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a b s t r a c t

The stochastic block model (SBM) is a flexible probabilistic tool that can be used to model interactions
between clusters of nodes in a network. However, it does not account for interactions of time varying
intensity between clusters. The extension of the SBM developed in this paper addresses this shortcoming
through a temporal partition: assuming that interactions between nodes are recorded on fixed-length
time intervals, the inference procedure associated with the model we propose allows us to cluster
simultaneously the nodes of the network and the time intervals. The number of clusters of nodes and of
time intervals, as well as the memberships to clusters, are obtained by maximizing an exact integrated
complete-data likelihood, relying on a greedy search approach. Experiments on simulated and real data
are carried out in order to assess the proposed methodology.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Network analysis has been applied since the 1930s to many
scientific fields. Indeed graph based modelling has been used in
social sciences since the pioneer work of Jacob Moreno [1].
Nowadays, network analyses are used for instance in physics [2],
economics [3], biology [4,5] and history [6], among other fields.

One of the main tools of network analysis is clustering which
aims at detecting clusters of nodes sharing similar connectivity
patterns. Most of the clustering techniques look for communities, a
pattern in which nodes of a given cluster are more likely to con-
nect to members of the same cluster than to members of other
clusters (see [7] for a survey). Those methods usually rely on the
maximization of the modularity, a quality measure proposed by
Girvan and Newman [8]. However, maximizing the modularity has
been shown to be asymptotically biased [9].

In a probabilistic perspective, the stochastic block model (SBM)
[10] assumes that nodes of a graph belong to hidden clusters
and probabilities of interactions between nodes depend only on
these clusters. The SBM can characterize the presence of com-
munities but also more complicated patterns [11]. Many inference
procedures have been derived for the SBM such as variational
expectation maximization (VEM) [12], variational Bayes EM
(VBEM) [13], Gibbs sampling [14], allocation sampler [15], greedy
search [16] and non-parametric schemes [17]. A detailed survey on
the statistical and probabilistic take on network analysis can be
found in [18].
While the original SBM was developed for static networks,
extensions have been proposed recently to deal with dynamic
graphs. In this context, both nodes memberships to a cluster and
interactions between nodes can be seen as stochastic processes.
For instance, in the model of Yang et al. [19], the connectivity
pattern between clusters is fixed through time and a hidden
Markov model is used to describe cluster evolution: the cluster of
a node at time tþ1 is obtained from its cluster at time t via a
Markov chain. Conversely, Xu et al. [20] as well as Xing et al. [21]
used a state space model to describe temporal changes at the level
of the connectivity pattern. In the latter, the authors developed a
method to retrieve overlapping clusters through time.

Other temporal variations of the SBM have been proposed.
They generally share with the ones described above a major
assumption: the data set consists in a sequence of graphs. This is
by far the most common setting for dynamic networks. Some
papers remove those assumptions by considering continuous time
models in which edges occur at specific instants (for instance
when someone sends an email). This is the case of e.g. [22] and of
[23,24]. The model developed in the present paper introduces a
sequence of graphs as an explicit aggregated view of a continuous
time model.

More precisely, our model, that we call the temporal SBM
(TSBM), assumes that nodes belong to clusters that do not change
over time but that interaction patterns between those clusters
have a time varying structure. The time interval over which
interactions are studied is first segmented into sub-intervals of
fixed identical duration. The model assumes that those sub-
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intervals can be clustered into classes of homogeneous interaction
patterns: the distribution of the number of interactions that take
place between nodes of two given clusters during a sub-interval
depends only on the clusters of the nodes and on the cluster of the
sub-interval. This provides a non-stationary extension of the SBM,
which is based on the simultaneous modelling of clusters of nodes
and of sub-intervals of the time horizon. Notice that a related
approach is adopted in [25], but with a substantial difference: they
consider time intervals whose membership is known and hence
exogenous, whereas in this paper the membership of each interval
is hidden and therefore inferred from the data.

The greedy search strategy proposed for the (original) sta-
tionary SBM was compared with other SBM inference tools in
many scenarios using both simulated and real data in [16].
Experimental results emerged illustrating the capacity of the
method to retrieve relevant clusters. Note that the same frame-
work was considered for the (related) latent block model [26], in
the context of biclustering, and similar conclusions were drawn.
Indeed, contrary to most other techniques, this approach relies on
an exact likelihood criterion, the so- called integrated complete-
data likelihood (ICL), for optimization. In particular, it does not
involve any variational approximations. Moreover, it allows the
clustering of the nodes and the estimation of the number of
clusters to be performed simultaneously. Alternative strategies
usually do first the clustering for various number of clusters, by
maximizing a given criterion, typically a lower bound. Then, they
rely on a model selection criterion to estimate the number of
clusters (see [12] for instance). Some sampling strategies also
allow the simultaneous estimation [17,15]. However, the corre-
sponding Markov chains tend to exhibit poor mixing properties,
i.e. low acceptance rates, for large networks. Finally, the greedy
search incurs [16] a smaller computational cost than existing
techniques. Therefore, we follow the greedy search approach and
derive an inference algorithm, for the new model we propose,
which estimates the number of clusters, for both nodes and time
intervals, as well as memberships to clusters.

Finally, we cite the recent work of Matias et al. [27] who
independently developed a temporal stochastic block model,
related to the one proposed in this paper. Interactions in con-
tinuous time are counted by non-homogeneous Poisson processes
whose intensity functions only depend on the nodes clusters. A
variational EM algorithm was derived to maximize an approx-
imation of the likelihood and non-parametric estimates of the
intensity functions are provided.

