykl, the number of three-stars,
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S4(y) =
∑

i<j<k

yikyjkyij, the number of transitive ties.

We assume a uniform prior distribution on D = (−50, 50)4 for θ = (θ1, θ2, θ3, θ4) and the posterior

distribution writes:

π (θ|y) ∝
1

Z(θ)
exp

(

4
∑

k=1

θkSk(y)

)

1D(θ). (18)

We use Algorithm 2.1 to sample from (18). For this example, we use 400 particles {θ(l)} generated

from a N(0, 5) the normal distribution with mean 0 and variance 5. We use the same parametriza-

tion as in the previous examples to update (Xn, In, cn). For the adaptive chain {θn} we use a

slightly different strategy. It turns out that some of the components of the target distribution π

are strongly related. Therefore we sample from π in one block, using a Random Walk Metropolis

with a Gaussian kernel N(0, σ2Σ) (restricted to D) for some σ > 0 and a positive definite matrix

Σ. We adaptively set σ so as to reach an acceptance rate of 30%. Ideally, we would like to choose

Σ = Σπ the variance-covariance of π which of course, is not available. We adaptively estimate Σπ

during the simulation as in [2]. As before, we run (Xn, In, cn) until γn < 0.!001. Then we start

{θn} and run the full chain (Xn, In, cn, θn) for a total of 25, 000 iterations. The posterior distri-

butions of the parameters are given in Figures 4a-4d. In Table 1, we give the sample posterior

mean together with the 2.5% and 97.5% quantiles of the posterior distribution. Overall, these re-

sults are consistent with the maximum likelihood estimates obtained by [16] using MCMC-MLE.

The main difference appears in θ4 which we find here not to be significant. As a by-product, the

sampler gives an estimate of the variance-covariance matrix of the posterior distribution π:

Σπ =



















1.67 -0.41 0.27 -0.07

-0.41 1.83 -0.47 -0.02

0.27 -0.47 1.78 -0.03

-0.07 -0.02 -0.03 1.65



















. (19)
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Parameters Post. mean Post. quantiles

θ1 −2.14 (−3.32,−0.81)
θ2 0.94 (−0.43, 2.49)
θ3 −1.06 (−2.72, 0.04)
θ4 0.09 (−1.39, 1.07)

Table 1

Summary of the posterior distribution of the parameters. Posterior means, 2.5% and 97.5% quantiles
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Figure 4a: The adaptive MCMC output from (18). (a)-(c): Plots for {θ1}. Based on 25, 000

iterations.
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Figure 4b: The adaptive MCMC output from (18). (a)-(c): Plots for {θ2}. Based on 25, 000

iterations.
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Figure 4c: The adaptive MCMC output from (18). (a)-(c): Plots for {θ3}. Based on 25, 000

iterations.
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Figure 4d: The adaptive MCMC output from (18). (a)-(c): Plots for {θ4}. Based on 25, 000

iterations.

5. Conclusion

Sampling from posterior distributions with intractable normalizing constants is a difficult compu-

tational problem. Thus far, all methods proposed in the literature but one entail approximations

that do not vanish asymptotically. And the only exception ([12]) requires exact sampling in the

data space, which is only possible for very specific cases. In this work, we propose an approach

that both is more general than [12] and satisfies a strong law of large numbers with limiting

distribution equal to the target distribution. The few applications we have presented here sug-

gest that the method is promising. It remains to be determined how the method will scale with

the dimensionality and with the size of the problems, although in this respect, adaptations of

the method involving annealing/tempering schemes are easy to imagine, which would allow large

problems to be analysed properly.

Acknowledgements

The research of the third author had been partly supported by the Agence Nationale de la

Recherche (ANR, 212, rue de Bercy 75012 Paris) through the 2006-2008 project Adap’MC.

6. Proof of Theorem 3.1

Proof. Throughtout the proof, C will denote a finite constant but whose actual value can change

from one equation to the next. The convergence of the Wang-Landau algorithm has been studied in

[3]. It is shown in this work that under the condition of Theorem 3.1, mini
∑∞

k=1 1{i}(Ik) = ∞ and
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more importantly, ecn(i)/
∑d

j=1 ecn(j) converges almost surely to a Z(θ(i)) (up to a multiplicative

constant).