This paper is structured as follows: Section 2 presents the
proposed temporal extension of the SBM and derives the exact ICL
for this model. Section 3 presents the greedy search algorithm
used to maximize the ICL. Section 4 gathers experimental results
on simulated data and on real world data.
2. A non-stationary stochastic block model

We describe in this section the proposed extension of the
stochastic block model (SBM) to non-stationary situations. First,
we recall the standard modeling assumptions of the SBM, then
introduce our temporal extension and finally derive an exact
integrated classification likelihood (ICL) for this extension.

2.1. Stochastic block model

We consider a set of N nodes A¼ fa1;…; aNg and the N � N
adjacency matrix X ¼ fXijg1r i;jrN such that Xij counts the number
of direct interactions from ai to aj over the time interval ½0; T �. Self-
loops are not considered here, so the diagonal of X is made of zeros
(8 i; Xii ¼ 0). Nodes in A are assumed to belong to K disjoint clus-
ters

A¼⋃krKAk; Al \ Ag ¼ϕ; 8 lag:

We introduce a hidden random vector c¼ fc1;…; cNg, labeling each
node's membership ci

ci ¼ k iff iAAk; 8krK :

The ðciÞ1r irN are assumed to be independent and identically
distributed random variables with a multinomial probability dis-
tribution depending on a common parameter ω

Pfci ¼ kg ¼ωk with
X
krK

ωk ¼ 1:

Thus, node i belongs to cluster k with probability ωk. As a con-
sequence, the joint probability of vector c is

pðcjω;KÞ ¼ ∏
krK

ωj Ak j
k ; ð1Þ

where jAk j denotes the number of nodes in cluster k (we denote
jU j the cardinal of a set U).

The first assumption of the original (stationary) SBM is that
interactions between nodes are independent given the cluster
membership vector c, that is

pðX jcÞ ¼ ∏
1r i;jrN

pðXij jcÞ:

In addition, Xij is assumed to depend only on ci and cj. More pre-
cisely, let us introduce a K � K matrix of model parameters

Λ¼ fλkggkrK;grK :

Then, if c is such that ci ¼ k and cj ¼ g, we assume that Xij is such
that

pðXij jc;Λ;KÞ ¼ pðXij jλkgÞ:
Combining the two assumptions, the probability of observing the
adjacency matrix X, conditionally to c, is given by

pðX jc;Λ;KÞ ¼ ∏
krK

∏
grK

∏
i:ci ¼ k

∏
j:cj ¼ g

pðXij jλkgÞ:

When Xij characterizes interaction counts, a common choice for
pðXij jλkgÞ is the Poisson distribution.

2.2. A non-stationary approach

In order to introduce a temporal structure, we modify the
model described in the previous section. The main idea is to allow
interaction counts to follow different regimes through time. The
model assumes that interaction counts are stationary at some
minimal time resolution. This resolution is modeled via a
decomposition of the time interval ½0; T � in U sub-intervals Iu≔�
tu�1; tu� delimited by the following instants:

0¼ t0ot1o⋯otU ¼ T ;

whose increments

tu�tu�1; uAf1;…;Ug;
have all the same fixed value denoted Δ.

As for the nodes, a partition C1;…;CD is considered for the time
sub-intervals. Thus, each Iu is assumed to belong to one of the D
hidden clusters and the random vector y¼ fyugurU is such that

yu ¼ d iff IuACd; 8drD:

A similar multinomial distribution as the one of c is used to model
y that is

pðyjβ;DÞ ¼ ∏
drD

β j Cd j
d ; ð2Þ

where jCd j is the cardinal of cluster Cd and Pfyu ¼ dg ¼ βd.
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We now define NIu
ij as the number of observed interactions from

i to j, in the time interval Iu. With the notations above, we have

Xij ¼
XU
u ¼ 1

NIu
ij :

Following the SBM case, we assume conditional independence
between all the NIu

ij given the two hidden vectors c and y. Denoting

NΔ ¼ ðNIu
ij Þ1r i;jrN;1rurU , the three-dimensional tensor of interac-

tion counts, this translates into

pðNΔ jc; yÞ ¼ ∏
1r i;jrN;1rurU

pðNIu
ij j c; yÞ:

Given a three-dimensional K � K � D tensor of parameters
Λ¼ fλkgdgkrK ;grK ;drD, we assume that when c is such that ci ¼ k
and cj ¼ g, and y is such that yu ¼ d, then

pðNIu
ij j ci ¼ k; cj ¼ g; yu ¼ dÞ ¼ pðNIu

ij jλkgdÞ:

In addition, NIu
ij jλkgd is assumed to be a Poisson distributed random

variable, that is

pðNIu
ij jλkgdÞ ¼

ðλkgdÞN
Iu
ij

NIu
ij !

e�λkgd : ð3Þ

Remark 1. In the standard SBM, the adjacency matrix X is a
classical N � N matrix and the parameter matrix Λ is also a clas-
sical K � K matrix. In the proposed extension, those matrices are
replaced by three dimensional tensors, NΔ with dimensions N �
N � U and Λ with dimensions K � K � D.

Remark 2. For i and j fixed and c known, the random variables
ðNIu

ij Þ1rurU are independent but are not identically distributed. As
u corresponds to time this induces a non-stationary structure as an
extension of the traditional SBM.

Notation 1. To simplify the rest of the paper, let us denote

∏
k;g;d

≔ ∏
krK

∏
grK

∏
drD

and ∏
ci ¼ k

≔ ∏
i:ci ¼ k

and similarly for ∏cj ¼ g and ∏yu ¼ d.

As in the case of the SBM, the distribution of NΔ, conditional to c
and y, can be computed explicitly

pðNΔ jΛ; c; y;K ;DÞ ¼ ∏
k;g;d

∏
ci ¼ k

∏
cj ¼ g

∏
yu ¼ d

pðNIu
ij jλkgdÞ;

¼ ∏
k;g;d

ðλkgdÞSkgd
Pkgd

e�λkgdRkgd ; ð4Þ

where

Skgd≔
X
ci ¼ k

X
cj ¼ g

X
yu ¼ d

NIu
ij ;

Pkgd≔ ∏
ci ¼ k

∏
cj ¼ g

∏
yu ¼ d

NIu
ij !;

Rkgd≔
jAk JAg JCd j if gak;

jAk j ðjAk j �1ÞjCd j if g¼ k:

(

The full generative model is obtained by adding an indepen-
dence assumptions between c and y which gives to those vectors
the following joint distribution (obtained using Eqs. (1) and (2)):

pðc; yjΦ;K ;DÞ ¼ ∏
krK

ωj Ak j
k

 !
∏

drD
β j Cd j
d

 !
; ð5Þ

where Φ¼ fω;βg.
The identifiability of the proposed model could be assessed in

future works, being outside the scope of the present paper. For a
detailed and more general survey of the identifiability of the
model parameters, in dynamic stochastic block models, the reader
is referred to [28].

2.3. Exact ICL for non-stationary SBM

The assumptions we have made so far are conditional on the
number of clusters K and D being known, which is not the case in
real applications. A standard solution to estimate the labels c and y
as well as the number of clusters would consist in fixing the values
of K and D at first and then in estimating the labels through one of
the methods mentioned in the introduction (e.g. variational EM). A
model selection criterion could finally be used to choose the
values of K and D. Many model selection criteria exist, such as the
Akaike Information Criterion (AIC) [29], the Bayesian Information
Criterion (BIC) [30] and the integrated classification likelihood
(ICL), introduced in the context of Gaussian mixture models by
Biernacki et al. [31]. Authors in [16] proposed an alternative
approach: they introduced an exact version of the ICL for the
stochastic block model, based on a Bayesian approach and max-
imized it directly with respect to the number of clusters and to
cluster memberships. They ran several experiments on simulated
and real data showing that maximizing the exact ICL through a
greedy search algorithm provided more accurate estimates than
those obtained by variational inference or MCMC techniques.
Similar results are provided in [26], in the context of the latent
block model (LBM) for bipartite graphs: the greedy ICL approach
outperforms its competitors in both computational terms and in
the accuracy of the provided estimates. Therefore, in this paper, we
chose to extend the proposed greedy search algorithm to the
temporal model. More details are provided in Section 1.

In the following, the expressions “ICL” or “exact ICL” will be
used interchangeably.

Following the Bayesian approach, we introduce a prior dis-
tribution over the model parameters Φ and Λ, given the meta
parameters K and D, denoted pðΦ;ΛjK ;DÞ. Then the ICL is the
complete data log-likelihood given by

ICLðc; y;K ;DÞ ¼ log pðNΔ; c; yjK;DÞ; ð6Þ
where the model parameters Φ and Λ have been integrated out,
that is

ICLðc; y;K ;DÞ ¼ log
Z

pðNΔ; c; yjΛ;Φ;K;DÞpðΦ;ΛjK ;DÞ dΛ dΦ
� �

:

ð7Þ
We emphasize that the marginalization over all model parameters
naturally induces a penalization on the number of clusters. For
more details, we refer to [31,16]. The integral can be simplified by
a natural independence assumption on the prior distribution

pðΛ;ω;βjK ;DÞ ¼ pðΛjK ;DÞpðωjKÞpðβjDÞ;
which gives

ICLðc; y;K ;DÞ ¼ log
Z

pðNΔ jΛ; c;y;K;DÞpðΛjK ;DÞ dΛ
� �

þ log
Z

pðc; yjΦ;K;DÞpðΦjK;DÞ dΦ
� �

¼ log pðNΔ jc; y;K ;DÞ
� �

þ log pðc; yjK ;DÞð Þ: ð8Þ

Notice that we use in this derivation the implicit hypothesis
from Eq. (5) which says that ðc; yÞ is independent from Λ (givenΦ,
K and D).

2.4. Conjugated a priori distributions

A sensible choice of prior distributions over the model para-
meters is a necessary condition to have an explicit form of the ICL.
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2.4.1. Gamma a priori
In order to integrate out Λ and obtain a closed formula for the

first term on the right hand side of (8), we impose a Gamma a
priori distribution over Λ

pðλkgd ja; bÞ ¼
ba

ΓðaÞλ
a�1
kgd e�bλkgd ;

leading to following joint density:

pðΛjK;DÞ ¼ ∏
k;g;d

pðλkgd ja; bÞ; ð9Þ

where a; b40 and Γð�Þ is the gamma function. By multiplying
(4) and (9), the joint density for the pair ðNΔ;ΛÞ follows:

pðNΔ;Λjc; y;K ;DÞ ¼ ∏
k;g;d

ba

ΓðaÞPkgd
e�λkgd½Rkgd þb�λSkgd þa�1

kgd

� �
:

This quantity can now be easily integrated w.r.t. Λ to obtain

pðNΔ jc; y;K ;DÞ ¼ ∏
k;g;d

Lkgd; ð10Þ

with

Lkgd ¼
ba

ΓðaÞPkgd

ΓðSkgdþaÞ
½Rkgdþb�Skgd þa: ð11Þ

A non-informative prior for the Poisson distribution corresponds
to limiting cases of the Gamma family, when b tends to zero. In all
the experiments we carried out, we set the parameters a and b to
one, in order to have unitary mean and variance for the Gamma
distribution.