Define

ωn(i) =
ecn(i)

∑d
j=1 ecn(j)

,

vn,i(θ) =

∑n
k=1 eE(Xk,θ)−E(Xk,θ(i))1i(Ik)

∑n
k=1 1i(Ik)

and

Z̃n(θ) :=
Zn(θ)

∑d
j=1 ecn(j)

=
d
∑

i=1

ωn(i)vn,i(θ). (20)

Instead of Zn, we work with Z̃n. This is equivalent because
∑d

j=1 ecn(j) does not depend on θ and

Zn always appears in QZn as a ratio. We have:

inf
θ∈Θ

Z̃n(θ) ≥ em−M . (21)

inf
θ,θ′∈Θ

(

Z̃n(θ)

Z̃n(θ′)

)

≥ e2(m−M). (22)

Combining (22) and (12) and part 2 of Remark 3.1, we deduce that there exists ε0 > 0 such that

for all n, j ≥ 0

sup
|h|≤1

∣

∣

∣Q
j
Zn

h(θ) − πZn(h)
∣

∣

∣ ≤ 2(1 − ε0)
j , Pr−a.s. (23)

We introduce the notation Q̄n = QZ̃n
−πZ̃n

. It follows from (23) that for any n ≥ 1 the following

function gn is well defined:

gn(θ) =
∞
∑

j=1

Q̄j
nh(θ).

Moreover |gn(θ)| ≤ 2/ε0 for all θ ∈ Θ. gn satisfies Poisson’s equation for Q̄n and h − πZ̃n
(h):

gn(θ) − Q̄ngn(θ) = h − πZn(h). (24)

Using this we can rewrite
∑n

k=1 h(θk) − πZk
(h) as:

1

n

n
∑

k=1

(h(θk) − πZk
(h)) =

1

n

n
∑

k=1

(

gk(θk) − Q̄kgk(θk−1)
)

+
1

n

n
∑

k=1

(

Q̄kgk(θk−1) − Q̄k−1gk−1(θk−1)
)

+
1

n

(

Q̄0g0(θ0) − Q̄ngn(θn)
)

. (25)
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Since supθ∈Θ |gn(θ)| ≤ 2/ε0, a similar bound hold for Q̄ngn and we conclude that 1
n

(

Q̄0g0(θ0) − Q̄ngn(θn)
)

actually converges almost surely to 0 as n → ∞. Writing Dk = gk(θk) − Q̄kgk(θk−1), it is eas-

ily seen that {Dk,Fk} is a martingale difference with bounded increment and we deduce from

martingales theory that 1
n

∑n
k=1

(

gk(θk) − Q̄kgk(θk−1)
)

converges almost surely to 0 as n → ∞.

Since QZ is a Metropolis kernel and using the fact that |min(1, ax) − min(1, ay)| ≤ a |x − y|

for all a, x, y ≥ 0 we deduce that for any function h : Θ → R such that |h| ≤ 1,

∣

∣

∣(QZ̃n
− QZ̃n−1

)h(θ)
∣

∣

∣ ≤
∫

∣

∣

∣

∣

∣

Z̃n(θ)

Z̃n(θ′)
−

Z̃n−1(θ)

Z̃n−1(θ′)

∣

∣

∣

∣

∣

eE(x0,θ′)−E(x0,θ)p(θ, θ′)
∣

∣h(θ′) − h(θ)
∣

∣ dθ′

≤ 2eM−m sup
θ,θ′∈Θ

∣

∣

∣

∣

∣

Z̃n(θ)

Z̃n(θ′)
−

Z̃n−1(θ)

Z̃n−1(θ′)

∣

∣

∣

∣

∣

≤ C
∣

∣

∣Z̃n(θ) − Z̃n−1(θ)
∣

∣

∣ , using (21 − 22), (26)

for some finite constant. Combining (23 and 26) we have the following well-known consequence:

there exists C < ∞ such that for all n ≥ 1:

sup
|h|≤1

∣

∣

∣πZ̃n
(h) − πZ̃n−1

(h)
∣

∣

∣ ≤ C sup
θ∈Θ

∣

∣

∣Z̃n(θ) − Z̃n−1(θ)
∣

∣

∣ . (27)

The stability of Poisson’s equation for geometrically ergodic transition kernels is well known (see

e.g. [1, 3]). Combining (23), (26) and (27), we can find a finite constant C such that for all k ≥ 1:

∣

∣

(

Q̄kgk(θk−1) − Q̄k−1gk−1(θk−1)
)∣

∣ ≤ C sup
θ,θ′∈Θ

∣

∣

∣Z̃k(θ) − Z̃k−1(θ)
∣

∣

∣ . (28)

Given the expression of Z̃n(θ) in (20) it is not very hard to show there exists C < ∞ such that:

sup
θ∈Θ

∣

∣

∣Z̃k(θ) − Z̃k−1(θ)
∣

∣

∣ ≤ C

(

dγk +
1

mini
∑k

l=1 1{i}(Il)

)

→ 0, (29)

as k → ∞ as discussed above. It follows indeed that 1
n

∑n
k=1 (h(θk) − πZk

(h)) converges a.s. to 0.

Given that Z̃n(θ) → CZ(θ) almost surely for some finite constant C,

πZn(h) =

∫ eE(θ,x0)

Zn(θ) h(θ)dθ
∫ eE(θ,x0)

Zn(θ) dθ
−→

∫ eE(θ,x0)

Z(θ) h(θ)dθ
∫ eE(θ,x0)

Z(θ) dθ
= π(h),

as n → ∞ by Lebesgue’s dominated convergence.
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