2.4.2. Dirichlet a priori
We attach a factorizing Dirichlet a priori distribution to Φ,

namely

pðΦjK ;DÞ ¼DirK ðω;α;…;αÞ � DirDðβ; γ;…; γÞ;
where the parameters of each distribution have been set constant
for simplicity. It can be proved (Appendix A) that the joint inte-
grated density for the pair ðc; yÞ, reduces to

pðc; yjK ;DÞ ¼ΓðαKÞ
ΓðαÞK

∏krKΓðjAk j þαÞ
ΓðNþαKÞ

ΓðγDÞ
ΓðγÞD

∏drDΓðjCd j þγÞ
ΓðUþγDÞ :

ð12Þ
A common choice consists in fixing these parameters to 1 to get a
uniform distribution, or to 1/2 to obtain a Jeffreys non
informative prior.
3. ICL maximization

The integrated complete likelihood (ICL) in Eq. (8) has to be
maximized with respect to the four unknowns c, y, K, and D which
are discrete variables. Obviously no closed formulas can be
obtained and it would computationally prohibitive to test every
combination of the four unknowns. Following the approach
described in [16], we rely on a greedy search strategy. The main
idea is to start with a fine clustering of the nodes and of the
intervals (possibly size one clusters) and then to alternate between
an exchange phase where nodes/intervals can move from one
cluster to another and a merge phase where clusters are merged.
Exchange and merge operations are locally optimal and are guar-
anteed to improve the ICL.

The algorithm is described in detail in the rest of the section. An
analysis of its computational complexity is provided in Appendix B.

Remark 3. The algorithm is guaranteed to increase the ICL at each
step and thus to converge to a local maximum. Randomization can
be used to explore several local maxima but the convergence to a
global maximum is not guaranteed. Moreover, let us denote by ĉ,
ŷ , K̂ , D̂ the estimators of c, y, K and D, respectively, obtained
through the maximization of the function in Eq. (8). A formal proof
of the consistency of these estimators is outside the scope of this
paper. More in general, the consistency of this kind of estimators,
maximizing the exact ICL, is still an open issue.

3.1. Initialization

Initial values are fixed for both K and D, say Kmax and Dmax. These
values may be fixed equal to N and U respectively and each node
(interval) would be alone in its own cluster (time cluster). Alter-
natively, simple clustering algorithms (k-means, hierarchical cluster-
ing) may be used to reduce Kmax and Dmax up to a certain threshold.
This choice should be preferred to speed up the greedy search.

3.2. Greedy – exchange (GE)

A shuffled sequence of all the nodes (time intervals) in the
graph is created. One node (time interval) is chosen and is moved
from its current (time) cluster into the (time) cluster leading to the
highest increase in the exact ICL, if any. This is called a greedy
exchange (GE). This routine is applied to every node (time interval)
in the shuffled sequence. This iterative procedure is repeated until
no further improvement in the exact ICL is possible. In case a node
(time interval) is alone inside its cluster, an exchange becomes a
merge of two clusters (see below).

The ICL does not have to be completely evaluated before and
after each swap: possible increases can be computed directly,
reducing the computational cost. Let us consider first the case of
temporal intervals. Moving interval Iu from the cluster Cd0 to
cluster Cl induces a modification of the ICL given by

ΔE;T
d0-l≔ICLðc; yn;K;DÞ� ICLðc; y;K ;DÞ;

¼ log pðc; yn jK ;DÞ� 	þX
k;g;d

log ðLnkgdÞ
2
4

3
5

� log pðc; yjK;DÞð Þþ
X
k;g;d

log ðLkgdÞ
2
4

3
5;

where yn and Lnkgd refer to the new configuration where IuACl. It
can easily be shown that Δd0-l reduces to

ΔE;T
d0-l ¼ log

ΓðjCd0 j �1þγÞΓðjCl j þ1þγÞ
ΓðjCd0 j þγÞΓðjCl j þγÞ

� �
þ
X
k;g

log
Lnkgd0L

n

kgl

Lkgd0Lkgl

 !
:

ð13Þ
The case of nodes is slightly more complex. When a node is moved
from cluster Ak0 to Al, with k0a l, the change in the ICL is

ΔE;V
k0-l≔ICLðcn; y;K ;DÞ� ICLðc; y;K ;DÞ;

which simplifies into

ΔE;V
k0-l ¼ log

ΓðjAk0 j �1þαÞΓðjAl j þ1þαÞ
ΓðjAk0 j þαÞΓðjAl j þαÞ

� �
þ
X
grK

X
drD

log ðLnk0gdÞþ
X
grK

X
drD

log ðLnlgdÞþ
X
krK

X
drD

log ðLnkk0dÞ

þ
X
krK

X
drD

log ðLnkldÞ�
X
d

ðlog ðLnk0k0dÞþ log ðLnk0ldÞþ log ðLnlk0dÞ

þ log ðLnlldÞÞ�
X
grK

X
drD

log ðLk0gdÞ�
X
grK

X
drD

log ðLlgdÞ

�
X
krK

X
drD

log ðLkk0dÞ�
X
krK

X
drD

log ðLkldÞþ
X
d

ðlog ðLk0k0dÞ

þ log ðLk0 ldÞþ log ðLlk0dÞþ log ðLlldÞÞ;

where cn and Lnkgd refer to the new configuration.
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3.3. Greedy – merge (GM)

Once the GE step is concluded, all possible merges of pairs of
clusters (time clusters) are tested and the best merge is finally
retained. This is called a greedy merge (GM). This procedure is
repeated until no further improvement in the ICL is possible.

In this case too, the ICL does not need to be explicitly com-
puted. Merging in fact time clusters Cd0 and Cl into Cl leads to the
following ICL modification

ΔM;T
d0-l≔ICLðc; yn;K ;D�1Þ� ICLðc; y;K;DÞ

¼ log
pðc; yn jK;D�1Þ
pðc;yjK ;DÞ

� �
þ
X
k;g

ðlog ðLnkglÞ� log ðLkgd0LkglÞ
� �

ð14Þ
Notice that if dr l, then l has to be replaced by l�1 inside Lnkgl.

When merging clusters Ak0 and Al into the cluster Al, the change
in the ICL can be expressed as follows:

ΔM;V
k0-l≔ICLðcn; y;K�1;DÞ� ICLðc; y;K;DÞ

¼ log
pðcn; yjK�1;DÞ
pðc;yjK ;DÞ

� �
þ
X
grK

X
drD

ðlog ðLnlgdÞþ log ðLnkldÞÞ

�
X
d

log ðLnlldÞ�
X
grK

X
drD

log ðLk0gdÞ�
X
grK

X
drD

log ðLlgdÞ

�
X
krK

X
drD

log ðLkk0dÞ�
X
krK

X
drD

log ðLkldÞþ
X
d

ðlog ðLk0k0dÞ

þ log ðLk0 ldÞþ log ðLlk0dÞþ log ðLlldÞÞ:

3.4. Optimization strategies

We have to deal with two different issues:

1. The optimization order of nodes and times: we could either run
the greedy algorithm for nodes and times separately or choose
an hybrid strategy that switches and merges nodes and time
intervals alternatively, for instance.

2. Whether to execute merge or switching movements at first.

The second topic has been largely discussed in the context of
modularity maximization for community detection in static
graphs. One of the most commonly used algorithms is the so-
called Louvain method [32] which proceeds in a rather similar way
as the one chosen here: switching nodes from clusters to clusters
and then merging clusters. This is also the strategy used in [16] for
stationary SBM. Combined with a choice of sufficiently small
values of Kmax and Dmax, this approach gives very good results at
a reasonable computational cost. It should be noted that more
complex approaches based on multilevel refinements of a greedy
merge procedure have been shown to give better results than the
Louvain method in the case of modularity maximization (see [33]).
However, the computation complexity of those approaches is
acceptable only because of the very specific nature of the mod-
ularity criterion and with the help of specialized data structures.
We cannot leverage such tools for ICL maximization.

The first issue is hard to manage since the shape of the function
ICLðc; y;K;DÞ is unknown.We developed three optimization strategies:

1. GE þ GM for time intervals and then GE þ GM for nodes
(Strategy A);

2. GE þ GM for nodes and then GE þ GM for times (Strategy B);
3. Mixed GE þ mixed GM (Strategy C).

In the mixed GE a node is chosen in the shuffled sequence of nodes
and moved to the cluster leading to the highest increase in the ICL.
Then a time interval is chosen in the shuffled sequence of time
intervals and placed in the best time cluster and so on alternating
between nodes and time intervals until no further increase in the
ICL is possible. The mixed GM works similarly. In all the experi-
ments, the three optimization strategies are tested and the one
leading to the highest ICL is retained.
4. Experiments

To assess the reliability of the proposed methodology some
experiments on synthetic and real data were conducted. All run-
times mentioned in the next two sections are measured on a 12
cores Intel Xeon server with 92 GB of main memory running a
GNU Linux operating system. The greedy algorithm described in
Section 3 was implemented in Cþþ . An Euclidean hierarchical
clustering algorithm was used to initialize the labels and Kmax and
Dmax have been set equal to N=2 and U=2 respectively.

4.1. Simulated data

4.1.1. First scenario
We simulated interactions between 50 nodes, belonging to

three clusters A1;A2;A3. Interactions take place over 50 times
intervals of unitary length, belonging to three time clusters
(denoted C1;C2;C3). Clusters are assumed to be balanced on
average by fixingω¼ β¼ 1

3;
1
3;

1
3

� 	
. Notice that while the clusters are

balanced on average they can be relatively imbalanced in some
particular cases.

A community structure setting is chosen, corresponding to the
following diagonal form for the intensity matrix L:

L¼
ψ 2 2
2 ψ 2
2 2 ψ

0
B@

1
CA;

where ψ is a free parameter in ½2; þ1Þ. A non-stationary behavior
is obtained by modifying the intensity matrix over time as follows:

ΛðuÞ ¼ L1C1 ðuÞþ
ffiffiffi
γ

p
L1C2 ðuÞþγL1C3 ðuÞ; uAf1;…;50g ð15Þ

where γ is a free parameter in ½1;1Þ and 1A denotes the indicator
function over a set A. In other words, ΛðuÞ is equal to L when u
belongs to C1, to

ffiffiffi
γ

p
L when u belongs to C2 and to γL when u

belongs to C3. The overall community pattern does not evolve
through time but the average interaction intensity is different in
the three time clusters. Both the community structure and the
non-stationary behavior can be made more or less obvious based
on the value of ψ and γ.

For several values of the pair ðψ ; γÞ, 50 dynamic graphs were
sampled according to the Poisson intensities in Eq. (15). Estimates
of labels vectors y and c are provided for each graph.1 The greedy
algorithm following the optimization strategy A, led to the best
results (see next paragraph for more details). In order to avoid
convergence to local maxima, 10 estimates of labels are provided
for each graph and the pair (ŷ ; ĉ) leading to the highest ICL is
retained.2

Experiments show that for sufficiently large values of ψ and γ,
the true structure can always be recovered. We can see this in
detail for two special cases, as illustrated in Fig. 1.

In Fig. 1a, we set ψ ¼ 2, which means that there is not any
community structure and let γ varying in the range ½1;1:05;…;1:4�.
Adjusted Rand Indexes (ARIs) [34] are used to assess the time



Fig. 1. Box plots of ARIs for both clusterings of nodes and time intervals. Both clusterings reach the maximum effectiveness for higher values of contrast parameters.
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Fig. 2. Comparison between the temporal SBM we propose and a classical SBM in a stationary context (any time cluster).
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clustering, varying between zero (null clustering) and one (opti-
mal clustering). When γ ¼ 1 we are in a degenerate case and no
time structure affects the interactions: not surprisingly the algo-
rithm assigns all the intervals to the same cluster (null ARI). The
higher the value of γ the more effective the clustering is up to a
perfect recovery of the planted structure (ARI of 1). In particular
the true time structure is fully recovered for all the 50 graphs
when γ is higher than 1.3.

Similar results can be observed in Fig. 1b about nodes cluster-
ing: by setting γ ¼ 1, we removed any time structure and a sta-
tionary community structure is detected by the model. In this case
it is interesting to make a comparison with a traditional SBM,
which is expected to give similar results to those shown in Fig. 1b.
For a fixed value of ψ we simulated a dynamic graph, corre-
sponding to 50 adjacency matrices, one per time interval. Then a
static graph is obtained by summing up these adjacency matrices.
The temporal SBM (TSBM) we propose deals with the dynamic
graph, whereas a SBM is used on the static graph3 The Gibbs
sampling algorithm introduced in [35] was used to recover
3 This choice is the most natural one to compare the two models. Alternatively,
the SBM could be used on a single adjacency matrix among the fifty adjacency
matrices provided, at each iteration. In the experiments we carried out, we
obtained similar results for the two options.
the number of clusters and cluster memberships according
to a SBM (with Poisson distributed edge values). The experi-
ment was repeated 50 times for each value of ψ in the set
f2:15;2:35;2:55g. In Fig. 2 we compare the ARIs of the two models
for each value of ψ.

The greedy ICL TSBM (faster than the Gibbs sampling algo-
rithm, who has an average runtime of 15.15 s) recovers the true
structure at levels of contrast lower than those required by the
Gibbs sampling algorithm (SBM). This comparison aims at show-
ing that, in a stationary framework, the TSBM works at least as
well as a standard SBM. The difference in terms of performance of
the two models in this context can certainly be explained by the
greedy search approach which is more effective than Gibbs sam-
pling, as expected (see [16] and Section 1).

4.1.2. Optimization strategies
As mentioned in the previous section, in the present experi-

ments, the optimization strategy A is more efficient than the two
other strategies outlined in Section 3.4. We illustrate this super-
iority in the following test: the pair ðγ;ψ Þ is set to ð1;2:15Þ and 50
dynamic graphs are simulated according to the same settings
discussed so far. Three different estimations are obtained, one for
each strategy, and ARIs for nodes labels are computed. Results in
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Fig. (3) can be compared with the mean value of the final ICL for
each strategy:
Str

Str

A B
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A
R

I (
c)

Fig. 3. Box plots of 50 ARIs for clustering of nodes for each optim
the first scenario with ψ ¼ 2:15.

Fig. 4. Box plots of 50 ARIs
Mean ICL
ategy A
 �70;845:64
ategy B
 �70;894:67
ategy C
 �70;885:22
Str

4.1.3. Scalability
A full scalability analysis of the proposed algorithm is out of the

scope of this paper (see Appendix B), but we have performed a
limited assessment in this direction with a simple example.

A fixed γ ¼ 1 is maintained and for several values of ψ and 50
dynamic graphs with 100 nodes and 100 times intervals were
sampled according to the intensity in Eq. (15). The mean runtime
for reading and providing labels estimates for each dynamic graph
is 13.16 s. As expected, the algorithm needs a lower contrast to
recover the true structure as the reader can observe by comparing
Fig. (4) with Fig. 1(b). This is a consequence of the increase in the
number of interactions (induced by the longer time frame).
C

ization strategy in

for clustering of nodes
In terms of computational burden, each dynamic graph is
handled in a average time of 13.16 s, that is less than 14 slower
than in the case of a graph with 50 nodes and 50 time intervals. As
we use Kmax ¼N=2 and Dmax ¼U=2, the worst case cost of one
“iteration” of the algorithm is OððNþUÞUN2Þ and thus doubling
both N and U should multiply the runtime by 16. On this limited
example, the growth is slightly less than expected.

4.1.4. Non-community structure
We now consider a different scenario showing how the TSBM

model can perfectly recover a clustering structure in a situation
where the SBM fails. We considered two clusters of nodes A1 and
A2 and two time clusters C1 and C2 (clusters are balanced in
average as in the previous examples). We simulated directed
interactions between 50 nodes over 100 time intervals according
to the following intensity matrix:

ΛðuÞ ¼ L11C1 ðuÞþL21C2 ðuÞ; uAf1;…;100g; ð16Þ
where

L1 ¼
2 1
1 2

� �
and L2 ¼

1 2
2 1

� �
:

In this scenario, a clustering structure is persistent over time, but
the agents behavior changes abruptly depending on the time
cluster the interactions are taking place, moving from a commu-
nity like pattern to a bipartite like one. When aggregating obser-
vations, since the expected percentage of time intervals belonging
to cluster C1 is 50%, the two opposite effects compensate each
other (on average) and the SBM cannot detect any community
structure. This can be seen in Fig. 5: we simulated 50 dynamic
graphs according to the Poisson intensities in Eq. (16) and esti-
mates of c and K are provided for each graph by both TSBM and
SBM. The outliers ARIs in the right hand side figure (7 over 50)
correspond to sampled vectors y in which the proportion of time
intervals belonging to cluster C1 is far from 1/2. No outlier is
observed when the experiment is performed with a fixed label
vector y placing the same number of time intervals in each cluster.

The optimization strategy A has been used to produce the
results shown in Fig. 3. Very similar results can be obtained
through optimization strategies B and C: with these settings the
greedy ICL algorithm can always estimate the true vectors c and y.

4.2. Real data

The data set we used was collected during the ACM Hypertext
conference held in Turin, June 29–July 1, 2009. It represents the
in the first scenario, with N¼100 and U¼100.



Fig. 5. Comparison between the temporal SBM and a SBM in the second scenario.

Fig. 6. Aggregated connections for each time interval (6a) and time clusters found by our model (6b) are compared. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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dynamic network of face-to-face proximity interactions of 113
conference attendees over about 2.5 days.4

We focused on the first conference day, namely the 24 h going
from 8 am of June 29 to 7.59 am of June 30. The day was parti-
tioned in small time intervals of 20 s in the original data frame and
interactions of face-to-face proximity (less than 1.5 m) were
monitored by electronic badges that attendees volunteered to
wear. Further details can be found in [36]. We considered 15 min
time aggregations, thus leading to a partition of the day made of
96 consecutive quarter-hours (U ¼ 96 with previous notation). A
typical row of the aggregated data set looks like the following one:
4 More
data�sets/
informa
hypertext-
tions can be found at:
2009-dynamic-contact-networ
ID1
 ID2
 Time interval (15 m)
 Number of interactions
52
 26
 5
 16
It means that conference attendees 52 and 26, between 9 am
and 9.15 am, have spoken for 16� 20 s� 5 m 30 s.
http://www.sociopatterns.org/
k/
In Fig. 6a, we computed the total number of interactions for
each quarter hour. The presence of a time pattern is clear: the
volume of interactions, for example, is much higher at 14 pm than
at 9 am. The greedy ICL algorithm found 20 clusters for nodes
(people) and 4 time clusters. Fig. 6b shows how daily quarter-
hours are assigned to each cluster: it can clearly be seen how time
intervals corresponding to the highest number of interactions have
been placed in cluster C4, those corresponding to an intermediate
interaction intensity, in C2 (yellow) and C3 (green). Cluster C1
(magenta) contains intervals marked by a weaker intensity of
interactions. It is interesting to note how the model closely
recovers times of social gathering5:

� 9.00–10.30 – set-up time for posters and demos.
� 13.00–15.00 – lunch break.
� 18.00–19.00 – wine and cheese reception.

Results in Fig. 6 are obtained through the optimization strategy
A. To make a comparison with the other two optimization
5 A complete program of the day can be found at http://www.ht2009.org/pro
gram.php.

http://www.sociopatterns.org/data~sets/hypertext-2009-dynamic-contact-network/
http://www.sociopatterns.org/data~sets/hypertext-2009-dynamic-contact-network/
http://www.sociopatterns.org/data~sets/hypertext-2009-dynamic-contact-network/
http://www.ht2009.org/program.php
http://www.ht2009.org/program.php


Fig. 7. Comparison between the final values of the ICL obtained through different
optimization strategies. On the horizontal axis we have the index of the experi-
ment, on the vertical axis the final value of the ICL for each strategy.
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strategies, we run the algorithm ten times for each strategy (A, B
and C) and compare the final values of the ICL. Labels c and y are
randomly initialized before each run, according to multinomial
distributions (no hierarchical clustering was used) and Kmax and
Dmax are set equal to N=2 and U=2, respectively. The mean final
values of the ICL are reported in the following table:
Str

Str
mean ICL
ategy A
 �32;746:51
ategy B
 �33;072:99
ategy C
 �32;116:01
Str

As it can be seen, the hybrid strategy C is the one leading to the
highest final ICL, on average. In Fig. 7 we report the final value of
the ICL for each run (from 1 to 10) for each strategy. The optimi-
zation strategy C always outperforms the remaining two patterns.
5. Conclusion

We proposed a non-stationary extension of the stochastic block
model (SBM) allowing us to simultaneously cluster nodes and infer
the time structure of a network. The approach we chose consists in
partitioning the time interval over which interactions are studied
into sub-interval of fixed identical duration. Those intervals pro-
vide aggregated interaction counts that are studied with a SBM
inspired model: nodes and time intervals are clustered in such a
way that aggregated interaction counts are homogeneous over
clusters. We derived an exact integrated classification likelihood
(ICL) for such a model and proposed to maximize it with a greedy
search strategy. The experiments we run on artificial and real
world networks highlight the capacity of the model to capture
non-stationary structures in dynamic graphs.
Appendix A. Joint integrated density for labels

Consider at first the vector c, whose joint probability function is
given by (1). We attach a Dirichlet a priori distribution to the
K-vector ω

pðωjα;KÞ ¼ΓðαKÞ
ΓðαÞK

∏
K

k ¼ 1
ωα�1

k :
The joint probability density for the pair ðc;ωÞ is obtained by
multiplying (1) by the prior density

pðc;ωjα;KÞ ¼ΓðαKÞ
ΓðαÞK

∏
K

k ¼ 1
ωj Ak j þα�1

k :

This is still a Dirichlet probability density function of parameters
ðjA1 j þα;…; jAK j þαÞ and integration with respect to ω is
straightforward

pðcjα;KÞ ¼ΓðαKÞ
ΓðαÞK

Z
ω

∏
K

k ¼ 1
ωj Ak j þα�1

k dω;

¼ΓðαKÞ
ΓðαÞK

∏krKΓðjAk j þαÞ
ΓðPK

k ¼ 1ðjAk j þαÞÞ
�
Z
ω
Dirðω; jA1 j þα;…; jAK j þαÞ dω;

¼ΓðαKÞ
ΓðαÞK

∏krKΓðjAk j þαÞ
ΓðNþαKÞ :

This integrated density corresponds to the first term on the right
hand side of (12). The second term is obtained similarly and the
joint density pðc; yjK;DÞ follows by independence.
Appendix B. Computational complexity

To evaluate the computational complexity of the proposed
algorithm, we assume that the gamma function can be computed
in constant time (see [37]). The core computation task consists in
evaluating the change in ICL induced by exchanges and merges.
The main quantities involved in those computations are the
ðLkgdÞ1r ;krg;1rdrD. We first describe how to handle those quan-
tities and then analyze the cost of the exchange and merge
operations.

B.1. Data structures

The quantities ðLkgdÞ1r ;krg;1rdrD are stored in a three-
dimensional array that is never resized (it occupies a OðK2

maxDmaxÞ
memory space) so that at any time during the algorithm, accessing
to a value or modifying it can be done in constant time. The
quantities needed to compute Lkgd, the Skgd, Pkgd and Rkgd are han-
dled in a similar way.

In addition, we maintain aggregated interaction counts for each
time interval and each node. More precisely, we have for instance
for a time interval Iu

Skgu≔
X
ci ¼ k

X
cj ¼ g

NIu
ij ;

and similar quantities such as Pkgu. For a node i, we have e.g.

Sigd≔
X
cj ¼ g

X
yu ¼ d

NIu
ij ;

and other related quantities. The memory occupied by those
structures is in OðN2UÞ. Cluster memberships and clusters sizes are
also stored in arrays.

In order to evaluate the ICL change induced by an operation, we
need to compute its effect on Lkgd in order to obtain Lnkgd. This can
be done in constant time for one value. For instance moving time
interval Iu from Cd0 to Cl implies the following modifications:
� Skgd0 is reduced by Skgu while Skgl is increased by the same

quantity.
� Pkgd0 is divided by Pkgu while Pkgl is multiplied by the same

quantity.
� Rkgd0 is decreased by jAk JAg j (or jAk j ðjAk j �1Þ) while Rkgl is

increased by the same quantity.

When an exchange or a fusion is actually implemented, we
update all the data structures. The update cost is dominated by the
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other phases of the algorithm. For instance when Iu is moved from
d0 to l, we need to update:
� cluster memberships and cluster sizes, which is done in Oð1Þ;
� Lkgd0 and Lkgl for all k and g, which is done in OðK2Þ;
� aggregated counts and products, such as Sigd0 and Sigl, which is

done in O(NKD).

Considering that KrN and DrU, the total update cost is in O
(NKD) for time interval related operations and in OðUK2Þ for node
related operations.

B.2. Exchanges

The calculation of ΔE;T
d0-l for a time interval cluster exchange

from Eq. (13) involves a sum with K2 terms. As explained above
each term is obtained in constant time, thus the total computation
time is in OðK2Þ. This has to be evaluated for all time clusters and
for all time interval, summing to a total cost of OðUDK2Þ.

Similarly, the calculation of ΔE;V
d0-l involves a fix number of sums

with at most KD terms in each sum. The total computation time is
therefore in O(KD). This had to be evaluated for each node and for
all node clusters, summing to a total cost of OðNK2DÞ.

Notice that we have evaluated the total cost of one exchange
round, i.e., in the case where all time intervals (or all nodes) are
considered once. This evaluation does not take into account the
reduction in the number of clusters generally induced by
exchanges.

B.3. Merges

Merges are very similar to exchange in terms of computational
complexity. They involve comparable sums that can be computed
efficiently using the data structures described above. The compu-
tational cost for one time cluster merge round is in OðD2K2Þ while
it is in OðK3DÞ for node clusters.

B.4. Total cost

The worst case complexity of one full exchange phase (with each
node and each time interval considered once) is OððNþUÞDmaxK

2
maxÞ.

The worst case complexity of one merge with mixed GM is OðDmax

K2
maxðDmaxþKmaxÞÞ which is smaller than the previous one for NZ

Kmax and UZDmax. Thus the worst case complexity of one “itera-
tion” of the algorithm is OððNþUÞDmaxK

2
maxÞ.

Unfortunately, the actual complexity of the algorithm, while
obviously related to this quantity, is difficult to evaluate for two
reasons. Firstly, we have no way to estimate the number of
exchanges needed in the exchange phase (apart from bounding
themwith the number of possible partitions). Secondly, we observe
in practice that exchanges reduce the number of clusters, especially
when Dmax and Kmax are high (i.e. close to U and N, respectively).
Thus the actual cost of one individual exchange reduces very
quickly during the first exchange phase leading to a vast over-
estimation of its cost using the proposed bounds. As a consequence,
the merge phase is also quicker than evaluated by the bounds.

A practical evaluation of the behavior of the algorithm, while
outside the scope of this paper, would be very interesting to assess
its potential use on large data sets.
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